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A B S T R A C T

Biomethane production by anaerobic digestion is an efficient technology to treat organic waste and produce 
clean energy. A growing number of studies has attempted to use carbon-based materials to enhance methane 
production performance. Granular activated carbon (GAC) is commonly used due to its low price and high ef-
ficiency. Moreover, the high conductivity of GAC favors direct interspecies electron transfer (DIET) coupled with 
CO2 reduction to accelerate electromethanogenesis. GAC has also other properties such as porosity, which may 
influence microbial methanogenesis. But the comprehensive contributions to microbiome function were hardly 
summarized. Herein, we review the effects of GAC on anaerobic carbon mineralization, with focus on conduc-
tivity, adhesion, adsorption, pH buffering, and redox mediation. The findings are also applicable to natural 
ecosystems, such as soils and sediments. We also discuss modification of GAC by nanomaterials to enhance 
anaerobic performance. We suggest practical GAC applications in anaerobic digestion and energy conservation.   

1. Introduction

Methane, a greenhouse gas as well as clean energy, is a crucial gas for
the global climate. Biomethane production from biomass decomposition 
through anaerobic digestion (AD) is considered a carbon–neutral pro-
cess [1-3]. The anaerobic digestion process consists of four steps such as 
hydrolysis, acidogenesis, acetogenesis, and methanogenesis, which in-
volves microbiome hydrolytic bacteria, acid-producing bacteria, aceto-
genic bacteria, and methanogens, respectively [4-6]. With a series of 
reactions in these microbes, biomass composed of macromolecular 
organic matter will be degraded into small molecules, such as acetate, 
hydrogen, carbon dioxide, and most importantly, methane. AD 
improvement strategies have been developed such as operating condi-
tions tuning, biogas upgrading, and two-stage anaerobic digestion [7-9]. 
However, these strategies are not widely applied because of their tedious 
parameter tuning procedures, excess energy, and capital expenditure. 
The industrial application of biomethane production requires a better 
understanding of related factors controlling its emissions and feasible 
AD improvement strategies. (See Table 1.). 

Methanogenesis is the last stage of AD to produce biomethane, 
achieved by methanogens mainly belonging to the archaeal phylum 

Euryarchaeota [4,10]. Three methanogenesis processes were identified 
in methanogens: acetate dismutation (acetoclastic methanogenesis), 
CO2 reduction, and methylotrophic methanogenesis. For natural eco-
systems, acetoclastic methanogenesis generally accounts for about two- 
thirds of global biomethane production [11,12]. Only two archaeal 
genera, Methanosarcina and Methanothrix (Methanosaeta), are proved 
with the ability of methane production through direct acetate dis-
mutation [9,13-16]. CO2 reduction requires microbiome syntrophic in-
teractions between methanogens and fermentative bacteria, which 
provide indispensable electron transfer during this process [17-19]. The 
interspecies electron transfer (IET) can be achieved through two 
mechanisms: mediated interspecies electron transfer (MIET) which ferry 
electrons from bacteria to archaea through small molecules as electron 
shuttle, represented by hydrogen and formate [9,16,20,21]. Direct 
interspecies electron transfer (DIET) transfers electrons through direct 
contact of conductive pili (e-pili) or conductive proteins such as c-type 
cytochromes [22-26]. DIET showed better electron transfer efficiency 
than MIET because of the diffusion limitation of electron shuttles 
[16,27,28]. 

Conductive materials (CMs) are wildly used to increase methane 
production in the AD process, mainly focusing on carbon materials and 
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nanowires was proposed [31,34,35]. However, some evidence sup-
porting the above mechanism is indirect proof [36]. Recently, aceto-
clastic methanogenesis is also proved to be enhanced by conductive 
materials evidenced by pure culture experiments [37-40] and isotope 
tracing analysis in anaerobic soils and anaerobic sludges [14,15,41]. 
These results imply diverse mechanisms of CMs on the AD process and 

Research object Inoculum/Substrates Combined 
treatment 

Organic 
load 

Dose Predominant bacteria Predominant 
methanogens 

Ref. 

Synthetic brewery 
wastewater 

Granular sludge Direct voltage 
/NZVI 

5.8 g/L 1 g/L Ignavibacterium Methanothrix [30] 

Synthesized 
Blackwater 

Anaerobic digester sludge Mixing 26.25 g/L 25 g/L Bacteroidetes Methanosaeta [66] 

Butanol octanol 
wastewater 

Anaerobic sludge Exogenous 
hydrogen 

11.76 g/L 5 g/L Geobacter Methanosaeta [108] 

Domestic 
wastewater 

Waste sludge/acetate No 3 g/L NA Geobacter Methanomicrobia [56] 

Swine manure Anaerobic sludge No NA 25 g /L Tricibacter and Terrisporobacter Methanosaeta and 
Methanosarcina 

[109] 

Synthetic brewery 
water 

Granular sludge NZVI 7 g/L 0.5–1.5 g/L Longilinea and Geobacter Methanothrix [102] 

Corn straw Anaerobic sludge No NA 5 g/L Firmicutes Euryarchaeota [110] 
Brewery wastewater Waste sludge/phenol No NA 15 g/L Syntrophorhabdus Methanosaeta [50] 
Phenol-containing 

wastewater 
Anaerobic sludge/phenol Exogenous 

hydrogen 
2 g/L 1 g/L Syntrophus and 

Syntrophorhabdus, 
Methanobacterium [43] 

Domestic sewage Waste sludge NZVI 0.3 g/L 280 mg/g 
MLVSS 

Syntrophobacter Methanosaeta and 
Methanobacterium 

[102] 

Fat, oil and grease Anaerobic sludge No 0.8 g/L 0–15 g/L Geobacter Methanosaeta [111] 
lipid-rich 

wastewater 
Granular sludge No 3.3 g/L 0–33 g/L NA NA [112] 

Municipal sewage Waste sludge/glucose No 0.2 g/L 25 g /L Geobacter and Syntrophus Methanobacterium [58] 
Municipal sewage Waste sludge No 23 g/L 10 g/L NA NA [72] 
Synthetic feed 

wastewater 
Digester sludge/acetate 
and propionate 

ABS particles 0.3 g/L 25% Syntrophobacter Methanothrix [113] 

Food waste Municipal sludge No 1.1 g/L 1–5 g/L Thermotogae and Firmicutes Methanobacterium and 
Methanolinea 

[59] 

Synthetic 
wastewater 

Waste sludge/acetate No NA 2 g/L Geobacter NA [60] 

Swine wastewater Waste sludge No 9.2 g/L 15 g/L Pseudomonas Methanosaeta [61] 
Municipal sewage Waste sludge No 0.5 g/L 25 g/L Geobacter Methanosaeta [62] 
Anaerobic soil Straw Shewanella. 

oneidensis MR-1 
NA 1 g/L NA Methanosarcinaceae [15] 

Food waste Waste sludge No NA 5–15 g/L NA NA [49] 
Starch wastewater Granular sludge MnO2 1 g/L 1.5 g/g 

MLVSS 
Spirochaetaceae, 
Cloacibacterium, and Treponema 

Methanobacterium and 
Methanosaeta 

[47] 

Synthetic 
wastewater 

Granular sludge/glucose Clostridium 
pasteurianum 

NA 10 g/L NA NA [41] 

Food waste Digester sludge No 4.4 g/L 25 g/L Syntrophomonas Methanosarcina and 
Methanoculleus 

[65] 

Synthetic 
wastewater 

Digester sludge No NA 1 g/L Geobacter Methanosarcinales [57] 

Synthetic 
wastewater 

Anaerobic sludge/acetate nano-Fe3O4 0.4 g/L 15 g/L Thermogutta Methanothrix [104] 

Incineration 
leachate 

Anaerobic sludge No 40 g/L 75 g/L Geobacter Methanosarcina [45] 

Bagasse waste Digester sludge No NA 10–100 g/L Petrimonas Methanothrix [114] 
Blackwater Anaerobic sludge No 20 g/L 0.5–4 g/L Clostridiales Methanosarcina [83] 
Swine manure Acclimated sludge No NA 42.7 g/kg Clostridium Methanosarcina [115] 
Synthetic brewery 

wastewater 
Seed sludge/glucose No 65.3 g/L 5 g/L Proteiniphilum Methanosarcina [116] 

Food waste Anaerobic digester sludge No 355 g/L 25 g /L Firmicutes Methanosarcina [87] 
Feeding medium Seed sludge/glucose No NA 10 g/L Actinobacteria Methanosaeta [117] 
Waste activated 

sludge 
Seed sludge Magnetite 35 g/L 27 g/L Anaerolineaceae Methanosaeta [103] 

Artificial 
wastewater 

Digester sludge No NA 40 g/L Geobacter Methanosaeta [118] 

Organic wastewater Anaerobic sludge/acetate No NA 10 g/L Gracilibacter Methanosaeta [84] 
Packing media Sludge/fructose and 

polyethylene glycol 
No 3 g/L NA Geobacter Methanosaeta [119] 

Synthetic 
wastewater 

anaerobic digester No 0.25 g/L 10 g/L Geobacter Methanospirillum [44] 

Co-culture Ethanol No NA 25 g/L Geobacter metallireducens M. barkeri [46] 
Co-culture Ethanol No NA 25 g/L Geobacter metallireducens M. barkeri [53] 

Note: NA, not available. MLVSS: mixed liquid volatile suspended solids. 

magnetite [26,29]. In addition, some Fe-bearing based materials were 
used such as ferrihydrite and Nano-Zero-Valent-Iron (NZVI). For 
example, Sun et al. improved methane yield in an anaerobic reactor by 
10% with NZVI particles [30]. The increase of DIET efficiency is 
commonly proposed as the potential mechanism [7,31-33]. Promotion 
of DIET efficiency for CO2 reduction by forming biofilms or conductive 

Table 1 
Studies of granular activated carbon (GAC) effect on microbial methanogenesis.  



2. Advantages of granular activated carbon on methanogenesis

Most studies observed promising improvements concerning sub-
strate degradation and biomethane production. This prosperity was 
frequently attributed to the increased DIET based on the high conduc-
tivity of GAC and evidenced by microbial abundance analysis. Apart 
from conductive effects, the porous structure creates an excellent 
adsorbent to enrich substrates and potentially remove toxic compounds, 
and to facilitate biofilm-forming. GAC is suitable for electron storage 
thus serves as a capacitor to accept or release electrons. Other properties 
such as pH buffering, and redox mediator cannot be ignored in play a 
role in the AD improvement (Fig. 2). 

2.1. Conductive effects 

GAC conductivity is normally larger than iron oxides but lower than 
nano-scale carbon materials [5,48]. It, however, possesses various ad-
vantages compared to nano-scale carbon materials, such as being low- 
price and pollution-free. The relatively high electron transfer capacity 

Fig. 1. Effects of granular activated carbon (GAC) on methanogenesis. GAC promotes DIET coupled CO2 reduction to perform methanogenesis (upper); and 
acetoclastic methanogenesis is also stimulated through diverse strategies (lower). DIET: Direct interspecies electron transfer, VFAs: volatile fatty acids. 

Fig. 2. Other positive effects of granular activated carbon (GAC) on 
methanogenic progress. GAC fixs microbes to form biofilms, enrich 
substrate, adsorb toxic materials, act as electrode, buffer pH variation and 
mediate redox power, which contributes to the enhancement of 
methanogenesis. 

of GAC currently meets the demand for electrical conductivity in the 
anaerobic digestion process. As an example, GAC replaces the function 
of e-pili and cytochromes to promote electron transfer efficiency and 
result in high biomethane production by 145% and short lag phase by 
2 days [49,50]. The enhancement effect, however, is not invariably 
pro-portional to conductivity. In pure co-cultures, carbon cloth 
showed a similar promoting effect even with a 10-fold higher 
conductivity [51- 53]. Biochar materials with 3 orders of magnitude 
less conductive than GAC manifested almost the same enhancements 
on anaerobic digestion [54]. Consequently, conductivity promoting 
the AD process may have an upper threshold [20]. 

biomethane production. GAC, a typical conductive material, faultlessly 
shows these complex effects (Fig. 1). 

Activated carbon is normally from raw material, such as coal, wood, 
and coconut shell [42]. According to the particle size, activated carbon 
is generally classified as granular activated carbon (GAC) and powdered 
activated carbon. GAC has a relatively larger particle size and a smaller 
external surface compared to activated carbon powdery. It is widely 
used in industrial field because of its outstanding adsorbing capacity, 
high mechanical strength, and excellent chemical stability. Most of the 
GACs used in the AD process are bio-carbon original, such as coconut 
shells. Thus, the industrial-scale application of GAC is economically 
feasible and environmentally friendly. It was concluded that GAC 
enhanced biomethane production through DIET coupled CO2 reduction 
because of the high conductivity (Fig. 1) [43-47]. However, the diverse 
effects of GAC, such as adsorption and adhesion, may concurrently play 
an important role (Fig. 2). At present, the use of CMs in the AD process is 
reviewed through different perspectives. Yet, given the lack of study on 
advances towards methanogenesis affected by GAC in anaerobic diges-
tion, this review focuses on the potential functions of GAC on AD 
enhancement. Diverse mechanisms were proposed, and a combined ef-
fect expect DIET was summarized and discussed. 



that the enhancement of the GAC reactor by a 10% increase of methane 
production was mainly due to the adsorption of extracellular polymeric 
substances by activated carbon within the first 6 h of reaction [30]. 
Jiang et al. noted that GAC preferred absorbing large molecular weight 
substances (e.g., proteins, polysaccharides) rather than small molecules 
(e.g., glucose, volatile fatty acids (VFAs)), resulting in up to 30% shorter 
lag phase [72]. Collectively, GAC promoted AD performance through 
adsorption of organic substrates to accelerate hydrolysis and acido-
genesis processes. 

2.2.2. Adsorption of toxic compounds 
The microbial community, microbiome, encounters a multitude of 

inhibitors during the AD process, such as heavy metals, ammonia, sul-
fate, organic solvents, and the high pressure of hydrogen, which can be 
removed by absorbents [73-75]. The large surface area of GAC provides 
a powerful absorbent to break the inhibition (Fig. 3). Heavy metals are 
often over-presented in waste sludge, which strongly inhibited the ac-
tivity of the microbes [76]. The removal of heavy metals by GAC in 
anaerobic digestion has been well constructed. For example, the Pb2+

and Ni2+ adsorption capacities of GAC in bio-sludge were at 840 ± 20 
and 720 ± 10 mg/g [77,78]. GAC adsorbed phenolic inhibitors to pro-
mote methane production [79]. Detoxification of phenols by GAC was 
also observed recently, which was proposed as the reason for the 
methanogenic acceleration [72]. The removal efficiency of phenol-like 
toxic compounds by GAC through adsorption was up to 100% [72]. 
H2S produced during fermentation is harmful to the methanogenesis 
process. Reassuringly, it can be removed by adsorption of GAC [80] or 
by sulfide oxidizing bacteria attached on the GAC surface [81]. 

Food waste (FW) contains high concentration of nitrogen which is 
converted to ammonia by bacteria [82]. GAC reduced the ammonia 
concentration during FW digestion and increased methane production 
[65]. Furthermore, Zhang et al. demonstrated that GAC protected the 
microbial system from sulfate inhibition [58], which is also true for 
ammonia inhibition removed by adsorption [83]. Except for soluble 
substances, the disinhibition effect of GAC towards high H2 pressure 
during the AD process also benefited biomethane production [62]. 
Accumulation of VFAs produced during the hydrolysis step decreased 
the pH of the system and inhibit methane production. Recent studies 
proved that GAC accelerated the degradation of VFAs, thus reduced the 
inhibition effect [45,49]. 

GAC showed promising effects during the treatment of wastewater 
with toxic organics like aromatic and nitrogen organics. GAC adsorbed 
the highly toxic compounds in the system to release the inhibition and 
enrich syntrophic bacteria to accelerate the degradation of the toxic 
compounds [26]. For example, the use of GAC in the treatment of high- 
strength organic wastewater increased the removal efficiency of N-het-
erocyclic compounds, acids and aromatic compounds to more than 95% 
[84]. Dai et al. showed that GAC composite increased 11% methane 
production during pharmaceutical wastewater treatment and enhanced 
the pharmaceutical intermediates degradation [85]. At present, it is not 
clear which role is the more important, adsorption or DIET. According to 
published studies, most focused on DIET rather than adsorption. How-
ever, a recent study proposed that the adsorption capacity of GAC played 
a more key role than DIET based on Random Forest modeling [86]. 

2.2.3. Adhesion effect 
The porous structure of GAC attaches and immobilizes microbes on 

its surface to form biofilms [49]. Biofilm on the surface shortens the 
physical distance among microbes, thus facilitating substance exchange 
and favoring syntrophic interactions. Moreover, the attachment of mi-
crobes on GAC also substantially altered the structure of the microbial 
community, which has a crucial impact on methane production [87,88]. 

Recent achievements in enhancing anaerobic digestion with carbon- 
based materials noted that the biofilm formed on GAC promoted the 
VFAs degradation by 5–10 days and supplied ample substrates to the 
methanogens, which favored archaeal survival [89]. Chowdhury et al. 

2.1.1. Promoting interspecies electron transfer efficiency 
It is widely shared that conductive materials improved AD perfor-

mance through enhanced DIET efficiency [7,55]. DIET was observed in 
co-culture with Geobacter species and methanogenic Methanosarcina 
barkeri via conductive pili or cytochromes [46,53]. However, the 
detailed mechanism of DIET is still ambiguous [20,22]. 

Kang et al. showed that the effect of GAC on AD performance is in-
dependent of the inocula composition, and GAC promoted biomethane 
production through enrichment of DIET-related bacteria and metha-
nogens on its surface [56,57]. Zhang et al. observed a 20% increase in 
methane production by GAC addition in up-flow anaerobic sludge 
blankets [58]. The increase was attributed to enhanced DIET because of 
the enrichment of Geobacter and Methanobacterium on the surface of 
GAC. A 12.14% increase in biomethane production by GAC on food 
waste treatment was reported [59], where DIET participant Geobacter 
increased close to an order of magnitude. Enhancement of biomethane 
performance by GAC with Geobacter was found somewhere else, where 
49.8% of the organisms on the surface of GAC were Geobacter species 
[60]. Romero et al. linked the biomethane increase to the abundant 
archaeal Methanosaeta which was increase by 13.2% with GAC addition 
[61]. Zhang et al. demonstrated increased sludge conductivity from a 
high proportion of Geobacter, with an increased expression of pilA in 
response to GAC addition [62]. Lei et al. observed that GAC addition led 
to an outstanding AD performance with four times higher methane 
production and two times reduced start-up time [45]. Metagenomic 
analysis showed an enrichment of DIET-related species such as Geobacter 
and Methanosarcina, and genes such as e-pili components and c-type 
cytochrome, OMCs, implying an enhancement of DIET. Similarly, a 
methane production increase of 72% by GAC was attributed to increased 
genes of pilA and OMCs with metagenomic analysis [63]. Some weaker 
promotion, 17.4% higher, on biomethane production, was evidenced by 
the enrichment of hydrogen-utilizing methanogens and Geobacter [64]. 
Lee et al. showed a higher efficiency, 80% increase, with the presence of 
GAC based on the enrichment of Geobacter, Methanospirillum, and 
Methanolinea [44]. 

Obviously, GAC favors microbiome activities and electron transfer 
among electro-active bacteria and methanogens (Fig. 1), thus promoting 
biogas production through enhanced DIET or the enrichment of DIET- 
related microbes. However, a pile of studies did not observe an in-
crease of DIET and/or electricigens [64-67], implying diverse effects of 
GAC on AD performance. 

2.1.2. Promoting acetoclastic methanogenesis 
A pure culture study proved that conductive materials accelerated 

acetoclastic methanogenesis through the enhancement of electron 
transfer within cells [39]. Moreover, considering the first step of acetate 
dismutation, which requires adenosine triphosphate (ATP) to activate 
acetate, the transfer of extracellular electrons is particularly beneficial 
for acetoclastic methanogens [68]. 

Isotope tracing experiments showed that over 90% of the methane 
was produced from acetoclastic methanogenesis [15,41]. Moreover, 
CMs may simultaneously accelerate DIET coupled CO2 reduction and 
acetate dismutation in complex microbial communities [41]. Yang et al. 
demonstrated an increase of acetoclastic methanogenesis by GAC, evi-
denced by metatranscriptomic analysis that acetate dismutation genes 
were highly induced by GAC [69]. In anyway, the enhancement of the 
acetate pathway is a recent finding. More research is needed to confirm 
its reliability and dig underlying mechanism. 

2.2. Adsorption and adhesion effects 

2.2.1. Adsorption of organic substrates 
GAC is a porous material with large surface area, strong adsorption 

and adhesion ability [70,71]. The absorbed substrates such as acetate 
and/or hydrogen are easily accessible by methanogens attached to GAC, 
thus reducing the lag phase of AD treatment [20]. Sun et al. proposed 



demonstrated that GAC promoted methane production by serving as 
microbial aggregated supports instead of promoting DIET [65]. Other 
examples showed that GAC improved AD performance by enriching 
syntrophic bacteria on its surface to accelerate acetogenesis process 
[67]. 

2.3. Capacitor analogue 

The conductive effect of GAC refers to its activity to transfer elec-
trons through one partner to another. In addition to serving as a 
conductive substance, GAC serves as a capacitor analogue, which refers 
to its electron storage capacity to provide or accept electrons [90]. GAC 
also acted as excellent electrode component concerning its high surface 
area and electrical conductivity to construct microbial fuel cells [91]. 
The possibility of a wide variety of microbes accepting electrons directly 
from GAC was proved in different electrochemical systems [92,93]. As 
an example, use of GAC-biocathode in Microbial Fuel Cells (MFC) ach-
ieved a high power density of 55.05 mW⋅m− 2 [93]. Recently, Sun et al. 
demonstrated a more 10% methane yield through a strategy combined 
with direct voltage and GAC/Nanoscale Zero Valent Iron (NZVI) com-
posites, implying the potential use of GAC as an electrode component or 
capacitor analogue in AD systems [30]. 

2.4. Redox mediation 

GAC is used as an efficient redox mediator for syntrophic interaction 
in various environments. For instance, GAC mediated the reduction of 
recalcitrant azo dyes from electrons released by the oxidation of organic 
acids [94]. Lee et al. demonstrated that GAC addition improved the 
microbial oxidizing ability with a higher peak on the cyclic voltammo-
gram measurement, resulting 1.8-fold higher methane production rate 
[44]. The height of the peak indicated the accumulation of redox-active 
components, which were observed in different systems [95,96]. Similar 
results were observed with GAC/NZVI composites increasing 10% 
methane production, which did not affect the type of redox reaction but 
enriched oxidation and reduction substances in the system [88]. 

2.5. pH regulation 

AD process requires a stable and neutral pH environment where the 

substrates are soluble and stably accessible to keep high activities and 
growth of microbiome [49]. The acidogenesis step produces a large 
amount of VFAs, which sharply decreases pH value. GAC can serve as a 
pH buffer because of its high adsorption capacity of VFAs and simulta-
neously promote the degradation of VFAs, thus stabilizing the pH vari-
ations and enhancing substrate production for methanogens. Wang et al. 
demonstrated that 1 g⋅L–1 GAC in the AD system effectively stabilized 
the pH value, resulting in a 12% increase of methane production and 
reduced AD start-up time by about 5 days [59]. The pH buffering ca-
pacity of GAC was also observed at a concentration up to 20 g⋅L–1, which 
showed the best performance that enhanced the methane production by 
27% [97]. During a two-stage digestion process, GAC addition main-
tained the pH of the reactor at 8.0, which reduced the hydraulic reten-
tion time from 84 to 56 h [98]. 

3. Disadvantages of GAC on methanogenesis

The studies about the effect of GAC on methanogenesis are not
exactly the same, and the optimal dose of GAC is still unclear. Kang et al. 
showed the cumulative methane production between the GAC and 
control reactors with no difference [57]. Some studies reversely showed 
inhibition effects of GAC on AD performance with up to 30% decrease of 
methane production [72,99,100]. While the GAC concentration excee-
ded 8.0 g/L, maximum methane production decreased 20–50% 
compared to the control [55]. It was speculated that a large amount of 
GAC adsorbed COD substances and reduced available substrates for 
methane conversion. Similarly, Chowdhury et al. proposed a reducing 
effect of GAC due to the adsorption of undesired substances such as lipid, 
which blocked the contact of microbes with GAC [65]. However, the 
inhibitory effect of GAC can be mitigated by pre-treatment of the sludge 
and elevated temperature or combined with other treatments [72]. 
Although the advantage of GAC is generally acknowledged, negative 
factors and the corresponding conditions in AD should get more 
attention. 

4. Treatment of GAC for considerable performance

To further improve the performance of the GAC, modification is
considered a viable strategy (Fig. 4). At present, iron-based materials are 
widely used, such as magnetite and NZVI. Sun et al. constructed GAC/ 

Fig. 3. Anaerobic digestion inhibitors are removed by granular activated carbon (GAC). GAC decreases heavy metals through adsorption or chelation. H2S, ammonia, 
and phenol are removed by GAC through adsorption. GAC accelerated the degradation of volatile fatty acids and mitigate its inhibition of methanogenesis. 



5. Perspectives

The effects of conductive materials on the performance of AD system
were frequently reviewed. To date, massive attention focuses on the 
DIET coupled methanogenesis, and a host of conclusions are drawn 
through indirect evidence. Here we focused on one of the widely used 
conductive material, GAC, and discussed its potential impacts on 
methane production. Based on the current research progress, the 
following aspects still do not attract enough attention and may result in 
biased conclusions.  

• Conductivity acts on extracellular electron flux and affects electron
transfer chain within cells, thus possibly accelerating acetoclastic
methanogenesis, not only DIET coupled CO2 reduction.

• The hydrolysis, acidogenesis, and acetogenesis process provide
indispensable substrates to methanogens. Thus, the effects of GAC on
these processes, such as biofilm formation, toxin removal, and pH
buffering are worth more attention.

• The dosage and the environmental parameters substantially affect
the performance of GAC in methane production. Different dosages or
external conditions may lead to discrete results.

Though GAC is extensively studied to promote AD performance, the
detailed mechanism is still unclear. Compressively studies concerning 
the crucial aspects, not only DIET, with direct experimental strategies, 
should be performed. For example, the 13C isotope tracing experiment is 
useful to classify the actual methanogenesis pathway and substrate 
utilization [15,33,41]. Advanced omics tools, such as metagenome and 
metabolomics, provide an avenue to identify the active members and 
key metabolites contributing to the methanogenesis [40]. Moreover, 
combining of GAC with other materials, but not limited to nano-
materials, is a promising solution to enhance AD efficiency. Even the use 
of GAC to promote methane production got promising results. Proper 
separation methods of GAC from the AD system and safety disposal 
strategy after AD should be developed before the industrial application. 
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