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This short note is devoted to some applications of a simple quantitative form of the Fenchel-Young inequality in Hilbert spaces both for convex functions and for Fitzpatrick functions of maximal monotone operators. Our initial motivation comes from a stability question in optimal transport. We derive from the quantitative form of the Fenchel-Young inequality a simple and constructive proof of the Brøndsted-Rockafellar theorem and a perturbed primal-dual attainment result in Hilbert spaces.

A quantitative Fenchel-Young inequality

In what follows, (E, .) is a Hilbert space (identified with its dual), and Γ 0 (E) denotes the set of convex, lsc and proper (i.e. not identically +∞) functions from E to R ∪ {+∞}. Let u ∈ Γ 0 (E), u * be its Legendre transform:

u * (p) := sup x∈E {p • x -u(x)}, ∀p ∈ E.
We then denote by G u : E × E → R ∪ {+∞}, the gap function:

G u (x, p) := u(x) + u * (p) -p • x, ∀(x, p) ∈ E × E.
By the very definition of u * , G u is nonnegative on E × E (Fenchel-Young inequality) and vanishes exactly on the graph of ∂u i.e. when p ∈ ∂u(x) with ∂u(x) := {p ∈ E : u(y) ≥ u(x) + p • (yx), ∀y ∈ E}.

An interesting refined Fenchel-Young inequality involving the Fitzpatrick function [START_REF] Fitzpatrick | Representing monotone operators by convex functions[END_REF] can be found in [START_REF] Heinz | Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick[END_REF], we will discuss an extension to maximal monotone operators using the Fitzpatrick function in section 2. Let us also emphasize that, In [START_REF] Santambrogio | Regularity via duality in calculus of variations and degenerate elliptic pdes[END_REF], Santambrogio has developed an elegant and powerful duality argument for the regularity of solutions of convex variational problems in which quantitative versions of the Fenchel-Young inequality play a key role. Below, we prove a quantitative form involving the resolvent (or proximal operator). Let (x, p)

∈ E × E and (x ′ , p ′ ) ∈ E × E, Fenchel-Young inequality gives u(x) ≥ p ′ • x -u * (p ′ ), u * (p) ≥ p • x ′ -u(x ′ )
summing these inequalities and rearranging the scalar product terms immediately gives

G u (x, p) ≥ -G u (x ′ , p ′ ) + (p ′ -p) • (x -x ′ ).
(1.1)

From this basic inequality and using a celebrated trick due to Minty [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF], we obtain a quantitative form of the Fenchel-Young inequality: Lemma 1.1 (Young's inequality with a remainder). Let u ∈ Γ 0 (E). For every (x, p) ∈ E × E and λ > 0, one has

G u (x, p) ≥ 1 λ x -(id +λ∂u) -1 (x + λp) 2 . (1.2)
Proof. Define the resolvent J λ := (id +λ∂u) -1 and note that p ′ ∈ ∂u(x ′ ) is equivalent to

x ′ = J λ (x ′ + λp ′ ).
Fix x and p in E. Define then X := x + λp, h := x -J λ (X), and x ′ and p ′ by

x ′ = J λ (X) = x -h, p ′ := X -x ′ λ = p + h λ
and observe that by construction x ′ = J λ (x ′ + λp ′ ) so that G u (x ′ , p ′ ) = 0. Using (1.1), we then have

G u (x, p) ≥ (p ′ -p) • (x -x ′ ) = 1 λ h 2 = 1 λ x -(id +λ∂u) -1 (x + λp) 2 .
Remark 1.2 (Equality case). Inequality (1.2) is an equality exactly when

J λ (x + λp) ∈ ∂u * (p) and (x + λp) -J λ (x + λp) ∈ λ∂u(x)
i.e. when there exists q ∈ ∂u(x) such that both p and q belong to ∂u(x + λ(pq)).

A variant for Fitzpatrick functions of maximal monotone operators

The goal of this paragraph is to present a variant of (1.2) for Fitzpatrick functions associated with a maximal monotone operator [START_REF] Fitzpatrick | Representing monotone operators by convex functions[END_REF]. Recall that a set-valued operator A from the Hilbert space E to 2 E is monotone if (pp ′ ) • (xx ′ ) ≥ 0 whenever p ∈ A(x) and p ′ ∈ A(x ′ ); it is maximal monotone if, in addition, it has no strict extension that is still monotone. In this case, for every λ > 0, id +λA is onto and the resolvent (id +λA) -1 is a singlevalued one-Lipschitz monotone map, see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. Slightly abusing notations, we shall identify A with its graph i.e. the subset of E × E, A = {(x, p) ∈ E × E : p ∈ A(x)} and only consider the case where A has a nonempty domain i.e. there exists x ∈ E such that A(x) = ∅. Given A, a maximal monotone operator with nonempty domain, the Fitzpatrick function of A,

F A : E × E → R ∪ {+∞} is defined by F A (x, p) := p • x -inf (x ′ ,p ′ )∈A {(p -p ′ ) • (x -x ′ )}, ∀(x, p) ∈ E × E. (2.1)
Fitzpatrick proved the Fenchel-Young like inequality

F A (x, p) ≥ p • x, ∀(x, p) ∈ E × E, (2.2) 
and characterized A by

F A (x, p) = p • x ⇐⇒ (x, p) ∈ A ⇐⇒ (∀λ > 0, x = (id +λA) -1 (x + λp)).
Given (x, p) ∈ E and λ > 0, let us mimick the proof of (1.2) by considering

x ′ := (id +λA) -1 (x + λp), p ′ := x -x ′ λ + p then since (x ′ , p ′ ) ∈ A, (2.1) gives F A (x, p) -p • x ≥ (p -p ′ ) • (x ′ -x) = 1 λ x -(id +λA) -1 (x + λp) 2 (2.3)
which is the announced quantitative version of (2.2).

Stability of optimal transport

Let us denote by P(R d ) the set of Borel probability measures on R d and P 2 (R d ) the set of Borel probability measures on R d with finite second moment. Given µ and ν in P 2 (R d ), the squared Wasserstein distance between µ and ν is by definition

W 2 2 (µ, ν) := inf γ∈Π(µ,ν) ˆRd ×R d |x -y| 2 dγ(x, y) (3.1) 
where Π(µ, ν) is the set of transport plans between µ and ν i.e. the set of Borel probability measures on R d × R d having µ and ν as marginals.

Thanks to the seminal results of Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and McCann [START_REF] Mccann | Existence and uniqueness of monotone measurepreserving maps[END_REF], we know that there exists a convex function u with the property that γ ∈ Π(µ, ν) is optimal for (3.1) if and only if its support is included in the graph of ∂u, the subdifferential of u. A natural stability question is whether an almost optimal plan is (in a sense to be made precise) close to the graph of ∂u. This question, which is of partical importance for numerical and discretization purposes, has been addressed recently by Berman [START_REF] Berman | Convergence rates for discretized Monge-Ampère equations and quantitative stability of optimal transport[END_REF], Li and Nochetto [START_REF] Li | Quantitative stability and error estimates for optimal transport plans[END_REF], Delalande and Mérigot [START_REF] Delalande | Quantitative stability of optimal transport maps under variations of the target measure[END_REF], also see [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF] for convergence of entropic optimal transport. Under some conditions on the marginals µ and ν and their supports, Caffarelli's regularity theory for Monge-Ampère equations [START_REF] Caffarelli | Boundary regularity of maps with convex potentials[END_REF][START_REF] Caffarelli | Monotonicity properties of optimal transportation and the FKG and related inequalities[END_REF] implies the regularity of u and in particular that Brenier's optimal transport map ∇u is Lipschitz. Under this assumption, Li and Nochetto proved the following.

Proposition 3.1 (Li and Nochetto [START_REF] Li | Quantitative stability and error estimates for optimal transport plans[END_REF]). If Brenier's optimal transport map ∇u is M-Lipschitz, then for every γ ∈ Π(µ, ν), one has

ˆRd ×R d |x -y| 2 dγ(x, y) ≥ W 2 2 (µ, ν) + 1 M ˆRd ×R d |y -∇u(x)| 2 dγ(x, y). (3.2)
In the general case where u is nonsmooth, we can easily deduce from (1.2) a surrogate based for the stability inequality (3.2) which holds for arbitrary marginals. The relevance of Minty's trick for optimal transport was first observed by McCann, Pass and Warren [START_REF] Mccann | Rectifiability of optimal transportation plans[END_REF]. Proposition 3.2. for every γ ∈ Π(µ, ν), one has

ˆRd ×R d |x-y| 2 dγ(x, y) ≥ W 2 2 (µ, ν)+2 ˆRd ×R d |x-(id +∂u) -1 (x+y)| 2 dγ(x, y).
Proof. Let u * denote the Legendre transform of u and γ ∈ Π(µ, ν) be an optimal plan between µ and ν. Since γ and γ share the same marginals and since u(x) + u * (y)x • y = 0 on the support of γ, we have

1 2 ˆRd ×R d |x -y| 2 dγ(x, y) - 1 2 W 2 2 (µ, ν) = ˆRd ×R d [u(x) + u * (y) -x • y]dγ(x, y) ≥ ˆRd ×R d |x -(id +∂u) -1 (x + y)| 2 dγ(x, y)
where the last line follows from Lemma 1.1.

Remark 3.3. In case µ is absolutely continuous with respect to the Lebesgue measure, u is differentiable µ-a.e. and ∇u solves the Monge formulation of (3.1):

inf ˆRd |x -T (x)| 2 dµ(x) : T # µ = ν (3.3)
where T # µ is the pushforward of µ through T . In this setting, it is instructive to compare (3.2) which states that whenever

T # µ = ν, one has id -T 2 L 2 (µ) -id -∇u 2 L 2 (µ) ≥ 1 M T -∇u 2 L 2 (µ)
where M is the Lipschitz constant of Brenier's optimal transport map ∇u and the inequality from proposition 3.2 which reads as

id -T 2 L 2 (µ) -id -∇u 2 L 2 (µ) ≥ 2 id -(id +∂u) -1 • (id +T ) 2 L 2 (µ) .

Connection with the Brøndsted-Rockafellar theorem

One can deduce from inequality (1.2) a short (and constructive but restricted to the Hilbertian case) proof of the Brøndsted-Rockafellar theorem [START_REF] Brøndsted | On the subdifferentiability of convex functions[END_REF]. Let

u ∈ Γ 0 (E), x ∈ E and ε > 0, recall that the ε-subdifferential of u at x, ∂ ε u(x) is by definition ∂ ε u(x) := {p ∈ E : G u (x, p) ≤ ε}
which is a non empty closed and convex set as soon as x is in the domain of u.

Theorem 4.1. Let u ∈ Γ 0 (E), ε > 0 and (x, p) ∈ E ×E such that p ∈ ∂ ε u(x)
and λ > 0. Define

x ′ := (id +λ∂u) -1 (x + λp), p ′ := p + x -x ′ λ then x ′ and p ′ satisfy x -x ′ ≤ √ λε, p -p ′ ≤ ε λ , p ′ ∈ ∂u(x ′ ) (4.1) and u(x ′ ) + λ 2 p ′ 2 ≤ u(x) + λ 2 p 2 . (4.2) 
Proof. Since ε ≥ G u (x, p), (1.2) directly implies x -x ′ ≤ √ λε and then p -p ′ = λ -1 x -x ′ ≤ ε λ .
By construction, we also have

x + λp ∈ x ′ + ∂u(x ′ ) i.e. p ′ = x -x ′ λ + p ∈ ∂u(x ′ ) and x ′ minimizes y ∈ E → λu(y) + 1 2 y -(x + λp) 2 = λu(y) + 1 2 y -(x ′ + λp ′ ) 2
from which (4.2) follows.

Observe that in the previous result, by construction, we have x + λp = x ′ + λp ′ .

Primal and dual attainment for tilted dual convex problems

Let E and F be two Hilbert spaces, f ∈ Γ 0 (E), g ∈ Γ 0 (F ) and A be a bounded linear operator between E and F . Consider the convex minimization: inf

x∈E f (x) + g(Ax) (5.1) 
and its Fenchel-Rockafellar dual

sup q∈F -f * (A * q) -g * (-q) (5.2)
where A * is the adjoint of A. Note that the duality gap δ := inf (5.1)sup (5.2) ∈ R + ∪ {+∞} between these two problems can also be written as

δ = inf (x,q)∈E×F G f (x, A * q) + G g (Ax, -q)
The duality gap δ can be positive (and even infinite); even if δ = 0, one cannot take for granted that (5.1) or (5.2) have solutions, primal or dual attainments require further assumptions in general. However, as we shall see below, when one tilts the data with linear perturbations of the order of √ δ, the corresponding tilted primal and dual problems have solutions (and of course, no gap). Theorem 5.1. For every δ > δ, there exists (h, k) ∈ E × F such that

h 2 + k 2 ≤ δ (5.3)
and, the tilted functions

f h,k (x) := f (x -h) -(A * k + h) • x, ∀x ∈ E, g k (y) := g(y -k), ∀y ∈ F, satisfy min x∈E f h,k (x) + g k (Ax) = max q∈F -f * h,k (A * q) -g * k (-q) (5.4)
(where we have written min and max on purpose to emphasize the fact that both are achieved).

Proof. If δ = +∞, there is nothing to prove so we assume δ ∈ R + . Thanks to the definition of δ and (1.2), we get

δ > inf (x,q)∈E×F x -(id +∂f ) -1 (x + A * q) 2 + Ax -(id +∂g) -1 (Ax -q) 2
so that there exists (x, q) ∈ E × F such that defining h ∈ E and k ∈ F by

h := x -(id +∂f ) -1 (x + A * q), k := Ax -(id +∂g) -1 (Ax -q), (5.5) 
the pair (h, k) satisfies (5.3). By the very definition of h and k we have

A * (q-k) ∈ -h-A * k+∂f (x-h) = ∂f h,k (x), -(q-k) ∈ ∂g(Ax-k) = ∂g k (Ax)
which readily implies that:

• x minimizes f h,k + g h • A over E, • q -k minimizes f * h,k • A * + g * k (-.) over F , • 0 = f h,k (x) + g k (Ax) + f * h,k (A * (q -k)) + g * k (-q + k)
. This shows primal and dual attainment and the absence of duality gap for (5.4), the tilted version of (5.1)-(5.2). Now, let us consider the more general situation where Φ ∈ Γ 0 (E × F ) (E and F are again Hilbert spaces), and we consider the gap between inf x∈E Φ(x, 0) (5.6) and its dual sup q∈F -Φ * (0, q). (5.7)

This gap is δ = inf (x,q)∈E×F G Φ ((x, 0), (0, q)).

Of course, if (x, q) ∈ E × F are such that (0, q) ∈ ∂Φ(x, 0) (equivalently (x, 0) ∈ ∂Φ * (q, 0)) then x solves (5.6), q solves (5.7) and δ = 0. In the general case, using (1.2) again we deduce that, for any δ > δ, there exists (x, q) ∈ E × F such that δ ≥ (x, 0) -(id +∂Φ) -1 (x, q) 2 so that defining (h, k) := (x, 0) -(id +∂Φ) -1 (x, q) one has (h, k) ≤ √ δ (5.8) and (0, q) ∈ (-h, -k) + ∂Φ(xh, -k).

Defining the tilted function

Φ h,k (u, v) := Φ(u -h, v -k) -h • u -k • v, ∀(u, v) ∈ E × F
we thus have (0, q) ∈ ∂Φ h,k (x, 0) so that Φ h,k (x, 0) + Φ * h,k (0, q) = 0, and that the tilted versions of (5.6) and (5.7) where Φ is replaced by Φ h,k both admit solutions.
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