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Fenchel-Young inequality with a remainder

and applications to convex duality and optimal
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Abstract

This short note is devoted to some applications of a simple quan-

titative form of the Fenchel-Young inequality in Hilbert spaces. Our

initial motivation comes from a stability question in optimal transport.

We derive from the quantitative form of the Fenchel-Young inequality

a simple and constructive proof of the Brøndsted-Rockafellar theorem

and a perturbed primal-dual attainment result in Hilbert spaces.

Keywords: Fenchel-Young inequality in quantitative form, Brøndsted-
Rockafellar theorem, tilted convex duality, stability of optimal transport.

1 A quantitative Fenchel-Young inequality

In what follows, (E, .) is a Hilbert space (identified with its dual), and Γ0(E)
denotes the set of convex, lsc and proper (i.e. not identically +∞) functions
from E to R ∪ {+∞}. Let u ∈ Γ0(E), u∗ be its Legendre transform:

u∗(p) := sup
x∈E

{p · x− u(x)}, ∀p ∈ E.

We then denote by Gu : E × E → R ∪ {+∞}, the gap function:

Gu(x, p) := u(x) + u∗(p)− p · x, ∀(x, p) ∈ E ×E.
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By the very definition of u∗, Gu is nonnegative on E × E (Fenchel-Young
inequality) and vanishes exactly on the graph of ∂u i.e. when p ∈ ∂u(x) with

∂u(x) := {p ∈ E : u(y) ≥ u(x) + p · (y − x), ∀y ∈ E}.
An interesting refined Fenchel-Young inequality involving the Fitzpatrick
function can be found in [1], below, we prove a quantitative form involving
the resolvent (or proximal operator). Let (x, p) ∈ E×E and (x′, p′) ∈ E×E,
Fenchel-Young inequality gives

u(x) ≥ p′ · x− u∗(p′), u∗(p) ≥ p · x′ − u(x′)

summing these inequalities and rearranging the scalar product terms imme-
diately gives

Gu(x, p) ≥ −Gu(x
′, p′) + (p′ − p) · (x− x′). (1.1)

From this basic inequality and using a celebrated trick due to Minty [12],
we obtain a quantitative form of the Fenchel-Young inequality:

Lemma 1.1 (Young’s inequality with a remainder). Let u ∈ Γ0(E). For
every (x, p) ∈ E × E and λ > 0, one has

Gu(x, p) ≥
1

λ
‖x− (id+λ∂u)−1(x+ λp)‖2. (1.2)

Proof. Define the resolvent Jλ := (id+λ∂u)−1 and note that p′ ∈ ∂u(x′) is
equivalent to

x′ = Jλ(x
′ + λp′).

Fix x and p in E. Define then X := x + λp, h := x − Jλ(X), and x′ and p′

by

x′ = Jλ(X) = x− h, p′ :=
X − x′

λ
= p+

h

λ

and observe that by construction x′ = Jλ(x
′ + λp′) so that Gu(x

′, p′) = 0.
Using (1.1), we then have

Gu(x, p) ≥ (p′ − p) · (x− x′)

=
1

λ
‖h‖2 = 1

λ
‖x− (id+λ∂u)−1(x+ λp)‖2.

Remark 1.2 (Equality case). Inequality (1.2) is an equality exactly when

Jλ(x+ λp) ∈ ∂u∗(p) and (x+ λp)− Jλ(x+ λp) ∈ λ∂u(x)

i.e. when there exists q ∈ ∂u(x) such that both p and q belong to ∂u(x +
λ(p− q)).
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2 Stability of optimal transport

Let us denote by P(Rd) the set of Borel probability measures on R
d and

P2(R
d) the set of Borel probability measures on R

d with finite second mo-
ment. Given µ and ν in P2(R

d), the squared Wasserstein distance between
µ and ν is by definition

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

ˆ

Rd×Rd

|x− y|2dγ(x, y) (2.1)

where Π(µ, ν) is the set of transport plans between µ and ν i.e. the set
of Borel probability measures on R

d × R
d having µ and ν as marginals.

Thanks to the seminal results of Brenier [3] and McCann [10], we know
that there exists a convex function u with the property that γ ∈ Π(µ, ν) is
optimal for (2.1) if and only if its support is included in the graph of ∂u, the
subdifferential of u. A natural stability question is whether an almost optimal
plan is (in a sense to be made precise) close to the graph of ∂u. This question,
which is of partical importance for numerical and discretization purposes, has
been addressed recently by Berman [2], Li and Nochetto [9], Delalande and
Mérigot [8], also see [7] for convergence of entropic optimal transport. Under
some conditions on the marginals µ and ν and their supports, Caffarelli’s
regularity theory for Monge-Ampère equations [5, 6] implies the regularity
of u and in particular that Brenier’s optimal transport map ∇u is Lipschitz.
Under this assumption, Li and Nochetto proved the following.

Proposition 2.1 (Li and Nochetto [9]). If Brenier’s optimal transport map
∇u is M-Lipschitz, then for every γ ∈ Π(µ, ν), one has

ˆ

Rd×Rd

|x− y|2dγ(x, y) ≥ W 2
2 (µ, ν) +

1

M

ˆ

Rd×Rd

|y −∇u(x)|2dγ(x, y). (2.2)

In the general case where u is nonsmooth, we can easily deduce from (1.2)
a surrogate based for the stability inequality (2.2) which holds for arbitrary
marginals. The relevance of Minty’s trick for optimal transport was first
observed by McCann, Pass and Warren [11].

Proposition 2.2. for every γ ∈ Π(µ, ν), one has

ˆ

Rd×Rd

|x−y|2dγ(x, y) ≥ W 2
2 (µ, ν)+2

ˆ

Rd×Rd

|x−(id +∂u)−1(x+y)|2dγ(x, y).
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Proof. Let u∗ denote the Legendre transform of u and γ ∈ Π(µ, ν) be an
optimal plan between µ and ν. Since γ and γ share the same marginals and
since u(x) + u∗(y)− x · y = 0 on the support of γ, we have

1

2

ˆ

Rd×Rd

|x− y|2dγ(x, y)− 1

2
W 2

2 (µ, ν) =

ˆ

Rd×Rd

[u(x) + u∗(y)− x · y]dγ(x, y)

≥
ˆ

Rd×Rd

|x− (id+∂u)−1(x+ y)|2dγ(x, y)

where the last line follows from Lemma 1.1.

Remark 2.3. In case µ is absolutely continuous with respect to the Lebesgue
measure, u is differentiable µ-a.e. and ∇u solves the Monge formulation of
(2.1):

inf

{
ˆ

Rd

|x− T (x)|2dµ(x) : T#µ = ν

}

(2.3)

where T#µ is the pushforward of µ through T . In this setting, it is instructive
to compare (2.2) which states that whenever T#µ = ν, one has

‖ id−T‖2L2(µ) − ‖ id−∇u‖2L2(µ) ≥
1

M
‖T −∇u‖2L2(µ)

where M is the Lipschitz constant of Brenier’s optimal transport map ∇u

and the inequality from proposition 2.2 which reads as

‖ id−T‖2L2(µ) − ‖ id−∇u‖2L2(µ) ≥ 2‖ id−(id+∂u)−1 ◦ (id+T )‖2L2(µ).

3 Connection with the Brøndsted-Rockafellar

theorem

One can deduce from inequality (1.2) a short (and constructive but restricted
to the Hilbertian case) proof of the Brøndsted-Rockafellar theorem [4]. Let
u ∈ Γ0(E), x ∈ E and ε > 0, recall that the ε-subdifferential of u at x, ∂εu(x)
is by definition

∂εu(x) := {p ∈ E : Gu(x, p) ≤ ε}
which is a non empty closed and convex set as soon as x is in the domain of
u.
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Theorem 3.1. Let u ∈ Γ0(E), ε > 0 and (x, p) ∈ E×E such that p ∈ ∂εu(x)
and λ > 0. Define

x′ := (id+λ∂u)−1(x+ λp), p′ := p+
x− x′

λ

then x′ and p′ satisfy

‖x− x′‖ ≤
√
λε, ‖p− p′‖ ≤

√

ε

λ
, p′ ∈ ∂u(x′) (3.1)

and

u(x′) +
λ

2
‖p′‖2 ≤ u(x) +

λ

2
‖p‖2. (3.2)

Proof. Since ε ≥ Gu(x, p), (1.2) directly implies ‖x− x′‖ ≤
√
λε and then

‖p− p′‖ = λ−1‖x− x′‖ ≤
√

ε

λ
.

By construction, we also have

x+ λp ∈ x′ + ∂u(x′) i.e. p′ =
x− x′

λ
+ p ∈ ∂u(x′)

and x′ minimizes

y ∈ E 7→ λu(y) +
1

2
‖y − (x+ λp)‖2 = λu(y) +

1

2
‖y − (x′ + λp′)‖2

from which (3.2) follows.

Observe that in the previous result, by construction, we have x + λp =
x′ + λp′.

4 Primal and dual attainment for tilted dual

convex problems

Let E and F be two Hilbert spaces, f ∈ Γ0(E), g ∈ Γ0(F ) and A be a
bounded linear operator between E and F . Consider the convex minimiza-
tion:

inf
x∈E

{

f(x) + g(Ax)
}

(4.1)
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and its Fenchel-Rockafellar dual

sup
q∈F

{

− f ∗(A∗q)− g∗(−q)
}

(4.2)

where A∗ is the adjoint of A. Note that the duality gap

δ := inf (4.1)− sup (4.2) ∈ R+ ∪ {+∞}
between these two problems can also be written as

δ = inf
(x,q)∈E×F

{

Gf (x,A
∗q) +Gg(Ax,−q)

}

The duality gap δ can be positive (and even infinite); even if δ = 0, one
cannot take for granted that (4.1) or (4.2) have solutions, primal or dual
attainments require further assumptions in general. However, as we shall
see below, when one tilts the data with linear perturbations of the order of√
δ, the corresponding tilted primal and dual problems have solutions (and

of course, no gap).

Theorem 4.1. For every δ > δ, there exists (h, k) ∈ E × F such that

‖h‖2 + ‖k‖2 ≤ δ (4.3)

and, the tilted functions

fh,k(x) := f(x− h)− (A∗k + h) · x, ∀x ∈ E, gk(y) := g(y − k), ∀y ∈ F,

satisfy

min
x∈E

{

fh,k(x) + gk(Ax)
}

= max
q∈F

{

− f ∗

h,k(A
∗q)− g∗k(−q)

}

(4.4)

(where we have written min and max on purpose to emphasize the fact that
both are achieved).

Proof. If δ = +∞, there is nothing to prove so we assume δ ∈ R+. Thanks
to the definition of δ and (1.2), we get

δ > inf
(x,q)∈E×F

{

‖x− (id+∂f)−1(x+ A∗q)‖2 + ‖Ax− (id+∂g)−1(Ax− q)‖2
}

so that there exists (x, q) ∈ E × F such that defining h ∈ E and k ∈ F by

h := x− (id+∂f)−1(x+ A∗q), k := Ax− (id+∂g)−1(Ax− q), (4.5)

the pair (h, k) satisfies (4.3). By the very definition of h and k we have

A∗(q−k) ∈ −h−A∗k+∂f(x−h) = ∂fh,k(x), −(q−k) ∈ ∂g(Ax−k) = ∂gk(Ax)

which readily implies that:
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• x minimizes fh,k + gh ◦ A over E,

• q − k minimizes f ∗

h,k ◦ A∗ + g∗k(−.) over F ,

• 0 = fh,k(x) + gk(Ax) + f ∗

h,k(A
∗(q − k)) + g∗k(−q + k).

This shows primal and dual attainment and the absence of duality gap for
(4.4), the tilted version of (4.1)-(4.2).

Now, let us consider the more general situation where Φ ∈ Γ0(E×F ) (E
and F are again Hilbert spaces), and we consider the gap between

inf
x∈E

Φ(x, 0) (4.6)

and its dual
sup
q∈F

−Φ∗(0, q). (4.7)

This gap is
δ = inf

(x,q)∈E×F
GΦ((x, 0), (0, q)).

Of course, if (x, q) ∈ E × F are such that (0, q) ∈ ∂Φ(x, 0) (equivalently
(x, 0) ∈ ∂Φ∗(q, 0)) then x solves (4.6), q solves (4.7) and δ = 0. In the
general case, using (1.2) again we deduce that, for any δ > δ, there exists
(x, q) ∈ E × F such that

δ ≥ ‖(x, 0)− (id+∂Φ)−1(x, q)‖2

so that defining
(h, k) := (x, 0)− (id+∂Φ)−1(x, q)

one has
‖(h, k)‖ ≤

√
δ (4.8)

and
(0, q) ∈ (−h,−k) + ∂Φ(x − h,−k).

Defining the tilted function

Φh,k(u, v) := Φ(u− h, v − k)− h · u− k · v, ∀(u, v) ∈ E × F

we thus have
(0, q) ∈ ∂Φh,k(x, 0)

so that
Φh,k(x, 0) + Φ∗

h,k(0, q) = 0,

and that the tilted versions of (4.6) and (4.7) where Φ is replaced by Φh,k

both admit solutions.
Acknowledgments: G.C. acknowledges the support of the Lagrange

Mathematics and Computing Research Center.
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