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Álan e Sousaa, Nadhir Messaia, Noureddine Manamannia

aUniversity of Reims Champagne-Ardenne — CReSTIC EA3804 — UFR Sciences Exactes et Naturelles —
Moulin de la Housse BP1039 — 51687 Reims Cedex 2 — FRANCE

Abstract

Smart grids are becoming more common due to their capacity to accommodate sec-
ondary sources, like green energies from solar panels or wind farms. However, the
attack surface also grows with more equipment in the network, making it necessary to
secure appropriately. With more sensors distributed on the network, it becomes easier
for an attacker to hack into one and send false information to the central to destabi-
lize the power generation and distribution. Load-altering attacks do precisely that and
have a destructive potential since the generator reaction can cause network instability.
Traditional techniques, like those based on the Kalman filter, for example, may pose
numerical issues due to the large size and sparsity of the system matrices, failing to
provide good results or wasting computational resources. We propose an LMI-based
approach to design a bank of residual generators for functional observers to detect such
attacks. This approach has the advantage of using a reduced order arbitrary dynamic
system, making it suitable for large-scale smart grids, and the use of LMI, allowing the
easy insertion of restrictions.

Keywords: functional observer, residual generator, attack detection, power grid, LMI
optimization

1. Introduction

The traditional electricity distribution is static and centralized, in which the energy
generated in power plants reaches the consumers through successive voltage drops [1].
However, this centralized approach is not well suited for today’s needs, as it can not
accommodate green energies, such as in-house generators. Also, it can not respond to
demand changes or fine control carbon emission. Such shortcomings directly impact
people, either by increasing the energy cost or by allowing long-lasting blackouts [2].

One solution for this problem is the smart grid. Its highly connected, two-directional
communication channels integrate the generation, distribution and consumption of elec-
tricity. As a result, it better accommodates green sources and can, in some cases, even
control loads to minimize consumer price and subnetwork load [3–7]. For example,
it can control houses’ heating systems: the user sets the desired parameters, and the
smart grid controls the actual operation, using pricing and load information to decide
when to activate the system [8].
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However, since the smart grid is a highly connected system containing much in-
formation about the power system and individual consumers, it is highly susceptible
to attacks [9]. Attackers can get private information about users, but they can also
destabilize the whole network by controlling the flow of information or altering the
transmitted information. Even though the smart grid is considered highly resilient, it is
still susceptible to attacks [10].

Known attacks already caused outages and consequential losses[11, 12]. For exam-
ple, in 2016, Russians supposedly hacked the Ukrainian power system, leaving parts
of Kyiv without electricity for an hour [13]. In 2017, Saudi Aramco’s petrochemical
plants became a target [14]. In 2019, the US Army attacked a Russian power sys-
tem [15].

There are many types of attacks against smart grids, which try to affect the system
in different ways, from falsifying readings to pretending that the network’s physical
connections changed. One of such attacks, called False Data Injection, recently gained
attention for its stealthy nature, making it difficult to detect [16–20]. In this attack,
the attacker controls the signal’s trajectory over time to make the change undetectable.
The goal is to make the signal’s change smooth, so it seems like a natural change.
Similarly, zero dynamics attacks also pose a detection challenge, as it exploits the sys-
tem’s zero dynamics to hide the attack. In this attack, the change in some signal does
not appear in the system’s output, so it cannot be measured. Both attacks have a high
potential for service disruption [21–24]. There are also Load Redistribution attacks,
where the attacker changes the load information measured by the system, making it re-
act to an inexistent change in load [25–27]. Similarly, Load Altering attacks change the
measurement of specific loads to overload a particular network and may target distinct
customers, like factories [8, 28–30]. In Topology attacks, the attacker tries to make
the operator believe the network topology has changed, which will have consequences
if he tries to adjust [8, 31]. Markets are also targets and can affect the network. For
example, by informing incorrect pricing to smart meters, a real, unexpected load can
cause power redirection and outages, as well as a self-evident financial problem [8].

This list of attacks is non-exhaustive, so there is interest in the constant develop-
ment of new techniques to defend against them. Cyber-attack defence comes on two
fronts: from the Information Technology (I.T.) perspective, security measures such as
firewalls, encryption and access control help keep unauthorized people away from the
network. It is, however, not enough since hackers can use employees to circumvent
such measures, for example. Thus, from the automation perspective, both attack re-
silient controllers and observers and attack detection schemes make it possible to iden-
tify an attack and recover from it. Therefore, I.T. works as a first layer of protection
and automation as a second one [2].

Standard automation tools used to detect attacks are observers and residual gener-
ators, commonly employed with consecrated techniques such as Kalman filters. How-
ever, given that smart grids have numerous states, sometimes on the hundreds, such
techniques are not applicable, posing numerical issues [32]. Moreover, even when the
techniques yield valid results, they may waste computational resources by estimating
more states than necessary for attack detection [33].

Graph theory can help deal with the system’s scale problem by using the system’s
topology. It leads to the concepts of topological stability, controllability and observ-
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ability, which depend not only on the system’s dynamic but also on the topology of its
connections [34, 35]. The tools applied are well suited for large and sparse systems,
avoiding numerical problems. Another advantage is the classification of the observ-
ability as a scale instead of the binary observable/not observable. Different selections
of measured and observed nodes result in different observability indexes, making it
possible to compare different observable paths in a graph representing the system’s
dynamics and assess which renders better observability of the desired states [33, 34].

Another advantage of the graph theory approach is estimating a subset of the states,
since the estimation of all states is often not necessary for control or diagnostics pur-
poses [36]. It differs from the well-known reduced-order Luenberger observer because
the latter still estimates all unmeasured states, whereas the former only estimates a sub-
set of the states necessary for the correct estimation of the desired subset. For example,
in a system with ten states and three sensors, the Luenberger observer will estimate
seven states, even if we only desire to estimate one of them. In contrast, the functional
observer will estimate as many states as necessary to estimate the desired one correctly,
estimating seven only in a worst-case scenario [37, 38].

Residuals observers are the most common way of detecting attacks on dynamic
systems. It works by detecting variations between what is measured and the estimation
for those measurements. There are some functional residual generators in the literature,
formulated mainly through direct algebra manipulation [39–43]. They mostly follow
the idea of separating the system between used and unused states through similarity
transformation and need to calculate the null space of some matrix at some point, which
we wanted to avoid. The direct approach also limits the manipulation of the observer
dynamics, as it is hard to link it to the system’s dynamics.

We present a bank of functional residual generators capable of detecting load-
altering attacks, composed of one observer and one residual generator for each attacked
sensor. The proposed approach uses LMI (Linear Matrix Inequality) to design an ob-
server insensitive to attacks on a sensor, making it possible to isolate the attacked sensor
on single target attacks. The use of LMI also allows restrictions, like pole placement,
to control the observer dynamics.

This article is organized as follows: Section 2 introduces the idea and model of
the smart grid. Section 3 presents the load-altering attack we want to detect. In Sec-
tion 4 we describe the Functional Observer and show how to design a bank of residual
generators. Lastly we show a simulation to illustrate the application of the proposed
technique.
Notation: The set of real numbers is denoted by R. Rn denotes a vector of n real
elements. M⊤ represents the transpose of M. M+ denotes the Moore-Penrose inverse
of M.

2. Smart Grid

Smart grids are electric grids focused on intelligent distribution and load balancing,
renewable energy sources, advanced metering and efficient resource usage. Markets
directly influence decisions in generation and distribution by using IoT-enabled meters
to provide real-time information about consumption and generation to the controllers.
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Smart grids are composed of several distributed and heterogeneous subsystems.
PMUs (phasor measurement units) and smart meters allow the control center to have
information about the energy in both generator and consumer ends, respectively. From
the point of view of control, the smart grid becomes a network of generator nodes and
load buses [44].

A common way of modelling the dynamics of such networks is by using coupled
second-order Kuramoto oscillators [45, 46]. It models buses’ frequencies and phases
and assumes that the whole network will have an equilibrium frequency, which is valid
for electric systems. Each oscillator is given by

2Hi

ωR
ϕ̈i +

Di

ωR
ϕ̇i = Ai +

N∑
j=1, j,i

Ki j sin(ϕ j − ϕi + γi j), (1)

where N is the number of nodes, ϕi(t) is the phase angle of the ith oscillator relative to
a frame that rotates at the reference frequrency ωR, Hi and Di are inertia and damping
constants, respectively, Ai is related to the power injection of node i, Ki j is the coupling
weight related to the maximum power transfer capacity in the respective transmission
line interconnecting the nodes i and j, and γi j is the corresponding phase shift.

When written in state-space form, the system is described byϕ̇G

ϕ̈G

ϕ̇L

 =


ϕ̇G
ωR

2H(A− D
ωR

)ϕ̇G+S
ωR
D ∗ (A + S)

 , (2)

S =

N∑
j=1, j,i

Ki j sin(ϕ j − ϕi + γi j), (3)

where ϕG concerns the generators and ϕL the loads, and all matrices needs to be prop-
erly partitioned to match this division. We will use a linearized version of this system.

3. Load Altering Attack

Smart grids use real-time measurements to control the generators, ensuring they
supply the requested load without waste. This balance is vital to the correct operation
of the network [30]. When there is an imbalance between the generated and consumed
power, one can get blackouts, reactions of transformers relays and curtailment of elec-
trical loads, for example [29]. Thus, it is necessary to keep the network balanced.

Since imbalance can affect the network so much, attackers may explore it to damage
the distribution system or a specific factory. The load-altering attack sends false mea-
surements to the network, making the central think that more or less load is present [28].
The goal of the false data is to make the generators adapt, creating an actual imbalance
that will damage devices.

With the advent of IoT devices and smart meters on the client-side, this kind of
attack becomes more feasible, especially when many devices’ designs do not consider
cybersecurity seriously, providing access points to attackers without the first IT layer of
protection [28]. It is then up to the control layer to identify and mitigate such attacks.
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To detect load altering attacks, we can model it in three ways:

ϕ̃ j = ϕi, (4)
ϕ̃ j = ϕ j + δ, (5)
ϕ̃ j = ϕ j · α, (6)

where ϕ is real state value, ϕ̃ the measured value, and ϕ j the jth vector entry. The first
attack replaces a measurement with a value taken from another state, as seen in Eq. (4);
the second attack adds a constant bias to the measurement, as seen in Eq. (5) and the
third attack multiplies the measured value by a constant, as seen in Eq. (6).

4. Functional observers

Luenberger first introduced the concept of functional observers [47]. At the core
of the functional observer is a system with arbitrary dynamics that estimates a smaller
linear combination of the original system’s states. The design challenge is to find what
states are needed and the arbitrary system’s matrices.

Let us define a dynamic system as

ẋ(t) = Ax(t) + Bu(t) + L f (t),
y(t) = Cx(t), (7)
z(t) = Fx(t),

where A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n are system matrices, L ∈ Rn×r maps the
attacks f (t) ∈ Rr to the state vector x ∈ Rn and F ∈ Rs×n maps the state vector into
z(t) ∈ Rs, the vector of estimated states, with L a zero matrix with only one entry 1
on every column, on the line of the affected state and, similarly, F a zero matrix only
having one entry 1 on each row, on the column of the desired state.

Note that z(t) is just an output from the system’s perspective, like y(t). They are,
however, semantically different in that y(t) represents a measurable output, that is, this
output maps directly to sensors in the real plant, whereas z(t) is a linear combination
of states that we want the observer to estimate. For our purposes, both y(t) and z(t) are
direct maps into x(t), so C and F have only one non-null entry per row, with a value of
exactly 1.

To estimate z(t) given y(t) it is necessary to estimate a subset of x(t) which is a
superset of z(t). That is due to system dynamics, and an observer created using only
z(t) will most likely not have the right dynamics and therefore not be able to estimate
z(t) correctly.

Definition 4.1. The triplet (A, C, F) from system (7) is said functional observable if
for any initial state x(0) the knowledge of u(t) and y(t) sufices to estimate z(0) = Fx(0)
over a finite time t > 0. Otherwise it is said functional unobservable [37].

Definition 4.1 is very close to the general definition of observers. This is because
it is a specialization, as the functional observer can not observe anything that the out-
put can not observe itself, leading to Theorem 4.1, which gives a rank condition to
determine if a triplet (A, C, F) is functional observable.
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Theorem 4.1. The triplet (A, C, F) is functional observable if and only if [37]

rank


C

CA
F

FA

 = rank

 C
CA
F

 . (8)

Proof. The functional observer can observe at most what the system’s output can ob-
serve, therefore the observed states must be a subset of the outputs, and hence a linear
combination of it. As the rank calculates the number of linear independent rows in the
matrix, it assures that there is no state in z(t) not observable by y(t). A much longer,
mathematical proof can be found in [37].

To find out what states we need to observe, we first have to define the sets of sensors
and desired states. Since our goal is to develop a residual generator, we want y(t) ⊆ z(t),
to make it possible to calculate the estimation error. However, z(t) might need to be
slightly larger than y(t) to make sure the observer is not simply copying y(t) into z(t).

There is no algebraic way (at least yet) of discovering the set of required states,
so graph theory algorithms became a common way of finding it. The main advantage
of this approach is that it scales well for large systems. Algorithm 1 [48] presents a
way of finding the set of states which needs to be observed given z(k). It does so by
turning the system into a graph, where each node is a state and the connections are the
dynamics, and then finding a path between the state to be estimated and an ouput.

Algorithm 1 Functional observable set finding

1: input: triplet (A,C,S 0)
2: output: set S of states needed to observe S 0
3: let F ← matrix for S 0,M1 ← ∅,M2 ← ∅, r0 ← rank(F)
4: repeat
5: let G ← [ C⊤ (CA)⊤ F⊤ ]⊤

6: build a bipartite graph B(V,X,EV,X), where V = {v1, . . . , v2q+r0 } is a set of
nodes where each element corresponds to a row of G, X = {x1, . . . , xn} is the set of
state nodes (where each element also corresponds to a column of G), and (vi, x j) is
an undirected edge in EV if Gi j is a non-zero entry;

7: find the maximum matching set Em associated with B(V,X,EV,X) (e.g., via
the Hopcroft-Karp algorithm);

8: ∀xi ∈ X, if xi is connected to an edge in Em, then update the set of right matched
nodesM1 ←M1 ∪ {xi};

9: define the set of candidate nodes C =M2 \ M1, where x j ∈ M2 if [FA]i j is a
non-zero entry;

10: draw an element xk ∈ C and update F ← [ F⊤ (F′)top ] and r0 = r0 + 1, where
F′ ∈ R1×n and [F′]i j = 1 if j = k and 0 otherwise;

11: until C , ∅

Algorithm 1 adds nodes from the paths between the measured and desired states to
the S set until the system becomes functional observable.
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4.1. Bank of observers

To detect load-altering attacks on smart grids, we propose a bank of functional
observers. Its reduced-order alleviates the computational burden, and the fact that dif-
ferent state paths result in observers with different dynamics gives the possibility of
redundancy.

The bank is composed of r observers, one for each attacked node. They are iden-
tical, except for the system’s L matrix used, which maps the attack to the state. Since
each observer in the bank is only sensitive to one attack, it allows attack isolation. Each
observer has its own associated residual generator, which will provide the estimation
error, allowing to identify the presence of an attack. The final bank of observers and
residual generators will have the schematic shown in Figure 1.

ref(k) Controller System y(k)

Observer Residual
Generator

r(k)

one for each sensor

u(k)

w(k)

Figure 1: Observer’s block diagram

We propose an observer formulation based on LMIs. This kind of formulation has
the advantage of allowing the addition of extra constraints to the system by simply
adding more restrictions to the LMI. Most of the already proposed functional observer
designs for residual generator, as [38–41, 43, 49–55], for example, use a direct formu-
lation, which does not give room for such restrictions, so the designer does not have
much control over the observer’s dynamics, for example. This formulation sets itself
appart in that regard. The design of the proposed observer is as follows:

Theorem 4.2. Given the system (7), with the triplet (A,C,F) functional observable ac-
cording to Definition 4.1 and Theorem 4.1, an observer of the form1

ẇ(t) = Nw(t) + Jy(t) + Hu(t),
ẑ(t) = w(t) + Ey(t),

(9)

exists and is able to estimate ẑ(t) ≈ z(t) given y(t) and u(t) if there exists a solution to
the LMI

arg min ∥P∥2
s.t. V̇ ≺ 0

P ≻ 0,
(10)

1The variable H is not related to that of Equation (1)
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where

V̇ ≡
[

X W
W⊤ −I

]
, (11)

λ ∈R+ is a free constant, (12)
P is a semidefinite positve matrix (13)

with

X =Â⊤F⊤P − Â⊤C⊤Ê⊤−

Ĉ⊤K̂⊤ + PFÂ − ÊCÂ − K̂Ĉ − λI, (14)

W =
√
λ(PF − ÊC). (15)

(16)

where

Â = AF+, (17)

Ĉ = CF+, (18)

Ê = PE = PU + ŶV, (19)

K̂ = PK, (20)

Ŷ = PY. (21)

The observer’s matrices are recovered as

K = P−1K̂, (22)

Y = P−1Ŷ , (23)
E = U + YV, (24)
R = F − EC, (25)
N = (RA − KC)F+, (26)
J = K + NE, (27)

H = RB, (28)

Proof. First, define the estimation error as (we drop the time dependence of the vectors
to simplify notation)

e = ẑ − z

= w + Ey − Fx

= w + ECx − Fx.
(29)
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Then define the error dynamics to be

ė =ẇ + (EC − F)ẋ (30)
=Nw + Jy + Hu + (EC − F)(Ax + Bu + L f ) (31)
=N(e + Fx − ECx) + JCx + Hu+

ECAx + ECBu + ECL f − FAx−

FBu − FL f (32)
=Ne + (NF − NEC + ECA − FA + JC)x+

(H + ECB − FB)u + (ECL − FL) f . (33)

As such, for ẑ to converge to z, the following conditions must be satisfied:

N must be Hurwitz-stable, (34)
N(F − EC) − (F − EC)A + JC = 0, (35)

H − (F − EC)B = 0, (36)
(F − EC)L = 0. (37)

However, to make the observer insensitive to only one sensor attack, we need to
redefine the condition in Equation 37. Let L = [ Li Ln ], where Li ∈ Rn×1 maps the
insensitive attack, and Ln ∈ Rn×l−1 maps the sensitive attacks. Then, to satisfy the
property that each observer must be insensitive to one attack and sensitive to the others,
we define

(F − EC)Li = 0, (38)
(F − EC)Ln , 0. (39)

We now need to find matrices N, J, H and E. An LMI can find values for those ma-
trices after we turn the inequality into equality. First we define the Lyapunov candidate
function

V = e⊤Pe. (40)

The error function, taking into account the required restrictions, becomes

ė = Ne − (F − EC)Ln f . (41)

To rewrite the attack as an error, we define the error as proportional to the fault

e ∝ Ln f , (42)

which yields
∥Ln f ∥ = λ ∥e∥ , (43)

where λ ∈ R+ scales the attack in proportion to the error, and is a free, tunnable vari-
able.

As that, with
R = F − EC, (44)

9



the derivative of the candidate function becomes

V̇ = ė⊤Pe + e⊤Pė

= (Ne − λR ∥e∥)⊤Pe + e⊤P(Ne − λR ∥e∥)

= eT (N⊤P + PN)e − 2λ
∥∥∥e⊤PR

∥∥∥ · ∥e∥
≤ eT (N⊤P + PN)e − λ(

∥∥∥e⊤PR
∥∥∥2 + ∥e∥2)

= eT (N⊤P + PN − λPRR⊤P − λI)e,

(45)

where I is the identity marix of appropriate size.
This BMI (Bilinear Matrix Inequality), so far, only guarantees the stability of the

N matrix. To include restriction (35) let

N(F − EC) = RA − JC, (46)
NF = RA − (J − NE)C, (47)

K = J − NE, (48)
N = RAF+ − KCF+, (49)

where K ∈ Rs×q is a full matrix the optimization will find and F+ is Moore-Penrose
inverse of matrix F.

To include restriction (38), let

(F − EC)Li = 0, (50)
ECLi = FLi, (51)

E = FLi(CLi)+ + Y(I − (CLi)(CLi)+), (52)
U = ECLiL+i , (53)
V = I − LiL+i , (54)
E = U + YV. (55)

recalling eqs. (17) to (21).
Equation (45) becomes

V̇ = eT ((RÂ − ECÂ − KĈ)⊤P+

P(RÂ − ECÂ − KĈ) − λPRR⊤P − λI)e.

After further expanding and making all necessary variable substitutions, the final
candidate function derivative is

V̇ = Â⊤F⊤P − Â⊤C⊤Ê⊤ − Ĉ⊤K⊤+

PFÂ − ÊCÂ − KĈ − λPRR⊤P − λI. (56)

However, R is still unexpanded and contains a variable, which is making V̇ bilinear.
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Using Schur complement one gets [56]

X = Â⊤F⊤P − Â⊤C⊤Ê⊤Ĉ⊤K⊤+

PFÂ − ÊCÂ − KĈ − λI, (57)

W =
√
λ(PF − ÊC), (58)

V̇ ≡
[

X W
W⊤ −I

]
. (59)

4.2. Residual generators

A residual is a signal designed to have close to zero value in the absence of attacks
and to deviate significantly from zero in its presence. A function can then give a binary
output given a residual to flag an attack in the system, like, for example, based on
a threshold. This subsection is concerned with the residual dynamics, not with the
binary function.

The proposed residual generator uses the designed observer, insensitive to one at-
tack, to generate an output corresponding to the estimation error, called the residual.
Thus, it is a measurement of how well the observer can estimate the state. Therefore,
since the attack is an exogenous, not measured signal, the observer will not correctly
estimate the state in its presence, which will cause a significant change in the residual.
As such, we have that:

Lemma 4.3. A residual signal of the form

r(t) = Gw(t) + My(t), (60)

with

M = (C(1 − Li))⊤, (61)

G = −M(I −CF+E)−1CF+, (62)

where 1−Li is an entry-wise operation, is a residual generator for observer (9) designed
using Lemma 4.2.

Proof. Writting the error equation for the residual generator using the observer’s ma-
trices, we have

r = Gw + My

= G(e + Fx − ECx) + MCx

= Ge + (G(F − EC) + MC)x,
(63)

where we can see that the following restriction is required for the residual generator to
go to zero when there is no error:

G(F − EC) + MC = 0. (64)
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Writting the error equation in terms of the output we have:

r = Gw + My

= Q(y −Cx)

= Q(y −CF−1ẑ)

= Q(y −CF−1(w + Ey))

= Q((I −CF−1E)y −CF−1w), (65)

M = Q(I −CF−1E), (66)

G = −QCF−1. (67)

By replacing Eq. (66) and Eq. (67) into Eq. (64) we can see that it satisfies the
condition no matter what value of Q, therefore Q can be used to tune the magnitude of
the residual. For this, M can be defined using the matrix L as

M = (C(1 − Li))⊤, (68)

which is the sum of all error-prone outputs y(t), except the insensitive one. Replacing
Eq. (68) into Eq. (66) and eliminating Q from Eq. (67) we get

M = (C(1 − Li))⊤, (69)

G = −M(I −CF+E)−1CF+. (70)

Note that Equations (66) and (67) can be used directly by finding a matrix Q with
desired properties, such as one that makes the residual have a large enough absolute
value in the presence of the expected attacks.

5. Simulation results

To illustrate the efficiency of our approach let us consider the IEEE 118-bus test
case approximates the U.S. Midwest electric power system. It contains 19 generators,
35 synchronous condensers, 177 lines, nine transformers and 91 loads. Figure 2 shows
the network’s schematic. The data file hosted on github2 is a MATLAB file containing
the constants for Equation (1) in matricial form. The data in IEEE Common Data
Format is available here3. The data is mostly real, except for the base KV levels, which
are guesses, since they were not available on the original dataset.

We simulated the IEEE 118 power grid model using the dynamic system shown
in Equation (3), linearized around its equilibrium point. Figure 3 shows the system’s
dynamic graph, discriminating the generators, loads and sensors. It shows that the
system is sparsely connected, with an average node degree of 2. It also shows that
the system has a high betweenness centrality, making the paths between sensors and
desired states longer and making the states in the middle essential for the observation.

2https://github.com/acristoffers/SmartGrid/blob/master/powergrid/IEEE118pg.mat
3https://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm
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Figure 2: IEEE 118-bus network’s schematic

To observe the desired states, the observer needs to estimate around 150 other states
from 226 total (≈ 66%), which makes more evident the benefit of using a functional
observer.

Figure 3: IEEE 118’s dynamic graph representation.

The choice of sensors was random, placing PMUs on 30% of the generator’s and
load’s terminals to a total of 35 sensors. Algorithm 1 returned a set S containing
126 states. Using lemmas 4.2 and 4.3 we derived a bank of observers and residual
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generators for the system capable of detecting load-altering attacks.
We simulated the load-altering attack in three ways: attack one copies another

state’s value into the attacked node, attack two adds a constant value to the existing
signal and attack three multiplies the state value by a constant. Figures 4, 5 and 6 show
the residual generators’ outputs for each attack.

Figure 4: Residuals for attack 1 (state’s value copy) on state 155

Figure 5: Residuals for attack 2 (additive) on state 113

The proposed residual generators were able to identify the attack in all cases. The
residuals are zero until the beginning of the attack, become non-zero when it starts,
and return to zero after it ends. One residual remained close to zero in all cases, as
its observer is insensitive to the attack on that sensor, making it always possible to
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Figure 6: Residuals for attack 3 (multiplicative) on state 221

choose a threshold that correctly identifies the occurrence of the attack and isolates the
attacked node.

The code for this simulation is available online4, as well as the MAT file with all
generated matrices.

6. Conclusion

We presented a simple LMI-based design for a bank of functional observer residual
generators, which detects load-altering attacks. Because of its simplicity, this approach
allows to easily extend the design with constraints in the observer’s dynamics. More-
over, the design methodology also lends to other uses, such as state-observation with
disturbance rejection, fault detection and probably other kinds of attacks.

The main advantage of this method over the ones found in the literature is its sim-
plicity. Other LMI-based methods follow a more convoluted formulation that makes it
hard to further constraint and tune. The non-LMI based formulations are mostly direct
algebra manipulations that do not lend the power of the LMI-based solution when it
comes to controlling the observer’s dynamics and using mathematical tricks that fur-
ther limit the applicability of the techniques.

We tested the method on a power grid model, showing that it allows for a signifi-
cant reduction in the number of observed states, which translates to a smaller observer
system and faster computation times. Future works can explore the generation of ob-
servers with different observed paths for the same output to provide redundancy to the
system. Another possibility is to use different sets of outputs to observe the same sen-
sor, making it harder to execute stealth attacks that rely on the observer’s dynamics.

4https://github.com/acristoffers/SmartGrid
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