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On the Path Integral Approach to Quantum Mechanics

We present novel path modeling techniques suitable for use in the Path-Integral formulation of Quantum Mechanics. Our proposed platform aims to address existing challenges encountered in Monte Carlo and other similar path modeling methods. By introducing 'smooth' path modeling techniques, we demonstrate how they can be seamlessly integrated with current approaches, facilitating more accessible amplitude estimations in this invaluable formulation of Quantum Mechanics.

Introduction

The most usual approach for calculating amplitudes of 'low-velocity' non-relativistic particles is achieved by solving a wave equation known as the Schrödinger equation. In the more general setting of relativistic particles enters Dirac with an equation more accurate under certain conditions that bares his name:

βmc 2 + c 3 n=1
α n p n ψ(x, t) = iℏ ∂ψ(x, t) ∂t

Here (in the original version of this equation see [START_REF] Dirac | The Quantum Theory of the Electron[END_REF]), ψ = ψ(x, t) is the wave function for an electron with rest mass m and space-time coordinates x, t. The p 1 , p 2 , p 3 are the components of the momentum. Dirac's aim in producing this equation was to explain the behaviour of the relativistically moving electron having velocity close to the speed of light.

There is much more to be said about the various approaches to QM, however within the realm of low-velocity non-relativistic electrons, this unconventional approach has an intuitive benefit. For a concise list of undergraduate textbooks covering the conventional approach to Quantum Mechanics, see for example [START_REF] Griffiths | Introduction to Quantum Mechanics[END_REF], [START_REF] Shankar | Principles of Quantum Mechanics[END_REF], [START_REF] Sakurai | Modern Quantum Mechanics[END_REF], [START_REF] Gasiorowicz | Quantum Physics[END_REF] and [START_REF] Liboff | Introductory Quantum Mechanics[END_REF] For a detailed description of the relationship between the path integral formulation and the Schrödinger equation see for example [original: 11]. In fact this brilliant relationship was first noticed by Feynman before he demonstrated that standard quantum theory, as formulated using the Schro dinger equation or Heisenberg's matrix mechanics, can be derived from the "first principles" of the path integral formulation. This realization is known as the "equivalence of the path integral and canonical quantization." In Feynman's path integral approach, the probability amplitude for a particle to move from one point to another is given by summing over all possible paths that the particle could take, each path being weighted by a phase factor associated with the action of the particle along that path. This integral over paths encapsulates the quantum mechanical behaviour of particles. On the other hand, the traditional canonical quantization methods, such as Schro dinger's wave equation or Heisenberg's matrix mechanics, describe quantum systems using operators and wave functions. These methods were the foundation of quantum mechanics before Feynman's path integral formulation. In 1948, Feynman published a series of papers where he demonstrated that the path integral formulation and canonical quantization yield equivalent results. See [START_REF] Feynman | Space-time approach to non-relativistic quantum mechanics[END_REF], [START_REF] Feynman | Quantum mechanics of spin one-half particles[END_REF], [START_REF] Feynman | Relativistic cut-off for classical electrodynamics[END_REF]. This discovery was a significant milestone in the development of quantum mechanics because it established the mathematical equivalence between two seemingly different formulations. Feynman's work not only provided a new perspective on quantum mechanics but also demonstrated the power and versatility of the path integral approach. The equivalence between the path integral formulation and canonical quantization is now well-established and is a key aspect of modern quantum field theory and quantum statistical mechanics. It allows physicists to choose between these two formalisms based on which one is more convenient for a given problem or calculation.

Difficulties With the Path Integral Formulation

Feynman's path integral formulation, is a powerful and elegant approach to describe quantum systems. However, like any theoretical framework, it also comes with its own set of difficulties and challenges. Some of the main difficulties with the path integral formulation of quantum mechanics include:

Mathematical complexity: The path integral formulation involves summing over an infinite number of possible paths that a quantum system can take. This results in complex mathematical expressions and integrals that can be challenging to compute, especially for systems with many degrees of freedom. Non-locality: Unlike the Schrödinger equation, where the evolution of a quantum system is described by a local differential equation, the path integral formulation involves contributions from all possible paths, including non-local ones. This non-locality can make it difficult to interpret the physical meaning of individual paths. Boundary conditions: Specifying appropriate boundary conditions for the path integral can be tricky, especially in systems with time-dependent potentials or in systems with infinite boundaries. Interpretational issues: The path integral formulation allows for the inclusion of both classical and quantum fluctuations. The interpretation of the physical significance of these fluctuations and the separation between classical and quantum behaviour can be subtle and not always straightforward. Convergence and regularization: The infinite sum over paths needs to be carefully handled to ensure convergence. Various regularization techniques are employed to address this issue, but they may introduce additional complexities and uncertainties. Connection to measurements: While the path integral formulation can provide a formalism for calculating transition probabilities and expectation values, connecting these results to actual measurements and experimental outcomes can be challenging. It requires considering the role of observers and measurement devices within the quantum formalism. Quantum anomalies: In some quantum field theories, the path integral formulation can lead to anomalies, which are quantum effects that violate classical symmetries. These anomalies can lead to subtleties and inconsistencies in the theory. Despite these difficulties, the path integral formulation has proven to be a valuable tool in various areas of theoretical physics, particularly in quantum field theory and condensed matter physics. It offers insights and calculational advantages that complement other formulations of quantum mechanics, such as the Schro dinger equation and Heisenberg picture. For details descriptions of these difficulties, see for instance [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF], [START_REF] Sakurai | Modern Quantum Mechanics[END_REF], [START_REF] Schwartz | Quantum Field Theory and the Standard Model[END_REF] and [START_REF] Zettili | Quantum Mechanics: Concepts and Applications[END_REF].

The crux of the path integral formulation in Quantum Mechanics lies in the Path Integral, an essential integral representing the amplitude of a particle as it traverses a specific trajectory [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF]. This concept unveils the fundamental nature of quantum behaviour, capturing the contribution of all possible paths and offering valuable insights into the probabilistic nature of quantum systems. 

a E(x(t), x ′ (t), t)dt (0.2)
To determine the amplitude of a complete path, we multiply the amplitudes of individual segments when they are connected in succession. Additionally, we sum the amplitudes over entirely alternate paths. Therefore, we obtain the following expression: ϕ

[x(t)] = lim ϵ→0 Π N -1 i=0 K(i + 1, i) with K(b, a) = x N -1 ... x2 x1 K(b, N -1)..K(1, a)dx 1 ...dx N -1 (0.3)
The challenge arises when attempting to describe, in a continuous manner, a functional path between [a, b]. Depending on the specific problem, one can construct such paths mathematically in the following manner. For instance, if the Lagrangian depends on x ′′ (t), then common substitutions of the following form are employed:

1 ϵ 2 (x i+1 + 2x i + x i-1 ) (0.4)
Such substitutions typically result in having to have to evaluate cumbersome expressions of the form:

... exp i ℏ m 2∆t i=N i=1 (x 2 i -x 2 i-1 ) dx 1 ..dx N -1 (0.5)

Modern Approaches

There are many techniques used to mathematically describe paths of concern:

Monte Carlo Methods: Monte Carlo techniques involve sampling random paths and using statistical methods to approximate the path integral. Markov Chain Monte Carlo (MCMC) and Metropolis-Hastings algorithms are often employed in this context. This technique, first in the list for its generic usefulness, offers a way to numerically approximate these path integrals by using random sampling and statistical methods. Here's a brief overview of how Monte Carlo path modeling works:

The continuous time in the path integral formulation is discretized into small time steps, making the problem more amenable to numerical computation. One then makes use of use random sampling to explore the space of all possible paths. Each path is represented as a sequence of discrete positions in space and time. Random walks are performed, and the paths are sampled based on a probability distribution that depends on the action of the system (a functional of the path). The Metropolis-Hastings algorithm 1 is often used to generate these random walks efficiently 1 The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) method used for generating random samples from a target probability distribution when direct sampling is not feasible. It is particularly useful for exploring complex and high-dimensional probability distributions. The algorithm is based on the Metropolis algorithm and an improvement proposed by Hastings.

Let's consider a scenario where we want to sample from a target probability distribution π(x) over a state space X. We assume that evaluating the probability distribution π(x) is computationally intractable or expensive.

The Metropolis-Hastings algorithm proceeds as follows:

Start with an initial state, x 0 , in the state space X. Repeat the following steps for a pre-defined number of iterations or until convergence is reached: a) Propose a new state, x ′ , by sampling from a proposal distribution, q(x ′ |x). The proposal distribution q(x ′ |x) is a simple and easily sampleable distribution that determines the candidate state x ′ given the current state x. b) Calculate the acceptance probability, A(x ′ |x), as the ratio of the target distribution probabilities at the candidate state and the current state:

A(x ′ |x) = min(1, π(x ′ )/π(x))
c) Generate a random number, u, from a uniform distribution between 0 and 1. d) If u ≤ A(x ′ |x), accept the candidate state and set x = x ′ . Otherwise, reject the candidate state and keep the current state x.

After the desired number of iterations, the sequence of states x 0 , x 1 , x 2 , ..., xn obtained through the process will be a Markov Chain that approximates the target probability distribution π(x).

Key points to note:

The proposal distribution q(x ′ |x) plays a crucial role in the algorithm's efficiency. It should be chosen to ensure sufficient exploration of the state space and a good trade-off between exploring widely and accepting states with high probabilities.

The Metropolis-Hastings algorithm guarantees that the Markov Chain converges to the target distribution π(x) when the number of iterations approaches infinity. and ensure that paths are sampled with the correct statistical weight. It uses acceptance and rejection steps to generate paths that are more likely to contribute to the path integral. For each sampled path, a weight is calculated based on the action of the system for that particular path. The action of a path is a measure of how much that path contributes to the quantum mechanical evolution of the system. (We will get back to this along with the previous step at a later point in this article). The path integral is approximated by summing over all sampled paths, with each path weighted according to its calculated weight. The resulting sum is then averaged to obtain the desired quantum mechanical quantity (e.g., partition function, correlation functions, etc.). Monte Carlo path modeling techniques provide a powerful numerical tool to study a wide range of quantum systems, including many-body systems, condensed matter physics, and quantum field theory. They offer a flexible and computationally efficient approach to tackle complex quantum mechanical problems that might be difficult or impossible to solve analytically.

Lattice QCD: In Quantum Chromodynamics (QCD), which describes the strong force, lattice QCD is a numerical approach that discretizes space and time on a lattice, allowing path integrals to be approximated through numerical simulations on a grid. Trotter-Suzuki Decomposition: This technique approximates the time-evolution operator in the path integral by dividing the time interval into smaller steps, making the path integral more amenable to numerical calculations. Path Integral Monte Carlo (PIMC): PIMC is a Monte Carlo technique specifically designed for systems at finite temperature. It is widely used in studying quantum systems in thermal equilibrium. Fast Fourier Transform (FFT) methods: For systems with harmonic potentials, such as quantum harmonic oscillators, FFT-based techniques can accelerate the computation of path integrals. Hubbard-Stratonovich Transformation: This technique involves introducing auxiliary fields to rewrite the path integral in a form more amenable to numerical evaluation. Hybrid Monte Carlo (HMC): HMC combines concepts from molecular dynamics and Monte Carlo methods to efficiently sample paths in the path integral. Determinantal Quantum Monte Carlo (DQMC): DQMC is a Monte Carlo technique used for simulating fermionic systems. It relies on expressing the path integral in terms of determinants of matrices. For a detailed look at these techniques, see for instance [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], [START_REF] Loh | Sign problem in the numerical simulation of many-electron systems[END_REF], [START_REF] Creutz | Quarks, gluons and lattices[END_REF], [START_REF] Creutz | Quarks, gluons and lattices[END_REF], [START_REF] Duane | Hybrid Monte Carlo[END_REF] and [START_REF] Ceperley | Path integrals in the theory of condensed helium[END_REF].

Such path-construction techniques, like the ones described above, suffer from numerous apparent disadvantages. These drawbacks include the lack of a straightforward method, primarily due to its unclear and disjointed approach to path formulation of paths of least amplitude when presented with a set of potential paths, demanding complex numerical discretization techniques.

Our Proposed Approach

Originally emerging as a valuable expression in specific stochastic Brownian motion problems and noise modeling algorithms, the following function has demonstrated its usefulness in modeling paths between points by incorporating variations in α, ρ. ρSin(αx) (0.6)

An additional term f (x) may be added to effect path-amendments. We aim to make use of this function as a path-description for particle trajectories, and to study

Initially, the Markov Chain might not be in equilibrium with the target distribution. This phase is called "burnin," and practitioners often discard these initial samples before using the Markov Chain samples for analysis.

Autocorrelation between samples can be an issue in MCMC algorithms. Various techniques like thinning or using more advanced MCMC methods (e.g., Gibbs sampling, Hamiltonian Monte Carlo) can be employed to mitigate this issue.

Overall, the Metropolis-Hastings algorithm is a powerful tool for generating samples from complex probability distributions, enabling various statistical and computational analyses that would otherwise be impractical or impossible.

its effectiveness in the way of describing such paths.

Refresher: Calculus of Variations

As a refresher, suppose we wished to minimize:

J = E(x(r), x ′ (r), r)dr (0.7)
Then in essence we wish to initially obtain: δJ which works out to:

δJ = δ E(x(r), x ′ (r), r)dr (0.8)
(As all variables are w.r.t t.)

Where δ implies an infinitesimal difference of all quantities by use of the chain rule which states that for related quantities, for instance u = f (x(r)), then du = dx(r) dr dr. Additionally if u = f (x(r), y(r)) then du = [ dx (r) dr + dy(r) dr ]dr. Making use of the difference relation 2 , we have:

δJ = ∂E ∂x(r) δx(r) + ∂E ∂x ′ (r)
δ( dx(r) dr ) dr (0.9)

We then trivially integrate the integral/s with respect to all applicable variables, that is, evaluate the integral with respect to the differentials dx(r), dx ′ (r), .., making use of integration by parts for each term, and equate to zero. So in the case of δI, we have:

∀r ∂E ∂x(r) δx(r) + ∂E ∂x ′ (r) δ( dx(r) dr ) + ∂E ∂y(r) δy(r) + ∂E ∂y ′ (r) δ( dy(r) dr ) dr, (0.10) 
as all variables are expressed w.r.t t.

Proposal: Continuous Path Modeling

"There are many ways to define a subset of all the paths between a and b."

An intuitive rendering of (0.1) follows as:

K(b, a) = Lim ϵ→0 1 A ... e i ℏ S[a,b] dx 1 A ... dx N -1 A (1.1)
With classic action S[a, b] and normalization constant A.

Moving forward, our primary focus will be on utilizing the following function as a method for path modeling. (1.4) Finally for all variations of α, the total amplitude is given by:

2 f (a + h) = f (a) + f ′ (a)h + o(h), g(b + k) = g(b) + g ′ (b)k + o(k), (g • f )(a + h) = (g • f )(a) + g ′ (f (a))[f ′ (a)h + o(h)] + o(k) = (g • f )(a) + [g ′ (f (a))f ′ (a)]h + o(h). Resulting in: (g • f ) ′ (a) = g ′ (f (a))f ′ (a).
A(t) All Variations of (α,ρ) b a e i ℏ S(t)[a,b] (α)ρCos(αt)dt (1.10)
Here,the normalization constant A(t) is independent of any individual path and therefore only depends on time.

The previous can be further simplified via the use of a fascinating relation that we will cover in the next section, after some preliminaries.

Tests for convergence

An infinite sum, denoted as ∀j a j , is a concise representation of the sum of terms: a 0 + a 1 + . . . + a n + . . .. For instance, the harmonic series is represented as

∀n 1 n
. The harmonic series is an example of a well-behaved monotone series. One of the tests that can be employed to establish its divergence is the Integral Test.

Integral Test

For a continuous function f defined over [N, ∞) that is monotone-decreasing;

∞ n=N f (n) converges
to a real number if and only if the improper integral

∞ N f (x)dx exists.
Going back to the harmonic series and applying the integral test we obtain:

∞ 1 1 x dx = [ln(x)] ∞ 1 
which is clearly divergent. For non-monotone, oscillating functions, the task of ascertaining whether the associated series converges or not can be difficult to seemingly impossible. Taking for instance the alternating series test:

Alternating Series Test

If for all n, a n is positive, non-increasing (i.e. 0 < a n+1 ≤ a n ), and approaching zero, then the alternating series This test explicitly requires that a n be monotone convergent, so one can't for instance, establish convergence of:

∞ 1 Sin(x)
x using this test alone. However we are saved by the Squeeze-Theorem which can be used to establish convergence by means of the following argument: -1 x ≤ Sin(x)

x ≤ 1

x , since the series associated with either ends of the inequality are both absolutely convergent, it follows for: 3 Some Propositions on Establishing Convergence of non-Monotone Series

The following proposal, though seemingly straightforward, originated from a subtle yet persistent intuition that there exists an integral expression closely linked to converging series, similar to the integral test, however applicable to both monotone and non-monotone series.

Proposition 1a.

Given a single valued function f continuous and differentiable over [0, ∞) with Lim x→∞ f (x) = 0 , the series

∞ 1 f n is convergent if the integral : Lim h→∞ h 1 xf ′ (x)dx exists. Proposition 1b. ∞ 1 f n = Lim h→∞ h 1 xf ′ (x)dx + O where O < |f 1 |. Proof ∞ c f (x)dx = - c ∞ f (x)dx (3.1)
From the above, we have that:

- ∞ 1 f n = ∞ 1 f ′ (x)dx + ∞ 2 f ′ (x)dx + .. + ∞ k f ′ (x)dx + ... (3.2) 
It is easy to see that over each interval [START_REF] Dirac | The Quantum Theory of the Electron[END_REF][START_REF] Griffiths | Introduction to Quantum Mechanics[END_REF], [START_REF] Griffiths | Introduction to Quantum Mechanics[END_REF][START_REF] Shankar | Principles of Quantum Mechanics[END_REF] etc.

The integrals may be re-written as: 1

2 1 f ′ (x)dx + 2 3 2 f ′ (x)dx + .
. and so on, as there is a repetition of the area in proportion with each integral value over which the original sum is evaluated. Given that this is the case, one may re-write the above in approximation by use of the formula:

∞ 1 xf ′ (x)dx.
In the way of establishing part two of the proposition, we note that the difference between:

1 ∞ 1 f ′ (x)dx + 2 ∞ 2
f ′ (x)dx + ... (an upper-bound) and: 0

∞ 1 f ′ (x)dx + 1 ∞ 2 f ′ (x)dx + ... (a lower-bound) is simply ∞ 1 f ′ (x)dx.
There is a lot of narration left to further clarify the above and is unfortunately the most difficult portion; to convince an audience of. To felicitate this, we note trivially that:

Lim h→∞ - h c f ′ (x)dx = (-1)Lim h→∞ [f (h)] h c = f (c).
Further to this we have that:

∞ 1 f n = f (1) + f (2) + .. + f (n) + ..
Which can be expressed as the sum of the entries in the last column of the matrix that follows:

∞ 1 f n =             2 1 f ′ (x)dx 3 2 f ′ (x)dx 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 1 f ′ (x)dx 0 3 2 f ′ (x)dx 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 2 f ′ (x)dx 0 0 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 3 f ′ (x)dx 0 0 0 . n+1 n f ′ (x)dx ...| ∞ n f ′ (x)dx             (3.3)
Resulting in the approximation:

∞ 1 xf ′ (x)dx.
An example of (3) in practice can be achieved by proving the divergence of the harmonic series. Taking 1 n ; with the obvious substitutions, we have

xf ′ (x) = -x( 1 x 2
)dx which becomes:

-1 x dx, the integral of which forms: -ln(x) + C which clearly diverges as: x → ∞.

Another simple example is the divergence of 1 √ n . Again with substitution;

xf ′ (x)dx = - 1 2 x(x -3 2 )dx = - √ x + C which again clearly diverges as: x → ∞.
Using this result, one is able to form an expression capable of estimating amplitudes to an error quantity to within the first term of the series f (1). Using this, the following expression serves as an approximation, within an error margin of (f (1)) for the collective amplitude: 

A(t)

Returning to Monte Carlo

In modern settings, Monte Carlo techniques are often employed using languages such as R and Python. As an example, here follows a simple Python code-block that demonstrates a Monte Carlo path modeling technique for the path integral approach to quantum mechanics (it only covers a single path as is common with this approach). This code uses the Metropolis-Hastings algorithm (discussed earlier) to sample quantum paths for a particle in a one-dimensional potential well. The output for which follows in (Figure 1.).

The figure below illustrates the potential possibilities using our path modeling techniques described here. These techniques allow us to divide time steps over the duration of the particle's movement, enabling integration over a continuous and smooth set of possible paths between the start and end points throughout various time steps. to determine the amplitude of the overall trajectories (See Figure 2.). In addition, we can be prescriptive by selectively choosing ranges of α and ρ for the paths, which grants access to Lagrange Minimization when needed . We will cover this topic in a follow-up article.

Motivation

Smoothness in the path integral would lead to smoother mathematical functions, making numerical calculations and simulations more efficient and accurate. This would be especially beneficial in complex quantum systems where conventional computational methods may become computationally intensive. Smoothness allows for better convergence of numerical integration techniques, leading to more precise and reliable results in the path integral formulation. This would be advantageous in studying quantum phenomena at different scales and accurately predicting experimental outcomes. In addition, smoothness in the path integral would provide a more continuous and intuitive representation of the quantum evolution of a system. This could lead to better physical interpretations and insights into the underlying dynamics of quantum systems. A smooth path integral formulation could potentially reveal new symmetries and hidden structures in quantum systems. This could lead to a deeper understanding of fundamental quantum principles and aid in the development of new theoretical frameworks. The smoothness property might make it easier to extend the path integral formulation to larger and more complex quantum systems. This could facilitate the study of larger molecules, condensed matter systems, and other macroscopic quantum phenomena. Finally, a smooth path integral formulation could allow for a seamless connection between quantum and classical mechanics, enabling the study of quantum-classical hybrid systems and bridging the gap between the classical and quantum worlds. 

  P (a, b), is the probability of a particle following some trajectory with endpoints (x a , t a ) and (x b , t b ), and is found by |K(b, a)| 2 . Here the classic action S[a, b] is trivially given by:

  b

  varying α, ρ has the effect of modeling possible paths between [a, b]. Variations in the variables has the effect of producing a new paths between points with varying frequency and length.ρSin((α + δα)t)(1.3)For a constant value of t, a larger α increases the frequency of intersections with x = 0 between the intervals [t a , t c ], while ρ serves as the 'height-varying' parameter.K(b, a) = "Smooth F unction"e i ℏ S[a,b]

  r.t t we get: αρCos(αt) (1.6) Leading, with the substitution dx = αρCos(αt)dt, to the following expression for K(b, a) a,b] (α)ρCos(αt)dt (1.7) We may extend (1.5) to: ρSin(αt) + f (x) (1.8) Here; since the action S[a, b] is over each individual segment of the path, it would be intuitively useful to rewrite (1.7) as: t)[a,b] (α)ρCos(αt)dt (1.9)

∞ 1 (- 1 ) n a n and ∞ 1 (- 1 )

 1111 n-1 a n both converge, see for instance [??].

∞ 1 Sin

 1 (x) x as well. A comprehensive list of all such tests can be found in a variety of undergraduate tests, see for instance [??], [??], [??], [??] and of course [??].

  t)[a,b] (α)ρCos(αt)dt)dρdα(3.4) 

2 #

 2 import numpy as np import matplotlib.pyplot as plt # Potential function (you can change this to represent different potentials) def potential(x): return 0.5 * x ** Action function for the harmonic oscillator potential def action(x1, x2, dt): return 0.5 * (x2 -x1) ** 2 / dt + dt * potential(0.5 * (x1 + x2)) # Metropolis-Hastings algorithm for path modeling def metropolis_hastings_path_sampling(n_steps, dt, initial_position): positions = [initial_position] current_position = initial_position for _ in range(n_steps): # Propose a new position from a Gaussian distribution proposed_position = current_position + np.random.normal(scale=np.sqrt(dt)) # Calculate the action at the current and proposed positions current_action = action(current_position, proposed_position, dt) proposed_action = action(proposed_position, current_position, dt) # Calculate the acceptance probability acceptance_prob = np.exp(current_action -proposed_action) # Accept or reject the proposed position based on the acceptance probability if np.random.rand() < acceptance_prob: current_position = proposed_position positions.append(current_position) return positions # Parameters n_steps = 1000 # Number of steps in the path dt = 0.01 # Time step initial_position = 0.0 # Perform path sampling quantum_path = metropolis_hastings_path_sampling(n_steps, dt, initial_position) # Plot the quantum path time = np.arange(0, n_steps + 1) * dt plt.plot(time, quantum_path, label="Quantum Path") plt.xlabel("Time") plt.ylabel("Position") plt.title("Monte Carlo Path Modeling in Quantum Mechanics") plt.legend() plt.show()
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 1 Figure 1: Plot: Monte Carlo Path Modeling
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 2 Figure 2: Plot: Smooth Path With Monte Carlo Modeling