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Introduction

As is the case with most revolutionary ideas, it is the thinking behind idea that requires the most attention. For instance, within the proof of the famous Seven Bridges of Königsberg problem, it is not the formalization of geometric topology that expresses revolution, instead the realization that information can be represented in a manner abstract enough, yet not removing from it any form of integrity, to allow for a perspective change within which the essence of the problem remains the same, that bares enlightening weight [START_REF]Seven Bridges of Königsberg[END_REF] . Very little formal study of Topology is necessary to understand the manner in which the Seven Bridges of Königsberg problem was transformed and solved by Euler 2 . This way of thought has paved the way for an array of new possibilities, and as such clear, to the point, conveyance of the thinking behind any such idea is crucial.

The need to set a standard for literature to be capable of 'shortest time to intended enlightenment/guaranteed intended enlightenment' of the subject matter, has not yet, in our opinion, been made emphatic enough. Most works on a topic are either too watered down and convey little to no rigour to be of any use; or the inherent topic is conflated to an unnecessary extent with formalism that the essence of the topic is drowned. Within the context of forcing alone there are a number of introductory articles that one can cite having this problem. The idea, as is explained in the usual literature, behind Cohen-Forcing, that comes across well enough is that one is able to add elements to a set, one that abides by all of the ZFC-Axioms, in a manner capable of making the Continuum Hypothesis Fail. Where the literature lacks in our opinion is explaining 'how?' without any use of advanced algebraic techniques, or the expectation of the reader to have a professional grasp of the branches of thinking that led to this discovery.

Our proposed solution: Separate out the concerns of logical intent from formalism, Clarify the intent using the absolute minimum (if one does not need to learn a new branch of mathematics in order for the idea to be conveyed, then avoid its use), highlight the problems with formalizing the solution: here one can convey mainstream thoughts and ideas and finally bring the literature to a conclusion. To see an elegant example of this, see Gödel's Incompleteness Theorems [2] and additionally [3].

1. Background: Set theory fundamentals, Cantor and the Continuum Hypothesis.

A very important concern in set theory is its treatment of infinity. and to explain and tie up its relevance we begin with Cantor who is credited with the invention of set theory. "Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an 'infinity of infinities' " [4]. Without entering a narrative on the matter, it suffices to point out that at the time, Cantor's ideas were met with much objection.

At a junction where the idea is almost clear but not formal enough to be entirely challenged, one can choose to take one of two possible routes, which is either to reject it as absurd simply because it does not pass the bar of perfection, or to try and understand the 'end goal' and assist in the formalization process. Bertrand Russell was one of the few mathematicians that took on the challenge, and after deep contemplations on his part, he arrived at the paradox that bears his name. Before Cantor however, only finite sets were considered and these were trivial enough to understand. Cantor, the first to attempt a serious understanding of infinity, began formalizing, introducing the concepts of ordinals and cardinals before establishing a means of comparing infinite sets, thus bringing into light the concept of a cardinality.

In simple terms, one is able to say that two infinite sets are 'equal in size/measure' if they can be put into one to one correspondence. A simple example of this are the sets: S 1 := {x|x ∈ 3n, ∀n ∈ N} and S 2 := {y|y ∈ n, ∀n ∈ N} have the same cardinality as the following oneto-one pairing is possible: 3n → n∀n ∈ N. This mapping takes the form: (3, 1), (6, 2), ..., (3k, k), .., and we are able to know that the mapping is 'complete' as it exists for all n ∈ N. Using the same concept however different in its approach, Cantor established that the cardinalities of both (N, Q) are in fact the same. Take for instance the following assimilation: 

        1 1 -1 1 2 1 -2 1 3 1 .. 1 2 -1 2 2 2 -2 2 3 2 ..
       
With little effort, one can see that in keeping the denominator same in all rows of the matrix, that all the rational numbers can be covered. Consider now the following mappings: (1, 1 1 ), (2, 1 2 ), (3, -1 1 ), (4, 1 3 ), (5, -1 2 ), (6, 2 1 ), .... Where the numbers to the left within each pair belong to N and the values to the right are selected in a zig-zag fashion from the matrix above. The takeaway point here is that we have found a way to list all the Q information and we have shown that it is parable with N.

In the way of establishing cardinality of the reals is where Cantor's genius really shows. It is also from here that the intention with regards to Cantor's Set Theory becomes clear. Following Cantor's formalization, the concept of cardinality highlights limitations in our previous understanding of infinity, and this is best seen when comparing κ(N) : κ(R) [START_REF] Singh | Gödels Incompleteness Theorems[END_REF] . Keeping in mind that a formal technique of comparing cardinalities of sets has been established and it is via establishing a one-to-one correspondence between sets, we will now show, using techniques of Cantor, that κ(N) < κ(R) [START_REF]Georg Cantor[END_REF] . The current/conventional approach to describing this argument is to make use of sequences of the form: N → {0, 1}. To avoid unnecessary confusion we will outright try to pair N with I ⊂ R where I refers to the decimal part any real number capable of being expressed as an infinite binary sequence. [5] 

      
One finds that regardless of the many such pairings we perform, should one move along the diagonal values of the numbers paired, as highlighted in bold above, one will always be able to construct an unpaired element that is the formation of all such diagonal values 101000..., thus demonstrating the impossibility of any such attempt [5].

2. Background: Set theory fundamentals, Cantor and the Continuum Hypothesis.

With the relative cardinality of the continuum established, Cantor went on to ask whether there is some subset [START_REF]Hilbert's problems[END_REF] . This task, which Cantor believed to be impossible, would later become the Continuum Hypothesis. It's importance was eventually so well recognized that Hilbert placed it first on the list of presented problems at the Paris conference of the International Congress of Mathematicians [6]. The uncanny persistence of the problem has spawned many lines of thought with regards to the nature and possibility of its resolution which we encourage the reader to see [7].

A of R such that κ((A ⊂ R) ∪ N) < κ(R) and κ((A ⊂ R) ∪ N) > κ(N) respectively
In mathematics, Zermelo Fraenkel set theory, is an axiomatic system that was proposed in order to formulate a theory of sets free of paradoxes such as Russell's paradox [8]. See also [9]. The following, with the exception of the Axiom of Well Ordering, are the set of axioms associated with the ZFC formulation of set theory and their written interpretations respectively: Axiom of extensionality: Two sets are equal if and only if they have the same members.

Axiom of power set: If we have a set, then the collection of all of its subset is another set.

Axiom of pairing: If we have a set of sets I, then we have a set U which is the union of those sets, namely all the members of I are subsets of U, and U is the smallest possible set with this property.

Axiom of empty set:

There exists a set which has no members.

Axiom schema of specification: If we have a subset x and a property ϕ, then the collection of all the members of x with the property ϕ is a set.

Axiom schema of replacement: If we can describe a function whose domain is a set, then its image is a set.

Axiom of infinity: There exists an infinite set.

Axiom of regularity:

In every set x which is not empty, there is a member y which does not have any members shared with x.

Models and Independence.

Given a set S that abides by all the ZFC axioms, we then say that S models ZFC, which we write as: S |= ZF C. We say that a 'property' of a set is independent of ZFC if the property is not a consequence of ZFC. The formulation of modern Set Theory has at its core the ZFC axioms, and these are thought to encapsulate in a sense the 'behaviour' of sets. Given that this is the case, it seems reasonable to presume that other properties of sets that model ZFC, also tie in somehow with the existing ZFC axioms and that the property in concern is somehow derivative of the ZFC axioms themselves. This is where independence results play an important role. These are used to demonstrate properties of sets that lie outside the scope of ZFC.

Gödel developed many independence ideas. One of the most important of his results was his argument that any formal system of axioms has within it the potential for statements, the truth of which can't be established within the system 7 . Gödel before Cohen, established the independence of the Axiom of Choice and that the truth of CH is independent of ZFC [10].

Definitions

An inner model of ZF is a class M such that:

1. M is a class of V , this means that the axioms of ZF are still valid (in V ) if one applies replacement to formulas including one unary predicate U interpreted by M , 2. M is transitive,

3. M contains all ordinals, 4. M is a model of ZF .
One can similarly define when M is an inner model of ZF C.

Cohen Forcing.

Given a base set (M, ∈) |= ZF C, form an addition of elements M [G] := M ∪ InSomeSence G, that are not in one-to-one correspondence with the base set M . It turns out, as we shall see shortly, that all that is required to achieve this is to add in some manner, more elements from the extension than there are in the ground set, and this is to be achieved in a manner Let P stand for printable, N norm of, and ! not.

P (X) → T rue if X is 'printable'. P (N (X)) → T rue if N (X) is 'printable'. !P (X) → T rue if X is NOT 'printable'. !P (N (X)) → T rue if N (X) is NOT 'printable'.
Given that 'the machine' never prints false sentences: The sentence P N (!P N (X)) is true if the norm of (!P N (X)) is printable, as P N (..) means 'Printable, Norm of that which lies within (..)'. But this means that if we place !P N , the statement translates to 'Printable, Norm of that which lies within (Norm of this not Printable(X))'. This either means that: the sentence is true and not printable, or it is printable and not true. The latter violates our hypothesis that the machine is only capable of printing true statements [2]. The significance of this is that all systems 'isomorphic' to the above in a manner of setting up statements, then Gödels argument is made. The infinitely more significant result is that Arithmetic is one such formal system [2].

where M [G] |= ZF C How then do we know that M [G] |= ZF C? A fundamental requirement turns out to be transitiveness of the elements of M [G]. The transitive behaviour of which can be described using elements of the ground model that we use to tag elements of the extension with. Let us imagine this, if {1, 2, 3, 4} are elements of the ground model and {a, b, c, d} from the extension alone, we have within the ground model the understanding that: 1 < 2 < 3 < 4. One can in a sense enforce the same behaviour in G by saying something to the effect that: since we are able to 'pair' in the following manner (1, a), (2, b), (3, c), (4, d), the implication is that a ∈ b ∈ c ∈ d. As such, M [G] is collectively transitive. A very important question one might ask is, why not use the elements of the extension directly? Why do we tag these instead? The answer is that there is no clear means of comparing/(knowing the) transitiveness of elements that we choose 8 , as the extension may make use of a relation different to {∈}, say for instance {Θ}, making a choice for comparison logically unclear. Suppose for instance we wished to compare the 'transitive-behaviour' of elements of the ground model and the extension respectively, that is, we wish to be able to say something to the effect: for σ 1 , σ 2 ∈ (ground, <) and ϕ 1 , ϕ 2 ∈ (extension, Θ), σ 1 < σ 2 =⇒ ϕ 1 Θϕ 2 , as such, we need some means of comparing elements from either set [START_REF] Irvine | Russell's Paradox[END_REF] .

An element a such that K G (a) = u is called a name for u.

Philosophically, a class can be thought of as a set that is 'too big' to be called a set due to complications. For instance, the set of all sets. This concept aides us in understanding certain things when it comes to names and forcing-relations. When speaking of names, these are not to be thought of as existing 'between' sets, instead these are between a universe and its extension. P-names assist with 'comparing' elements of the universe and its extension. More specifically, there is an onto map

K G from V onto V [G] defined in V [G] with parameter G provided a unary predicate symbol is allowed with interpretation V . Here it is required that V is an inner model for V [G]
Forcing relations assist in ensuring that the adjoined sets(i.e. elements belonging to G) are transitive and that these abide by ZFC by establishing [START_REF]Internet Encyclopedia Of Philosophy[END_REF] Complications involving the Axiom of Choice comes into play here. 9 p-names: A 'name' in M is the actual function 'F (m)' the 'solution' of which points to an element in G, this is why the entire sentence: 'X 2 -2 = 0' is considered a p-name in N as it points to a solution in R a means of comparison.

One can proceed at this point if one wishes, to the final argument and come back to the following few passages that cover formalization. 4.1. Forcing Axioms and P-names. The Forcing-Axioms which are highly reliant on recursion for reasons that will be covered within the section Cumulative Hierarchy and Transfinite Recursion 10 . Precise formal versions of the axioms follow, with a small amendment, as a teaching experiment, where appropriate we will replace the word forces written {⊩} with the word makes.

Axioms 1. p makes/forces {τ 1 = τ 2 } iff p ⊩ {τ 1 ⊆ τ 2 } and p ⊩ {τ 2 ⊆ τ 1 }. 2.
Let {τ 1 , τ 2 , σ} ∈ p -names then: p ⊩ {τ 1 ⊆ τ 2 } iff for every (q, σ)(q paired with a p -name counterpart σ) ∈ τ 1 and r ≤ p, q there is s ≤ r such that s ⊩ σ ∈ τ 2 . 3. p ⊩ τ 1 ∈ τ 2 iff for every q < p there is a (r, σ) ∈ τ 2 and s ≤ q, r such that s makes τ 1 = σ.

One can easily see that by induction, if p, q, ... are 'paired' transitively with τ 1 , τ 2 , ..., then the above definitions make complete sense [START_REF]Cumulative hierarchy[END_REF] .

Let us take away from this that: if elements of the universe and its extension U 1 , U 2 are parable, in a manner that is transitive, using p-names where U 1 |= ZF C , then U 2 respects ZFC, and all of the elements are well ordered between/amongst elements of M [G]. The more elements of U 2 we tag to that of U 1 , the more we know that U 2 models ZFC. Further to this, the more we can show the transitiveness of the elements of

U 2 Lemma M [G] |= ZF C.
Proof. 1. Extensionality: M[G] is transitive. 2. Foundation: holds in each ∈ model. 3. For those axioms that asserts the existence of sets, we need to design appropriate names. □ Thus, and this follows logically that:

V [G] |= "ϕ(K G (a 1 )..., K G (a n ))", iff
∃p ∈ G, p ⊩ ϕ(a 1 , ..., a n ). What the above says in essence is that, if there is some truth that can be conveyed in the ground model, then its truth is also true of the extension, expressed interchanging the formulae with names. This is because of the manner in which the addition is achieved.

Let G be generic with p ∈ G. Then V [G] |= "∃xϕ(x)", thus for some t, V [G] |= "ϕ(K G (t))".

Forcing Notions. (High Level Introduction). Some preliminary definitions follow.

Definitions

(a) A forcing notion is a partially ordered set P which has the largest element 1 P where elements of P are called conditions. (b) Given p, q ∈ P, p is an extension of q if p ≤ q.

(c) A subset G of P is called P -generic over V , if the following hold:

1. p ≤ q and p ∈ G =⇒ q ∈ G, 2. p, q ∈ G =⇒ p, q are compatible (i.e. have a common extension), 3. If D is a dense set belonging in V , then D ∩ G ̸ = ∅, where dense means ∀p∃q ≤ p, q ∈ D. One can easily see that if G is P -generic over V , and if p, q ∈ G, then they have a common extension in G.

The main argument surrounding Forcing Notions deals with mappings in the form of finite partial functions from the base set to its addition after adding a 'comparably cardinal' amount of elements that obey transitivity, to a base set that models ZFC, in some manner capable of making CH fail within the logical context of the construction. Given this, one can apply known logical techniques to this new constructed set. In this case, we ask the following question: How many elements from G must we add and how, to make CH fail? [START_REF] Hawking | God Created the Integers[END_REF] . It turns out that this can be achieved by adding enough elements from U 2 , so as to effect inclusions for every ordinal in M of the form: e.g.ω 1 → [1, .., 5], ω 2 → [6, .., 56], ω 3 → [57, .., 78], ... [START_REF]Chain and anti chain problem[END_REF] . Thus at any given point in time, there will be the same number of anti-chains in U 2 as there are elements in U 1 by nature of the mapping : forcing notion.

Suppose we, attempted the addition of a set of elements with comparable cardinality ω ≡ κ to that of M , then the following can be expected. Let κ be a cardinal in M . Force with [START_REF]The Axiom of Choice[END_REF] F n(ω, κ) [START_REF] Gödel | On Formally Undecidable Propositions Of Principia Mathematica And Related Systems[END_REF] . Then G is a total function from ω onto κ. So, κ is not a cardinal in M . κ is a cardinal due to F n being one-to-one [START_REF] Nyu | Cantors Theory of Ordinal and Cardinal Numbers[END_REF] .

What then is the next step if our intention was to form a notion capable of making CH fail? As expressed earlier, we need to add more elements from G per element in M , and so we form the following notion: F n(κ × ω, 2) is an arbitrary function from F : (κ × ω) M anyElements → (Rand[0, 1)), where Rand[0, 1) is a random arbitrary real within the interval [0, 1). Let σ 1 , σ 2 , .., σ n ∈ 2 <ω .

σ 1 : 0.0000101010100 ∈ [0, 1) σ 2 : 0.0000101110101 ∈ [0, 1) ... σ n : 0.0111111010100 ∈ [0, 1)
This has the effect of increasing the cardinality of M κ to κ × ω M [G], meaning that we are adding ω many reals per element in M .

How then do we know that the cardinal mapping here also does not collapse? The countable chain condition18 comes into play here.

1

→ [n 1 , .., n 2 ] 2 → [n 2 , .., n 3 ] 3 → [n 3 , .., n 4 ]
.... We are choosing to add a series of element per element in M and thus in a nutshell the anti-chains (e.g. [1, 2], [3, 56], [57, 78], ...)20 are the ones countable as a whole and are added per element in M countable (i.e.

ω 1 → [1, 2], ω 2 → [3, 56], ω 3 → [57,
78], ...). Furthermore, because these are onto mapped from ω → toAntichainsOf (ω ×κ), the cardinal thus cant collapse. So in reality this functional named map F n is not to be thought of as being put together as a whole but rather in each ordinal iteration, which as such, has the logical effect: at any point in time during the addition process, more elements are being added to the base model than there are elements within the base model. This has the effect of being uncountable at each additive stage using only the included elements from within M in the construction process.

What we have just demonstrated is that κ(M ) < κ(M [G]) < κ(P (M )), where P (M ) is the powerset of M .

Thinking behind the formalities.

We will now begin formalizing the ideas presented this far by looking a bit more into the philosophy behind sets and ordering. The aim of formalizing any idea is to ensure completeness and consistency of the idea. There can be no room for ambiguity, and as such we will be filling in on things that we have taken for granted in the preceding sections.

Suppose that we asked one, 'in what order should we arrange an apple, an orange and a banana?' The question seems absurd surely. The same is true of objects placed within a set even if these are numbers. There is no inherent reason for 3 to be larger than 2. These are no more than symbols that we assign meaning to. When speaking of order, enters the Axiom of Choice. This axiom asserts that one is free to choose the order of elements within a set. There is a lot of debate surrounding this axiom which we will not get into right now, as such we will presume is truth and proceed. In order for a set to accurately model ZFC, the elements of the set needs order and this requires that we somehow enforce this while constructing any model of ZFC. Construction by reverse-inclusion is a means of preserving order whilst adding elements to a set and it is done by having every preceding element 'nested' within the next within an ordered sequence.(We will clarify this soon) 5.1. Some Terminology and More Explanations. Many descriptions of Forcing make use of sentences like 'Each condition makes a finite promise...', this is aimed to convey that the extension is a generic one. I.e, The reals we add in some specified manner only describes a portion of the entire set of reals R, and therefore its behaviour is only 'limitedly' expressed, this is obvious and in fact what they mean.

Real an element of 2 ω . In other words, a function that maps each integer to either 0 or 1.

String

an element of 2 <ω . In other words, a finite approximation to a real.

Notion of Forcing

A notion of forcing is a set P and a partial order on P , ≻ P with a greatest element 1 P .

Condition

An element in a notion of forcing. We say a condition p is stronger than a condition q just when q ≻ P p.

Compatible Conditions

Given conditions p, q say that p and q are compatible if there is a condition r with p ≻ P r and q ≻ P r. p | q, p | q are incompatible.

Filter

A subset F of a notion of forcing P is a filter if p, q ∈ F =⇒ p ∤ q and p ∈ F ∧ q ≻ P p =⇒ q ∈ F . In other words, a filter is a compatible set of conditions closed under weakening of conditions. Ultrafilter A maximal filter, i.e., F is an ultrafilter if F is a filter and there is no filter F ′ properly containing F

Cohen forcing

The notion of forcing C where conditions are elements of 2 <ω and (τ ≻ C σ ⇐⇒ σ ⊃ τ 5.2. Cumulative Hierarchy and Transfinite Recursion. Gödel's constructable universe is a definitive means of constructing a set that models ZFC. Gödel, developed these ideas as a means of developing a model of ZF C + CH. L is defined by transfinite recursion as follows: Definition Ord, in the following denotes the class of all ordinals.

Def (X) := {y|y ⊂ Xand(X, ⊂) |= Φ} L 0 := ∅.

L α+1 := Def (L α ) V = λ∈Ord V λ V λ = P β<λ V β (1) 
The above statements in essence say that if we are to construct a set along with some predicate means of choosing elements belonging to it, then constructing these in a manner where each element contains every preceding element, will form a set that abides by ZFC.

(2) S := {{0}, {{0}, 1}, {{{0}, 1}, 2}, ...}

The beauty of the above is that, each element is in itself indicative of its order within the set. We spoke a bit about comparing different sets within the section Cohen Forcing. Visually what was meant was that one can compare elements of a similar order within set B for instance if in:

(3) B := {{a}, {{a}, b}, {{{a}, b}, c}, ...} one can compare/'ordinally equate' {{{0}, 1}, 2} with {{{a}, b}, c}. This idea is of exceptional importance in the way of understanding why things are done in this manner.

The nature of the above composition is referred to as a Chain. An Anti-Chain are intuitively disassociated elements that do not consist of its preceding elements. One can think of the Countable-Chain-Condition as having cardinally many anti-chains.

6. Conditions, chains, anti-chains and ccc.

Given the previous, the following definitions will make more intuitive sense.

Definition A poset (partially ordered set) is a set P together with a binary relation ≤ which is transitive (x < y and y < z implies x < z) and irreflexive (x < y and y < x cannot both hold) Definition x and y are comparable if x ≤ y and/or y ≤ hold.

Definition A chain in a poset P is a subset C ⊂ P such that any two elements in C are comparable Definition An antichain in a poset P is a subset A ⊂ P such that no two elements in A are comparable.

Definition A set of partial functions F n from X → Y is the set of mappings of the form x i → y i for arbitrary i.

The aim from now on will be to intuitively and formally demonstrate that when trying to 'pair-elements' via finite partial functionsF n from one set to another, this can only be achieved by pairing an ordinally equivalent element with another as in the previous example. As such, if a series of elements escaping 'pairability' are found, then one can demonstrate the cardinality of such a set to be greater than the one being compared.

Why the above definitions of chains etc? The answer is that we are taking a combinatorial approach to ordering added elements as there are challenges that present otherwise. As such, we are in a sense combinatorially adding elements to the base model, which ends up 'naturally' forming posets. Making use of a Hasse diagram of a set of elements, one can 'see' all of the 'ordered' comparable-elements. As unintuitive as it sounds for anti-chains to exist within an ordered set, these can arise naturally within a powerset of a set and additionally effect partial ordering(See Figure).

6.1. Revisiting the Forcing Notion F (κ, κ × ω). When selecting elements from Rand[0, 1), there is not necessarily a pre-meditated means of ordering these elements, so one can intuitively construct a Hasse diagram setting α i ∈ 2 <ω (the extended elements) as the starting point and for all random choices arising from such elements, one can easily see [START_REF] Kunen | Set Theory: An Introduction to Independence Proofs[END_REF] that there are in fact countable many anti-chains within the construction for F (κ, κ × ω), hence for such a notion, the cardinality cant collapse. Additionally the combinations give rise to a multitude of incomparable orderings, specifically order the chosen reals by combination using the Hasse diagram/construction and allow for naturally arranged elements to convey 'order'. Once complete, the result will be a poset 22 with countably many anti-chains (See Figures), thus satisfying the Countable-Chain-Condition, making cardinal collapse impossible. There are many theorems pertaining to the existence and number of chains and anti-chains within a poset and we will leave this to the reader to study this further.

7. Meta Forcing.

7.1. Brilliance of the Forcing Technique. Now that we have covered some of the basic ideas behind Cohen-Forcing, there is a deeper underlying reason why forcing works, and by understanding why, one can make use of this technique in order to prove a wide variety of independence results. We list here some notes.

Find a way, some means to make a condition hold between elements of a universe and its extension. In Cohen's case it was the need for ordering/'enforcing transitivity'.

Express the axioms that govern how and why the conditions hold between the two sets. Finally add/remove/'choose' elements that will make your case, for example, 'making' cardinally more elements possible within the 'transitive forced structure'.

The condition can loosely be any 'concept', as such shape, by some or other means/procedure invented to condition/form and 'align' properties of a set and it's extended elements in a creative manner to have the intended axioms. [START_REF] Kunen | Set Theory: An Introduction to Independence Proofs[END_REF] As a combinatorial exercise 22 A partially ordered set.

  .. .. .. .. .. .. .. .. .. .. .. ..

Here κ means cardinality of.

If one considers that each integer is capable of storing one single 'bit' of information, the question we then ask is that: Can the associations with integers alone 'store' all of the information required of expressing the Reals in entirety?. The answer as we will see is no. Just in simpler terms, supposing that there are a infinite set of variations within a single irrational number, it would then take all of the integers alone to 'store' the variations.

Keeping in mind that have indeterminate length and discernible order with regards to the arrangement of 0's and 1's.

Let us now focus on intent rather than formalization of the question.

Taking from Smulliyan, Let X be some encoded-expression, then the following is possible:

We can make u 2 have as many elements as we choose, or in other words we can force U 2 to have the necessary amount of elements.

Here each such set is ordered by reverse inclusion, and the numbers are only for explanation purposes.

form a addition of elements M [G] in a manner suggested.

F n : Finite one-to-one function from one set to another F : κ → ω.

There is an argument that if a mapping is one to one then the cardinalities are the same due to being countably infinite.

In order theory, a partially ordered set X is said to satisfy the countable chain condition, or to be ccc, if every strong antichain

in X is countable.

The numbers in essence are comparable making the analogy misleading, as such try not to think of these as numbers.

, the more we know its ZFC modelling potential. The next section Forcing Notions we will talk about how elements of U 2 is 'added' to U 1 .

From the forcing axioms outlined above, we have that: [START_REF] Pnas | THE CONSISTENCY OF THE AXIOM OF CHOICE AND OF THE GENERALIZED CONTINUUM-HYPOTHESIS[END_REF] These sets are constructed by reverse inclusion. I.e. each element is composed of every other preceding element.

11 Note that forces/makes acts by the means of a method using p-names. Remember additionally that the p-names are paired with p, q, r, ... etc. Simply If p 1 , p 2 ∈ P and p n → τ n then p 1 < p 2 forces/makes τ n ∈ τ n+1 .

12 The potential of being able to map is sufficient, i.e. serves the purpose.