Pierre Lavoie 
email: pierre.lavoie@polymtl.ca
  
Emmanuel Radenac 
  
Ghislain Blanchard 
  
Eric Laurendeau 
  
Philippe Villedieu 
  
D Candidate 
  
  
  
  
  
  
  
  
Penalization Method for Eulerian Droplet Impingement Simulations Toward Icing Applications

The numerical prediction of in-flight ice accretion generally involves geometry updates and remeshing as the ice builds up. However, the generation of body-fitted meshes around complex ice shapes is not trivial and can be repeated several times to obtain the final ice shape. The use of an immersed boundary method can simplify the mesh generation and help in the automation of the ice accretion process. This paper studies the application of an immersed boundary method to Eulerian droplet impingement simulations. A penalization method is suggested, requiring only the addition of source terms in the continuous form of the equations. The wall boundary condition must be treated with care to avoid droplets reinjection in the computational domain from a solid boundary. This is solved by the introduction of a droplet mask function in addition to the usual solid mask, providing an automatic detection of the wall boundary condition and therefore avoiding droplet reinjection. The approach is tested on canonical cylinder cases and on more realistic NACA0012 airfoil and ice horn cases. The results show that the solution from a body-fitted simulation can be reproduced using the penalization method.

I. Introduction

N UMERICAL tools for the prediction of in-flight ice accretion have been developed and used for many years (e.g., Ref. [START_REF] Wright | DRA/NASA/ONERA Collaboration on Icing Research: Part II-Prediction of Airfoil Ice Accretion[END_REF]). Ice accretion is an unsteady multiphysics process where supercooled water droplets impinge on a cold surface [START_REF] Gent | Aircraft Icing[END_REF] (e.g., aircraft wings, tail, etc.) and might freeze upon impact or run back and freeze farther downstream. Typical tools for the prediction of ice accretion segregate the simulation of the physics in different modules (e.g., LEWICE [START_REF] Wright | User's Manual for LEWICE Version 3.2[END_REF]) that are called sequentially and embedded in a time loop (quasi-steady approach): 1) mesh generation, 2) computation of the steady-state aerodynamics, 3) computation of the steady-state droplet trajectories and impingement rates, 4) evaluation of the convective heat transfer at the wall, 5) computation of the steady-state ice accretion rate (mass and heat balance), and 6) geometry update (the ice shape is generated).

This process (modules 1 to 6) is usually repeated several times to increase the accuracy of the ice accretion prediction using a multistep approach [START_REF] Hasanzadeh | Quasi-Steady Convergence of Multistep Navier-Stokes Icing Simulations[END_REF], requiring mesh generation for each step.

When using body-fitted (BF) meshes, the effort is spent on generating a good quality mesh that matches the geometry. This process can be difficult to automate on complex ice geometries, especially in three dimensions. On the other hand, when using an immersed boundary method (IBM), the mesh generation can be much simpler (e.g., Cartesian grid), as the geometry is allowed to arbitrarily cut through the mesh. In this case, the effort is spent on the correct imposition of the boundary condition on the immersed boundary. It is thus envisioned to replace the classical body-fitted meshes by the use of an immersed boundary method, which could ease the automation of the ice accretion process.

Although there is a higher benefit in using immersed boundary methods for three-dimensional (3D) ice accretion, the developments are first performed in two dimensions using ONERA's IGLOO2D ice accretion suite [START_REF] Trontin | Description and Assessment of the New ONERA 2D Icing Suite IGLOO2D[END_REF]. IGLOO2D is compatible with both structured and unstructured meshes. For the aerodynamics, it uses an Euler flow solver combined with an integral boundary-layer code. For the evaluation of the droplet trajectories, both Lagrangian and Eulerian solvers are available. An immersed boundary method (penalization) was previously developed for the Euler equations and presented in Ref. [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF]. As a continuation, the objective of this paper is to apply an IBM to the Eulerian solver for the droplet trajectories. For compatibility with IGLOO2D and existing ice accretion tools, the selected IBM should be applicable to general meshes (structured and unstructured). Furthermore, the method should be suitable for a future 3D implementation.

A variety of immersed boundary methods is available from the literature, ranging from the geometric cut-cell approach [START_REF] Clarke | Euler Calculations for Multielement Airfoils Using Cartesian Grids[END_REF][START_REF] Berger | An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries[END_REF][START_REF] Berger | Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow[END_REF] to discrete [START_REF] Mohd-Yusof | Combined Immersed-Boundary/B-Spline Methods for Simulations of Flow in Complex Geometries[END_REF][START_REF] Mittal | A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries[END_REF][START_REF] Fedkiw | A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[END_REF] and continuous methods [START_REF] Peskin | Flow Patterns Around Heart Valves: A Numerical Method[END_REF][START_REF] Angot | A Penalization Method to take into Account Obstacles in Incompressible Viscous Flows[END_REF]. High-order Cartesian grid methods are an interesting class of discrete/cut-cell methods [START_REF] Brehm | A Locally Stabilized Immersed Boundary Method for the Compressible Navier-Stokes Equations[END_REF][START_REF] Muralidharan | A High-Order Adaptive Cartesian Cut-Cell Method for Simulation of Compressible Viscous Flow over Immersed Bodies[END_REF][START_REF] Brady | Foundations for High-Order, Conservative Cut-Cell Methods: Stable Discretizations on Degenerate Meshes[END_REF]. However, they are not easily applicable to structured and unstructured meshes typically used in common icing tools. Continuous approaches such as the penalization method of Ref. [START_REF] Angot | A Penalization Method to take into Account Obstacles in Incompressible Viscous Flows[END_REF] are appealing for their simplicity of implementation and because they are independent of the type of mesh or discretization schemes. This type of method relies on the addition of penalization terms (often source terms) to the continuous form of the physical equations in order to apply a boundary condition on (or near) the immersed boundary (IB). The penalization method was applied to incompressible Navier-Stokes equations [START_REF] Angot | A Penalization Method to take into Account Obstacles in Incompressible Viscous Flows[END_REF][START_REF] Beaugendre | Computation of Ice Shedding Trajectories Using Cartesian Grids, Penalization, and Level Sets[END_REF] and extended to compressible flows [START_REF] Liu | A Brinkman Penalization Method for Compressible Flows in Complex Geometries[END_REF][START_REF] Feireisl | Convergence of a Brinkman-Type Penalization for Compressible Fluid Flows[END_REF][START_REF] Abgrall | An Immersed Boundary Method Using Unstructured Anisotropic Mesh Adaptation Combined with Level-Sets and Penalization Techniques[END_REF]. A variant of the penalization method, the characteristicbased volume penalization, was developed in Ref. [START_REF] Brown-Dymkoski | A Characteristic Based Volume Penalization Method for General Evolution Problems Applied to Compressible Viscous Flows[END_REF] and applied to the Navier-Stokes and Euler equations [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF][START_REF] Brown-Dymkoski | A Characteristic-Based Volume Penalization Method for Arbitrary Mach Flows Around Solid Obstacles[END_REF].

Applications of an IBM for the Eulerian droplet trajectory solver are few. A discrete method (a type of ghost-cell approach) is used in Ref. [START_REF] Capizzano | A Eulerian Method for Water Droplet Impingement by Means of an Immersed Boundary Technique[END_REF] to perform both two-dimensional (2D) and 3D simulations on Cartesian grids. A similar approach is followed in Ref. [START_REF] Al-Kebsi | Multi-Step Ice Accretion Simulation Using the Level-Set Method[END_REF], in which a discrete approach is used in combination with a level-set. According to the authors' knowledge, there is no application of a penalization method for Eulerian trajectory solvers in the literature.

The application of the penalization method to the Eulerian droplet trajectory equations is not straightforward because of the nature of the wall boundary condition that changes along the wall according to the droplet trajectories. It is quite simple to deal with this situation when using ghost cells, but it must be treated with care with the penalization method as droplets could otherwise enter the solid body and be reinjected in the field downstream. This paper suggests a way to apply the penalization method to the droplet equations, which avoids droplet reinjection by using a double mask function.

The paper is structured in three main sections. First, the Eulerian droplet equations and their application for body-fitted simulations are reviewed. Second, a penalization approach is suggested for droplet impingement, and the double mask function is explained. Third, the verification of the method is made on canonical cylinder cases, on a NACA0012 clean airfoil in icing conditions, and on an ice accreted GLC305 airfoil exhibiting an ice horn.

II. Eulerian Droplets Impingement

For ice accretion prediction, the fundamental information to retrieve is the droplet impingement rate _ m imp on the body (e.g., an airfoil). This is generally computed in terms of collection efficiency β, which can be seen as a nondimensional impingement rate. The problem consists of solving a dispersed two-phase flow in dilute regime, in which the water droplets are in a very little volume concentration in the carrier phase (the air). A one-way approach is thus used where the computation of the droplet trajectories is fed by the airflow solution. Two types of approaches are generally used to solve the droplet trajectories [START_REF] Gent | Aircraft Icing[END_REF]. The first one treats the carrier phase (the air) as a continuum and the droplets as individual particles that are tracked from seeding points located upstream of the body. This is referred to as the Lagrangian approach. In the second approach, both the carrier and particle phases are treated as a continuum. It is referred to as the Eulerian approach where the volume fraction of water α and the local droplet velocity v d are computed at the same location as the aerodynamic solution (e.g., cell vertex, cell center).

Both approaches have their advantages and drawbacks. The Lagrangian approach allows for the accurate tracking of droplet trajectories even if a relatively coarse grid is used for the carrier phase. However, a large number of droplets can be required to retrieve a smooth collection efficiency β on the body, and it can become costly as the number of droplets increases. The seeding plane must thus be defined to optimize the number of tracked droplets, tracking only droplets that will impinge the body or that will be close to the impingement limits. This task is not trivial and can become challenging for complex geometries such as multielement airfoils (2D) and full-aircraft configurations (3D). The Eulerian approach is more sensitive to the mesh resolution and the discretization schemes. Also, its cost increases with the number of droplet sizes to simulate. The main advantage of the Eulerian approach is that there is no need to define this so-called seeding plane and that the simulation cost does not increase with the number of droplets. It makes this approach appealing for complex configurations. In terms of IBMs, the Lagrangian approach is quite trivial to use, but the Eulerian approach requires some care to obtain a suitable method applicable for icing. This is why the focus is on the Eulerian approach in this paper.

A. Governing Equations

For icing applications, the droplet cloud is generally defined by its liquid water content (LWC) and the size of its droplets. The LWC is also known as the bulk density of the dispersed phase and represents the amount of water contained in the cloud. A cloud generally contains a range of droplet sizes but, in this paper, it is approximated using a single size of droplets represented by the median volume diameter (MVD). For icing applications in the so-called Appendix C conditions (valid for small supercooled droplets with a diameter smaller than 50 μm), the following assumptions are generally accepted to represent the droplet cloud (e.g., Refs. [START_REF] Gent | Aircraft Icing[END_REF][START_REF] Bourgault | A Finite Element Method Study of Eulerian Droplets Impingement Models[END_REF]):

1) The droplets remain spherical (no deformation or breakup).

2) There is no droplet collision or coalescence.

3) Turbulence effects can be neglected.

4) The only forces acting on the droplet are due to aerodynamic drag, gravity, and buoyancy.

5) Full deposition occurs on the wall boundaries (no splashing, no bouncing, etc.).

The first and last assumptions are valid because the droplets are typically small (MVD ∼ 25 μm) for icing applications outside of the supercooled large droplet regime (Appendix O conditions). The volume fraction of the dispersed phase (LWC∕ρ d ) is of the order of 10 -6 , which means that the effect of the droplets on the carrier phase (the air) is negligible. Thus, the turbulence effects can be neglected, and a one-way coupling with the carrier phase is acceptable [START_REF] Elghobashi | On Predicting Particle-Laden Turbulent Flows[END_REF]. Also, because of the low concentration of water in the cloud, particle collisions can be neglected.

In this paper, a nondimensional Eulerian formulation is used to solve for the volume fraction of water α and the droplets trajectories v d through continuity and momentum equations. The nondimensional system of equations, following a single-velocity assumption, can be written in nonconservative form as [START_REF] Bourgault | A Finite Element Method Study of Eulerian Droplets Impingement Models[END_REF] 

∂α ∂t ∇ ⋅ αv d 0 ∂v d ∂t v d ⋅ ∇v d C D Re d 24Stk v a -v d 1 - ρ a ρ d 1 Fr 2 g (1)
In conservative form, the equations become

∂α ∂t ∇ ⋅ αv d 0 ∂αv d ∂t ∇ ⋅ αv d ⊗ v d C D Re d 24Stk αv a -v d α 1 - ρ a ρ d 1 Fr 2 g ( 2 
)
where α is the nondimensional volume fraction of water, v d is the nondimensional droplets velocity, v a is the nondimensional air velocity, ρ d is the droplets density (density of water), ρ a is the air density, and C D is the droplets drag coefficient. The droplets Reynolds number Re d , the Stokes number Stk, and the Froude number Fr are, respectively, defined as

Re d ρ a kv a -v d kD d μ (3) 
Stk ρ d D 2 d U ∞ 18Lμ (4) Fr U ∞ Lg p (5) 
where D d is the droplet diameter, μ is the dynamic viscosity of air, and L is a characteristic dimension (e.g., the chord length for an airfoil).

The drag model of Schiller and Naumann [START_REF] Schiller | A Drag Coefficient Correlation[END_REF] is used for the droplets which are assumed to remain spherical:

C D 8 > < > : 24 Re d 1 0.15Re 0.687 d Re d ≤ 1000 0.4 Re d > 1000 (6)
The Eulerian formulation of the equations allows simple evaluation of the collection efficiency β at the wall, as α and v d are known everywhere in the field and the normal n bc is known from the geometry,

β αv d ⋅ n bc (7)
The impinging water flux is then retrieved by

_ m imp LWCU ∞ β ( 8 
)
where LWC is the liquid water content and U ∞ the magnitude of the freestream velocity.

The complete equations are presented here for generality. However, for the remainder of this paper, the gravity and buoyancy terms are neglected, and thus only the drag force will act on the droplets. This can be done without loss of generality when deriving the penalization method presented in Sec. III.

B. Boundary Conditions

One important aspect of the Eulerian model for droplet impingement is the treatment of the boundary conditions. The system of equations is hyperbolic, and therefore boundary conditions are only required for incoming characteristics [START_REF] Bourgault | A Finite Element Method Study of Eulerian Droplets Impingement Models[END_REF][START_REF] Durst | Eulerian and Lagrangian Predictions of Particulate Two-Phase Flows: A Numerical Study[END_REF] (Fig. 1). Additional numerical boundary schemes compatible with the physics of the problem are applied where boundary conditions are not imposed. For instance, a zero-order extrapolation is used for outgoing characteristics. Assuming the boundary normals are pointing out of the computational domain (Fig. 1), the boundary condition for the droplet equations can be formulated as follows:

far field:

α α ∞ v d v ∞ if v d ⋅ n bc ≤ 0 (9) 
wall:

α 0 v d 0 if v d ⋅ n bc ≤ 0 (10) 
In this paper, the focus is on the wall boundary condition, as only this condition is treated with the penalization method. When the droplets enter the computational domain from the solid (v d ⋅ n bc ≤ 0), a boundary condition is applied on the primitive variables [Eq. ( 10)], enforcing a null flux. Otherwise, when droplets impinge the body (v d ⋅ n bc > 0), an extension of the primitive variable is performed. For body-fitted meshes, this is typically done by setting n bc ⋅ ∇α 0 and n bc ⋅ ∇v d 0 at the boundary, but a slightly different approach is used for the penalization method in the next section.

III. Penalization Method

This section discusses the definition of the immersed boundary and presents the penalization method applied to the droplet equations.

A. Immersed Boundary Representation

For this paper, the immersed boundary is defined by a discrete list of nodes (2D), and its location in the mesh is defined by the level-set ϕ 0, where ϕ is the signed distance field from the immersed boundary. Values of ϕ are computed using a geometric approach by evaluating the minimum projected distance to the edges forming the immersed boundary [START_REF] Schneider | Chapter 13-Computational Geometry Topics[END_REF].

The sign of ϕ is determined by a ray casting algorithm [START_REF] Schneider | Chapter 13-Computational Geometry Topics[END_REF] where the immersed boundary is considered as a closed body. Using a signed distance field leads to a simple evaluation of the normals n ϕ to the immersed boundary:

n ϕ - ∇ϕ k∇ϕk (11) 
Note that the normal based on ϕ has a negative sign in order to point toward the solid zone (ϕ < 0). This is useful in the definition of the penalization method presented next.

To extract the data at the immersed boundary (e.g., α and v d ), a weighted least-square interpolation at the discrete nodes defining the immersed boundary is used. The interpolation stencil is determined first by identifying the cell containing the immersed boundary node (IB cell) and second by storing the extended neighborhood of this cell (neighbors sharing a node with the IB cell). An inverse distance weighting [Eq. [START_REF] Fedkiw | A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[END_REF]] is used for the interpolation with a smoothing parameter (ϵ 0.5Δx J ) to avoid dividing by a small value when cell centers are near the interpolation point. The weight for the interpolation point P and a cell center J (part of the interpolation stencil) is written as

w J 1 kr PJ k 2 ϵ 2 p ( 12 
)
where Δx J is the characteristic size of cell J and kr PJ k is the distance between P and J.

In this paper, the collection efficiency β is evaluated at the IB in two steps. First, the primitive variables α and v d and the normals n ϕ are interpolated at the IB discrete nodes using the weighted least-square method. Second, the collection efficiency is evaluated with β αv d ⋅ n ϕ . As the interpolation stencil includes solid cells, the penalization method described in the following sections must be designed so the interpolation stencil in the vicinity of the solid/fluid interface is filled with valid data to perform the interpolation (e.g., valid data in the solid).

B. Application to Droplet Equations

The volume penalization method [START_REF] Angot | A Penalization Method to take into Account Obstacles in Incompressible Viscous Flows[END_REF] consists of adding source terms in the continuous form of the equation to enforce the desired boundary condition. The source terms are activated/deactivated using a mask function χ equal to unity in the solid and zero in the fluid. In this way, only the solid is penalized, and the usual equations are retrieved in the fluid. A penalization parameter η ensures the boundary condition is enforced accurately. The volume penalization enforces the boundary conditions at the cell centers surrounding the immersed boundary (for a finite volume cell-centered method). Thus, only an approximation of the IB is seen by the solver, and this typically limits the penalization method to first-order accuracy in space. However, second-order-accurate approaches can be implemented by a discretization of the penalization source term [START_REF] Sarthou | A Second-Order Curvilinear to Cartesian Transformation of Immersed Interfaces and Boundaries. Application to Fictitious Domains and Multiphase Flows[END_REF][START_REF] Etcheverlepo | Développement de Méthodes de Domaines Fictifs au Second Ordre[END_REF]. In this paper, the former approach is used.

For the droplet equations, no boundary condition should be applied for impinging droplets, and a Dirichlet condition must be enforced in the shadow zone (v d ⋅ n ϕ ≤ 0) to avoid droplet reinjection in the computational domain [see Eq. ( 10) and Fig. 1]. A typical penalization method uses a fluid/solid mask function χ to apply the penalization term everywhere in the solid. In this paper, a sharp Heaviside function [Fig. 2 and Eq. ( 13)] is used. However, this is not sufficient, as the Dirichlet condition would then also be applied in the impingement zone (v d ⋅ n ϕ > 0), where no boundary condition is required. To solve this issue, an inflow/outflow droplet mask function χ d is also defined as a sharp Heaviside function [Fig. 3 and Eq. ( 14)]. Similar to the solid mask function, the droplet mask is evaluated based on cell-centered values, and the normal vector n ϕ is based on the signed distance field [Eq. [START_REF] Mittal | A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries[END_REF]]. To apply the penalization term correctly, the two mask functions are combined χχ d , which allows penalizing the equations only in the solid shadow zones (χχ d 1, Figs. 234).

χ 0 ϕ ≥ 0 1 ϕ < 0 ( 13 
)
χ d 0 αv d ⋅ n ϕ ≥ 0 1 αv d ⋅ n ϕ < 0 ( 14 
)
With the combined mask function defined, the penalized droplet equations can be obtained. The penalization terms are first applied to the nonconservative form of the equations so the boundary conditions are applied on the primitive variables. Then, the equations are transformed in conservative form for implementation. The nonconservative form can be expressed as, including the penalization terms,

∂α ∂t ∇ ⋅ αv d - χχ d η α ∂v d ∂t v d ⋅ ∇v d 1 -ξχ C D Re d 24Stk v a -v d 1 - ρ a ρ d 1 Fr 2 g - χχ d η v d (15) 
Implementationwise, the conservative form of the equations is used, and it can be written as

∂α ∂t ∇ ⋅ αv d - χχ d η α ∂αv d ∂t ∇ ⋅ αv d ⊗ v d 1 -ξχ C D Re d 24Stk αv a -v d α 1 - ρ a ρ d 1 Fr 2 g -2 χχ d η αv d (16)
For droplets traveling from the solid to the fluid zone (χ χ d 1), the penalization terms drive the volume fraction of water α and the droplet velocity v d to zero. Otherwise, when either χ or χ d is null, no penalization is applied, and the physical equations are solved in the solid acting as a natural extension of the droplet characteristics from the fluid to the solid.

When solving Eq. ( 15) or Eq. ( 16) in the solid shadow zone (χ χ d 1), η is selected small enough for the physical droplet equations to be negligible in front of the penalization terms (η ≪ 1). Using the droplet continuity equation as an example, it comes back to solving an ordinary differential equation (ODE) of the form

dα dt - α η ( 17 
)
The solution of this ODE is a rapidly decaying exponential, meaning α 0 is imposed almost instantaneously:

α A 0 e -t∕η (18) 
The penalization parameter η can be seen as a characteristic time scale which must be small (η ≪ 1) in order to accurately enforce the boundary condition. If η is not selected small enough, inaccuracies may occur in the imposition of the boundary condition, and it could lead to droplet reinjection (from the solid to the fluid). A shift may also be observed in the location of the impingement limits. Because a semi-implicit numerical scheme is used (see Sec. III.E), the value of η does not significantly affect the convergence rate to steady state. In theory, a smaller η leads to a more accurate imposition of the boundary condition. However, there is a point where there is no benefit in reducing η further because the penalization error becomes negligible in front of the discretization error. Numerical experiments showed that the change in solution is negligible for values smaller than η 10 -8 . Thus, the penalization parameter is selected as η 10 -8 for the current study.

In this paper, two penalization methods are presented, and are both available from Eq. [START_REF] Brehm | A Locally Stabilized Immersed Boundary Method for the Compressible Navier-Stokes Equations[END_REF] or Eq. ( 16) using the optional parameter ξ. The volume penalization (VP) method is obtained with ξ 0, and the VP solid source off (VP-SSO) method is obtained with ξ 1. Option ξ 0 seems to be a natural expression of the penalization method, but it requires setting a value for the gas velocity field in the solid area as the physical source terms are activated. No investigation will be done on the ideal value to be applied to this fictitious gas velocity field. If ξ 0, it will be assumed that such a velocity field is available, for example, the one provided by an IBM solution on the aerodynamic field. Otherwise, option ξ 1 is available, where the physical source terms are deactivated in the solid zone, rendering the droplet solution independent of the gas velocity field.

C. Evaluation of Gas Velocity in Solid

As stated earlier, the VP method for the droplets (ξ 0) depends on the airflow velocity in the solid impingement zone. But how is the airflow set in this zone? In this paper, the airflow is computed using the penalized Euler equations [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF], unless otherwise specified. This continuous IBM propagates the air velocity inside the entire solid, providing the required data to use the droplet VP method. However, the droplet VP method is not limited for use in combination with continuous IBMs (for the airflow). Furthermore, it is important to note that the solid zone is not required to be filled entirely and a band of cells in the vicinity of the immersed boundary is sufficient. This band of cells must only be thick enough to accommodate the evaluation of the fluxes, gradients, and interpolation stencil (for the data extraction) near the IB. In other words, another type of IBM can be used (e.g., discrete method) to solve the airflow as long as this band of cells is filled. The most suitable method to fill it will depend on the type of IBM used. To give some examples, one can fill the solid cells with the information from the fluid side using a Partial Differential Equation (PDE)-based propagation of the flow velocity v a , similar to what is done in Ref. [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF] for the solid zone. An alternative would be to set the solid cells as if they were ghost cells according to an image point located on the fluid side (similar to a ghost-cell approach, e.g., Ref. [START_REF] Mittal | A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries[END_REF]). In the ice accretion suite, these steps can be achieved as a preprocessing in the droplet module or as postprocessing in the airflow module.

χ = 0 χ = 1

D. Geometry Fidelity

In this paper, a first-order implementation of the penalization method is used where both the solid mask and droplet mask functions are computed at cell centers. It leads to a staircase activation of the penalization terms and thus a staircase representation of the body as illustrated in Fig. 5. For the penalization method, this usually results in smearing the solution near the IB, but the situation is slightly different for the droplet equations. As no boundary condition is applied for impinging droplets (outgoing characteristics), the staircase representation of the solid has no impact on the solution for the VP method (ξ 0) if the aerodynamic field is set properly. For the VP-SSO method (ξ 1), the drag term is deactivated in a staircase manner in the impingement zone using the solid mask function, and this has an effect on the solution in some situations (see Sec. IV for more details). In the shadow zone (incoming characteristics), the boundary condition and the solution on each side of the IB are uniformly zero. Thus, no smearing effect is observed in this zone. Overall, the most critical zone for smearing is at the impingement limits where a switch between outgoing and incoming characteristics occurs. Although the smearing effect due to the staircase representation of the body can be avoided by using a second-order implementation of the penalization method or a sharp IBM, satisfactory results can still be achieved using a first-order approach (see Sec. IV).

E. Numerical Method

Here, the gravity and buoyancy terms are dropped. The system of equations [Eq. ( 16)] can be rewritten in vector form as

∂W ∂t ∇ ⋅ F S S ibm (19) 
with

W 2 4 α αu d αv d 3 5 ; F v d ⋅ nW (20) S 1 -ξχ C D Re d 24Stk 2 4 0 αu a -u d αv a -v d 3 5 (21) 
S ibm - χχ d η 2 6 6 4 α 2αu d 2αv d 3 7 7 5 (22) 
In this paper, the droplet equations are discretized using a cellcentered finite volume method. The fluxes are evaluated with a Harten, Lax and van Leer (HLL) scheme [START_REF] Harten | On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[END_REF] inspired by the work of Ref. [START_REF] Norde | Eulerian Method for Ice Crystal Icing in Turbofan Engines[END_REF]. A piecewise linear reconstruction is used to obtain a second-order-accurate scheme. The flux at the face F n;f is obtained from the left L and right R states using

S L minv d;L ⋅ n; v d;R ⋅ n (23) S R maxv d;L ⋅ n; v d;R ⋅ n (24) 
F n;f 8 < :

F L S L ≥ 0 F HLL S L ≤ 0 ≤ S R F R S R ≤ 0 (25) 
F HLL S R F L -S L F R S L S R W R -W L S R -S L (26) 
The penalized system of equations is stiff because the penalization parameter is small (η ≪ 1). To avoid stability issues, the system could be solved using an implicit scheme, but in this paper, a semi-implicit approach is selected where only the source terms are treated implicitly. The source terms are linearized to obtain the semidiscrete form

I Δt ΔW -∇ ⋅ F n S n1 S n1 ibm ( 27 
) I Δt - ∂S ∂W - ∂S ibm ∂W n ΔW -∇ ⋅ F n S n S n ibm ( 28 
)
where ΔW W n1 -W n , I is the identity tensor, and the superscripts n and n 1 represent the current and next time step, respectively.

IV. Results

In this section, four test cases on three different configurations are used to assess the penalization method. The simulation parameters are summarized in Table 1. For icing applications, a cloud of droplets containing a range of droplet sizes is to be modeled. In this paper, a single droplet size represented by the MVD is assumed. The MVD is thus used as the droplet diameter D d in the droplet Reynolds number Re d [Eq. ( 3)] and the Stokes number Stk [Eq. ( 4)].

The parameters for the cylinder are selected to achieve a nearly incompressible flow and maintain a similar Stokes number than encountered in icing simulations. The Stokes number is evaluated against the leading-edge radius, which can be computed as R LE 1.1019t c 2 c for a NACA four-digit airfoil [START_REF] Ladson | Computer Program to Obtain Ordinates for NACA Airfoils[END_REF], where t c is the thickness to chord ratio.

a) Ideal representation b) Staircase representation

Fig. 5 Representation of the solid zone Ω s (penalized zone in gray). In the following sections, when comparing body-fitted and immersed boundary results, an equivalent mesh size is used at the wall to provide a fair comparison. Both VP and VP-SSO approaches will be used. Although no definite rule is given for the definition of the fictitious aerodynamic velocity field, simple choices will be made for this term in order to compare the VP and VP-SSO methods and to evaluate what maintaining a source term in the immersed area tends to produce. For the airfoil cases, the aerodynamic velocity field is provided by the Euler IBM [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF]. For the cylinder cases, the field provided by the potential solution is extended inside the solid domain.

A. No Drag nor Gravity

An interesting test case for the droplet equations occurs when the droplet drag and gravity are set to zero. In such a case, the droplet equations are independent of the aerodynamic field, and an analytical solution is retrieved for the collection efficiency β as long as an analytical equation is available for the wall geometry.

Analytical Solution

Considering a cylinder of radius R c centered at x; y 0; 0, the analytical solution at the wall is expressed as

α α ∞ ; v d v ∞ if v d ⋅ n ϕ > 0 α 0; v d 0 if v d ⋅ n ϕ ≤ 0 ( 29 
)
where the droplet velocity is

v ∞ U ∞ cosAoA; sinAoA (30) 
and for a cylinder, the normal to the wall is

ϕ x 2 y 2 q -R c (31) 
n ϕ - ∇ϕ k∇ϕk - x; y x 2 y 2 p ( 32 
)
In turn, the collection efficiency β is evaluated as

β αv d ⋅ n ϕ ( 33 
)
It means that for angle of attack (AoA) = 0, the collection efficiency is defined at the wall as

β α ∞ U ∞ max - x R c ; 0 ( 34 
)
or in polar coordinates,

β α ∞ U ∞ max-cos θ; 0 (35)
For this specific case, the curvilinear distance is s θ -πR c , which is useful to present the results.

Meshes

The simulations are performed for a unit radius cylinder using a body-fitted structured mesh and a Cartesian grid for the immersed boundary method. The structured mesh has a wall cell size of 0.04 radius for a total of 16,000 cells with a far field located at 50 radii from the cylinder. The Cartesian grid has a wall cell size of 0.05 radius for a total of 31,936 cells with a far field located at 50 radii from the cylinder. The Cartesian grid is only generated for a square zone surrounding the immersed boundary (Fig. 6b), and a structured mesh is used up to the far-field boundary in order to reduce the number of cells. Both meshes are illustrated in Fig. 6 and correspond to the mesh refinement level 2 from Table 2.

Numerical Solution

The wall collection efficiency β is presented in Fig. 7, in which the analytical solution is compared with the body-fitted simulation and the penalization method. It shows that the penalization method is able to reproduce the analytical solution as all the curves are overlaid.

Note that for this test case the VP and VP-SSO methods are equivalent, as the drag and gravity term are deactivated everywhere in the fluid and the solid zones. Thus, only one curve labeled "immersed boundary" is illustrated.

The field values for the volume fraction of water α are illustrated in Fig. 8, in which the impingement (α > 0) and shadow zones (α 0) are clearly visible. The immersed cylinder is represented by the white circle in Fig. 8b. This figure shows that the combined mask function behaves as expected for this test case. The upstream solid portion of the cylinder is filled with droplets (α α ∞ , impingement zone), while the downwind solid portion is empty (α 0, shadow zone). Some stream traces seem to extend in the solid portion of the shadow zone, but in this area, α ≈ 0 and v d ≈ 0. The stream traces are displayed but carry no droplet mass, and therefore no droplet is in fact reinjected in the computational domain. This canonical test shows that the penalization method behaves properly. However, as the droplet field is a constant in the impingement zone, this test case is not representative of a real situation and cannot evaluate the quality of the data extraction at the immersed boundary. For a more realistic test, the drag term is reactivated in the next section.

Note that the white square in Fig. 8b is required by the ice accretion suite, as it expects a closed body (a closed wall boundary). However, it does not affect the quality of the solution in the field or in the solid. It can also be used to reduce the number of cells inside the solid and therefore the computation cost. In newer versions of IGLOO2D, this dummy body is not mandatory.

B. Low Mach Flow Around Cylinder

In this section, a mesh convergence study is performed on a cylinder of unit radius using a family of structured meshes for the BF solution and Cartesian grids for the IB solution. Some mesh characteristics are listed in Table 2, in which five levels of refinement are used for both the structured and Cartesian meshes. The finest structured mesh (level 5) is used to generate a reference solution.

Contrary to Sec. IV.A, the droplet drag term is considered in this section, leading to a one-way coupling between the airflow and the droplets. To avoid possible inaccuracies from the penalized aerodynamic field, the analytical potential flow solution past a cylinder is enforced. Its definition can be found in the Appendix. In this way, the order of convergence for the droplets can be determined independently of the flow solution.

The simulation parameters are summarized in Table 1. To avoid that the droplets behave like tracers (Stk < 0.1), the MVD is increased to 304.5 μm (compared to 20 μm for the NACA0012). This gives a Stokes number (Stk ≈ 9.7) close to typical icing conditions, as computed for the NACA0012 case.

The field values for the volume fraction of water α are illustrated in Fig. 9, in which the VP and VP-SSO methods are compared to the body-fitted simulation. The finest meshes (refinement level 5) are used for the comparison, where both VP and VP-SSO methods seem to reproduce the BF solution in the fluid. However, the solution in the solid behaves differently with the VP method, exhibiting a smoother transition from the fluid to the solid zone compared to the VP-SSO. The data are interpolated at the IB with a stencil including both fluid and solid cells. Thus, although the solution on the fluid side is very similar, the differences on the solid side influence the data extraction at the immersed boundary.

To assess the quality of the data extraction, β is evaluated at the wall for all mesh refinement levels for the BF, VP, and VP-SSO methods. In Fig. 10, a mesh converged β distribution is observed from refinement level 4 for the BF method. It justifies the use of refinement level 5 as the reference mesh when comparing with the IBMs.

Figure 11 shows the collection efficiency with mesh refinement for the VP method. The mesh convergence seems to be slower than for the BF simulation, especially in terms of the maximum β achieved. However, from mesh refinement level 4, the VP solution offers a good match with the reference solution and is also free of oscillations.

For the VP-SSO method (Fig. 12), the β distribution also converges toward the BF reference solution. Contrary to the VP method, the VP-SSO solution exhibits oscillations. The amplitude of these oscillations reduces with mesh refinement, but they are still present for the finest mesh. Furthermore, the maximum β does not match the reference solution yet. This suggests that the VP-SSO method requires an even more refined mesh to obtain a mesh converged solution.

The idea behind the VP-SSO method is to avoid having to define an aerodynamic solution in the solid zone, which is only required for numerical purposes. This is achieved by deactivating the drag term in the solid. However, the physical flux is still computed in the solid, which provides an extension of the droplet solution from the fluid to the solid. As illustrated in Fig. 12b, this method fails to generate a smooth and accurate solution for β. This might be explained by the drag term being turned on and off near the immersed boundary in a staircase manner. On the other hand, the solution is much better when computing the drag term in the solid (VP method), for this particular test case. This seems logical as the drag then influences the droplet field more gradually (no staircase effect). Also, the activation of the physical source term allows a better continuity of the solution near the immersed boundary as previously shown in Fig. 9.

The order of convergence is verified using local [Eq. [START_REF] Vassberg | In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions[END_REF]] and global [Eq. ( 37 collection efficiency β i against the reference solution (body-fitted mesh, refinement level 5) and combines it using a root mean square. The global criterion is computed as the collection efficiency integral along the cylinder's surface (denoted β tot ).

RMS ref 1 N X N i β i -β i;ref 2 v u u t (36) 
β tot Z s 0 β i ds (37) 
The order of convergence p is evaluated using the method described in Ref. [START_REF] Vassberg | In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions[END_REF] based on a criterion F , which in this paper is either RMS ref or β tot . This requires a monotonic sequence of F on a minimum of three meshes (coarse, medium, and fine). Then, the order p can be solved for using a Newton method, and the limiting value of F as Δx → 0 (denoted F ) can be estimated.

The order of convergence is illustrated in Figs. [START_REF] Peskin | Flow Patterns Around Heart Valves: A Numerical Method[END_REF] and 14 along with the first-and second-order theoretical slopes. Using the structured family of meshes (body fitted), the order of convergence is p > 1.7 for both criteria, which is close to second-order accuracy. This gives a baseline on what to expect for the penalization methods. The VP method gets close to the BF order of accuracy with p 1.62 when using RMS ref and p 1.81 when using β tot . The VP-SSO method also provides an order of accuracy greater than unity (p 1.5) for RMS ref but does not perform as well as the VP method. The order of convergence is not shown for the VP-SSO method using the β tot criterion because the sequence is not monotonic with mesh refinement. Thus, p cannot be computed with the current method.

Globally, the IBMs are approaching second-order accuracy similar to the body-fitted approach. This was not expected as the volume penalization method usually limits the order of accuracy to first order. However, it is logical to obtain more than first-order accuracy for the droplet equations, as no penalization is applied in the impingement zone, where β is evaluated. The penalization terms are only applied in the shadow zone where β 0, thus not affecting the order of convergence.

C. NACA0012 in Icing Conditions

In this section, a clean NACA0012 airfoil is used to assess the penalization methods for typical icing conditions. This test case uses an unstructured mesh made of triangles with a far field located at 50 chords c. The wall cell size is 2.5e -3c with refinements at the leading edge (size 5e -4c) and trailing edge (size 2.5e -4c). A linear growth is applied from the wall to the far field (size 4. which gives a cell count of 77,172. For the immersed boundary mesh, the cell count is 112,172.

As the drag term is activated, the droplet trajectories are influenced by the aerodynamic solution. For this test case, it is evaluated using the penalized Euler equations [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF] to deal with the immersed boundary. Using this approach, an aerodynamic solution is readily available in the solid, ensuring continuity near the immersed boundary, which is useful for the VP method. Note that the results presented in this section include the effect of both the penalized Euler [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF] and droplet equations.

The wall pressure coefficients Cp are first compared against the body-fitted method to assess the quality of the aerodynamic solution, where a good match can be observed Fig. 15a. The comparison of the collection efficiency is presented in Fig. 15b, in which a good match can also be observed between the body-fitted and the penalization methods.

Different mesh refinements were also tested for the NACA0012 case, but only the mesh converged solutions are shown here. Figure 15b illustrates that with mesh refinement the BF and IB methods converge toward the same solution. Furthermore, smooth results are obtained for both the VP and VP-SSO methods. As a reminder, oscillations were observed with the VP-SSO on the cylinder case (Fig. 12b).

The α field is represented in Fig. 16 for the body-fitted and immersed boundary simulations. It shows that the combined mask function behaves correctly not only for the cylinder but also for the NACA0012 case. In the impingement zone, the droplets travel inside the solid, but their reinjection in the fluid is avoided by the application of the Dirichlet condition in the shadow zone. Again, there is a white cylinder inside the solid zone, which acts as a dummy body in Fig. 16b. The immersed NACA0012 is represented by the white line. In this section, an ice accreted GLC305 airfoil is used to assess the penalization method on a more challenging geometry (Fig. 17). This test case uses an unstructured mesh made of triangles with a far field located at 20 chords c. The wall cell size is 2.5e -3c with refinements at the leading edge (size 6.25e -4c) and trailing edge (size 2.5e -3c). A linear growth is applied from the wall to the farfield (size 4.0c).

For this test case, the aerodynamic field is again evaluated using the penalized Euler equation of Ref. [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF]. The pressure distribution Cp from Fig. 18a shows that a good match is obtained between the BF and IB methods. However, the suction peak is slightly overestimated by the IB method (near x∕c 0). This does not seem to affect the collection efficiency β at the wall as shown in Fig. 18b, in which the curves are overlaid for the BF, VP, and VP-SSO methods. Again, the collection efficiency is free of oscillation for both the VP and VP-SSO solution. This shows that the penalization method developed for the droplet equations is still able to reproduce the BF solution on airfoils and shows some potential for ice accreted airfoils.

In Fig. 18b, a small oscillation can be observed for the BF solution near s 0.005, which is not present for either of the IB solutions. While the IB and BF methods are using equivalent cell sizes near the wall, the meshes are not exactly the same, as evidenced by Figs. 17a and17b. Furthermore, the data extraction process is not the same for both methods, which can also lead to small differences between the two methods. Typically, the extraction process for the IB methods uses a wider stencil with more cells on the solid side. This, combined with a continuous solution across the IB, tends to give a smoother solution compared to the BF approach (at least on this specific case).

V. Conclusions

This paper proposes a penalization method for the Eulerian simulation of droplet impingement. The application of a penalization method is not straightforward for the droplet equations, as the required wall boundary condition changes along the immersed boundary and must be treated with care to avoid that droplets enter the solid in an impingement zone and then be reinjected in the computational domain. A technique based on a double mask function is suggested to treat the wall boundary correctly.

Among the suggested penalization methods (VP and VP-SSO), better behavior is achieved using the VP method, which is shown to reproduce the body-fitted solution on all cases while also providing a smooth solution. The activation of the physical source term in the solid zone (VP method) helps in retrieving a smooth solution across the IB, thus increasing the quality of the data extraction. However, it requires the definition of a fictitious aerodynamic field in the solid.

On the other hand, the VP-SSO method is independent of the fictitious aerodynamics in the solid zone and is able to provide similar results to the VP and BF methods in terms of accuracy and smoothness for the clean NACA0012 airfoil and the ice horn. However, it generates an oscillating β distribution for the cylinder case (with nonzero droplet drag). With mesh convergence, the oscillations become less significant, and the collection efficiency tends toward the BF solution. These results suggest that the activation of the physical source term in the solid zone (VP method) is beneficial for some cases but is not always necessary.

The VP method is simple to implement, provides smooth results, and is able to achieve second-order accuracy like the body-fitted approach. Thus, it provides an interesting alternative to the ghost-cell approaches (a type of IBM) usually employed for the Eulerian simulation of droplet impingement. 
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Table 1

 1 Simulation parameters

	Variable	Cylinder	Airfoil	Ice horn
	Geometry	Cylinder NACA0012 GLC305
	Chord, m	D 2.0	0.5334	0.9144
	Leading-edge radius, m	1.0	8.46e-3	--
	Angle of attack, deg	0.0	4.0	4.0
	Mach	0.1	0.185	0.273
	P static , kPa	100	95.61	101.325
	T static , K	300.0	245.2	268.3
	LWC, g∕m 3	1.0	1.3	0.54
	MVD, μm	304.5	20	20
	Stk	9.688	9.689	--

Table 2

 2 Family of meshes

		Structured	Cartesian	
	Refinement Wall Δx, m N cell D∕Δx Wall Δx, m	N cell	D∕Δx
	Level 0	1.60e -1	1000	12.5 2.00e -1	∼2000	10
	Level 1	8.00e -2	4000	25.0 1.00e -1	∼8000	20
	Level 2	4.00e -2 16,000	50.0 5.00e -2 ∼32;000	40
	Level 3	2.00e -2 64,000 100.0 2.50e -2 ∼128;000	80
	Level 4	1.00e -2 256,000 200.0 1.25e -2 ∼512;000 160
	Level 5	5.00e -3 1,024,000 400.0 6.25e -3 ∼2;048;000 320
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Appendix: Analytical Solution for the Cylinder Case

With R c the cylinder's radius, the analytical incompressible airflow solution around a cylinder in Cartesian coordinates is as follows (Fig. 19):