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Abstract—Air Traffic Control (ATC) of the future will have to
cope with a radical change in the structure of air transport [1].
Apart from the increase in the traffic that will push the system
to its limits, the insertion of new aerial vehicles such as drones
into the airspace with different flight performances will increase
the heterogeneity level. Today’s research works aim at increasing
the level of automation and partial delegation of the control
to onboard systems. In this work, we investigate the collision
avoidance management problem using a decentralized distributed
approach. We propose an autonomous and generic multi-agent
system to address this complex problem. We validate our system
using state of the art benchmarks. The obtained results underline
the adequacy of our local and cooperative approach to efficiently
solve the studied problem.

Keywords—Trajectory optimization, Automation strategies,
Conflict resolution, Self-separation, Multi-Agent system, Self-
organization

I. INTRODUCTION

Contrary to a clear majority of motion planning problems,
the difficulty of motion planning in air traffic management do
not yield in finding a trajectory for one aircraft. Airspace is
rarely cluttered by obstacles, except for the weather, thus find-
ing a trajectory is pretty much straightforward. The difficulty
of motion planning for aircrafts reside in finding a feasible
trajectory for each aircraft (i.e respecting the capabilities of
the aircraft), collision free with other aircraft, globally optimal
(i.e. optimal for all the airplanes), and resilient to changes and
uncertainties, in a wide configuration space [2].

In todays air traffic management, airspace is divided into
several zones each under the supervision of air controller.
In order to help air controllers to manage real time traffic
and avoid collision, the traffic is regulated upstream. With
the increase in the traffic and the insertion of new aerial
vehicles such as drones into the airspace with different flight
performances, the air traffic control must evolve by increasing
the level of automation and introducing partial delegation of
the control to on-board systems.

In this work, we are interested in this particular kind of mo-
tion planning in a clear environment, with dynamic constraints,
with multiple vehicles and an objective of optimality. This kind
of motion planning are mostly about following the desired
trajectory while avoiding collisions with other entities. We
propose a generic approach and do not focus on the navigation
of multiple robots to a single destination or the control of an
swarm formation like in [3]–[5].

We propose to address the collision avoidance manage-
ment problem using a decentralized distributed approach :
the AMAS theory. It aims at solving problems in dynamic
environment by a bottom-up design of autonomous agents,
where cooperation is the engine of the self-organization pro-
cess [6]. AMAS approach has been successfully used to
solve different problems, as anomaly detection in maritime
environment [7], control and optimization of heat-engine [8] ,
or context learning [9].

In the case of the collision avoidance problem, representing
each airplane by an autonomous cooperative agent with local
interactions, brings a natural decentralized solution to the
complexity of the global problem. The system we propose,
can be used for several issues:

• Simulation: the system can be used to measure the
consequences of the introduction/modifications of air-
planes trajectories.

• Learning: the openness of the system, allows real-
time interactions with end-users. This can help for
education purpose. Indeed scenarios can be defined
where the control to avoid collision is given to air
traffic controller in specific sectors and then taken
back by the system with the modified trajectories.
The solution proposed by the controllers can also be
compared to the one proposed by the system.

• On-board: the system can be used by air traffic
controller or directly on-board as a decision support
system to avoid collisions.

The remainder of this paper is structured as follows.
Section II briefly reviews related work. Section III presents our
general approach for collision avoidance. Section IV describes
the application of the approach to ATC, the experiments and
the results. Finally, Section V summarizes our findings and
conclude this study.

II. RELATED WORK

A. Problem formalization

Motion Planning, planning of trajectory of a set of mobile
entities, is a widely studied field, from the planning of a path
of a simple robot in a unknown environment to the planning
of trajectories of a set of mobile entities with constraints in a
known environment. By mobile entity, we mean every possible
entity that can move, from a robot arm, to cars, Unmanned



Aerial Vehicles (UAV) or airplanes. Our concerns in this vast
field of motion planning lies in collision avoidance of a set of
mobile entities, with dynamic constraints, and an objective of
optimally.

We based our formalization on the one proposed in [2]
that introduces the notion of Configuration space. This notion
was first introduced for path planning of a simple mobile, in
order to represent the space of every possible state in which
the mobile entity can be. It is easily generalized for motion
planning of multiple mobile entities or a mobile entity with
multiple parts, it only had parameters related to the state
vector (position, speed, direction). A configuration from the
configuration space is then a vector containing a state for
every Mi ∈M (or every part of Mi). In the remainder of this
paper, the configuration space is noted C, a configuration from
the configuration space is noted q. In C, some configurations
q are in collision with an obstacle. We note the space of
configurations with collisions with obstacles CObs and the
space without collisions Cfree, thus C = CObs ∪ Cfree.

Our problem can be formalized as follow:

• A set of heterogeneous mobile entity, noted M, M ={
Mi

}
0<i≤m

• A set of obstacles, O. An obstacle can be fix or can
move in time.

Each mobile entity is characterized by:

• A state vector, containing the position vector of Mi,
it’s velocity vector, and the 3 rotation angles (Euler’s
angles).

• A predetermined trajectory, noted τp, is a function of
time.

• Capacities, containing it’s ability to accelerate, decel-
erate, turn and so on.

• A configuration space Ci, in which other Mj are
obstacles with determined trajectory.

The problem consists in finding a trajectory τi for each
mobile entity from a starting point, to a goal destination,
while respecting τp and avoiding collisions with mobile and
stationary obstacles. In other terms, the goal is to find for each
Mi a trajectory τi that lies in Ci,free.

B. State of the Art

The studied problem is combinatorial : the huge numbers of
heterogeneous airplanes, the largeness of the airspace and the
forth dimensions (Space+Time) make the configuration space
C tremendous. The size of the configuration space has led most
researchs to discretize the configuration space, by discretizing
the maneuvers or the airspace, and explore it with graph search
or evolutionary algorithms or by using heuristics to guide the
exploration.

Meta-heuristics using discretization of maneuvers, like
genetic algorithms [10] or ant colony algorithms [11], along
with artificial intelligence algorithm as neuronal networks [12].
Those methods give interesting results still they scale poorly.
Indeed, [11] and [10] are one of the few that handle more than
20 airplanes and find a global optimum.

Potential fields are also expensively studied, starting from
the standard method, to its extension with navigation functions
[13], the usage of more complex potential fields [14], or
the combination between potential fields and swarming [15].
Those methods have the particularity of providing a proof
of convergence. However those methods need to be tuned
carefully to be effective. Finding generic rules to do so seems
difficult.

Mixed-Integer Linear Programing (MILP) solvers are stud-
ied as well, in particular for solving a minimum weight max-
imum clique model [16]. Results are interesting, but they use
important instantaneous heading or speed changes. Constraint
programming has also show some interesting results [17],
finding solutions proved to be optimal, but scale badly with
the number of airplanes.

Geometrical approaches have also been studied. The idea
is to detect collisions using velocity vectors, compute the
minimal velocity vector change to avoid the collision and
divide equally the minimal velocity vector change among the
mobile entities [18], [19]. One algorithm in particular has been
successfully applied to multi-robot [20] and some adaptations
for aircrafts have been made [21]. Most of them have not been
tested in dense situations. The last ones however are interesting
in the way they decentralize the problem among the different
entities and give interesting results with dense situation as long
as the constraints on maneuvers are light.

Different studies move towards decentralization and multi-
agent systems approaches [22], with collision avoidance based
on velocity changes and departure delay. Those techniques
allow a natural description of the problem, and have shown
their adequacy to efficiently solve complex problems ad-
dressing dynamic and scaling issues. We believe that this
decentralization may grow interest in the future as part of the
responsibility for separation maintenance will be delegated to
the aircraft [1].

III. COLLISION AVOIDANCE USING ADAPTIVE
MULTI-AGENT SYSTEM APPROACH

In this part, we start by introducing the Adaptive Multi-
Agent Systems (AMAS), then we present our general ap-
proach, called CAAMAS for Collision Avoidance Adaptive
Multi-Agent System.

A. Adaptive Multi-Agent Systems Theory

Multi-Agent Systems (MAS) are composed of different
entities called agents. An agent is a physical or software
entity, that is autonomous, evolves in an environment with
perceive, decide and act abilities. The agent has a partial
perception of the environment, is able to communicate with
other agents, has its own resources and capacities, and can offer
services. An agent follows a life cycle composed of three steps,
repeated indefinitely: Perception, Decision, Action. During the
perception, it acquires new information about its environment.
It then decides during the decision phase the next action to
perform. Then it realizes the action decided in the decision
phase. By the agents local interactions, a self-organization is
established making the solution emerges.

In some cases, an agent may be noncooperative, which
means it may bother other agents in their task, or it cannot



fulfill its goal and thus cannot help the group at all. In the
AMAS approach, the cooperation among agents interactions
is the engine of the self-organization. The AMAS approach
aims to create MAS in which agents act cooperatively between
themselves in order to maintain a cooperative behaviour.
The AMAS theory identifies seven generic non cooperative
situations [23] among the three steps of the life cycle (per-
ception, decision, action). In such situations, the agent based
on criticality information decides cooperative actions in order
to solve difficult situations (conflict, concurrence, ambiguity,
etc.)

B. The CAAMAS approach

We introduce in this section our decentralized Colli-
sion Avoidance Adaptive Multi-Agent System (CAAMAS)
approach, for collision avoidance management for multiple
heterogeneous mobile entities with dynamic constraints. In our
model, every Mi is represented by an agent following the life-
cycle described in Algorithm 1.

Algorithm 1 Life-Cycle of an agent Mi along its trajectory
repeat

Perceive : Store the criticalities of mobile entities (neigh-
bors) in its perception zone noted Zpi;
Decide : Compute the criticality of each possible action
and decide cooperatively the action that minimizes the
criticality of its neighbors and its own;
Act : Perform the decided action and inform neighbors
of its new criticality

until Mi is arrived

1) Perception phase: Every Mi perceives its local envi-
ronment defined by its perception zone Zpi of the airspace. In
this zone, Mi is able to perceive other mobile entities called
its neighborhood.

Different communication means can be used in order to
exchange information among the mobile entities. In our model,
we use messages, still other means can be easily added. In the
perception phase, Mi receives messages from other mobile
entities Mj (i 6= j). Note that every Mj perceived by Mi

belongs to Zpi (Mj ∈ Zpi).

Those messages contain two important parts :

• The current situation of the mobile entity: its position
and velocity vectors. They will be used to determine
some criticalities, in particular the collision criticali-
ties.

• The criticality of the sender, Critj . This criticality
is the criticality computed for the action the mobile
Mj is currently doing. It is used by Mi to determine
its behavior regarding Mj .

During the perception phase, the agent only stores the
perceived information and uses them in the decision phase.

2) Decision phase and Action phase: In the decision phase,
the mobile entity decides cooperatively, based on its evaluation
of the current situation, which action to perform at the action
phase.

a) Action: Given its capacities a mobile entity Mi can
realize at each step a set of finite actions in order to explore the
configuration space Ci (cf. section II-A). In a forth dimension
C (Space+Time), those actions can be for example to climb,
descend, stay put, turn left, turn right, accelerate or decelerate.
We note Aci the set of n actions that Mi can do, Aci ={
Aci,k

}
0<k≤n. For each possible action, the agent associates

a criticality.

b) Criticality: For an agent, criticality represents the
degree of non-satisfaction of its own goal [24]. We note
Criti the criticality of the mobile Mi. Criti might be a
simple real, or a tuple of different measures. In our model,
the criticality of a mobile entity Mi is a couple, Criti =
(Criti,coll, Criti,traj):

• Collision criticality, noted Criti,coll which represents
the degree of non-satisfaction of Mi regarding the
objective of avoiding collisions.

• Trajectory criticality, noted Criti,traj which repre-
sents the degree of non-satisfaction of Mi regarding
the objective of following its desired trajectory.

Those criticalities are computed for every possible action
Aci,k as shown in algorithm 2. The algorithm starts by eval-
uating the collision criticalities for each Aci,k regarding each
Mj in the perception zone, Criti, j, k, coll. The calculated
criticalities are stored in a collision criticality list collCLAci,k
ordered by Critj associated to a Aci,k. Then, the trajectory
criticality if Mi performs Aci,k, Criti, k, traj, is evaluated.

To sort the criticalities, the algorithm first considers the
collision criticality. The trajectory criticality is considered in
case of equal collision criticality or in case no collision is
detected.

Algorithm 2 Evaluation of the criticalities for each Aci,k ∈
Aci

Sort Critj of the Mj stored at the perception phase
for all Aci,k ∈ Aci do

Initialize collCLAci,k associated to Aci,k
for all perceived Critj do

Evaluate Criti,j,k,coll of Mi regarding Mj if Mi does
the action Aci,k
Store the criticality in collCLAci,k

end for
Evaluate Criti,k,traj of Mi if it performs action Aci,k

end for

Evaluation of the collision criticality of an action Aci,k:
The evaluation of the collision criticality is based on an
extrapolation called nominal projection in the literature [25]. It
is a simple extrapolation of position and the velocity vectors.
The idea is to consider that the situation of a mobile entity Mj

will evolve in the same way it does currently (same speed,
same direction) and thus, to calculate the criticality of the
possible occurrence of a collision if Mi realizes Aci,k.

Considering that, the collision criticality of Mi if it does
Aci,k regarding Mj , Criti,j,k,coll is an ordered couple :

• C1,k representing the criticality regarding the minimal



distance than can be reached between Mi and Mj if
Mi realizes Aci,k.

• C2,k representing the criticality regarding the time at
which the minimal distance between Mi and Mj if
Mi realizes Aci,k occurs.

In order to calculate this couple, the algorithm determines
the minimal distance (dmin,i,j,k) between Mi and Mj if Mi

does the action Aci,k, and then the time tmin,i,j,k at which
the minimal distance occurs. In case a collision is detected, the
interval

[
tstartCollision, tendCollision

]
of time during which the

collision occurs is computed. In this case, the tstartCollision is
considered instead of the tmin,i,j,k.

In the following, we note ||.|| the euclidean norm, and
di,j,k(t) the distance between Mi and Mj if Mi does the action
Aci,k. With those notations and the previous hypothesis, we
have:

dmin,i,j,k = min
0≤t

(di,j,k(t)) = min
0≤t
||−→pi,k(t)−−→pj (t)||

With −→pi,k(t) the vector position of Mi if it does the action
Aci,k, and −→pj (t) the perceived position vector of Mj .

Since the speed vector is considered as constant, dmin,i,j,k
is computed using:

dmin,i,j,k = min
0≤t
||(−→pi,k(0) + t.−→vi,k)− (−→pj (0) + t.−→vj )||

The value at which the derivative of ||(−→pi,k(0) + t.−→vi,k)−
(−→pj (0) + t.−→vj )|| is null, is then tmin,i,j,k:

tmin,i,j,k =
−(−→pi,k(0)−−→pj (0)).(−→vi,k −−→vj )

||−→vi,k −−→vj ||

Note that:

dmin,i,j,k = di,j,k(tmin,i,j,k)

Based on both values, C1,k and C2,k are then calculated
as follow:

C1,k =

{
100− 100

2dcoll
dmin,i,j,k if dmin,i,j,k < 2dcoll

0 if dmin,i,j,k ≥ 2dcoll

Where dcoll is the distance at which two mobiles should
be at least from one to another. Figure 1 illustrates the com-
putation of C1,stayPut for M1 regarding two mobile entities
M2 and M3 in its perception zone.

C2,k =


100 if tmin,i,j,k < ttr
100− 100

2ttr
(tmin,i,j,k − ttr) if tmin,i,j,k ∈ [ttr, 3ttr]

0 if tmin,i,j,k ≥ 3ttr

Where ttr is the time required by the mobile to cross its
perception zone.

Fig. 1. Main notations used in criticalities computation

Evaluation of the trajectory criticality of an action
Aci,k: The trajectory criticality is composed of three measures,
Criti,k,traj = (C3,k, C4,k, C5,k) where :

• C3,k is the distance to the predetermined trajectory τp
at the next step (t+1) if Aci,k is performed at the next
step (t+1)

C3,k = min−→x ∈τp

{
||−→pi,k(t+ 1)−−→x ||

}
• C4,k is the distance to the position of the destination−−→pgoal ∈ τp if Aci,k is performed.

C4,k = ||−→pi,k(t = τ)−−−→pgoal||

• C5,k is the angle αk between the predetermined tra-
jectory τp and the speed vector if Aci,k is performed,

C5,k =

{
0 if αk < π

2
100
π
2
× (αk − π

2 ) if αk ≥ π
2

The three measures are used by the agent regarding the
current situation. Two cases are to be distinguished:

• Previous trajectory modifications lead the agent to
deviate from its predetermined trajectory τp keeping
the same direction, the agent compares the trajectory
criticality between two possible actions using first
C3,k, then C4,k (for equal C3,k) and finally C5,k (for
equal C3,k and C4,k).

• Previous trajectory modifications lead the agent to
deviate from its predetermined trajectory τp with
opposite direction, the agent compares the trajectory
criticality between two possible actions using first
C5,k, then C3,k (for equal C5,k) and finally C4,k (for
equal C5,k and C3,k).

Decide which action to perform: After evaluating the
criticalities of all Aci,k ∈ Aci the agent cooperatively decides
which action to perform in order to help the most critical
agents. The decision process presented in Algorithm 3 dis-
tinguishes between two cases: a collision is detected or not.

In case of collision detection, the idea is to consider the
criticalities of every Mj ∈ Zpi from the highest to the lowest,
and determine, using the criticality collision lists collCLAci,k
of each Aci,k computed in algorithm 3, which action(s) can
help the most.



If several actions can be done to help most critical agents
or no collision is detected, the agent decision is based on the
trajectory criticality as defined above.

Algorithm 3 Decide
Create and initialize a list lact with every Aci,k
if Collision detected then

while length(lact) 6= 1 and not all Critj considered do
Select Mj with the highest Critj
Using collCLAci,k , find the set of actions a ⊂ Aci that
improve the most the criticality with Mj

Remove from lact every Aci,k /∈ a
Remove Critj from not considered criticalities

end while
end if
Choose the Aci,k ∈ lact that reduces the most the trajectory
criticality, Criti,k,traj .

Note that, for a given mobile entity, the most critical agent
might be an agent Mj ∈ Zpi or itself.

Once the action Aci,k to perform is decided, the agent
determines its criticality as

Criti = (max(collCLAci,k), Criti,k,traj) (1)

Action phase The action part for the agent is more or
less straightforward. Mi does the action decided by algorithm
3, and sends messages containing its current situation and its
criticality to the mobile entities inside its perception zone.

IV. EXPERIMENTS AND RESULTS

For the experimentation, we apply our model to Air Traffic
Management (ATM). Mobile entities are then airplanes each
with realistic characteristics.

A. Air Traffic Control

We briefly introduce here some characteristics of the Air
Traffic Control (ATC) which explains the instantiation of the
CAAMAS approach.

In ATC, airplanes are separated for safety by a protection
zone determined using different human and material factors.
The protection zone is a cylinder oriented vertically with a
height h of 1000feet (1000ft = 304.9m) and a radius r of 5
nautical miles (r = 5NM = 9.26km)

Airplanes fly from geographical points to geographical
points, called Waypoint. Their trajectory from one airport to
another is then reduced to a list of waypoints, called flightplan.
Experience shows that they don’t always follow their flightplan
[26] for different reasons such as controller orders. In our
study, we consider that their predetermined trajectory, τp, is
approximated by a broken line.

Airplanes are increasingly capable of communicating data
to each other such as their positions, heading or speed by
means of messages. Messages can be transmitted using Au-
tomatic Dependant Surveillance-Broadcast (ADS-B).

Fig. 2. Perception zone of the black airplane (at the center of the sphere),
perceiving two other airplanes

B. Instantiating CAAMAS

a) Perception zone: The neighbourhood of the airplane
is a sphere centered on it of radius rZp of 100 nautical miles
(100NM = 182, 5km). We consider that every obstacle Oj
(mobile Mj or stationary) in the sphere is perceived by Mi.
This perception zone is illustrated by 2. In the conducted
experimentation, only mobile obstacles Mj were considered.

b) Collision detection: In ATC, two airplanes are con-
sidered in collision whenever a violation of the protection zone
is detected. Then in the following, a ATC loss of separation
will be refereed as a collision, and is considered as a collision
by CAAMAS. In order to take into account the fact that the
vertical distance is not on the same scale as the horizontal
distance, the collision criticality is calculated on the horizontal
plan and the vertical plan. Thus, we have two values for
dmin,i,j,k: dmin,i,j,k,h and dmin,i,j,k,v , and two values for
time tmin,i,j,k (or an interval): tmin,i,j,k,h and tmin,i,j,k,v with
every other Mj for every Aci,k. Then, the collision criticality
Criti,j,k,coll regarding Mj for action ACi,k is calculated as
follow:

• C1,k = min(C1,k,v, C1,k,h)

• C2,k = min(C2,k,v, C2,k,h)

Where C1,k,v and C2,k,v being respectively the equivalent of
the previous C1,k and C2,k for the vertical plan, and C1,k,h

and C2,k,h for the horizontal plan.

c) Actions: Airplanes modify their speed, by accelerat-
ing or decelerating, but also change their heading, and modify
their altitude as well. These actions have a fixed parameter like
an acceleration rate or a turning rate. We consider that they can
realize those three changes in the same time, which means that
at every step of ∆t = 1s an airplane has to choose between 27
possibilities (3×3×3). These 27 possibilities of action results
in 27 possible future positions represented in figure3. In this
study, we only experiment the horizontal plan, so the number
of actions available for the airplane is only of 9 (3× 3).

Each airplane has a preferred cruise speed depending on
general airplane performances and airline preferences, that we
call vpref . The airplanes are able to decelerate and accelerate
within a speed range of [vpref − 6%, vpref + 3%] which are
considered as plausible values in real life [27]. It can accelerate
and decelerate with speed modification of 0.33% at each step.
In the experiment, we consider that airplanes have the same
vpref and that an airplane can modify its heading by 3°.s−1

[28, p. 18], which makes a complete 360° turn in 2 minutes.



Fig. 3. The possible actions of the airplane (not to scale)

C. Benchmark

We experiment our approach with two benchmarks, a
roundabout and a random case like in [29]. We experimented
with several numbers of agents AgNb, for the roundabout
AgNb ∈

{
6, 8
}

and for the random benchmark AgNb ∈{
12, 20, 40, 52, 60, 80, 100, 120

}
.

In the roundabout benchmark, we experiment on a disk
of radius R = 125NM = 231, 5km. At the beginning of
the experiment, all the airplanes are placed at the edge of the
disk, and they are all converging toward the center of the disk
with an angle of 2Π

m between them. For this experiment, only
heading changes are authorized, and speed is normalized.

For the the random experiment, airplanes are equally placed
at each side of the square of side l = 500NM . They are placed
randomly and have a precise point on the opposite side of the
square as destination like in the figure 4. The arrival and start
time must be at a distance d = 2dcoll from each other.

Fig. 4. Random experiment with 80 airplanes: 76 arrived and 0 collision

We evaluate our experiments regarding the number of
predicted collision, the number of remaining collisions, the
computation time, and the delays caused to airplanes. Compar-
ison with the results obtained in [29] underline the advantages

Fig. 6. The number of remaining collisions after the test

of our approach.

D. Results

In this section, separated results for the random and the
roundabout experiments are presented. The tests were per-
formed on a computer equipped with a 2.50GHz i7-6500
processor and 8 GigaByte of RAM. We implemented the
algorithms in Java 8.

1) Random experiment: Our system has been tested 100
times per AgNb ∈

{
12, 20, 40, 52, 60, 80, 100, 120

}
on this

random experiment. The evaluated metrics are presented each
in separated figure as box-plot for every AgNb, with maximum
value, third quartile, median, first quartile and minimum value.
Table I summarizes the comparative study.

a) Predicted and remaining collisions: For each ran-
domly generated scenario, we compute the number of pre-
dicted collisions (Figure 5), i.e the number of collisions that
would occur if no change is made on the trajectories of the
airplanes. We compare this number to the remaining collisions
(Figure 6), that may be new collisions created by the system
while avoiding others, or the same old collisions.

The obtained results show that in most cases more than
88.4% of the collisions has been solved (more than 99.12%
for 40 airplanes). Still, detailed studies must be conducted in
order to count the number of new collisions added by solving
predicted collisions.

Fig. 5. The number of collisions predicted at the start of the test



b) Computation Time: Figure 7 shows the time the
system uses to compute the trajectory of every airplane. Note
that, for the benchmark with 120 airplanes, the algorithm takes
less than 12s to compute the solution. In average, it takes
212ms, 418ms, 1305ms, 2048ms, 2826ms, 5072ms, 7660ms
and 11891ms to compute the algorithm with respectively 12,
20, 40, 52, 60, 80, 100, 120 airplanes. Note that CAAMAS
can be deployed on a distributed computation network which
can drastically reduce the computation time.

Fig. 7. Time to compute the solution in milliseconds

c) Delays caused to airplanes: Figure 8 shows the
results concerning the delays caused to airplanes in order to
avoid collisions. The results show than for each benchmark,
more than 75% of the airplanes have very short delays. Still
in high density benchmarks (i.e. 120 airplanes),some airplanes
can be delayed significantly. This can be due to the limited
9 actions given to the airplane. Still, a detailed study will be
conducted in order to understand the characteristics of such
benchmarks (density, new generated collisions while solving
predicted ones, etc.) and to be able to propose better trajectory
for highly delayed airplanes.

Fig. 8. Delays caused to airplanes

d) Comparative study: Table I summarizes the compar-
isons realized between CAAMAS and [29].

Fig. 9. Near optimal solution for 6 airplanes

CAAMAS Durand et. al. [29]
nb acft Rem

Coll
mean
delay

max
delay

Rem
Coll

mean
delay

max
delay

10 0 1.04504 1.58842 0 1.00094 1.00898
20 0 1.04745 1.56263 2 1.00431 1.03019
50 1 1.06049 1.91479 16 1.01376 1.03342
100 18 1.08122 2.05103 92 void void
120 38 1.08897 2.39579 100 void void

TABLE I. COMPARATIVE STUDY (DIMENSIONLESS MEASURES)

For the comparative study, the speed range has been set
to [vpref − 5%, vpref + 5%]. Aircrafts can still accelerate and
decelerate with speed modification of 0.33% at each step and
modify their heading by 3°.s−1. We compare with the results
of Table I and Table II from [29], with slat = 0.05 and slong =
0.05.

For the slight scenarios (10 and 20 airplanes) presented
in the Table I CAAMAS solves all the collisions, while the
comparative algorithm is not able to solve some of them. When
the number of airplanes increases too much (from 100 to 120),
the number of collisions increases significantly for both, but
the Durand et. al. [29] do not give delays since the algorithm
cannot bring any aircraft to its destination. The last scenario
with 120 airplanes could be considered as very overloaded
because the collision number increases significantly. The max
delay is quite high (from 50 to 140 %) compared to the
Durand et. al. [29] or reality, and represent isolated aircrafts.
Nevertheless the mean flight delay is not so high (10%).

2) Roundabout experiment: Figure 9 presents the obtained
trajectories for the benchmark defined for 6 airplanes to simu-
late the roundabout experiment. Note that agents of CAAMAS
only base their decisions on local information. The the usual
pattern called roundabout emerges from their local interactions
and cooperative behaviour.

V. CONCLUSION

The proposed collision avoidance system is a fully de-
centralized distributed approach based on adaptive multi-agent
technology. We have shown its relevance from several criteria
: efficiency of management even for dense traffic, limited
amount of communication between airplanes and computation
time. Moreover, it could eventually be implemented on board,
removing the need to rely on ground equipment. Even sig-
nificantly better of another one, CAAMAS is unable to solve



all conflicts for overloaded scenarios. And next research work
will aim at reducing the number of conflicts by adding new
behaviors to the adaptive multi-agent system.

We plan now to test our algorithm when some communi-
cations are lost, and adding in the scenarios non-cooperative
obstacles, such as airplanes or weather. Testing other means of
perception, like radar, would also be an interesting study case.

To deeply investigate the evaluation of CAAMAS perfor-
mances, we intend to implement a standard global optimization
method - used for solving similar problems - to solve the
presented problem in order to compare the difference in terms
of computation time and result optimality. As there is a priori
no computed plan, we can assert that our method is fully
adaptive face to unexpected event.

Eventually, CAAMAS could be used as a support decision
system for air traffic controllers because it is able to work
over different scales, time and space. This requires lot of
experiments with data obtained from real air traffic.
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