Augustin Degas

Arcady Rantrua

Elsy Kaddoum

Marie-Pierre Gleizes

Franc ¸oise Adreit

Dynamic Collision Avoidance using Local Cooperative Airplanes Decisions

Keywords: Trajectory optimization, Automation strategies, Conflict resolution, Self-separation, Multi-Agent system, Selforganization

. Apart from the increase in the traffic that will push the system to its limits, the insertion of new aerial vehicles such as drones into the airspace with different flight performances will increase the heterogeneity level. Today's research works aim at increasing the level of automation and partial delegation of the control to onboard systems. In this work, we investigate the collision avoidance management problem using a decentralized distributed approach. We propose an autonomous and generic multi-agent system to address this complex problem. We validate our system using state of the art benchmarks. The obtained results underline the adequacy of our local and cooperative approach to efficiently solve the studied problem.

I. INTRODUCTION

Contrary to a clear majority of motion planning problems, the difficulty of motion planning in air traffic management do not yield in finding a trajectory for one aircraft. Airspace is rarely cluttered by obstacles, except for the weather, thus finding a trajectory is pretty much straightforward. The difficulty of motion planning for aircrafts reside in finding a feasible trajectory for each aircraft (i.e respecting the capabilities of the aircraft), collision free with other aircraft, globally optimal (i.e. optimal for all the airplanes), and resilient to changes and uncertainties, in a wide configuration space [START_REF] Latombe | Robot motion planning[END_REF].

In todays air traffic management, airspace is divided into several zones each under the supervision of air controller. In order to help air controllers to manage real time traffic and avoid collision, the traffic is regulated upstream. With the increase in the traffic and the insertion of new aerial vehicles such as drones into the airspace with different flight performances, the air traffic control must evolve by increasing the level of automation and introducing partial delegation of the control to on-board systems.

In this work, we are interested in this particular kind of motion planning in a clear environment, with dynamic constraints, with multiple vehicles and an objective of optimality. This kind of motion planning are mostly about following the desired trajectory while avoiding collisions with other entities. We propose a generic approach and do not focus on the navigation of multiple robots to a single destination or the control of an swarm formation like in [START_REF] Antonelli | Decentralized centroid and formation control for multi-robot systems[END_REF]- [START_REF] Tian | Formation control of mobile robots subject to wheel slip[END_REF].

We propose to address the collision avoidance management problem using a decentralized distributed approach : the AMAS theory. It aims at solving problems in dynamic environment by a bottom-up design of autonomous agents, where cooperation is the engine of the self-organization process [START_REF] Serugendo | Selforganising software: From natural to artificial adaptation[END_REF]. AMAS approach has been successfully used to solve different problems, as anomaly detection in maritime environment [START_REF] Brax | Self-adaptive multi-agent systems for aided decision-making: an application to maritime surveillance[END_REF], control and optimization of heat-engine [START_REF] Boes | Self-organizing agents for an adaptive control of heat engines[END_REF] , or context learning [START_REF] Nigon | Self-adaptive model generation for ambient systems[END_REF].

In the case of the collision avoidance problem, representing each airplane by an autonomous cooperative agent with local interactions, brings a natural decentralized solution to the complexity of the global problem. The system we propose, can be used for several issues:

• Simulation: the system can be used to measure the consequences of the introduction/modifications of airplanes trajectories.

• Learning: the openness of the system, allows realtime interactions with end-users. This can help for education purpose. Indeed scenarios can be defined where the control to avoid collision is given to air traffic controller in specific sectors and then taken back by the system with the modified trajectories. The solution proposed by the controllers can also be compared to the one proposed by the system.

• On-board: the system can be used by air traffic controller or directly on-board as a decision support system to avoid collisions.

The remainder of this paper is structured as follows. Section II briefly reviews related work. Section III presents our general approach for collision avoidance. Section IV describes the application of the approach to ATC, the experiments and the results. Finally, Section V summarizes our findings and conclude this study.

II. RELATED WORK

A. Problem formalization

Motion Planning, planning of trajectory of a set of mobile entities, is a widely studied field, from the planning of a path of a simple robot in a unknown environment to the planning of trajectories of a set of mobile entities with constraints in a known environment. By mobile entity, we mean every possible entity that can move, from a robot arm, to cars, Unmanned Aerial Vehicles (UAV) or airplanes. Our concerns in this vast field of motion planning lies in collision avoidance of a set of mobile entities, with dynamic constraints, and an objective of optimally.

We based our formalization on the one proposed in [START_REF] Latombe | Robot motion planning[END_REF] that introduces the notion of Configuration space. This notion was first introduced for path planning of a simple mobile, in order to represent the space of every possible state in which the mobile entity can be. It is easily generalized for motion planning of multiple mobile entities or a mobile entity with multiple parts, it only had parameters related to the state vector (position, speed, direction). A configuration from the configuration space is then a vector containing a state for every M i ∈ M (or every part of M i). In the remainder of this paper, the configuration space is noted C, a configuration from the configuration space is noted q. In C, some configurations q are in collision with an obstacle. We note the space of configurations with collisions with obstacles C Obs and the space without collisions C f ree , thus C = C Obs ∪ C f ree .

Our problem can be formalized as follow:

• A set of heterogeneous mobile entity, noted M, M = M i 0<i≤m
• A set of obstacles, O. An obstacle can be fix or can move in time.

Each mobile entity is characterized by:

• A state vector, containing the position vector of M i , it's velocity vector, and the 3 rotation angles (Euler's angles).

• A predetermined trajectory, noted τ p , is a function of time.

• Capacities, containing it's ability to accelerate, decelerate, turn and so on.

• A configuration space C i , in which other M j are obstacles with determined trajectory.

The problem consists in finding a trajectory τ i for each mobile entity from a starting point, to a goal destination, while respecting τ p and avoiding collisions with mobile and stationary obstacles. In other terms, the goal is to find for each M i a trajectory τ i that lies in C i,f ree .

B. State of the Art

The studied problem is combinatorial : the huge numbers of heterogeneous airplanes, the largeness of the airspace and the forth dimensions (Space+Time) make the configuration space C tremendous. The size of the configuration space has led most researchs to discretize the configuration space, by discretizing the maneuvers or the airspace, and explore it with graph search or evolutionary algorithms or by using heuristics to guide the exploration.

Meta-heuristics using discretization of maneuvers, like genetic algorithms [START_REF] Delahaye | Aircraft conflict resolution by genetic algorithm and b-spline approximation[END_REF] or ant colony algorithms [START_REF] Durand | Ant colony optimization for air traffic conflict resolution[END_REF], along with artificial intelligence algorithm as neuronal networks [START_REF] Christodoulou | Collision avoidance in commercial aircraft free flight via neural networks and non-linear programming[END_REF]. Those methods give interesting results still they scale poorly. Indeed, [START_REF] Durand | Ant colony optimization for air traffic conflict resolution[END_REF] and [START_REF] Delahaye | Aircraft conflict resolution by genetic algorithm and b-spline approximation[END_REF] are one of the few that handle more than 20 airplanes and find a global optimum.

Potential fields are also expensively studied, starting from the standard method, to its extension with navigation functions [START_REF] Roussos | Completely decentralised navigation functions for agents with finite sensing regions with application in aircraft conflict resolution[END_REF], the usage of more complex potential fields [START_REF] Guys | Automatic conflict solving using biharmonic navigation functions[END_REF], or the combination between potential fields and swarming [START_REF] Maas | The effect of swarming on a voltage potential-based conflict resolution algorithm[END_REF]. Those methods have the particularity of providing a proof of convergence. However those methods need to be tuned carefully to be effective. Finding generic rules to do so seems difficult.

Mixed-Integer Linear Programing (MILP) solvers are studied as well, in particular for solving a minimum weight maximum clique model [START_REF] Lehouillier | Solving the air conflict resolution problem under uncertainty using an iterative biobjective mixed integer programming approach[END_REF]. Results are interesting, but they use important instantaneous heading or speed changes. Constraint programming has also show some interesting results [START_REF] Allignol | A new framework for solving en-routes conflicts[END_REF], finding solutions proved to be optimal, but scale badly with the number of airplanes.

Geometrical approaches have also been studied. The idea is to detect collisions using velocity vectors, compute the minimal velocity vector change to avoid the collision and divide equally the minimal velocity vector change among the mobile entities [START_REF] Machado | Automatic collision avoidance system based on geometric approach applied to multiple aircraft[END_REF], [START_REF] Lin | Conflict detection and resolution model for low altitude flights[END_REF]. One algorithm in particular has been successfully applied to multi-robot [START_REF] Van Den | Reciprocal n-body collision avoidance[END_REF] and some adaptations for aircrafts have been made [START_REF] Allignol | Detect & avoid, uav integration in the lower airspace traffic[END_REF]. Most of them have not been tested in dense situations. The last ones however are interesting in the way they decentralize the problem among the different entities and give interesting results with dense situation as long as the constraints on maneuvers are light.

Different studies move towards decentralization and multiagent systems approaches [START_REF] Breil | Multi-agent systems for air traffic conflicts resolution by local speed regulation[END_REF], with collision avoidance based on velocity changes and departure delay. Those techniques allow a natural description of the problem, and have shown their adequacy to efficiently solve complex problems addressing dynamic and scaling issues. We believe that this decentralization may grow interest in the future as part of the responsibility for separation maintenance will be delegated to the aircraft [START_REF] Prandini | Toward air traffic complexity assessment in new generation Air Traffic Management systems[END_REF].

III. COLLISION AVOIDANCE USING ADAPTIVE MULTI-AGENT SYSTEM APPROACH

In this part, we start by introducing the Adaptive Multi-Agent Systems (AMAS), then we present our general approach, called CAAMAS for Collision Avoidance Adaptive Multi-Agent System.

A. Adaptive Multi-Agent Systems Theory

Multi-Agent Systems (MAS) are composed of different entities called agents. An agent is a physical or software entity, that is autonomous, evolves in an environment with perceive, decide and act abilities. The agent has a partial perception of the environment, is able to communicate with other agents, has its own resources and capacities, and can offer services. An agent follows a life cycle composed of three steps, repeated indefinitely: Perception, Decision, Action. During the perception, it acquires new information about its environment. It then decides during the decision phase the next action to perform. Then it realizes the action decided in the decision phase. By the agents local interactions, a self-organization is established making the solution emerges.

In some cases, an agent may be noncooperative, which means it may bother other agents in their task, or it cannot fulfill its goal and thus cannot help the group at all. In the AMAS approach, the cooperation among agents interactions is the engine of the self-organization. The AMAS approach aims to create MAS in which agents act cooperatively between themselves in order to maintain a cooperative behaviour. The AMAS theory identifies seven generic non cooperative situations [START_REF] Capera | The amas theory for complex problem solving based on self-organizing cooperative agents[END_REF] among the three steps of the life cycle (perception, decision, action). In such situations, the agent based on criticality information decides cooperative actions in order to solve difficult situations (conflict, concurrence, ambiguity, etc.)

B. The CAAMAS approach

We introduce in this section our decentralized Collision Avoidance Adaptive Multi-Agent System (CAAMAS) approach, for collision avoidance management for multiple heterogeneous mobile entities with dynamic constraints. In our model, every M i is represented by an agent following the lifecycle described in Algorithm 1.

Algorithm 1 Life-Cycle of an agent M i along its trajectory repeat Perceive : Store the criticalities of mobile entities (neighbors) in its perception zone noted Zp i ; Decide : Compute the criticality of each possible action and decide cooperatively the action that minimizes the criticality of its neighbors and its own; Act : Perform the decided action and inform neighbors of its new criticality until M i is arrived 1) Perception phase: Every M i perceives its local environment defined by its perception zone Zp i of the airspace. In this zone, M i is able to perceive other mobile entities called its neighborhood.

Different communication means can be used in order to exchange information among the mobile entities. In our model, we use messages, still other means can be easily added. In the perception phase, M i receives messages from other mobile entities M j (i = j). Note that every M j perceived by M i belongs to Zp i (M j ∈ Zp i).

Those messages contain two important parts :

• The current situation of the mobile entity: its position and velocity vectors. They will be used to determine some criticalities, in particular the collision criticalities.

• The criticality of the sender, Crit j . This criticality is the criticality computed for the action the mobile M j is currently doing. It is used by M i to determine its behavior regarding M j .

During the perception phase, the agent only stores the perceived information and uses them in the decision phase.

2) Decision phase and Action phase: In the decision phase, the mobile entity decides cooperatively, based on its evaluation of the current situation, which action to perform at the action phase.

a) Action: Given its capacities a mobile entity M i can realize at each step a set of finite actions in order to explore the configuration space C i (cf. section II-A). In a forth dimension C (Space+Time), those actions can be for example to climb, descend, stay put, turn left, turn right, accelerate or decelerate. We note Ac i the set of n actions that M i can do, Ac i = Ac i,k 0<k≤n . For each possible action, the agent associates a criticality. b) Criticality: For an agent, criticality represents the degree of non-satisfaction of its own goal [START_REF] Bonjean | Adelfe 2.0[END_REF]. We note Crit i the criticality of the mobile M i . Crit i might be a simple real, or a tuple of different measures. In our model, the criticality of a mobile entity M i is a couple, Crit i = (Crit i,coll , Crit i,traj):

• Collision criticality, noted Crit i,coll which represents the degree of non-satisfaction of M i regarding the objective of avoiding collisions.

• Trajectory criticality, noted Crit i,traj which represents the degree of non-satisfaction of M i regarding the objective of following its desired trajectory.

Those criticalities are computed for every possible action Ac i,k as shown in algorithm 2. The algorithm starts by evaluating the collision criticalities for each Ac i,k regarding each M j in the perception zone, Criti, j, k, coll. The calculated criticalities are stored in a collision criticality list collCL Aci,k ordered by Crit j associated to a Ac i,k . Then, the trajectory criticality if M i performs Ac i,k , Criti, k, traj, is evaluated.

To sort the criticalities, the algorithm first considers the collision criticality. The trajectory criticality is considered in case of equal collision criticality or in case no collision is detected. The evaluation of the collision criticality is based on an extrapolation called nominal projection in the literature [START_REF] Kuchar | A review of conflict detection and resolution modeling methods[END_REF]. It is a simple extrapolation of position and the velocity vectors. The idea is to consider that the situation of a mobile entity M j will evolve in the same way it does currently (same speed, same direction) and thus, to calculate the criticality of the possible occurrence of a collision if M i realizes Ac i,k .

Algorithm 2 Evaluation of the criticalities for each

Considering that, the collision criticality of M i if it does Ac i,k regarding M j , Crit i,j,k,coll is an ordered couple :

• C 1,k representing the criticality regarding the minimal distance than can be reached between M i and M j if M i realizes Ac i,k .

• C 2,k representing the criticality regarding the time at which the minimal distance between M i and M j if M i realizes Ac i,k occurs.

In order to calculate this couple, the algorithm determines the minimal distance (d min,i,j,k) between M i and M j if M i does the action Ac i,k , and then the time t min,i,j,k at which the minimal distance occurs. In case a collision is detected, the interval t startCollision , t endCollision of time during which the collision occurs is computed. In this case, the t startCollision is considered instead of the t min,i,j,k .

In the following, we note ||.|| the euclidean norm, and d i,j,k (t) the distance between M i and M j if M i does the action Ac i,k . With those notations and the previous hypothesis, we have:

d min,i,j,k = min 0≤t (d i,j,k (t)) = min 0≤t || -→ p i,k (t) -- → p j (t)||
With -→ p i,k (t) the vector position of M i if it does the action Ac i,k , and -→ p j (t) the perceived position vector of M j .

Since the speed vector is considered as constant, d min,i,j,k is computed using:

d min,i,j,k = min 0≤t ||(-→ p i,k (0) + t. -→ v i,k) -(- → p j (0) + t. - → v j)||
The value at which the derivative of ||(-→ p i,k (0

) + t. -→ v i,k) - (- → p j (0) + t. - → v j)
|| is null, is then t min,i,j,k :

t min,i,j,k = -(-→ p i,k (0) -- → p j (0)).(-→ v i,k -- → v j) || -→ v i,k -- → v j ||
Note that:

d min,i,j,k = d i,j,k (t min,i,j,k)
Based on both values, C 1,k and C 2,k are then calculated as follow:

C 1,k = 100 -100 2d coll d min,i,j,k if d min,i,j,k < 2d coll 0 if d min,i,j,k ≥ 2d coll
Where d coll is the distance at which two mobiles should be at least from one to another. Figure 1 illustrates the computation of C 1,stayP ut for M 1 regarding two mobile entities M 2 and M 3 in its perception zone. • C 3,k is the distance to the predetermined trajectory τ p at the next step (t+1) if Ac i,k is performed at the next step (t+1)

C 2,k =      100 if
C 3,k = min - → x ∈τp || -→ p i,k (t + 1) -- → x || • C 4,k is the distance to the position of the destination --→ p goal ∈ τ p if Ac i,k is performed. C 4,k = || -→ p i,k (t = τ) ---→ p goal || • C 5,k
is the angle α k between the predetermined trajectory τ p and the speed vector if Ac i,k is performed,

C 5,k = 0 if α k < π 2 100 π 2 × (α k -π 2) if α k ≥ π 2
The three measures are used by the agent regarding the current situation. Two cases are to be distinguished:

• Previous trajectory modifications lead the agent to deviate from its predetermined trajectory τ p keeping the same direction, the agent compares the trajectory criticality between two possible actions using first C 3,k , then C 4,k (for equal C 3,k) and finally C 5,k (for equal C 3,k and C 4,k).

• Previous trajectory modifications lead the agent to deviate from its predetermined trajectory τ p with opposite direction, the agent compares the trajectory criticality between two possible actions using first C 5,k , then C 3,k (for equal C 5,k) and finally C 4,k (for equal C 5,k and C 3,k).

Decide which action to perform: After evaluating the criticalities of all Ac i,k ∈ Ac i the agent cooperatively decides which action to perform in order to help the most critical agents. The decision process presented in Algorithm 3 distinguishes between two cases: a collision is detected or not.

In case of collision detection, the idea is to consider the criticalities of every M j ∈ Zp i from the highest to the lowest, and determine, using the criticality collision lists collCL Ac i,k of each Ac i,k computed in algorithm 3, which action(s) can help the most.

If several actions can be done to help most critical agents or no collision is detected, the agent decision is based on the trajectory criticality as defined above.

Algorithm 3 Decide

Create and initialize a list l act with every Ac i,k if Collision detected then while length(l act) = 1 and not all Crit j considered do Select M j with the highest Crit j Using collCL Ac i,k , find the set of actions a ⊂ Ac i that improve the most the criticality with M j Remove from l act every Ac i,k / ∈ a Remove Crit j from not considered criticalities end while end if Choose the Ac i,k ∈ l act that reduces the most the trajectory criticality, Crit i,k,traj .

Note that, for a given mobile entity, the most critical agent might be an agent M j ∈ Zp i or itself.

Once the action Ac i,k to perform is decided, the agent determines its criticality as

Crit i = (max(collCL Ac i,k), Crit i,k,traj) (1)
Action phase The action part for the agent is more or less straightforward. M i does the action decided by algorithm 3, and sends messages containing its current situation and its criticality to the mobile entities inside its perception zone.

IV. EXPERIMENTS AND RESULTS

For the experimentation, we apply our model to Air Traffic Management (ATM). Mobile entities are then airplanes each with realistic characteristics.

A. Air Traffic Control

We briefly introduce here some characteristics of the Air Traffic Control (ATC) which explains the instantiation of the CAAMAS approach.

In ATC, airplanes are separated for safety by a protection zone determined using different human and material factors. The protection zone is a cylinder oriented vertically with a height h of 1000f eet (1000f t = 304.9m) and a radius r of 5 nautical miles (r = 5N M = 9.26km) Airplanes fly from geographical points to geographical points, called Waypoint. Their trajectory from one airport to another is then reduced to a list of waypoints, called flightplan. Experience shows that they don't always follow their flightplan [START_REF] Rantrua | Learning aircraft behavior from real air traffic[END_REF] for different reasons such as controller orders. In our study, we consider that their predetermined trajectory, τ p , is approximated by a broken line.

Airplanes are increasingly capable of communicating data to each other such as their positions, heading or speed by means of messages. Messages can be transmitted using Automatic Dependant Surveillance-Broadcast (ADS-B).). We consider that every obstacle O j (mobile M j or stationary) in the sphere is perceived by M i . This perception zone is illustrated by 2. In the conducted experimentation, only mobile obstacles M j were considered.

b) Collision detection:

In ATC, two airplanes are considered in collision whenever a violation of the protection zone is detected. Then in the following, a ATC loss of separation will be refereed as a collision, and is considered as a collision by CAAMAS. In order to take into account the fact that the vertical distance is not on the same scale as the horizontal distance, the collision criticality is calculated on the horizontal plan and the vertical plan. Thus, we have two values for d min,i,j,k : d min,i,j,k,h and d min,i,j,k,v , and two values for time t min,i,j,k (or an interval): t min,i,j,k,h and t min,i,j,k,v with every other M j for every Ac i,k . Then, the collision criticality Crit i,j,k,coll regarding M j for action AC i,k is calculated as follow:

• C 1,k = min(C 1,k,v , C 1,k,h) • C 2,k = min(C 2,k,v , C 2,k,h)
Where C 1,k,v and C 2,k,v being respectively the equivalent of the previous C 1,k and C 2,k for the vertical plan, and C 1,k,h and C 2,k,h for the horizontal plan. c) Actions: Airplanes modify their speed, by accelerating or decelerating, but also change their heading, and modify their altitude as well. These actions have a fixed parameter like an acceleration rate or a turning rate. We consider that they can realize those three changes in the same time, which means that at every step of ∆t = 1s an airplane has to choose between 27 possibilities (3 × 3 × 3). These 27 possibilities of action results in 27 possible future positions represented in figure3. In this study, we only experiment the horizontal plan, so the number of actions available for the airplane is only of 9 (3 × 3).

Each airplane has a preferred cruise speed depending on general airplane performances and airline preferences, that we call v pref . The airplanes are able to decelerate and accelerate within a speed range of [v pref -6%, v pref + 3%] which are considered as plausible values in real life [START_REF] Averty | Could erasmus speed adjustments be identifiable by air traffic controllers[END_REF]. It can accelerate and decelerate with speed modification of 0.33% at each step. In the experiment, we consider that airplanes have the same v pref and that an airplane can modify its heading by 3°.s -1 [28, p. 18], which makes a complete 360°turn in 2 minutes.

C. Benchmark

We experiment our approach with two benchmarks, a roundabout and a random case like in [START_REF] Durand | Does atm need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[END_REF]. We experimented with several numbers of agents AgN b, for the roundabout AgN b ∈ 6, 8 and for the random benchmark AgN b ∈ 12, 20, 40, 52, 60, 80, 100, 120 .

In the roundabout benchmark, we experiment on a disk of radius R = 125N M = 231, 5km. At the beginning of the experiment, all the airplanes are placed at the edge of the disk, and they are all converging toward the center of the disk with an angle of 2Π m between them. For this experiment, only heading changes are authorized, and speed is normalized. We evaluate our experiments regarding the number of predicted collision, the number of remaining collisions, the computation time, and the delays caused to airplanes. Comparison with the results obtained in [START_REF] Durand | Does atm need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[END_REF] underline the advantages

D. Results

In this section, separated results for the random and the roundabout experiments are presented. The tests were performed on a computer equipped with a 2.50GHz i7-6500 processor and 8 GigaByte of RAM. We implemented the algorithms in Java 8. I summarizes the comparative study. a) Predicted and remaining collisions: For each randomly generated scenario, we compute the number of predicted collisions (Figure 5), i.e the number of collisions that would occur if no change is made on the trajectories of the airplanes. We compare this number to the remaining collisions (Figure 6), that may be new collisions created by the system while avoiding others, or the same old collisions.

The obtained results show that in most cases more than 88.4% of the collisions has been solved (more than 99.12% for 40 airplanes). Still, detailed studies must be conducted in order to count the number of new collisions added by solving predicted collisions. 7 shows the time the system uses to compute the trajectory of every airplane. Note that, for the benchmark with 120 airplanes, the algorithm takes less than 12s to compute the solution. In average, it takes 212ms, 418ms, 1305ms, 2048ms, 2826ms, 5072ms, 7660ms and 11891ms to compute the algorithm with respectively 12, 20, 40, 52, 60, 80, 100, 120 airplanes. Note that CAAMAS can be deployed on a distributed computation network which can drastically reduce the computation time. 8 shows the results concerning the delays caused to airplanes in order to avoid collisions. The results show than for each benchmark, more than 75% of the airplanes have very short delays. Still in high density benchmarks (i.e. 120 airplanes),some airplanes can be delayed significantly. This can be due to the limited 9 actions given to the airplane. Still, a detailed study will be conducted in order to understand the characteristics of such benchmarks (density, new generated collisions while solving predicted ones, etc.) and to be able to propose better trajectory for highly delayed airplanes. For the comparative study, the speed range has been set to [v pref -5%, v pref + 5%]. Aircrafts can still accelerate and decelerate with speed modification of 0.33% at each step and modify their heading by 3°.s -1 . We compare with the results of Table I and Table II from [START_REF] Durand | Does atm need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[END_REF], with s lat = 0.05 and s long = 0.05.

For the slight scenarios (10 and 20 airplanes) presented in the Table I CAAMAS solves all the collisions, while the comparative algorithm is not able to solve some of them. When the number of airplanes increases too much (from 100 to 120), the number of collisions increases significantly for both, but the Durand et. al. [START_REF] Durand | Does atm need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[END_REF] do not give delays since the algorithm cannot bring any aircraft to its destination. The last scenario with 120 airplanes could be considered as very overloaded because the collision number increases significantly. The max delay is quite high (from 50 to 140 %) compared to the Durand et. al. [START_REF] Durand | Does atm need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[END_REF] or reality, and represent isolated aircrafts. Nevertheless the mean flight delay is not so high (10%).

2) Roundabout experiment: Figure 9 presents the obtained trajectories for the benchmark defined for 6 airplanes to simulate the roundabout experiment. Note that agents of CAAMAS only base their decisions on local information. The the usual pattern called roundabout emerges from their local interactions and cooperative behaviour.

V. CONCLUSION

The proposed collision avoidance system is a fully decentralized distributed approach based on adaptive multi-agent technology. We have shown its relevance from several criteria : efficiency of management even for dense traffic, limited amount of communication between airplanes and computation time. Moreover, it could eventually be implemented on board, removing the need to rely on ground equipment. Even significantly better of another one, CAAMAS is unable to solve all conflicts for overloaded scenarios. And next research work will aim at reducing the number of conflicts by adding new behaviors to the adaptive multi-agent system.

We plan now to test our algorithm when some communications are lost, and adding in the scenarios non-cooperative obstacles, such as airplanes or weather. Testing other means of perception, like radar, would also be an interesting study case.

To deeply investigate the evaluation of CAAMAS performances, we intend to implement a standard global optimization method -used for solving similar problems -to solve the presented problem in order to compare the difference in terms of computation time and result optimality. As there is a priori no computed plan, we can assert that our method is fully adaptive face to unexpected event.

Eventually, CAAMAS could be used as a support decision system for air traffic controllers because it is able to work over different scales, time and space. This requires lot of experiments with data obtained from real air traffic.

Fig. 1 .

 1 Fig. 1. Main notations used in criticalities computation

Fig. 2 .

 2 Fig. 2. Perception zone of the black airplane (at the center of the sphere), perceiving two other airplanes

Fig. 3 .

 3 Fig. 3. The possible actions of the airplane (not to scale)

For

 the the random experiment, airplanes are equally placed at each side of the square of side l = 500N M . They are placed randomly and have a precise point on the opposite side of the square as destination like in the figure 4. The arrival and start time must be at a distance d = 2d coll from each other.

Fig. 4 .

 4 Fig. 4. Random experiment with 80 airplanes: 76 arrived and 0 collision

Fig. 6 .

 6 Fig. 6. The number of remaining collisions after the test

1)

 1 Random experiment: Our system has been tested 100 times per AgN b ∈ 12, 20, 40, 52, 60, 80, 100, 120 on this random experiment. The evaluated metrics are presented each in separated figure as box-plot for every AgN b, with maximum value, third quartile, median, first quartile and minimum value. Table

Fig. 5 .

 5 Fig. 5. The number of collisions predicted at the start of the test

Fig. 7 .

 7 Fig. 7. Time to compute the solution in milliseconds

Fig. 8 .

 8 Fig. 8. Delays caused to airplanes

 Ac i,k ∈ Ac i Sort Crit j of the M j stored at the perception phase for all Ac i,k ∈ Ac i do Initialize collCL Ac i,k associated to Ac i,k for all perceived Crit j do Evaluate Crit i,j,k,coll of M i regarding M j if M i does the action Ac i,k Store the criticality in collCL Ac i,k end for Evaluate Crit i,k,traj of M i if it performs action Ac i,k end for Evaluation of the collision criticality of an action Ac i,k :

 Table I summarizes the comparisons realized between CAAMAS and [29].

	Fig. 9. Near optimal solution for 6 airplanes		
			CAAMAS			Durand et. al. [29]
	nb acft	Rem	mean	max	Rem	mean	max
		Coll	delay	delay	Coll	delay	delay
	10	0	1.04504 1.58842 0	1.00094 1.00898
	20	0	1.04745 1.56263 2	1.00431 1.03019
	50	1	1.06049 1.91479 16	1.01376 1.03342
	100	18	1.08122 2.05103 92	void	void
	120	38	1.08897 2.39579 100	void	void

TABLE I .

 I COMPARATIVE STUDY (DIMENSIONLESS MEASURES)

ACKNOWLEDGMENT

The authors thanks Sopra Steria Group and the ANRT for their support in this research work.