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Abstract

The global/local analysis allows to embed a specific local zone of interest with a different behaviour in a
global coarse model. In this local model, fine meshes are usually used to model some structural details and
potentially non-linear behaviours, such as plastic hardening and crack propagation. The standard global/local
approach can be observed as a Dirichlet-Neumann iterative algorithm where a Dirichlet problem on the local
model and a Neumann problem on the global one are solved successively. This paper proposes a new approach for
the global/local framework as Robin parameters are considered on both local and global models to obtain more
flexibility and improvement for convergence. Particularly, Robin parameters are obtained using a pre-defined
strip of elements and the results are later improved by means of single-objective optimization, minimizing the
number of iterations to achieve convergence. This improvement is illustrated for cracked domains and plastic
hardening in 2D problems and 3D elements within a non-intrusive framework, allowing the usage of commercial
finite element software along with open-source research finite element software.

Keywords: Global Local Robin Parameter Crack Propagation Patch Hardening

1 Introduction

The objective of non-intrusive frameworks is to carry out advanced numerical methods as a result of efficient linear
and non-linear solvers applied in the commercial software and used as “black boxes”. An example of the above is
that it is feasible to operate the free open-source industrial finite elements software code-aster [12] with the Python
interface. Advanced algorithms can be designed within this Python interface and call non-linear methods of code-5

aster to consider complex phenomena. In addition, depending on the perspective, the non-intrusivity might be the
alternative to “enrich” a global model with those that are more detailed and without modifying the global one. For
example, the global model could be the product of a long industrial process, which might not be altered easily. In
this regard, methods considering local models without altering the global one can be perceived as non-intrusive.

The global/local approach [38] is a very good option for implementing the non-intrusive method [16]. In essence,10

the idea is to introduce some more localized details into a global and coarse model and potentially add non-linear
behaviours in specific areas without altering the global model. Summarizing, a global and a local model connected

This paper is an extended version of our paper published in 14th World Congress on Computational Mechanics (WCCM).
doi:10.23967/wccm-eccomas.2020.159
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through an interface coexist. The global/local approach is about an iterative Dirichlet-Neumann algorithm and
an iteration consisting of two steps: (1) a problem in the local model with Dirichlet boundary conditions on the
interface, and (2) a problem in the global model with Neumann boundary conditions on the interface. Connections15

with optimized Schwarz domain decomposition methods can be observed in [18]. The global/local structure has been
expanded to a domain decomposition method [11] and has been implemented to different types of non-linearities
such as crack propagation [32, 11, 28], structural joints and assemblies [19], local plasticity [16] and cycling visco-
elastic behaviour [4]. It is possible to find other studies regarding different applications and improvements for
non-intrusive frameworks and the global/local method in [23, 15, 17, 18, 6, 1].20

Considering the St. Venant’s principle, the interface between the local and global models should be nowhere
near the local details to avoid the inaccuracy of the Dirichlet boundary conditions from the linear global model close
to the area of potential non-linearity. This problem could be solved by using Robin parameters on the interface.
The first proposal to apply Robin parameters on the interface for a local plastic model can be found in [15].
Their idea is to design a ”quasi-optimal” Robin parameter avoiding the full computation of the Schur complement25

of the complementary models. They prefer two-scale Robin parameters that include both short and long-range
effects. Very recent works [28, 1] applied a global/local approach with Robin conditions for phase field modelling
for mechanical and hydraulic fractures in porous media. They chose the Schur complement of the complementary
domain and observed very good performance, improving drastically the convergence of the global/local algorithm.

Finally, a formal mathematical approach to Mixed Domain Decomposition Methods and the application for30

non-intrusive analysis with Robin Parameters can be found in [27, 31, 28].
This paper focuses on the global/local method with a non-intrusive implementation of Robin parameters on the

interface. These Robin parameters are developed with a strip of elements linked to the interface similarly as [15].
The choice of these Robin parameters is crucial for the convergence of the method. The optimal choice is classically
known but with an unaffordable cost as it would involve the computation of a Schur complement of a large model.35

Therefore, approximations are sought and we propose to carry out an optimization of the parameters to obtain a
better convergence of the mixed method for the global/local analysis and study the impact of the Robin parameter
as well.

The article is structured as follows: Section 2 formulates the global/local method as a Dirichlet-Neumann
algorithm; Section 3 pursues the global/local method with the Robin parameters; Section 4 and subsequent sections40

illustrate the improvements of our implementation with numerical examples and different non-linear problems in
2D and 3D models, as well as the optimization of the Robin parameters.

2 Global/Local Problem Formulation

2.1 Reference problem

A mechanical model of a structure determined on a domain ΩR is considered. This domain consists of two non-45

overlapping domains ΩC , the complementary domain, and ΩL, the local domain. ΩC considers elastic linear
isotropic assumptions with small perturbations, meanwhile in ΩL, the mechanical model may be non-linear, such
as a crack propagation model or a plastic material. This local model allows embedding localized richer contents in
the structure’s simple global model. Γ is noted as the interface between the complementary and local models.

Defining the admissible space of displacements as:

V (ΩR) = {v ∈ H1 (ΩR) v = ud on ∂uΩR} (1)

.50

The mechanical problem is equivalent to:

Find u ∈ V (ΩR) , aR(u, v) = lR(v), ∀v ∈ V0 (ΩR) (2)

with aR the bi-linear form representing the structure’s equilibrium and lR the linear form symbolizing the
Neumann boundary conditions. The Dirichlet boundary conditions are taken into account in the affine space
V (ΩR).
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A discretization of standard finite elements with Lagrange shape functions is considered in order to obtain
discrete models for which a conforming mesh in the interface between the complementary and local models is55

adopted.
A full elastic linear isotropic material over the whole domain ΩR = ΩC ∪ΩL is considered to detail the methods

and the equation. Under this type of hypothesis, the discrete problem becomes as follows:

Find uR solution of KRuR = fRd (3)

with KR the stiffness matrix, uR the discrete unknown of displacements and fRd the right-hand side conforming
to the boundary conditions. The null Dirichlet conditions are expected to be eliminated.60

Figure 1: Reference problem.

This reference problem can be seen as the coupling between the complementary model in ΩC and the local
model in ΩL, as presented in Figure 1. We note that KC and KL are the stiffness matrices of the complementary
and local models respectively, uC and uL are the displacements in ΩC and ΩL, fCd and fLd are the load vectors in
ΩC and ΩL. The perfect coupling of the two models to impose the continuity of the displacement is enforced with
a Lagrange multiplier λ into the following Lagrangian:65

L (uC ,uL,λ) =
1

2
uT
CKCuC +

1

2
uT
LKLuL − fCd

T
uC

− fLd
T
uL + λT (CCuC −CLuL) (4)

Where CC and CL are coupling operators. For conforming meshes, these are trace operators that extract
displacements from ΩC and ΩL on the interface Γ. They are sparse matrices filled with number ones in the indexes
associated to the interface degrees of freedom.

The minimization of the Lagrangian leads to:

• Equilibrium of the coarse model:
∂L
∂uC

= KCuC + CT
Cλ− fCd = 0 (5)
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• Equilibrium of the local model:
∂L
∂uL

= KLuL −CT
Lλ− fLd = 0 (6)

• Continuity of the interface displacements:

CCuC −CLuL = 0 (7)

Therefore we obtain the standard coupling system:70

Find (uC ,uL,λ) ,

 KC 0 −CT
C

0 KL CT
L

−CC CL 0

uC

uL

λ

 =

fCdfLd
0

 (8)

This problem can be rewritten as two sub-problems: one over ΩC with Neumann conditions of the interface Γ
and the other problem over ΩL with Dirichlet conditions on the interface Γ:

Find uC , KCuC = fCd + CT
Cλ

Find (uL,λ) ,

[
KL CT

L

CL 0

] [
uL

λ

]
=

[
fLd

−CCuC

]
(9)

A Dirichlet-Neumann iterative algorithm is used to solve this problem. The iteration consists in the following
two steps:

1. Knowing a (un
L,λ

n) solution in ΩL to solve a Neumann problem on ΩC :

Find un+1
C , KCu

n+1
C = fCd + CT

Cλ
n (10)

2. Knowing a un+1
C solution in ΩC to solve a Dirichlet problem on ΩL:

Find
(
un+1
L ,λn+1

)
,

[
KL CT

L

CL 0

] [
un+1
L

λn+1

]
=

[
fLd

CCu
n+1
C

]
(11)

and obtain λn+1, the opposite of the reaction forces λn+1
L on the interface of the local model.75

Remark 1. This type of algorithm could be considered with multiple local models and conceived as a non-overlapping
domain decomposition [11].

2.2 Primal-Dual Global/Local Analysis

The subtlety of the global/local method is to slightly modify the problem in the complementary domain with the
aim of not solving it in ΩC , but in a “global” domain ΩG, which corresponds to the union of ΩC and an auxiliary80

domain ΩA. Globally, this auxiliary domain corresponds geometrically to the local domain ΩL but coarsely meshed
as the complementary model. As shown in Figure 2, the local model is substituted by an auxiliary model to obtain
a global model.
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Figure 2: Linear problem.

This can also be interpreted differently. Starting from a global model with a coarse mesh and an elastic linear
isotropic material, this model can be enriched with localized details such as structural details (holes or a particular85

geometry) or complex non-linear behaviour (plasticity or cracks). This is especially suitable in an industrial design
process where the global model may not be easily changed to incorporate localized details.

The complementary problem to be solved is defined as:

Find un+1
C , KCu

n+1
C = fCd + CT

Cλ
n (12)

The contribution of the auxiliary model is added to the two sides of the equation where the exponent n+ 1 and
n are omitted in order to simplify the notations:

KCuC + KAuA = f
C

d + f
A

d︸ ︷︷ ︸
fGd

+ CT
Gλ + KAuA − f

A

d︸ ︷︷ ︸
CT

GλA

(13)

where the notation �X means that the variable or operator � specified in ΩX is extended with zeros to the

domain ΩG for the rest of the degrees of freedom. In addition, f
A

d corresponds to the boundary conditions that could
be implemented on the auxiliary model in order to represent an approximation of those on the local model. The90

term KAuA − f
A

d symbolizes the reaction forces of a Dirichlet problem on the auxiliary model with displacement

uG|Γ imposed in Γ and a Neumann boundary condition through f
A

d . For more details see [18].
Therefore, as uC = uA on the interface Γ, the equation becomes as follows:

KGu
n+1
G =fGd + CT

Gλ
n + CT

Gλ
n
A

=fGd + CT
GP

n
(14)

with un+1
G the displacement specified on the global model. The reaction forces λn

A are computed with displace-
ment un

G from the previous iteration of the algorithm. Pn = λn
A − λn

L represents the correction of forces that will95

be applied to the global model in order to consider the local model. It can also be observed that Pn verifies the
following equations assuming exact solutions for the global and local problems [18]:

Pn = λn+1
A + λn+1

C

Pn+1 = Pn + rn+1 with rn+1 = −
(
λn+1
L + λn+1

C

) (15)
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Under this notation, rn+1 represents the disequilibrium of forces between the complementary model and the
local model. When convergence is fulfilled, rn+1 = 0 and the forces are balanced: the solution on ΩC ∩ΩL reaches
the solution of the reference model.100

The error indicator for the convergence of the method is the residual norm for each iteration normalized regarding
the first residual obtained from global/local iterations, as presented in Eq. (16).

η =
‖rn+1‖2
‖r0‖2

(16)

2.3 Global/Local algorithm

The iterations described above lead to the algorithm 1 of the global/local method.

Algorithm 1 Global/Local Primal-Dual Solution

1: Initialize interface vector P0 = 0
2: Initialize error η = 1 and tolerance tol
3: Start iterations, n = 0
4: while η > tol do
5: Solve the global problem:

Find un+1
G , KGu

n+1
G = fGd + CT

GP
n

6: Solve the auxiliary problem to compute λn+1
A :

Find
(
uA,λ

n+1
A

)
,

[
KA CT

A

CA 0

] [
uA

−λn+1
A

]
=

[
fAd

CGu
n+1
G

]
7: Solve the local problem:

Find
(
un+1
L ,λn+1

)
,

[
KL CT

L

CL 0

] [
un+1
L

λn+1

]
=

[
fLd

CGu
n+1
G

]
8: Compute the new Pn+1:

Pn+1 = λn+1
A + λn+1

9: Calculate the residual of the iteration rn+1 = Pn+1 −Pn

10: Update the new Pn+1 including relaxation factor µ:

Pn+1 = µPn+1 + (1− µ)Pn

11: Estimate the error of the iteration step as η = ‖rn+1‖2 / ‖r0‖2
12: Verify convergence criteria: η < tol

Moreover, the case of matching meshes on the interface between auxiliary and local models is assumed. For the105

case of non-matching meshes, a projection step needs to be developed to communicate the displacement field from
the global to the local model, and the reaction forces from the local to the global auxiliary domain.

This algorithm is no more than a fixed point for which the convergence is known to be slow. Full linear models
can be considered as preconditioners for a Krylov solver to improve the convergence rate. In the case of a non-linear
local model, quasi-Newton or Aitken’s relaxation must be taken into account [11, 18].110

3 Global/Local method with Robin Parameters

As previously stated, the standard global/local analysis can be observed as a coupling of the complementary and
local model by means of a Lagrange’s multiplier. This coupling problem can be solved with an iterative Dirichlet-
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Neumann fixed-point algorithm.
However, in the same way as Schwarz domain decomposition methods [14], Robin conditions can be introduced115

to enhance the convergence and obtain more flexibility. In fact, the kinematic compatibility between the comple-
mentary and local model is broken and replaced by Robin conditions written on the interface Γ. The first studies
in the global/local method with Robin conditions are introduced in [15] and reminded in [18]. The proposal in this
paper is to go further and derive a complete mixed global/local method.

3.1 Derivation of Global/Local Analysis with Robin Parameters120

The mechanical problem is presented differently in this section as it follows a mixed domain decomposition frame-
work. Instead of using a Lagrange’s multiplier specified on the interface Γ, reaction forces λL and λC are considered
as full unknowns on the interface. The conditions to be enforced at the interface are provided by writing the problem
as a domain decomposition:

λL + λC = 0 Equilibrium of forces

CLuL −CCuC = 0 Continuity of displacements
(17)

These two equations interpreting the interface behaviour are written with Robin conditions:

λL + λC − kC (CLuL −CCuC) = 0

λL + λC + kL (CLuL −CCuC) = 0
(18)

kC and kL are Robin parameters, which are stiffness operators. Symmetric definite positive operators are125

selected to ensure the equivalence with Eq. (17) of the interface. These Robin conditions are determined and
written on the interfaces, connecting reaction forces λC and λL to the interface displacements CLuL and CCuC .

Thus, the new system to be solved is:

KCuC = fCd + CT
CλC

λL + λC − kC (CLuL −CCuC) = 0

KLuL = fLd + CT
LλL

λL + λC + kL (CLuL −CCuC) = 0

(19)

Similarly, as the standard global/local method, the problem in the complementary model is generalized to the
global model. Therefore, the first equation of the system becomes as follows:130

KGuG = fGd + CT
GλC + CT

GλA (20)

In addition, as uG and uC are equal on the interface Γ, Robin conditions can also be written as:

λL + λC − kG (CLuL −CGuG) = 0

λL + λC + kL (CLuL −CGuG) = 0
(21)

with kG = kC .

Remark 2. λC is the reaction force of a problem in the complementary domain. Therefore, it is preferable not to
use the notation λG in order to avoid a confusion on the nature of λG.

The first equation of the Robin conditions allows to obtain the expression of λC to incorporate it into the135

equilibrium of the global model, which led to:

KGuG = fGd + CT
GλA −CT

G (λL − kGCLuL − kGCGuG) (22)

The second equation of the Robin conditions allows to obtain the expression of λL to incorporate it into the
equilibrium of the local model, which led to the following equation:(

KL + CT
LkLCL

)
uL = fLd + CT

L (kLCGuG − λC) (23)
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Similarly as the global/local method, a fixed-point algorithm can be derived where an iteration consists of the
following steps:140

1. Global problem: knowing (un
L,λ

n
L,λ

n
A), find un+1

G solution of:

KGu
n+1
G = fGd + CT

G(λn
A − (λn

L − kGCLu
n
L − kGCGu

n
G))︸ ︷︷ ︸

Pn

(24)

2. Auxiliary problems: computing the reaction forces on ΩA and ΩC on the interface Γ:

λn+1
A = CA

(
KAuG|ΩA

− fAd
)

λn+1
C = CC

(
KCuG|ΩC

− fCd
) (25)

3. Local problem: knowing
(
un+1
G ,λn+1

C

)
, find un+1

L solution of:(
KL + CT

LkLCL

)
un+1
L = fLd + CT

L

(
kLCGu

n+1
G − λn+1

C

)
(26)

Remark 3. As to preserve the global model without any change, the contribution of uG is considered on the right-
hand side of the previous equation with the term −CT

GkGCGu
n
G, due to the Robin parameter kG. In fact, the

contribution of Robin conditions leads to local changes of global stiffness operators regarding the interface degrees of
freedom. For another framework of dealing with Robin conditions see [30]

As mentioned in the previous section, auxiliary problems are not needed if finite element codes can get reaction145

forces on an immersed surface. Nevertheless, if this is not the case, the auxiliary problem in ΩC is still not necessary.
Indeed, it can be computed from known and easy computations without assembling the operator KC :

λn+1
C = CC

(
KCu

n+1
G |ΩC

− fCd

)
= CG

(
KGu

n+1
G − fGd −

(
KAu

n+1
G − f

A

d

))
= CGC

T
GP

n − λn+1
A

λn+1
C = Pn − λn+1

A

(27)

The same relation as the standard global/local method is given where Pn = λn+1
C + λn+1

A . In addition, since
Pn = λn

A − λn
L + kGCLu

n
L − kGCGu

n
G, Pn+1 can be written in function of Pn, a new rest rn+1 will appear:

Pn+1 = λn+1
A − λn+1

L + kGCLu
n+1
L − kGCGu

n+1
G

= Pn − λn+1
C − λn+1

L + kGCLu
n+1
L − kGCGu

n+1
G

= Pn −
[(
λn+1
C + λn+1

L

)
+ kG

(
CGu

n+1
G −CLu

n+1
L

)]
= Pn + rn+1

(28)

The new rest rn+1 now incorporates a mixed contribution of the discontinuity of displacements and the disequi-150

librium of forces:

rn+1 = −
(
λn+1
C + λn+1

L

)︸ ︷︷ ︸
Disequilibrium

− kG

(
CGu

n+1
G −CLu

n+1
L

)︸ ︷︷ ︸
discontinuity

(29)

3.2 Algorithm for Global/Local method with Robin Parameters

The mixed global/local methodology with Robin conditions can be located in Alg. 2.
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Algorithm 2 Global/Local algorithm with Robin Conditions

1: Initialize interface vector P0 = 0
2: Initialize error η = 1 and tolerance tol
3: Start iterations, n = 0
4: while η > tol do
5: Solve the global problem:

Find un+1
G , KGu

n+1
G = fGd + CT

GP
n

6: Solve the auxiliary problem:

Find
(
uA,λ

n+1
A

)
,

[
KA CT

A

CA 0

] [
uA

−λn+1
A

]
=

[
fAd

un+1
G |Γ

]
7: Compute the reaction force λn+1

C :
λn+1
C = Pn − λn+1

A

8: Solve the local problem:
Find un+1

L ,(
KL + CT

LkLCL

)
un+1
L = fLd + CT

L

(
kLCGu

n+1
G − λn+1

C

)
9: Compute the reaction force λn+1

L :

λn+1
L = −λn+1

C − kL

(
CLu

n+1
L −CGu

n+1
G

)
10: Compute the residual of the iteration rn+1 = −

[(
λn+1
C + λn+1

L

)
+ kG

(
CGu

n+1
G −CLu

n+1
L

)]
11: Compute the new Pn+1:

Pn+1 = Pn + rn+1

12: Update the new Pn+1 including relaxation factor µ:

Pn+1 = µPn+1 + (1− µ)Pn

13: Estimate the error of the iteration step as η = ‖rn+1‖2 / ‖r0‖2
14: Verify convergence criteria: η < tol with tol = 10−4

The method error is calculated by using the same expression as for the primal-dual strategy presented in Eq.
(16). However, each residual term in Eq. (16) is calculated differently for the mixed global/local analysis (it is155

estimated as a combination of interface forces and displacements). It could be interesting to take into consideration
the error of the results reached when using the global/local analysis with mixed conditions and the results regarding
the monolithic computation. This error is calculated as the rule of displacement difference on the interface between
the global and the monolithic model, as presented in Eq. (30).

ηMono. =
‖
(
CGu

n+1
G − uMono.

)
‖2

‖uMono.‖2
(30)

Figure 3 shows a flowchart of the iterative method implementation of the global/local with Robin parameters.160
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Figure 3: Flowchart of the algorithm of the Global/Local Analysis with Robin Parameters.

4 Results for 2D structures using Global/Local Analysis with Robin
Parameters

4.1 Description of the two cases - definition of the Robin Parameters

Code Aster [12] was used to implement the global/local algorithm with Robin parameters as two A-36 steel structures
modelled with 2D plane stress formulation: a) an inverted T-Shape with a 10mm initial crack and b) an inverted165

T-Shape model with a circular cut to induce the plastic hardening behaviour. The properties used for the analysis
correspond to: Yield stress of 250 (MPa), hardening ratio of 0.1 and 4 propagation steps with a maximum advance
of 2 (mm) per step. Geometrical properties are presented in Figure 4a and Figure 4b.
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(a) Inverted T-Shaped cracked problem.

(b) Inverted T-Shaped hardening problem.

Figure 4: Geometry of analyzed models.

The Robin parameter is chosen as the stiffness of an element strip [33], as presented in Figure 5. Robin
operators kL and kG are determined independently: kL is the linear elastic stiffness of the strip on the side of170

the complementary model from the interface and kG is the linear elastic stiffness of the strip on the side of the
local model from the interface. In addition, Aitken’s δ2 dynamic relaxation is used to accelerate the convergence in
relation to a classical static relaxation.

Figure 5: Element strip of elements used for the analysis.

Remark 4. In the Code Aster implementation, the Robin operator is calculated as follows: the strip of elements is

11



applied with a Young Modulus variable (αLEL) for the local model, modifying the stiffness and considering coupled175

degrees of freedom on the interface. This strip of elements is connected directly to the interface and with fixed
support boundary conditions. On the other hand, the strip of elements is used to compute the part on the right-hand
side for the global model, which corresponds to the Robin conditions in Eq. (28). It is not assembled with the global
stiffness. The strip of elements considers a Poisson ratio of 0.3, a Young Modulus variable (αGEG) and fixed
boundary conditions on the opposite side of the interface, as presented in Figure 5.180

4.2 Results

Figure 6: Method error for Global/Local Analysis with Robin Parameters and cracked domain with 4 propagation
steps.
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Figure 7: Method error for Global/Local Analysis with Robin Parameters and plastic hardening domain.

It is clear that the global/local Analysis with Robin parameters converges slower with respect to the primal-dual
Method (from 8 to 6 iterations compared to the primal-dual for the cracked model). For the hardening problem,185

it converges from 8 to 6 with respect to the primal-dual and considering the number of iterations. The Aitken δ2

dynamic relaxation converges both models rapidly, with a faster convergence rate for the primal-dual Method.
The complete global/local analysis results with the initial Robin operator are shown in Table 1 for non-

linear/cracked behaviour.

Model Mono. Method Iter. for
Error Error Conv.

Cracked 6.9E-06 4.7E-05 8
Hardening 6.0E-06 4.4E-05 8

Table 1: Results for both models and non-linear/cracked behaviour, using Aitken δ2 and the Initialized Robin
Operator.

Summary of the Results190

As presented in Section 4, the mixed method converges slower with respect to the primal-dual method. Regarding
computational times, these were 18 seconds for the cracked model and 10 seconds for the non-linear hardening
problem. However, these times are referential and can be improved by optimizing the python code. Finally, as
the analysis considers an arbitrary strip of elements used to start the Robin operator, an optimization process is
carried out with the intention of reducing the number of iterations until convergence and analysing the results for195

different Robin parameter values. In addition, the strip of elements are very stiff and do not represent the neighbour
structure, i.e., the theoretical optimum.

Remark 5. Is important to mention that non-linear plastic behaviour or crack tip propagation are not being
transferred between the local and global models. The interfaces are considered far from the source of plasticity or the
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crack tip; Therefore, based on St. Venant’s principle, only the effects of these singularities are transmitted between200

models. In order to study specific aspects of the non-linear behaviour, the local model should be further analyzed.
Finally, the ”total” solution of the analysis should be considered as the superposition of the global linear model and
the local non-linear model.

5 Optimization of the Robin parameter Global/Local Analysis with
Robin Conditions in 2D plane stress205

5.1 Description of the optimization process

As presented in [25], the convergence of the global/local analysis with mixed conditions can be assured for a certain
range of values for the Robin parameters. Within this range, an optimum that minimizes the number of iterations
can be found. However, as presented in [34, 13], the value depends on the problem type, the applied loads, the
boundary conditions and the form of the Robin operator used in the analysis. Therefore, in order to find the210

Robin operator that guarantees convergence and also minimizes the number of iterations until convergence, an
optimization process is performed for the different problems presented. Optimization algorithms have been used
widely in engineering problems and other scientific areas, such as the Basin-Hopping Algorithm [24, 29], already
distributed within Scipy library [36].

Remark 6. The values of the Robin operator assuring the convergence of the non-intrusive method with Robin con-215

ditions can be estimated analytically for simple examples with few degrees of freedom. For industrial/real structures,
the range of the values are not easily found directly, so these values are found by iterative methods as presented in
[20, 13] or by using two scale strategies as shown in [27, 15].

For this article, the Basin-Hopping algorithm is used in the optimization process, allowing the specification of
an initial “guess” of the problem within the search space and stochastically start the refinement of the solution until220

finding the best possible solution. The Basin-Hopping algorithm is based on the transformation of the ”potential
energy landscape” of an objective function, finding local minima using the Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno method (L-BFGS) [9]. This potential energy surface is being explored by means of random jumps
for each evaluation based on the Boltzmann probability distribution. The number of random jumps is defined by
a variable N, in which the probabilities for finding the best local minimum are increased for larger values of N.225

Therefore, the Basin-Hopping algorithm has been used successfully to find a minimum using N=110 or larger [37].
This parameter is also a measurement of the computational cost, because it is a direct measurement of the amount
of random jumps between each solution. For our work, N has been defined as the default option provided in Scipy,
with a value of N equal to 100. Finally, the L-BFGS method has a computational complexity of O(n2) and must
be repeated N times in accordance with the number of random jumps [8].230

Nevertheless, a global optimum cannot be assured in metaheuristics, due to the non-convex nature of the
problem. However, a good approximation of a global minimum solution can be found. This is due to the internal
behaviour of the optimization process: it is stopped through an internal convergence criterion and not by founding
a global minimum [3]. More information and applications on the different optimization algorithms can be seen in
[10, 21, 2, 22, 26, 7, 40, 35], among others. Therefore, considering that the convergence of the method depends on235

the Robin parameters as presented in [25], the initial Robin parameter (calculated as the condensed stiffness on the
interface estimated from an initial strip of elements and presented in Figure 5) can be modified by means of two
factors: αG for the global model and αLfor the local fine model, as shown in Eq. (31):

kL = αLkL
initkG = αGkG

init (31)

The optimization algorithm will be used to find an optimum value for αG,L that minimizes the number of
iterations until convergence.240

It is important to note that the search space for the values of αG,L to be used in the optimization process are
constrained between 0 and 100 in order to find an overall optimum that minimizes the number of iterations, starting
with the initial search direction kinit

G,L, i.e., αG = 1 and αL = 1.
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The optimization problem is carried out using the initial configuration of the domains and considering the
initialized Robin conditions and multiplied by the α factor. The analysis contemplates linear elasticity behaviour245

for both problems for all optimization trials. Finally, the results for the optimum αG,L will be used for non-linear
problems (all propagation steps and post-yielding hardening).

The following procedure is applied to perform the optimization of the Robin parameter, using the Basin-Hopping
[29] algorithm, as well as for linear elastic initialized models, i.e., without plasticity or crack propagation:

• Choose global and local models to be analysed considering the elastic linear behaviour, as presented in250

Figure 4a and Figure 4b.

• Perform the analysis on the model considering the iterative non-intrusive scheme with αL = 1 and αG = 1
(Initial guess or initial trial for the Robin parameter).

1. Choose new values of αL and αG found in the local neighbourhood of the initial guess.

2. Perform the non-intrusive analysis using Robin parameters and recover the number of iterations until255

the analysis converges for each αL and αG in the neighbourhood of the current trial.

3. Study the convergence values of the previous neighbourhood and select random values in the best direction
(gradient) found in the neighbour to proceed with updated αG,L trial.

• When the optimization algorithm converges and the best solution for the linear model is obtained, the best
factors αopt

L and αopt
G are recovered.260

• Apply αopt
L and αopt

G to the non-linear model (hardening or cracked model) and study the convergence.

5.2 Results

For the 2D cases, the optimization results are presented summarized in Table 2 for both models.

Model (αG, αL) Mono. Method Iter.
Error Error Conv.

Init. cracked (1.167,4.353) 6.1E-06 9.8E-05 5
Init. perforated (0.515,1.676) 3.4E-06 8.7E-05 7

Table 2: Optimized α results for initial cracked and perforated linear model.

The optimized α found for the linear cases are used directly as an input for the non-linear cases. These results,
regarding the evolution of the method error with respect to iterations, are introduced in Figure 8 for the cracked265

case and in Figure 9 for the plastic hardening case.
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Figure 8: Method error for Global/Local Analysis with Optimized Robin Parameters and cracked domain.

Figure 9: Method error for Global/Local Analysis with Optimized Robin Parameters and plastic hardening domain.
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Figure 8 and Figure 9 show that the number of iterations are reduced by 25% for the cracked case and 12.5% for
the plastic hardening case respecting the non-optimized solution (initial guess of the Robin parameter). However,270

with regard to the primal-dual solution, the cracked optimized model equals the performance in terms of the number
of iterations. For the non-linear hardening case, the optimized model with Robin parameters performs slower with
respect to the primal-dual method. The results for the cracked model and non-linear hardening, using the optimized
αG,L factors, are presented in Table 3.

Model (αG, αL) Mono. Method Iter.
Error Error Conv.

Cracked (1.167 , 4.353) 4.3E-06 6.6E-05 6
Hardening (0.515 , 1.676) 2.4E-06 8.3E-05 7

Table 3: Results for optimized α, cracked behaviour (4 propagation steps) and post-yielding hardening.

Summary of the Results275

When optimizing the linear elastic analysis of each model (including the initial configuration of the local geometry)
using the Basin-Hopping algorithm, the convergence of non-linear models is improved as expected. The optimized
αopt
L and αopt

G used for the non-linear problems obtain better results with respect to the non-optimized problems,
similar to the performance of the primal-dual method. This approximation using the linear elastic optimized model
works for localized patches with non-linearities. However, the solution found with the Basin-Hopping algorithm for280

the linear models may not be the actual optimum for the non-linear models. Finally, as the Code Aster code with
the python interface was implemented, the optimization times are elevated in comparison with the non-optimized
α case. However, these times can be optimized by using better coding practices and more efficiency in computing
resources.

6 Global/Local Analysis with Robin Conditions for 3D structures285

As presented in Section 5, the same approach will be applied in two models: a cantilever beam with an initial
crack near the fixed support and a beam with two 50 (mm) perforations and non-linear hardening behaviour. The
properties are the same as the previous case but including different lengths, loads applied and crack size, as shown
in Figure 10. The crack propagates for the 3D case, including 3 propagation steps and 10 (mm) for maximum
crack advance per step for the cracked domain.290

Figure 10: 3D cantilever cracked and non-linear hardening beam.

As the discretization carried out in the global and local 3D models are geometrically complex, incompatible
meshes were generated. The incompatibility is managed by Code Aster projecting the fields between the models
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and the interface. The initial Robin parameter will be used in order to find the results for the non-optimized αG,L

for both models, which are summarized in Table 4.

Model (αG, αL) Mono. Method Iter.
Error Error Conv.

Cracked (1 , 1) 0.437 5.19E-05 10
Hardening (1 , 1) 0.371 4.53E-05 10

Table 4: Results for the optimization for 3D model with initial conditions and linear behaviour.

Results using the optimized Robin parameter, following the same procedure as shown in Sec. 5, are summarized295

in Table 5 and presented in Figure 11 for the cracked case and in Figure 12 for the plastic hardening case.

Figure 11: Method error for Global/Local Analysis Robin Parameters for 3D cracked domain and optimized αG,L.

The use of the optimized αG,L implies a reduction on the number of iterations from 10 to 9 for the cracked case
with 3 propagation steps, meaning a 18% faster respect to the primal-dual and a 10% improvement in relation to
the global/local with non-optimized Robin conditions. For the hardening problem, the optimized αG,L reduces the
number of iterations from 10 to 8, which corresponds to an improvement of 20% with respect to the non-optimized300

Robin conditions and 11% improvement in comparison to the primal-dual solution. The complete results for the
3D analysis are presented in Table 5.
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Figure 12: Method error for Global/Local Analysis Robin Parameters for 3D hardening domain and optimized
αG,L.

Model (αG, αL) Mono. Method Iter.
Error Error Conv.

Cracked (1.39 , 2.31) 0.727 3.34E-05 9
Hardening (0.386 , 1.840) 0.311 6.96E-05 8

Table 5: Results for the 3D cracked models 3 propagation steps.

The final deformed shape for the cracked model is presented in Figure 13 for the Global/Local 3D model with
Robin conditions (optimized) and in Figure 14 for the hardening case.

Figure 13: Deformed shape of the 3D beam for Global/Local Analysis with Optimized Robin Parameters and
cracked domain.
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Figure 14: Deformed shape of the 3D beam for Global/Local Analysis with Optimized Robin Parameters and
hardening domain.

Summary of the Results305

As in Section 5, the optimization improves the convergence with respect to the initialized Robin parameter.
The optimization process, when applied to the 3D cracked model, improves the convergence rate, resulting in

better performances, considering the number of iterations with respect to the primal-dual methodology.

7 Discussion

In this article, the global/local non-intrusive analysis with Robin parameters was implemented in 2D and 3D310

problems with cracked and plastic hardening behaviour. Subsequently, results were optimized using the Basin-
Hopping algorithm and compared to a primal-dual non-intrusive analysis.

The method presented in this study has a good convergence rate for 2D and 3D non-linear plastic hardening
behaviour and cracked models. However, as for any mixed method, the selection of the Robin parameters is crucial
for convergence. Our initial choice is based on studying the effect of a simple element strip, but it may not be very315

efficient compared to the primal-dual approach.
The optimization of the mixed global/local method was performed using the Basin-Hopping algorithm, allowing

an improvement in the performance of the global/local analysis with Robin parameters. The optimized α is different
for each case, which is consistent with results presented in [34], indicating that the values of α are specific to each
model (geometry, behaviour, etc.), loads and boundary conditions.320

Nevertheless, the optimization does not guarantee that the mixed global/local analysis works better with respect
to the primal-dual non-intrusive analysis, although a local minimum could improve the mixed analysis results.

8 Future research

The Robin parameter and the flexibility added to the structure are a great advantage of the mixed model, as
presented in [20]. Therefore, the non-intrusive analysis with Robin parameters can be studied for structures with325

geometric non-linear behaviour and large displacements.
Another topic to be studied further is to extend the analysis to larger structures, associated with multiple

domains and with multiple stiffeners or variable cross sections. This is useful to study the convergence of the
method in structures with strong modifications in the stiffness. Consequently, the original approximation of the
Robin parameter may not be the best for each interface and these factors could be different for each analysis330

direction, as presented in [13].
Different crack propagation techniques must be considered in future studies, for example, the Cohesive Zone

Model (CZM) and the Virtual Closing-Crack Technique (VCCT) to study the effectiveness of the global/local
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method with Robin parameters using this type of analysis. The feasibility of coupling the global/local method with
phase field approaches to deal with crack propagation has been studied successfully in [17, 28].335

The studied strategies for solving the global/local problem, i.e., primal-dual and with Robin conditions, work
without problems for incompatible patches. Nevertheless, a sensitivity analysis can be performed to study the
effect of incompatible meshes for different structures and behaviours, and the error that can be induced due the
interpolation of forces and displacements in the different interfaces.

Basin-Hopping is a meta-heuristic that can be easily implemented, but as presented in [5], it may not be340

the fastest to obtain convergence. Therefore, a more efficient way to optimize the Robin parameters and reduce
computational times must be studied and applied, such as the Particle Swarm Optimization [39] and exploiting the
ability to evaluate multiple trials with parallel architecture. In addition, the efficiency of the algorithm on larger
cases will be studied. For now, due to the small problems we studied, the iterative algorithm cannot compete with
a full-scale computation. We expect that larger problems may reverse this trend.345

Finally, the effect of the discretization for the 2D and 3D models, the degree of the shape functions used for the
FEM method elements and also the coupling between 2D global models and 3D local non-linear models must be
analyzed, in order to study the convergence of these elements and how affects the response.
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