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Abstract

The theory of affine processes has been recently extended to continuous stochastic Volterra equations. These
so–called affine Volterra processes overcome modeling shortcomings of affine processes by incorporating
path–dependent features and trajectories with regularity different from the paths of Brownian motion. More
specifically, singular kernels yield rough affine processes. This paper extends the theory by considering affine
stochastic Volterra equations with jumps. This extension is not straightforward because the jump structure
and possible singularities of the kernel may induce explosions of the trajectories. This study also provides
exponential affine formulas for the conditional Fourier–Laplace transform of marked Hawkes processes.

Keywords: affine processes, affine Volterra processes, stochastic Volterra equations, Hawkes processes,
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1. Introduction

Affine stochastic processes constitute unquestionably the most popular multi–factor framework to model
rich and flexible stochastic dependence structures. Semi–explicit formulas for the Fourier–Laplace transform
of affine processes make them numerically tractable since Fourier transform–based methods can be used to
perform fast calculations.

We recall that a conservative regular affine process X = (Xt)t≥0 with state space E ⊂ Rm is a stochas-
tically continuous conservative Markov process having sufficiently regular Fourier–Laplace transforms given
by exponential affine formulas in the initial state X0. Such a process X can also be seen as a special
semimartingale whose semimartingale characteristics (B,C, ν), with respect to the “truncation function”
h(ξ) = ξ, are of the form

Bt =

∫ t

0

b(Xs) ds, Ct =

∫ t

0

a(Xs) ds, ν(dt,dξ) = η(Xt,dξ) dt, (1)

where

b(x) = b0 +

m∑
k=1

xkbk, a(x) = A0 +

m∑
k=1

xkAk, η(x, dξ) = ν0(dξ) +

m∑
k=1

xkνk(dξ), x ∈ E. (2)
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In (2) we take Ak ∈ Rm×m, bk ∈ Rm, and νk(dξ) signed measures on Rm such that νk({0}) = 0 and∫
Rm |ξ|

2|νk|(dξ) < ∞, for every k = 0, . . . ,m. Additional conditions on the parameters Ak, bk and νk have
to imposed in order to guarantee existence and invariance results depending on the state space E. See for
instance [11] for E = Rk+ × Rl and [8] for E equal to the space of positive semidefinite matrices.
The conditional Fourier–Laplace transform of the affine process X is given by

E
[

exp

(∫ T

0

f(T − s)>Xs ds

)∣∣∣∣Ft] = exp

(
φ(T − t) +

∫ t

0

f(T − s)>Xs ds+ ψ(T − t)>Xt

)
, (3)

with ψ a Cm−valued function that solves the Riccati equation

ψ(t) =

∫ t

0

R (s, ψ(s)) ds, (4)

where
Rk (s, z) = fk (s) +

1

2
z>Akz + z>bk +

∫
Rm

(
ez
>ξ − 1− z>ξ

)
νk(dξ), k = 1, . . . ,m, (5)

and φ is the C−valued function

φ(t) =

∫ t

0

(
ψ(s)>b0 +

1

2
ψ(s)>A0ψ(s) +

∫
Rm

(
eψ(s)

>ξ − 1− ψ(s)>ξ
)
ν0(dξ)

)
ds. (6)

The identity (3) is only valid under additional hypotheses on the Cm−valued function f and t, T ≥ 0 that
imply appropriate conditions on the functions φ and ψ. 1

The theory of affine processes was recently extended in [5, 14] to the framework of stochastic Volterra
equations with continuous trajectories, where in general the semimartingale and Markov properties do not
hold. These so–called affine Volterra processes overcome modeling shortcomings of affine processes because
they may possess path–dependent features which introduce memory structures in the models. Furthermore,
they can have trajectories whose Hölder’s regularity is different from the Hölder’s regularity of the paths
of Brownian motion. More specifically, singular kernels yield rough processes in the spirit of [6, 12, 13].
The goal of this paper is to extend the results in [5, 14] by considering general affine stochastic Volterra
equations with jumps. This extension is not straightforward because the jump structure together with
possible singularities of the kernel may induce explosions of the trajectories.

Our study can be motivated by financial models for stock volatility, in particular by the observation in
[24] that a complete description of volatility should take into account both path roughness and jumps. We
also refer to [25] for an interesting discussion on the topic. In this paper, however, we concentrate on the
mathematical properties of this family of processes and we address their possible applications in a separate
article [7].

We summarize in this introduction the framework and the main results of our study. Suppose that X is
a predictable solution of a stochastic Volterra equation of the form

Xt = g0(t) +

∫ t

0

K(t− s) dZs, P⊗ dt–a.e. (7)

It is defined on a filtered probability space (Ω,F , (Ft)t≥0,P), where the filtration (Ft)t≥0 satisfies the
usual conditions, and has trajectories in L1

loc(R+;E), for some Borel–measurable state space E ⊂ Rm.
In (7) we take g0 ∈ L1

loc(R+;Rm), K ∈ L2
loc(R+;Rm×d) a matrix–valued kernel, and Z a d−dimensional

semimartingale whose characteristics depend on X. In order to have an affine structure we suppose that Z
has characteristics of the form (1)-(2), with Ak ∈ Rd×d, bk ∈ Rd, and νk signed measures on Rd such that
νk({0}) = 0 and

∫
Rd |ξ|

2|νk|(dξ) < ∞. In this case we call X an affine Volterra process. When E = Rm,

1One of these conditions could be for instance the boundedness of the right term in (3). On a related subject, we also refer
to [18] where the authors analyze the possible explosions of the associated Riccati equation (4).
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existence of weak solutions to (7) with trajectories in L2
loc(R+;Rm) has been established in [2, Theorem

1.2]. For E = R+ and for a Volterra CIR–type of process with positive jumps results in this direction can
be found in [1, Theorem 2.13].

Section 2 contains more details about this setting as well as important results regarding stochastic
convolutions with respect to processes with jumps. These results, which play a crucial role in our arguments,
extend and are inspired by those in [5] where the authors study stochastic convolutions with respect to
processes with continuous trajectories.

Fix T > 0 and f ∈ C (R+;Cm). By analogy with (4), assume that ψ ∈ C(R+;Cd) solves the Riccati–
Volterra equation

ψ (t)
>

=

∫ t

0

R (s, ψ(s))
>
K(t− s) ds, (8)

with R as in (5), and let φ be given by (6).
In Section 3 we show our first main result, namely Theorem 5, which is a generalization of [5, Theorem 4.3]
and provides a semi–explicit formula for the Fourier–Laplace transform of X. This theorem shows that, in
the above–mentioned framework, if we define

Mt = exp

(
φ(T − t) +

∫ t

0

f(T − s)>Xs ds+

∫ T

t

R (T − s, ψ(T − s))> gt (s) ds

)
, (9)

where (gt (·))t≥0 denotes the adjusted forward process2

gt(s) = g0(s) +

∫ t

0

K (s− r) dZr, s > t, (10)

then M is a local martingale, and if M is a martingale then one has the exponential affine formula

E
[

exp

(∫ T

0

f(T − s)>Xs ds

)∣∣∣∣Ft] = Mt. (11)

As a consequence, under these conditions, uniqueness in law holds for the stochastic Volterra equation (7).
In Subsection 3.1, we discuss how the arguments in Section 3 can be adapted to obtain exponential affine

formulas for the conditional Fourier–Laplace transforms of the marginal distributions of the solution process
X and the semimartingale Z in (7). Notably, Theorem 6, which investigates the marginals of Z, can be
applied to obtain original expressions for the conditional transforms of a multi–dimensional Hawkes process,
see Corollary 7 and Remark 6.

Section 4 contains our second main result, which is Theorem 10. This theorem establishes, under the
assumption m = d and additional conditions on the kernel K, an alternative formula for the local martingale
Mt in (9) in terms of (Xs)s≤t and Zt only, namely

log (Mt) = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
g0 (T − s) ds

+ ψ (T − t)> Zt +
(
π>T−t ∗ (X − g0)

)
(t) , (12)

with φ as in (6) and πh ∈ L1
loc(R+;Cd), h > 0, a deterministic function that depends on K and ψ. This

expression is a corollary of a similar formula for the adjusted forward process (10), shown in Lemma 9. The
identity (12) can be used to show that (3) is a particular instance of (11) when g0 is constant, and K is
constant and equal to the identity matrix.

In Section 5, see Theorems 13 and 14, using our first two main results, we give a complete proof of the
exponential affine formula (11) in the particular case m = d = 1, E = R+ and for a Volterra CIR–type

2This adjusted forward process was also used in [3] and [19] to elucidate the affine structure of affine Volterra processes with
continuous trajectories.
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process with positive jumps. The argument hinges on a novel comparison result between solutions of Riccati–
Volterra equations, namely between a solution of (8) and a solution of an analogous equation in which the
functions ψ and R are substituted with the corresponding real parts. This comparison result, together with
the affine with respect to the past formula (12) of Theorem 10, yields the desired conclusion because we can
bound the complex–valued local martingale M (9) of Theorem 5 with a real–valued martingale.
It is important at this point to mention [9], where the authors construct infinite dimensional Markovian lifts
of affine Volterra processes, possibly with jumps, and study affine transform formulas for these lifts. Such
formulas are closely related to those of the present study within a one–dimensional setting, although in [9]
the focus is on the marginal distributions of X (see Remark 7 in Subsection 3.1 for a precise comparison).
The novelty of our work stems from the approach that we propose, which dispenses with the abstract infinite
dimensional theory in [9]. In addition, we carry out a complete analysis of the associated Riccati–Volterra
equations as in Section 5. Furthermore, we obtain the affine with respect to the past formula (12), as well as
new formulas for the semimartingale Z which can be applied to derive novel expressions for the conditional
Fourier–Laplace transforms of multi–dimensional marked Hawkes processes, see Theorem 6 and Corollary
7. These last two points also distinguish our paper from [1].

Appendix A contains some basic results regarding the classical forward process and Appendix B results
regarding the 1−dimensional Riccati–Volterra equations appearing in Section 5.

Notation: Throughout the paper, elements of Rk and Ck are column vectors. Given a matrix A ∈ Ck×l, the
element in row i and column j is Aij , A> ∈ Cl×k is its transpose matrix, and |A| is the Frobenius norm. We
also use the notation Rk+ =

{
x ∈ Rk : xi ≥ 0, i = 1, . . . , k

}
and Ck− =

{
x ∈ Ck : Re (xi) ≤ 0, i = 1, . . . , k

}
,

where for z ∈ C, Re(z) denotes its real part. The imaginary part of a complex number z is Im z. We use
the convolution notation (f ∗ g) (t) =

∫ t
0
f (t− s) g (s) ds for functions f, g.

2. Preliminaries

Fix d,m ∈ N. Let g0 ∈ L1
loc (R+;Rm), K ∈ L2

loc
(
R+;Rm×d

)
be a matrix–valued kernel and E ⊂ Rm be a

Borel–measurable subset which will be the state–space that we consider. We also introduce a characteristic
triplet (b, a, η) consisting of the measurable maps b : Rm → Rd, a : Rm → Rd×d and the (nonnegative)
transition kernel η (x, dξ) from Rm to Rd. We require this triplet to be affine on E, meaning that, for every
x ∈ E,

b (x) = b0 +

m∑
k=1

xkbk, a (x) = A0 +

m∑
k=1

xkAk, η (x,dξ) = ν0 (dξ) +

m∑
k=1

xkνk (dξ) . (13)

Here b0, b1, . . . , bm ∈ Rd, A0, A1, . . . , Am ∈ Rd×d, and (νk)k=0,...,m are signed measures on Rd such that∫
Rd |ξ|

2 |νk| (dξ) < ∞, with νk ({0}) = 0. Throughout the paper, we denote by X = (Xt)t≥0 a predictable
process with trajectories in L1

loc (R+;Rm) and such that X ∈ E, P ⊗ dt−a.e. It is defined on a filtered
probability space

(
Ω,F ,F = (Ft)t≥0 ,P

)
where the filtration F satisfies the usual conditions. Moreover, we

assume that X solves the following affine stochastic Volterra equation of convolution type

Xt = g0 (t) +

∫ t

0

K (t− s) dZs, P− a.s., for a.e. t ∈ R+. (14)

Here Z is a d−dimensional semimartingale starting at 0 whose differential characteristics with respect to
the Lebesgue measure are (b (Xt) , a (Xt) , η (Xt,dξ)) , t ≥ 0. These characteristics are taken with respect
to the “truncation function” h (ξ) = ξ, ξ ∈ Rd, which can be chosen because Z is a special semimartingale
due to [16, Proposition 2.29, Chapter II] and the local integrability of the trajectories of X. In the sequel,
we denote by µ (dt, dξ) the measure associated with the jumps of Z and by ν (dt,dξ) = η (Xt,dξ) dt its
compensator. We remark that ν(dt,dξ) is nonnegative, even though νk, k = 0, . . . ,m, is a signed measure
and we do not impose any requirements on the sign of the components of x ∈ E. Indeed, from the definition
of (nonnegative) transition kernel, η(x,dξ) is a nonnegative measure on Rd for every x ∈ Rm. This is
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coherent with the fact that ν(dt, dξ) should be nonnegative, as it is the compensator of the nonnegative
jump–measure µ(dt,dξ).

It is worth discussing the good definition of the stochastic integral in (14). Recalling that X ∈ E, P ⊗
dt−a.e., the canonical representation theorem for semimartingales (see [16, Proposition 2.34, Chapter II])
shows that Z admits the decomposition

Zt =

∫ t

0

b (Xs) ds+M c
t +Md

t = b0t+

d∑
k=1

bk

∫ t

0

Xk,s ds+M c
t +Md

t , t ≥ 0, P−a.s.,

where dMd
t =

∫
Rd ξ (µ− ν) (dt,dξ) is an Rd−valued, purely discontinuous local martingale and M c is a

d−dimensional, continuous local martingale satisfying d 〈M c,M c〉t = a (Xt) dt. Now if we introduce, for
every j = 1, . . . , d, the increasing process Cjt =

∫ t
0

∫
Rd |ξj |

2
ν (ds,dξ) , t ≥ 0, then we have

Cjt =

(∫
Rd
|ξj |2 ν0 (dξ)

)
t+

m∑
k=1

∫
Rd
|ξj |2 νk (dξ)

(∫ t

0

Xk,s ds

)
, t ≥ 0, P− a.s.

As a consequence of this expression, the local integrability of the paths of X implies that Cj is locally
integrable. Hence [16, Theorem 1.33 (a), Chapter II] yields thatMd is a locally square–integrable martingale
with

d
〈
Md,j ,Md,j

〉
t

=

[ ∫
Rd
|ξj |2 ν0 (dξ) +

m∑
k=1

(∫
Rd
|ξj |2 νk (dξ)

)
Xk,t

]
dt, (15)

where Md,j is the j−th component of Md, j = 1, . . . , d. It is convenient to introduce the locally square–
integrable martingale Z̃ = M c +Md, which satisfies

Z̃t = Zt −
∫ t

0

b (Xs) ds = Zt − b0t−
d∑
k=1

bk

∫ t

0

Xk,s ds, t ≥ 0, P− a.s. (16)

Given an integer l ∈ N and F ∈ L2
loc
(
R+;Rl×d

)
, we define the l−dimensional random variable

(
F ∗ dZ̃

)
T

= (F ∗ dM c)T +
(
F ∗ dMd

)
T

=

∫ T

0

F (T − s) dM c
s +

∫ T

0

F (T − s) dMd
s .

This is well–defined for a.e. T ∈ R+. Indeed, consider the stopping times τn = inf
{
t ≥ 0 :

∫ t
0
|Xs|ds > n

}
for all n ∈ N. Since X· (ω) ∈ L1

loc (R+,Rm), τn → ∞ as n → ∞ in Ω. Then for every T > 0, we can apply
the Young’s type inequality in [2, Lemma A.1] with p = q = r = 1 and Tonelli’s theorem to deduce that∫ T

0

(
E
[ ∫ T∧τn

0

|F (T − s)|2 |Xk,s|ds
])

dT =

∫ T

0

(∫ T

0

|F (T − s)|2 E
[
1{s≤τn} |Xk,s|

]
ds

)
dT

≤ ‖F‖2L2([0,T ];Rl×d) E
[ ∫ T∧τn

0

|Xk,s|ds
]
≤ n ‖F‖2L2([0,T ];Rl×d) <∞, k = 1, . . . ,m.

This ensures that E
[ ∫ T∧τn

0
|F (T − s)|2Xk,s ds

]
< ∞, k = 1, . . . ,m, n ∈ N, for a.e. T ∈ R+, say for every

T ∈ R+ \N , where N ⊂ R+ is a dt−null set. As a consequence, it is straightforward to conclude that the
processes (∫ t

0

F (T − s) dM c
s

)
t∈[0,T ]

,

(∫ t

0

F (T − s) dMd
s

)
t∈[0,T ]

, (17)

are locally square–integrable martingales for every T ∈ R+ \N . Indeed, denoting by M c,j the j−th compo-
nent of M c, j = 1, . . . , d, for every n ∈ N we can write

d∑
j=1

E
[ ∫ T∧τn

0

|F (T − s)|2 d
〈
M c,j ,M c,j

〉
s

]
=

d∑
j=1

E
[ ∫ T∧τn

0

|F (T − s)|2
(
Ajj0 +

m∑
k=1

Xk,sA
jj
k

)
ds

]
<∞,
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and (by (15))

d∑
j=1

E
[ ∫ T∧τn

0

|F (T − s)|2 d
〈
Md,j ,Md,j

〉
s

]

=

d∑
j=1

E
[ ∫ T∧τn

0

|F (T − s)|2
(∫

Rd
|ξj |2 ν0 (dξ) +

m∑
k=1

Xk,s

∫
Rd
|ξj |2 νk (dξ)

)
ds

]
<∞.

We always work with a jointly measurable version of the stochastic convolution F ∗ dZ̃ defined on Ω× R+

(such a modification exists, see, e.g., [23, Theorem 3.5]).
As for the convolution of F with the drift part of Z, using [15, Theorem 2.2 (i), Chapter 2] we compute

E
[ ∫ T

0

(∫ T

0

1{t≤τn}1{s≤t} |F (t− s)|
(
|b0|+

m∑
k=1

|bk| |Xk,s|
)

ds

)
dt

]

= E
[ ∫ T∧τn

0

(∫ t

0

|F (t− s)|
(
|b0|+

m∑
k=1

|bk| |Xk,s|
)

ds

)
dt

]

≤ ‖F‖L1([0,T ];Rl×d)

[
|b0|T + n

(
m∑
k=1

|bk|

)]
<∞, T > 0.

This shows that there exists a P⊗ dt−null set N1 ⊂ Ω× R+ such that the next expression is well–defined

1{t≤τn(ω)}

∫ t

0

F (t− s)
(
b0 +

m∑
k=1

bkXk,s (ω)

)
ds, n ∈ N, (ω, t) ∈ (Ω× R+) \N1.

Moreover, by Fubini’s theorem the resulting processes are jointly measurable in (Ω× R+)\N1, hence passing
to the limit as n→∞, we obtain the jointly measurable process

∫ t
0
F (t− s) (b0 +

∑m
k=1 bkXk,s) ds (defined

on the same set). Finally we introduce

(F ∗ b (X)) (ω, t) =

{∫ t
0
F (t− s) (b0 +

∑m
k=1 bkXk,s (ω)) ds, (ω, t) ∈ (Ω× R+) \N1,

0, (ω, t) ∈ N1.

This is a jointly measurable process defined on the whole Ω × R+. This machinery for constructing jointly
measurable modifications of given processes will be used several times in the sequel.
Overall, the previous argument proves that the integral on the right side of (14) is well–defined P−a.s., for
a.e. t ∈ R+. We denote by (F ∗ dZ) = (F ∗ b (X)) +

(
F ∗ dZ̃

)
; with this notation, Equation (14) can be

written as follows

X = g0 + (K ∗ dZ) = g0 + (K ∗ b (X)) +
(
K ∗ dZ̃

)
, P⊗ dt− a.e. (18)

The following lemma will be useful in the sequel.

Lemma 1. For every T > 0,
E
[
‖X‖L1([0,T ];Rm)

]
<∞. (19)

Proof. The proof follows the same steps as those in [2, Theorem 1.4]. The difference is that the affine struc-
ture of our model guaranteed by (13) is substituted for [2, Condition (1.5)], and makes the L1

loc−integrability
of the paths of X sufficient (instead of the Lploc−integrability, p ≥ 2 required in [2]). �

Thanks to the additional property in (19), the same argument as the one above (without stopping times)
shows that the processes in (17) are indeed square–integrable martingales for a.e. T ∈ R+.
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Remark 1. We refer to [2] for a general solution theory concerning equations of the type in (18) when
g0 ∈ Lploc (R+;Rm) , p ≥ 2, and E = Rm.
In the case m = d = 1 and E = R+, if one defines Yt =

∫ t
0
Xs ds, t ≥ 0, then Y = (Yt)t≥0 is a nondecreasing

process and an application of [2, Lemma 3.2] shows

Yt =

∫ t

0

g0 (s) ds+

∫ t

0

K (t− s)Zs ds =

∫ t

0

g0 (s) ds+ (K ∗ Z)t , t ≥ 0, P− a.s.

This type of stochastic Volterra equations is analyzed in [1] for locally integrable kernels K ∈ L1
loc (R+;R) .

2.1. Stochastic convolution for processes with jumps
The goal of this subsection is to develop technical results concerning the stochastic convolution. In

particular, we aim to make Lemma 2.1 and Lemma 2.6 in [5] feasible in our context, where we are dealing
with discontinuities for Z and, more importantly, with a process X which a priori is not bounded. This
requires to modify the statements and the proofs of the aforementioned results, which are crucial for the
development of the theory. Such changes are important from a conceptual point of view and after every
result we add a remark showing the parallel with the setting in [5].

We start with a preliminary claim.

Lemma 2. Fix p ∈ N. Let F,G ∈ L2
loc
(
R+;Rp×d

)
and S ⊂ R+ be such R+ \S is dt−null set. Suppose that

F = G a.e. in R+. Then∫ T

0

F (T − s) dZs =

∫ T

0

1S (s)G (T − s) dZs, P− a.s., for a.e. T ∈ R+. (20)

In particular,
F ∗ dZ = G ∗ dZ, P⊗ dt− a.e. (21)

Proof. It is sufficient to prove (20) replacing Z with Z̃, because trivially F ∗b (X) = G∗(1Sb (X)) , P⊗dt−a.e.
on Ω×R+. Moreover, we only work with the stochastic integral in dM c, as by (15) we can repeat the next
procedure (component–wise) for the convolution in dMd recovering (20).

The argument above in the section implies the existence of a dt−null set N ⊂ R+ such that, for every
T ∈ R+ \N , we have∫ T

0

1S (s)G (T − s) dM c
s −

∫ T

0

F (T − s) dM c
s =

∫ T

0

(1S (s)G (T − s)− F (T − s)) dM c
s , P− a.s. (22)

Consider the square–integrable, p−dimensional martingaleQ =
( ∫ t

0
(1S (s)G (T − s)− F (T − s)) dM c

s

)
t≤T ,

whose predictable quadratic covariation is, due to the hypotheses,

〈Q,Q〉t=
∫ t

0

(1S (s)G (T − s)− F (T − s)) a (Xs) (1S (s)G (T − s)− F (T − s))> ds = 0, t ∈ [0, T ] ,P−a.s.

Since Q starts at 0, we can conclude that Q = 0 up to evanescence, hence (20) follows.
Regarding (21), it is an immediate consequence of (20) with S = R+ and the joint measurability of the

stochastic convolutions, which allows to state an equality P⊗ dt−a.e. This completes the proof. �

Remark 2. In [5], the authors consider the stochastic convolution of a function F ∈ L2
loc
(
R+;Rp×d

)
with

respect to a continuous local martingale M with predictable quadratic covariation d 〈M,M〉t = at dt, where
(at) is an adapted, locally bounded process. These assumptions allow to define (F ∗ dM)t for every t ∈ R+.
In particular, two jointly measurable versions of the stochastic convolution are equal P−a.s., for every t ≥ 0.
This concept is stronger than the P⊗dt−uniqueness that we have in our framework. As for (21) in Lemma 2,
in the continuous case it can be stated as follows: for every F,G ∈ L2

loc
(
R+;Rp×d

)
, with F = G a.e. in R+,

one has
(F ∗ dM)t = (G ∗ dM)t , P− a.s., t ≥ 0.
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Now we state a result concerning the associativity of the stochastic convolution.

Lemma 3. Fix p, q ∈ N. Let ρ ∈ L1
loc (R+;Rq×p) and F ∈ L2

loc
(
R+;Rp×d

)
. Then

((ρ ∗ F ) ∗ dZ)t = (ρ ∗ (F ∗ dZ)) (t) , P− a.s., for a.e. t ∈ R+. (23)

Proof. Also in this case we just need to show the statement with dZ̃ in place of dZ, because an application of
Fubini’s theorem provides (ρ ∗ F )∗b (X) = ρ∗(F ∗ b (X)) , P⊗dt−a.e. on Ω×R+. In addition it is sufficient
to focus only on the stochastic convolutions in dM c, as discussed in the preceding proof. By linearity we
can assume d = p = q = 1 without loss of generality, and we consider ρ ≥ 0 to keep the notation simple,
otherwise we should split it into positive and negative part.

First note that the function ρ ∗ F ∈ L2
loc (R+;R), hence for every t ∈ R+ \N1, being N1 a dt−null set,

we have

((ρ ∗ F ) ∗ dM c)t =

∫ t

0

(
1{(t−u)∈S}

∫ t−u

0

F (t− u− s) ρ (s) ds

)
dM c

u

=

∫ t

0

(∫ t

0

1{(t−u)∈S}1{s≤t−u}F (t− u− s) ρ (s) ds

)
dM c

u, P− a.s, (24)

where S ⊂ R+ is such that
∫ t
0
F (t− s) ρ (s) ds, t ∈ S, is well–defined. In particular, R+ \S is a dt−null set.

Our goal is to apply the stochastic Fubini theorem (see, e.g., [22, Theorem 65, Chapter IV]), but before we
can do that we need a preliminary step. For every T > 0, a change of variables, sequential applications of
Tonelli’s theorem and Young’s inequality yield (in the whole Ω)∫ T

0

[∫ t

0

(∫ t

0

1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
|Xu| du

]
dt

≤
∫ T

0

[∫ t

0

(∫ t−s

0

|F (t− s− u)|2 |Xu| du

)
ρ (s) ds

]
dt =

∫ T

0

[ ∫ T

s

(
|F |2 ∗ |X|

)
(t− s) dt

]
ρ (s) ds

=

∫ T

0

[ ∫ T−s

0

(
|F |2 ∗ |X|

)
(t) dt

]
ρ (s) ds ≤ ‖ρ‖L1([0,T ]) ‖F‖

2
L2([0,T ]) ‖X‖L1([0,T ]) .

Taking expectation and recalling (19) we have∫ T

0

E
[∫ t

0

(∫ t

0

1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
|Xu|du

]
dt

≤ ‖ρ‖L1([0,T ]) ‖F‖
2
L2([0,T ]) E

[
‖X‖L1([0,T ])

]
<∞.

This proves that there exists N2 ⊂ R+ such that

E
[∫ t

0

(∫ t

0

1{(t−u)∈S}1{s≤t−u} |F (t− s− u)|2 ρ (s) ds

)
Xu du

]
<∞, t ∈ R+ \N2. (25)

Taking t ∈ R+ \ (N1 ∪N2), thanks to (25) and Lemma 2 (see (20)) we can apply the stochastic Fubini
theorem in (24) to deduce that

((ρ ∗ F ) ∗ dM c)t

=

∫ t

0

(∫ t

0

1{(t−u)∈S}1{s≤t−u}F (t− u− s) ρ (s)ds

)
dM c

u=

∫ t

0

(∫ t−s

0

1{(t−u)∈S}F (t− s− u) dM c
u

)
ρ (s) ds

=

∫ t

0

(F ∗ dM c)t−s ρ (s) ds = (ρ ∗ (F ∗ dM c)) (t) , P− a.s.,

and the proof is complete. �
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Remark 3. The previous result is the analogue of [5, Lemma 2.1], where the authors are able –in the frame-
work described in Remark 2– to handle a generic signed measure of locally bounded variation L. Essentially
they can do so because the convolution F ∗ dM is defined as a stochastic integral for every t ∈ R+. As a
consequence, it is unique up to a P⊗ |L| −null set, being |L| the total variation measure of L.
In contrast with this, notice that in our setting it is not possible to make sense of the right side of (23) for
a fixed time t > 0 when ρ is replaced by L. Indeed, F ∗ dZ is only defined up to a P⊗ dt−null set, therefore
the value of (L ∗ (F ∗ dZ)) (t) would depend on the modification one chooses. However, Lemma 3 can be
slightly extended by replacing ρ in (23) with an Rq×p−valued measure which is the sum of a locally integrable
function and a point mass in 0 (this extension can be inferred directly from (23)). We are going to need this
final comment in Section 4.

We are now ready to state an analogue of [5, Lemma 2.6].

Proposition 4. Assume that m = d, and that the kernel K ∈ L2
loc
(
R+;Rd×d

)
admits a resolvent of the

first kind L3. Let F ∈ L2
loc
(
R+;Rd×d

)
be such that F ∗ L is locally absolutely continuous. Then

(F ∗ dZ)t = (F ∗ L) (0) (X − g0) (t) +
(
(F ∗ L)

′ ∗ (X − g0)
)

(t) , for a.e. t ∈ R+, P− a.s. (26)

Proof. By Lebesgue’s fundamental theorem of calculus we can write (denoting by I the identity matrix in
Rd×d)

(F ∗ L) (t) = (F ∗ L) (0) +

∫ t

0

(F ∗ L)
′
(s) ds = (F ∗ L) (0) +

(
(F ∗ L)

′ ∗ I
)

(t) , t ≥ 0,

which implies, convolving with K, using [15, Theorem 6.1 (ix), Chapter 3] and a change of variables,∫ t

0

F (s) ds = (F ∗ L) (0)

∫ t

0

K (s) ds+

∫ t

0

(
(F ∗ L)

′ ∗K
)

(s) ds, t ≥ 0.

We can differentiate both sides of the previous equation, as they are absolutely continuous functions, and
we obtain

F (t) = (F ∗ L) (0)K (t) +
(
(F ∗ L)

′ ∗K
)

(t) , for a.e. t ∈ R+.

Then convolving with dZ yields

(F ∗ dZ)t = (F ∗ L) (0) (K ∗ dZ)t +
((

(F ∗ L)
′ ∗K

)
∗ dZ

)
t

= (F ∗ L) (0) (K ∗ dZ)t +
(
(F ∗ L)

′ ∗ (K ∗ dZ)
)

(t) , P− a.s, for a.e. t ∈ R+, (27)

where in the first equality we use Lemma 2 (see (21)) and in the second Lemma 3 with ρ = (F ∗ L)
′. The

crucial point here is to pass to the trajectories. In order to do so, observe that by (18) we have

Xt − g0 (t) = (K ∗ dZ)t , for a.e. t ∈ R+, P− a.s.,

hence
(
(F ∗ L)

′ ∗ (K ∗ dZ)
)

(t) =
(
(F ∗ L)

′ ∗ (X − g0)
)

(t), P−a.s., for a.e. t ∈ R+. Moreover we can
consider a jointly measurable modification of the process

(
(F ∗ L)

′ ∗ (X − g0)
)
thanks to Fubini’s theorem,

which in turn can be applied as

E
[ ∫ T

0

(∫ T

0

1{s≤t}
∣∣(F ∗ L)

′
(s)
∣∣ |(X − g0) (t− s)|ds

)
dt

]
= E

[ ∫ T

0

(∫ t

0

∣∣(F ∗ L)
′
(s)
∣∣ |(X − g0) (t− s)|ds

)
dt

]
≤
∥∥(F ∗ L)

′∥∥
L1([0,T ];Rd×d)

(
E
[
‖X‖L1([0,T ];Rd)

]
+ ‖g0‖L1([0,T ];Rd)

)
<∞, T > 0,

(28)

3Given a kernel K ∈ L1
loc

(
R+;Rd×d

)
, an Rd×d−valued measure L is called its (measure) resolvent of the first kind if

L ∗K = K ∗ L = I, where I ∈ Rd×d is the identity matrix. L does not always exists, but if it does then it is unique (cfr. [15,
Theorem 5.2, Chapter 5]).
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by Tonelli’s theorem, Equation (19) and [15, Theorem 2.2 (i), Chapter 2]. Substituting this term in (27) and
recalling once again (18) we deduce that

(F ∗ dZ)t = (F ∗ L) (0) (X − g0) (t) +
(
(F ∗ L)

′ ∗ (X − g0)
)

(t) , P− a.s., for a.e. t ∈ R+.

This equality can be understood up to a P⊗dt−null set because it involves only jointly measurable processes.
Therefore (26) holds and the proposition is completely proved. �

Remark 4. In [5, Lemma 2.6] the authors require F ∗ L to be right–continuous and of locally bounded
variation. The loss of generality in Proposition 4, where we assume the local absolute continuity for the
same function, is triggered by Lemma 3 and Remark 3.

3. Towards the conditional Fourier–Laplace transform

In this section we are going to introduce processes V T =
(
V Tt
)
t∈[0,T ]

which will be used to find an ansatz
for the conditional Fourier–Laplace transform of (f> ∗X) (T ) , T > 0, where f is a suitable given function.
The procedure that we employ can also be adapted to characterize the marginal distributions of the solution
process X and of the semimartingale Z in (14), see Subsection 3.1.

We first introduce some notation. For a C−valued function g ∈ L1 (νk) , k = 0, 1, . . . ,m, we denote

〈η (x, dξ) , g (ξ)〉 =

∫
Rd
g (ξ) ν0 (dξ) +

m∑
k=1

(∫
Rd
g (ξ) νk (dξ)

)
xk, x ∈ E;

ν (g (ξ)) =
[∫

Rd g (ξ) ν1 (dξ)
∫
Rd g (ξ) ν2 (dξ) . . .

∫
Rd g (ξ) νm (dξ)

]> ∈ Cm.

Note that 〈η (x, dξ) , g (ξ)〉 =
∫
Rd g (ξ) ν0 (dξ) + ν (g (ξ))

>
x for every x ∈ E. In addition, we consider

B =
[
b1 b2 . . . bm

]
∈ Rd×m,

A (u) =
[
u>A1 u u>A2 u . . . u>Am u

]> ∈ Cm, u ∈ Cd.

Notice that b (x) = b0 +Bx, and u>a (x)u = u>A0u+A (u)
>
x, for every x ∈ E, u ∈ Cd.

Take f ∈ C (R+;Cm) and denote by

Dν =
{
u ∈ Cd :

(
eu
>· − 1− u> ·

)
∈ L1(νk), for every k = 0, . . . ,m

}
. (29)

Recalling that the signed measures νk, k = 0, . . . ,m, have finite second moment, one can show that iRd ⊂ Dν ,
and that Dν ∩ Rd is a star–shaped domain at 0.
Consider a subset D ⊂ Dν where the C−valued functions u 7→

∫
Rd
(
eu
>ξ − 1 − u>ξ

)
νk(dξ) are locally

bounded, for every k = 0, . . . ,m. We define the map R : R+ ×D → Cm as follows:

R (t, u) = f (t) +B>u+
1

2
A (u) + ν

(
eu
>ξ − 1− u>ξ

)
, (t, u) ∈ R+ ×D. (30)

Notice that, by the definition of D, the mapping R is locally bounded. The following hypothesis introduces
the deterministic Riccati–Volterra equation that allows us to determine a semi–explicit exponential affine
formula for E[exp{(f> ∗X)(T )}|Ft], with T > 0 and t ∈ [0, T ].

Hypothesis 1. There exists a continuous global solution ψ : R+ → D to the deterministic Riccati–Volterra
equation

ψ (t)
>

=

∫ t

0

R (s, ψ (s))
>
K (t− s) ds =

(
R (·, ψ (·))> ∗K

)
(t) , t ≥ 0. (31)
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Since ψ is continuous and takes values in D, the Cm−valued map s 7→ R(s, ψ(s)) is locally bounded.
We introduce the C−valued function φ : R+ → C given by

φ(t) =

∫ t

0

(
ψ(s)>b0 +

1

2
ψ(s)>A0ψ(s) +

∫
Rd

(
eψ(s)

>ξ − 1− ψ(s)>ξ
)
ν0(dξ)

)
ds, t ≥ 0. (32)

For every T > 0 we define the following càdlàg, adapted, C−valued semimartingale on Ω× [0, T ]:

V Tt = V T0 −
∫ t

0

[
1

2
ψ (T − s)> a (Xs)ψ (T − s) +

〈
η (Xs,dξ) , e

ψ(T−s)>ξ − 1− ψ (T − s)> ξ
〉]

ds

+

∫ t

0

ψ (T − s)> dZ̃s,

(33)

V T0 =

∫ T

0

(
f (T − s) +B>ψ (T − s) +

1

2
A (ψ (T − s)) + ν

(
eψ(T−s)

>ξ − 1− ψ (T − s)> ξ
))>

g0 (s) ds

+ φ (T ) .

(34)

Observe that V T is left–continuous in T because ψ (0) = 0 by (31). This process is the natural extension of
[5, Equations (4.4)− (4.5)] to the framework with jumps. Moreover, one can write

V T0 = φ (T ) +

∫ T

0

R (T − s, ψ (T − s))> g0 (s) ds. (35)

Our aim is to find, using the stochastic Fubini theorem, an alternative expression for the random variables
V Tt by means of integrals in time of the trajectories of suitable processes.
In the case b ≡ 0, we are going to use the paths of the forward process. Precisely, for a fixed t ∈ [0, T ], by
(A.1) in Appendix A we have

E
[
Xs

∣∣Ft] = g0 (s) +

∫ t

0

K (s− r) dZ̃r, P− a.s., for a.e. s > t. (36)

Hence requiring the kernel K to be continuous on (0,∞), the process on the right side of the previous
equation has a jointly measurable version that we denote by g̃t (s) , s > t. Note that it makes sense to
integrate in time the trajectories of such g̃t (·) since it is unique up to a P⊗ dt−null set.
In the case b 6= 0 we consider the paths of a process gt (·) such that

gt (s) = g0 (s) +

∫ t

0

K (s− r) dZr, P− a.s., s > t. (37)

Also in this case we assume K to be continuous on (0,∞), so that gt (·) can be taken jointly measurable on
Ω× (t,∞) and is uniquely defined up to a P⊗ dt−null set. An application of the stochastic Fubini theorem
(see, e.g., [22, Theorem 65, Chapter IV]) shows that the trajectories of gt(·) are locally integrable in (t,∞).
Note that when t = 0 we have an abuse of notation, as g0 represents both the initial input curve in (14) and
the process just defined in (37). This, however, is not an issue as these two concepts coincide P ⊗ dt−a.e.
in Ω× (0,∞). In the following, we continue to consider g0 as the initial input curve. Finally, notice that

gt (s) = E
[
Xs −

∫ s−t

0

K (s− t− r) b (Xt+r) dr
∣∣∣Ft] , P− a.s., for a.e. s > t. (38)

For this reason gt (·) is called adjusted forward process.

Theorem 5. Assume Hypothesis 1. Let K ∈ L2
loc
(
R+;Rm×d

)
be a continuous kernel on (0,∞) and define,

for every t ∈ [0, T ],

Ṽ Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T

t

R (T − s, ψ (T − s))> gt (s) ds. (39)
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Then
V Tt = Ṽ Tt , P− a.s., t ∈ [0, T ] . (40)

In addition, the process
(
exp

{
V Tt
})
t∈[0,T ]

is a C−valued local martingale, and if it is a true martingale
then

E
[
exp

{(
f> ∗X

)
(T )
} ∣∣∣Ft] = exp

{
Ṽ Tt

}
, P− a.s., t ∈ [0, T ] . (41)

Proof. It is straightforward to check that (40) holds for t = 0.
Focusing on the case t ∈ (0, T ], we rewrite the definition of Ṽ Tt in (39) as follows

Ṽ Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds

+

∫ T

t

R (T − s, ψ (T − s))> g0 (s) ds+

∫ T

t

R (T − s, ψ (T − s))> (gt − g0) (s) ds. (42)

It is convenient to introduce the process

gt (s) =

{
Xs, s ≤ t
gt (s) , s > t

. (43)

Recall that by (37) gt (s) = g0 (s) +
∫ t
0
K (s− r) dZr, P−a.s. for a.e. s > t, and that by (18) Xs =

g0 (s) +
∫ s
0
K (s− r) dZr, P−a.s., for a.e. s ∈ [0, t]. Therefore gt (·) is a jointly measurable modification

of the process g0 (·) +
∫ t
0

1{r≤·}K (· − r) dZr. Invoking the stochastic Fubini theorem in [22, Theorem 65,
Chapter IV] and recalling the Riccati–Volterra equation in (31), after a suitable change of variables we
obtain∫ T

0

R (T − s, ψ (T − s))> (gt − g0) (s) ds

=

∫ T

0

R (T − s, ψ (T − s))>
[∫ t

0

1{r≤s}K (s− r) dZr

]
ds

=

∫ t

0

[ ∫ T

r

R (T − s, ψ (T − s))>K (s− r) ds

]
dZr =

∫ t

0

[ ∫ T−r

0

R (s, ψ (s))
>
K (T − r − s) ds

]
dZr

=

∫ t

0

ψ (T − r)> dZr, P− a.s. (44)

Such an application is legitimate, because the boundedness of R (·, ψ (·)) in [0, T ] by a positive constant CT
and a change of variables yield, for every k = 1, . . . ,m,∫ t

0

[ ∫ T

0

1{r≤s} |R (T − s, ψ (T − s))|2 |K (s− r)|2 ds

]
|Xk,r|dr

=

∫ t

0

[ ∫ T−r

0

|R (s, ψ (s))|2 |K (T − r − s)|2 ds

]
|Xk,r| dr ≤ C2

T ‖K‖
2
L2([0,T ];Rm×d) ‖X‖L1([0,t];Rm) , (45)

so the expectation of the leftmost side is finite thanks to (19). As for the drift part,∫ t

0

(∫ T

0

1{r≤s}|R (T − s, ψ (T − s))|2|K (s− r)|2 ds

) 1
2

|Xk,r|dr≤CT ‖K‖L2([0,T ];Rm×d)‖X‖L1([0,t];Rm) . (46)
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Going back to (42) and recalling the definitions of V T in (33)–(35) we obtain, P−a.s.,

Ṽ Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T

t

R (T − s, ψ (T − s))> g0 (s) ds

+

∫ t

0

ψ (T − s)> dZs −
∫ t

0

R (T − s, ψ (T − s))> (Xs − g0 (s)) ds

= φ (T − t) +

∫ T

0

R (T − s, ψ (T − s))> g0 (s) ds+

∫ t

0

ψ (T − s)> dZs

−
∫ t

0

[
B>ψ (T − s) +

1

2
A (ψ (T − s)) + ν

(
eψ(T−s)

>ξ − 1− ψ (T − s)> ξ
)]>

Xs ds

= φ (T ) +

∫ T

0

R (T − s, ψ (T − s))> g0 (s) +

∫ t

0

ψ (T − s)> dZ̃s

−
∫ t

0

[
1

2
ψ (T − s)> a (Xs)ψ (T − s) +

〈
η (Xs,dξ) , e

ψ(T−s)>ξ − 1− ψ (T − s)> ξ
〉]

ds

= V Tt , (47)

where in the second–to–last equality we use (16). This proves (40).
Moving on to the next assertion, denote by HT =

(
HT
t

)
t∈[0,T ]

=
(
exp

{
V Tt
})
t∈[0,T ]

. By Itô’s formula
and the dynamics in (33) we have

dHT
t

=HT
t−

[
−
(

1

2
ψ (T − t)>a (Xt)ψ (T − t) +

〈
η (Xt,dξ) , e

ψ(T−t)>ξ − 1− ψ (T − t)> ξ
〉)

dt+ ψ (T − t)> dZ̃t

]
+

1

2
HT
t−ψ (T − t)> a (Xt)ψ (T − t) dt+HT

t−

∫
Rd

(
eψ(T−t)

>ξ − 1− ψ (T − t)> ξ
)
µ (dt,dξ)

= HT
t−

[
ψ (T − t)> dM c

t +

∫
Rd

(
eψ(T−t)

>ξ − 1
)

(µ− ν) (dt,dξ)

]
, HT

0 = exp
(
V T0
)
.

We define NT = (NT
t )t∈[0,T ] by dNT

t = ψ (T − t)> dM c
t +

∫
Rd
(
eψ(T−t)

>ξ − 1
)

(µ− ν) (dt,dξ) , NT
0 = 0.

Then NT is a local martingale and the previous computations show that HT = exp{V T0 }E(NT ) up to
evanescence, where E denotes the Doléans–Dade exponential. Therefore HT is a local martingale, as stated.
Finally, in case it is a true martingale, (41) directly follows from (40), and the proof is complete. �

Remark 5. Assuming m = d, it is possible to find an expression for V T in terms of the true forward process
even in the case b 6= 0. Indeed, by (A.4) in Appendix A,

E
[
Xs

∣∣Ft] = (g0 − (RB ∗ g0) + (EB ∗ b0)) (s) +

∫ t

0

EB (s− r) dZ̃r, P− a.s., for a.e. s > t. (48)

Here RB is the resolvent of the second kind 4 of −KB and EB = K−RB ∗K. If K is continuous on (0,∞),
then EB is continuous on the same interval, as well. Thus, one can choose a jointly measurable version
ft (s) , s > t, of the process on the right side of (48), which is unique up to a P ⊗ dt−null set. Arguing as
in [5, Lemma 4.4], we obtain the variation of constants formula

ψ (t)
>

=

∫ t

0

[
f (s) +

1

2
A (ψ (s)) + ν

(
eψ(s)

>ξ − 1− ψ (s)
>
ξ
)]>

EB (t− s) ds, t ≥ 0,

4Given K ∈ L1
loc

(
R+;Rd×d

)
, its resolvent of the second kind is the unique solution R ∈ L1

loc
(
R+;Rd×d

)
of the two

equations K ∗R = R ∗K = K −R (cfr. [15, Theorem 3.1, Chapter 2] and the subsequent definition).
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which combined with the strategy in the proof of Theorem 5 leads to

V Tt =

∫ t

0

f (T − s)>Xs ds+

∫ T

t

[ (
R (T − s, ψ (T − s))−B>ψ (T − s)

)>
ft (s)

+
1

2
ψ (T − s)>A0ψ (T − s) +

∫
Rd

(
eψ(T−s)

>ξ − 1− ψ (T − s)> ξ
)
ν0 (dξ)

]
ds, P− a.s.

However in the framework of jumps it is preferable to work with the adjusted forward process, because – as
will become clear in the next section – certain properties can be assumed for the kernel K, but they can be
neither required (i.e. it would not be a reasonable hypothesis) nor inferred for EB.

3.1. The marginal distributions of X and Z
The procedure that we have used above to obtain a formula for E[exp{(f> ∗X)(T )}|Ft] (see (41) in The-

orem 5) can also be followed to deduce an exponential affine expression for the conditional Fourier–Laplace
transform of the marginal distributions of the solution process X and the semimartingale Z in (14), i.e.,

E[exp{u>1 ZT }|Ft], E[exp{u>2 XT }|Ft],

for suitable u1 ∈ Cd and u2 ∈ Cm.
We first show the formula for the conditional transform of the Rd−valued càdlàg semimartingale Z.

Theorem 6. Assume that K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u1 ∈ Cd and f ∈ C(R+;Cm),

suppose that there exists a continuous global solution ψ1 : R+ → D of the deterministic Riccati–Volterra
equation

ψ1 (t)
>

= u>1 +

∫ t

0

R (s, ψ1 (s))
>
K (t− s) ds, t ≥ 0,

where R : R+×D → Cm is given in (30). Then, for every T > 0, defining Ṽ T = (Ṽ Tt )t∈[0,T ] as in (39) with
ψ1 instead of ψ and Ṽ T1 =

(
Ṽ T1,t
)
t∈[0,T ]

by

Ṽ T1,t = Ṽ Tt + u>1 Zt, t ∈ [0, T ],

the process exp{Ṽ T1 } is a local martingale. In particular, if exp{Ṽ T1 } is a true martingale, then

E
[
exp

{
u>1 ZT + (f> ∗X)(T )

} ∣∣∣Ft] = exp
{
Ṽ T1,t

}
, P− a.s., t ∈ [0, T ] .

Proof. We use the same argument as in the proof of Theorem 5. It can be split into two parts.
In the first step, we define the process V T1 =

(
V T1,t
)
t∈[0,T ]

as in (33)-(35), replacing ψ with ψ1. Then,

using the stochastic Fubini theorem, we prove that V T1 and Ṽ T1 are versions of each other.
In the second step, we use Itô’s formula to infer that exp{V T1 } is a local martingale, since it can be seen

as the Doléans–Dade exponential of a local martingale. �

We now fix an i.i.d. sequence (Yi,k)k of F0−measurable, R−valued random variables distributed accord-
ing to a probability measure θi on R with finite first and second moments, for every i = 1, . . . , d. Denoting
by (ei)i=1,...,d the canonical basis of Rd, we extend θi to a probability measure on Rd by setting

θ̄i(A) = θi (πi (A ∩ span(ei))) , A ∈ B
(
Rd
)
,

where πi : Rd → R is defined by πi(x) = x>ei and B
(
Rd
)
are the Borel–measurable sets of Rd. We also take

an increasing sequence (Ti,k)k∈N of F−stopping times independent from (Yi,k)k and such that Ti,k →∞ as
k →∞, P−a.s., for every i = 1, . . . , d.
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We focus on a d−dimensional marked point process N = (Nt)t≥0 = [N1,t, . . . , Nd,t]
>
t≥0 with jump times

(Ti,k)k∈N and jump sizes (Yi,k)k∈N, namely,

Ni,t =
∑
t≥Ti,k

Yi,k =
∑
k∈N

Yi,k1{t≥Ti,k}, t ≥ 0, i = 1, . . . , d.

Given a vector λ0 ∈ Rm and two matrices Λ0,Λ1 ∈ Rd×m, we suppose that the conditional intensity of N is
Λ1λ, where λ = (λt)t≥0 = [λ1,t, . . . , λm,t]

>
t≥0 is an Rm−valued process satisfying

λt = λ0 +

∫ t

0

K(t− s)Λ0λsds+

d∑
i=1

∑
t>Ti,k

Yi,kK(t− Ti,k)ei, t ≥ 0. (49)

This means that, denoting by µN (dt, dξ) the measure on R+ × Rd associated with the jumps of N and by
νN (dt, dξ) its compensator, then

νN (dt,dξ) =

d∑
i=1

(
Λ1λt

)
i

dt⊗ θ̄i(dξ). (50)

We call N a marked Hawkes process in Rd. In particular, note that

Ni,t −
∫ t

0

∫
Rd
ξi ν

N (ds,dξ) = Ni,t −
(∫

R
ξiθi(dξi)

)∫ t

0

(
Λ1λs

)
i
ds, t ≥ 0, i = 1, . . . , d,

are local martingales. Thus, for every i = 1, . . . , d, the i−th component Ni of N is a one–dimensional
marked point process with intensity (Λ1λ)i and marks Yi,k ∼ θi, k ∈ N.
We define the process

N = N +

∫ ·
0

Λ0λs ds

and the measures

θ̃i (dξ) =

d∑
j=1

Λji1 θ̄j(dξ), i = 1, . . . ,m; (51)

in the sequel, for a function g ∈ L1(θ̃i), i = 1, . . . ,m, we write

θ̃(g(ξ)) =
[∫

Rd g(ξ) θ̃1(dξ) . . .
∫
Rd g(ξ) θ̃m(dξ)

]>
∈ Cm.

By analogy with (29), we introduce the set

Dθ̃ =
{
u ∈ Cd :

(
eu
>· − 1− u> ·

)
∈ L1(θ̃k), for every k = 1, . . . ,m

}
,

and we consider a subset D ⊂ Dθ̃ where the C−valued functions u 7→
∫
Rd
(
eu
>ξ− 1−u>ξ

)
θ̃k(dξ) are locally

bounded, for every k = 1, . . . ,m. In this framework, Theorem 6 is relevant because it provides a formula
for the conditional Fourier–Laplace transform of N and N . More precisely, the following corollary holds.

Corollary 7. Assume that the kernel K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u1 ∈ Cd and

f ∈ C(R+;Cm), suppose that there exists a continuous global solution ψ1 : R+ → D of the deterministic
Riccati–Volterra equation

ψ1 (t)
>

= u>1 +

∫ t

0

R1

(
s, ψ1 (s)

)>
K (t− s) ds, t ≥ 0, (52)
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where R1 : R+ ×D → Cm is defined by

R1(t, u) = f(t) + Λ>0 u+ θ̃
(
eu
>ξ − 1

)
.

For every T > 0, consider the process V T1 =
(
V T1,t

)
t∈[0,T ]

given by

V T1,t = u>1 N t +

∫ t

0

f(T − s)>λs ds+

∫ T

t

R1(T − s, ψ1(T − s))>g̃t (s) ds, t ∈ [0, T ],

where g̃t(·) is defined as in (37) with N instead of Z. Then the process exp{V T1 } is a local martingale. In
particular, if exp{V T1 } is a true martingale, then

E
[
exp

{
u>1 NT + (f> ∗ λ)(T )

} ∣∣∣Ft] = exp
{
V T1,t

}
, P− a.s., t ∈ [0, T ] . (53)

Proof. We first observe that the differential characteristics of the special semimartingale N with respect to
the “truncation function” h(ξ) = ξ are((

Λ0 + diag
[∫

R
ξ1θ1(dξ1), . . . ,

∫
R
ξdθd(dξd)

]
Λ1

)
λt, 0,

m∑
i=1

λi,tθ̃i(dξ)

)
.

Indeed, by (51), the compensator νN (dt,dξ) of the jump–measure of N , which coincides with νN (dt,dξ) in
(50), can be rewritten as

νN (dt, dξ) =

d∑
i=1

(
Λ1λt

)
i

dt⊗ θ̄i(dξ) =

m∑
i=1

λi,t dt⊗ θ̃i(dξ).

From (49) we infer that λ is a càg and adapted, hence predictable process with locally (square–)integrable
trajectories in Rm. In addition, since∑

t>Ti,k

K(t− Ti,k) =
∑
t≥Ti,k

K(t− Ti,k), t ∈ R+ \ {Ti,k, k ∈ N} , P−a.s., i = 1, . . . , d,

then λ satisfies the following stochastic Volterra equation of convolution type with jumps (cfr. (18)):

λ = λ0 +
(
K ∗ dN

)
, P⊗ dt− a.e.

Thus, the statements of the corollary are an immediate consequence of Theorem 6, obtained by replacing Z
with N and, respectively, B, A and ν(e·

>ξ − 1− ·>ξ) in the definition of R in (30) with

Λ0 + diag
[∫

R
ξ1θ1(dξ1), . . . ,

∫
R
ξdθd(dξd)

]
Λ1, 0, θ̃(e·

>ξ − 1− ·>ξ).

This completes the proof. �

Remark 6. To the best of our knowledge, Corollary 7 contains an original expression for the conditional
Fourier–Laplace transform of the Hawkes process N , see (53) with f = −Λ>0 u1. Comparing our findings to
the existing literature, we note that in the one–dimensional case, results akin to Equation (53) can be found
in [14]. To be precise, in [14, Theorem 3.1] the authors, albeit concentrating on other quantities, outline a
procedure that can be adapted to derive an expression for E[exp {u1NT }|Ft]. Here, N = (Nt)t≥0 is a Hawkes
process with intensity λ = λ0 + K ∗ dÑ , where Ñ represents the compensated process of N . Notably, this
formula coincides with Equation (53) when we set Λ0 = −

∫
R ξθ(dξ), Λ1 = 1 and f = u1

∫
R ξθ(dξ), although

the Riccati–Volterra equations in [14] have a different formulation from (53), see for instance [14, Equation
(3.4)]. In particular, one retrieves a solution to (53) by convolving a solution of the corresponding equation
in [14] with the kernel K. Thus, even within this restricted framework, Corollary 7 stands as an original
contribution because it covers Hawkes processes with more general intensities, e.g., λ = λ0 +K ∗ dN .

16



We now analyze the conditional distributions of the solution process X of (18). In particular, in Theorem
8 we obtain an expression for E[exp{u>2 XT }|Ft], for some u2 ∈ Cm. However, since X is defined up to a
P ⊗ dt−null set, such a formula will be meaningful only for a.e. T > 0. This, in conjunction with the fact
that we may be dealing with unbounded solutions of Riccati–Volterra equations in the new setting (cfr. [5,
Appendix B]), makes the applicability of the arguments in Theorem 5 more delicate, as detailed in the proof
of Theorem 8.

Theorem 8. Assume that the kernel K ∈ L2
loc(R+;Rm×d) is continuous in (0,∞). Given u2 ∈ Cm and

f ∈ C(R+;Cm), suppose that there exists a locally square–integrable function ψ2 : R+ → Dν such that the
mappings s 7→

∫
Rd
(
eψ(s)

>ξ − 1 − ψ(s)>ξ
)
νk(dξ), k = 0, . . . ,m, are locally integrable on R+ and that the

following deterministic Riccati–Volterra equation is satisfied:

ψ2 (t)
>

= u>2 K +

∫ t

0

R (s, ψ2 (s))
>
K (t− s) ds, for a.e. t ≥ 0,

where Dν is given in (29) and R : R+×Dν → Cm in (30). Then, for a.e. T > 0, defining Ṽ T = (Ṽ Tt )t∈[0,T ]

as in (39) with ψ2 instead of ψ and Ṽ T2 =
(
Ṽ T2,t
)
t∈[0,T ]

by

Ṽ T2,t = Ṽ Tt + u>2

∫ t

0

K(T − s) dZs, t ∈ [0, T ], (54)

the process exp{Ṽ T2 } is a local martingale. In particular, if exp{Ṽ T2 } is a true martingale, then

E
[
exp

{
u>2 XT + (f ∗X)(T )

} ∣∣∣Ft] = exp
{
Ṽ T2,t

}
, P− a.s., t ∈ [0, T ] . (55)

Proof. In this proof, we highlight the main changes that need to be implemented into the arguments employed
in Theorem 5.

Notice that, contrary to before, we work with a solution ψ2 of (8) which is supposed to be only locally
square–integrable, with potential explosions precluding the boundedness on compact sets of R(·, ψ2(·)) and∫
Rd
(
eψ2(·)>ξ − 1 − ψ2(·)>ξ

)
νk(dξ), k = 0, . . . ,m. As a consequence, recalling also the construction of the

stochastic convolution in Section 2, we can define the process V T2 = (V T2,t)t∈[0,T ] as in (33)-(35) with ψ2

instead of ψ only for a.e. T > 0.
We now discuss the good definition of the process Ṽ T = (Ṽ Tt )t∈[0,T ] in (39) (with ψ replaced by ψ2) for
a.e. T > 0. By (38), the conditional Jensen’s inequality, the tower property and the change of variables
r′ = r + t, we observe that, for a.e. s > t,

1{s>t}E [|gt(s)|] ≤ cE
[
|Xs|+ 1{s>t}

∫ s−t

0

|K(s− t− r)| |b(Xt+r)|dr
]

≤ c
(
E [|Xs|]+

∫ s

0

|K(s− r′)|E [|b (Xr′)|] dr′
)
≤c
(
E [|Xs|]+‖K‖L1([0,s];Rm×d)+(|K| ∗ E[|X·|])(s)

)
, (56)

for some constant c = c(d,m, b0, . . . , bm) > 0 allowed to change from line to line. This estimate enables us
to show that

∫ T
t
R (T − s, ψ2 (T − s))> gt (s) ds, which appears in the definition of Ṽ Tt in (39), exists P−a.s.

in C, for every t ∈ [0, T ], for a.e. T > 0. Indeed, recalling Lemma 1, for every T > 0 we have

∫ T

0

(∫ T

0

|R (T − s, ψ2 (T − s))| (E [|Xs|] + (|K| ∗ E[|X·|])(s)) ds

)
dT

≤ ‖R(·, ψ2(·))‖L1([0,T ];Cm) E
[
‖X‖L1([0,T ];Rm)

] (
1 + ‖K‖L1([0,T ];Rm×d)

)
<∞,

hence ∫ T

0

|R (T − s, ψ2 (T − s))| (E [|Xs|] + (|K| ∗ E[|X·|])(s)) ds <∞, for a.e. T > 0.
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Combining this equation with (56) we conclude that, for a.e. T > 0, for every t ∈ [0, T ],∫ T

0

1{s>t} |R (T − s, ψ2 (T − s))|E [|gt(s)|] ds <∞. (57)

Thus, Ṽ T is well defined for a.e. T > 0. Moreover, as K ∈ L2
loc
(
R+;Rm×d

)
, the stochastic convolution

(K ∗ dZ)T is well defined for a.e. T > 0, see Section 2. As a result, the process Ṽ T2 in (54) is well defined,
for a.e. T > 0.

Since, by the same computations as in the proof of Theorem 5, exp{V T2 } is a local martingale, the
final step required to conclude the current proof is to establish the equality V T2 = Ṽ T2 . To do this, since
R(·, ψ2(·)) is neither locally bounded nor locally square–integrable anymore, we cannot apply the stochastic
Fubini theorem as in (44). Indeed, the conditions in (45)-(46) are no longer satisfied. To overcome this
problem, we employ an approximation argument.
For every n ∈ N, define the truncation function hn(z) = z1{|z|≤n}, z ∈ Cm. Recalling the process ḡt(·)
in (43), the stochastic Fubini theorem, whose application is possible thanks to computations similar to
(45)-(46), yields, P−a.s.,∫ T

0

hn (R (T − s, ψ2 (T − s)))>(gt − g0) (s) ds =

∫ t

0

[ ∫ T

r

hn (R (T − s, ψ2 (T − s)))>K (s− r) ds

]
dZr. (58)

Since, for every z ∈ Cm, hn(z)→ z as n→∞, and, by (57),
∫ T
0
|R (T − s, ψ2 (T − s))| |gt − g0| (s) ds <∞,

P−a.s., for every t ∈ [0, T ], for a.e. T > 0, by the dominated convergence theorem we infer that

lim
n→∞

∫ T

0

hn(R (T − s, ψ2 (T − s)))>(gt − g0) (s) ds

=

∫ T

0

R (T − s, ψ2 (T − s))> (gt − g0) (s) ds, P− a.s. (59)

As for the right side of (58), we observe that, again by dominated convergence, for a.e. T > 0,

lim
n→∞

∫ T

r

hn(R (T − s, ψ2 (T − s)))>K (s− r) ds=

∫ T

r

R (T − s, ψ2 (T − s))>K (s− r) ds, for a.e. r ∈ [0, T ].

Moreover, noticing that the map |R(·, ψ2(·))| ∗ |K| ∈ L2
loc(R+), for i = 1, 2 we have

E
[ ∫ t

0

(∫ T

r

|R (T − s, ψ2 (T − s))| |K(s− r)|ds
)i
|Xr|dr

]
=

∫ t

0

(∫ T−r

0

|R (T − r − s, ψ2 (T − r − s))| |K(s)|ds
)i

E [|Xr|] dr

≤
∫ T

0

((|R(·, ψ2(·))| ∗ |K|) (T − r))i E [|Xr|] dr <∞, for every t ∈ [0, T ],

which holds for a.e. T > 0. Thus, we can apply the dominated convergence theorem for stochastic integrals
(see, for instance, [22, Theorem 32, Chapter IV]) to claim that, for a.e. T > 0 and for every t ∈ [0, T ],

P− lim
n→∞

∫ t

0

[ ∫ T

r

hn (R (T − s, ψ2 (T − s)))>K (s− r) ds

]
dZr

=

∫ t

0

[ ∫ T

r

R (T − s, ψ2 (T − s))>K (s− r) ds

]
dZr, (60)
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where P−lim denotes the limit in probability. Combining (59)-(60) in (58), for a.e. T > 0 and t ∈ [0, T ] we
obtain∫ T

0

R (T − s, ψ2 (T − s))> (gt − g0) (s) ds =

∫ t

0

[ ∫ T

r

R (T − s, ψ2 (T − s))>K (s− r) ds

]
dZr

=

∫ t

0

(
ψ2 (T − r)> − u>2 K(T − r)

)
dZr, P− a.s.

Therefore, an analogue of the equality (44) holds. Proceeding as in (47), this allows to show that V T2 and
Ṽ T2 are versions of each other, which completes the proof. �

Remark 7. When m = d = 1, u2 ∈ R−, φ ≡ 0, f ≡ 0 and g0 is the Laplace transform of a finite signed
measure on R+, Equation (55) reduces to the expression in [9, Theorem 5.7 (v)] for the (conditional) Laplace
transform of the marginal distributions of X. To deduce such a result, however, in [9] the authors employ
an abstract approach based on infinite dimensional Markovian lifts of stochastic affine Volterra processes,
which is completely different from our procedure inspired by [5].

4. An expression for V T affine in the past trajectory of X

In this section we consider m = d and aim to find an alternative formula for V T (see (33)-(34)) which
is affine in the past trajectory of X. This new expression can be used to prove the martingale property of
the complex–valued process exp

{
V T
}
in particular cases (see Section 5). Similar formulas might also be

obtained for the processes introduced in Subsection 3.1 to study the marginal distributions of X and Z, see
Theorems 6-8.

Due to the lack of regularity of the trajectories of both X and the stochastic convolution in dZ, we
are going to require mild, additional conditions on the kernel K, in particular on the shifted kernels ∆hK
for h > 0. We start with a preliminary result providing an alternative expression for the adjusted forward
process gt (·).

Lemma 9. Assume that K ∈ L2
loc
(
R+;Rd×d

)
is continuous on (0,∞) and that it admits a resolvent of the

first kind L with no point masses in (0,∞) . In addition, suppose that for every h > 0 the shifted kernel
∆hK is differentiable, with derivative (∆hK)

′ ∈ C
(
R+;Rd×d

)
. Then, for every T > 0, for every t ∈ [0, T )

gt (T ) = g0 (T ) +K (T − t)Zt +
((

(∆T−tK)
′ ∗ L

)
∗ (X − g0)

)
(t) , P− a.s. (61)

Proof. Fix h > 0. We first show that the stochastic convolution ∆hK ∗ dZ has a càdlàg version. Indeed, for
every t ∈ R+, (∆hK ∗ dZ)t =

∫ t
0
ft,h (s) dZs, P−a.s., with ft,h (s) = K (t+ h− s) , s ∈ [0, t]. Integration by

parts yields∫ t

0

ft,h (s) dZs = ft,h (t)Zt − ft,h (0)Z0 −
∫ t

0

(ft,h)
′
(s)Zs− ds

=K (h)Zt +

∫ t

0

(∆hK)
′
(t− s)Zs ds, P− a.s.,

where we also note that Zt− = Zt for a.e. t > 0, P−a.s. Since the rightmost side of the previous equality
is a càdlàg process we obtain the desired claim. Hence in what follows we consider ∆hK ∗ dZ to be right–
continuous. In particular, the process (∆hK −K (h)) ∗ dZ is continuous.

Thanks to the assumptions on the kernel, we apply [15, Corollary 7.3, Chapter 3] to claim that the
function (∆hK −K (h)) ∗ L is locally absolutely continuous in R+, with

((∆hK −K (h)) ∗ L)
′

= (∆hK)
′ ∗ L, a.e. in R+.
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In particular, the function (∆hK)
′ ∗L ∈ C

(
R+;Rd×d

)
by [15, Corollary 6.2 (iii), Chapter 3], the absence of

point masses of L in (0,∞) and the continuity of (∆hK)
′. Therefore we invoke Proposition 4 to obtain

((∆hK −K (h)) ∗ dZ)t = ((∆hK −K (h)) ∗ L) (0) (X − g0) (t) +
((

(∆hK)
′ ∗ L

)
∗ (X − g0)

)
(t)

=
((

(∆hK)
′ ∗ L

)
∗ (X − g0)

)
(t) , for a.e. t ∈ R+, P− a.s.

Note that the last equality involves continuous processes, so it is indeed true for every t ≥ 0 up to a P−null
set. Thus,

(∆hK ∗ dZ)t = K (h)Zt +
((

(∆hK)
′ ∗ L

)
∗ (X − g0)

)
(t) , t ≥ 0, P− a.s. (62)

At this point, take t < T and recall that, by (37),

gt (T ) = g0 (T ) +

∫ t

0

K (T − s) dZs = g0 (T ) +

∫ t

0

(∆T−tK) (t− s) dZs

= g0 (T ) + (∆T−tK ∗ dZ)t , P− a.s.

It suffices to take h = T − t in (62) to deduce that

(∆T−tK ∗ dZ)t = K (T − t)Zt +
((

(∆T−tK)
′ ∗ L

)
∗ (X − g0)

)
(t) , P− a.s..

Hence, combining the two previous equations, we conclude

gt (T ) = g0 (T ) +K (T − t)Zt +
((

(∆T−tK)
′ ∗ L

)
∗ (X − g0)

)
(t) , P− a.s.,

completing the proof. �

Fix a generic T > 0. By Equation (61) we can write, for every t ∈ [0, T ),

gt (s) = g0 (s) +K (s− t)Zt +
((

(∆s−tK)
′ ∗ L

)
∗ (X − g0)

)
(t) , P− a.s., s ∈ (t, T ) . (63)

Intuitively speaking, we want to plug this expression in (39), so that we obtain an alternative formulation
for V Tt which is an affine function on the past trajectory {Xs, s ≤ t}. This is done in the next theorem,
which extends [5, Theorem 4.5] under further conditions on the kernel K. These addtional assumptions
hold for instance in the one–dimensional case if K is completely monotone (recall that a function f is called
completely monotone on (0,∞) if it is infinitely differentiable there with (−1)kf (k)(t) ≥ 0 for all t > 0 and
k = 0, 1, . . .).

Theorem 10. Assume that K ∈ L2
loc
(
R+;Rd×d

)
is continuous on (0,∞) and that it admits a resolvent of

the first kind L with no point masses in (0,∞). In addition, suppose that for every h > 0 the shifted kernel
∆hK is differentiable, with (∆hK)

′ continuous on R+. Under Hypothesis 1, if the total variation bound

sup
h∈(0,T ]

‖∆hK ∗ L‖TV([0,T ]) <∞, for all T > 0, (64)

holds, then for every h > 0 the Cd−valued function

πh (r) =
(
R (·, ψ (·))> ∗

(
(∆·K)

′ ∗ L
)

(r)
)

(h)
> (65)

is well–defined for a.e. r ∈ R+ and belongs to L1
loc
(
R+;Cd

)
. Moreover, P−a.s., for a.e. t ∈ (0, T ),

V Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
g0 (T − s) ds

+ ψ (T − t)> Zt +
(
πT−t

> ∗ (X − g0)
)

(t) , (66)

where φ is defined in (32).
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Proof. Fix h > 0; expanding the notation in (65) for πh we have

πh (r)
>

=

∫ h

0

R (s, ψ (s))
>
[∫ r

0

(∆h−sK)
′
(r − u)L (du)

]
ds.

In order to see that it is well–defined a.e. on R+ and belongs to L1
loc
(
R+;Cd

)
, first note that for every

positive s, the continuity of (∆sK)
′ and the absence of point masses for L in (0,∞) allow to apply [15,

Corollary 6.2 (iii), Chapter 3], which ensures the continuity on R+ of (∆sK)
′ ∗L. As a consequence, we can

define the Cd−valued measurable function[
R (s, ψ (s))

> (
(∆h−sK)

′ ∗ L
)

(r)
]>

, (s, r) ∈ (0, h)× R+.

Recalling the previous proof, we see that (∆hK)
′ ∗ L is, almost everywhere, the derivative of the locally

absolutely continuous function (∆hK −K (h)) ∗ L. The boundedness of R (·, ψ (·)) on [0, h] by a constant
Ch > 0 (see Hypothesis 1 and the subsequent comment) coupled with Condition (64), Tonelli’s theorem and
[15, Theorem 6.1 (v), Chapter 3] yields, for a generic T > h,∫ T

0

[ ∫ h

0

|R (s, ψ (s))|
∣∣((∆h−sK)

′ ∗ L
)

(r)
∣∣ds]dr =

∫ h

0

|R (s, ψ (s))|
[ ∫ T

0

∣∣((∆h−sK)
′ ∗ L

)
(r)
∣∣ dr]ds

≤ d2
∫ h

0

|R (s, ψ (s))|
[
‖(∆h−sK −K (h− s)) ∗ L‖TV([0,T ])

]
ds

≤ d2
[ ∫ h

0

|R (s, ψ (s))| ‖∆h−sK ∗ L‖TV([0,T ]) ds+ |L|
([

0, T
]) ∫ h

0

|R (s, ψ (s))| |K (h− s)|ds
]

≤ d2
[

sup
s∈(0,T ]

‖∆sK ∗ L‖TV([0,T ]) Chh+ |L|
([

0, T
]) ∫ h

0

|R (s, ψ (s))| |K (h− s)|ds
]
<∞.

Hence the conclusion on πh follows. Furthermore, by Lebesgue’s fundamental theorem of calculus, the
Cd−valued function Πh (r) =

∫ r
0
πh (u) du, r ∈ R+, is locally absolutely continuous on R+, with Π′h = πh

a.e. Using Fubini’s theorem we can obtain the following explicit expression for such Πh

Πh (r)
>

=

∫ h

0

R (s, ψ (s))
>

((∆h−sK −K (h− s)) ∗ L) (r) ds, r ∈ R+. (67)

At this point we observe that for every function g ∈ L1
loc
(
R+;Rd

)
we have, reasoning as before and using

the boundedness of R (·, ψ (·)) on [0, T ] by a positive constant CT ,∫ T

0

[ ∫ t

0

|g (t− u)|
(∫ T−t

0

|R (s, ψ (s))|
∣∣((∆T−t−sK)

′ ∗ L
)

(u)
∣∣ds)du

]
dt

=

∫ T

0

[ ∫ t

0

|g (t− u)|
(∫ T−t

0

|R (T − t− s, ψ (T − t− s))|
∣∣((∆sK)

′ ∗ L
)

(u)
∣∣ds)du

]
dt

=

∫ T

0

[ ∫ T−t

0

|R (T − t− s, ψ (T − t− s))|
(∫ t

0

|g (t− u)|
∣∣((∆sK)

′ ∗ L
)

(u)
∣∣du)ds

]
dt

=

∫ T

0

[ ∫ T−s

0

|R (T − s− t, ψ (T − s− t))|
(∫ t

0

|g (t− u)|
∣∣((∆sK)

′ ∗ L
)

(u)
∣∣ du)dt

]
ds

≤ CT d2 ‖g‖L1([0,T ];Rd)

∫ T

0

‖(∆sK −K (s)) ∗ L‖TV([0,T ]) ds

≤ CT d2 ‖g‖L1([0,T ];Rd)

[
T sup
s∈(0,T ]

‖∆sK ∗ L‖TV([0,T ]) + |L| ([0, T ])

∫ T

0

|K (s)|ds
]
<∞,

(68)
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where we apply Tonelli’s theorem, together with [15, Theorem 2.2 (i), Chapter 2] and a change of variables.
Consequently, for almost every t ∈ (0, T ) we can apply Fubini’s theorem to obtain∫ t

0

πT−t (u)
>
g (t− u) du =

∫ T−t

0

R (s, ψ (s))
>
[∫ t

0

(
(∆T−t−sK)

′ ∗ L
)

(u) g (t− u) du

]
ds. (69)

Computations analogous to those in (68) (with g [resp., |R (·, ψ (·))|] substituted by X−g0 [resp., 1]) enable
us to conclude, by Fubini’s theorem and Equation (19), that there is a jointly measurable modification of
the process

((
(∆·−tK)

′ ∗ L
)
∗ (X − g0)

)
(t) on Ω × (t, T ) for a.e. t ∈ (0, T ). Therefore we interpret (63)

pathwise, namely the equality holds almost everywhere in (t, T ) up to a P−null set.
Now we focus on Ṽ Tt . The previous analysis together with (39) and a suitable change of variables yields

Ṽ Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
gt (T − s) ds

=

{
φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
g0 (T − s) ds

}
+

{(∫ T−t

0

R (s, ψ (s))
>
K (T − t− s) ds

)
Zt

}
+

{∫ T−t

0

R (s, ψ (s))
> ((

(∆T−t−sK)
′ ∗ L

)
∗ (X − g0)

)
(t) ds

}
= It + IIt + IIIt, P− a.s., t ∈ (0, T ) .

The idea is to analyze separately the addends that we have singled out in the previous computations. Note
that IIIt is finite because Ṽ Tt , It, IIt are so, and that we can consider a jointly measurable modification of
this process in Ω× (0, T ), again by Fubini’s theorem and Equation (19) (see (68)). Taking into account (40)
we have

V Tt = It + IIt + IIIt, for a.e. t ∈ (0, T ) , P− a.s., (70)

where the equality can be understood pathwise as it involves jointly measurable processes.
Regarding IIt, since ψ solves the Riccati–Volterra equation in (31) we have

IIt = ψ (T − t)> Zt.

As for IIIt, by (69) we have

IIIt =

∫ t

0

πT−t (u)
>

(X − g0) (t− u) du =
(
πT−t

> ∗ (X − g0)
)

(t) , for a.e. t ∈ (0, T ) , P−a.s.

Substituting the two previous equations in (70) we conclude

V Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
g0 (T − s) ds

+ ψ (T − t)> Zt +
(
πT−t

> ∗ (X − g0)
)

(t) ,

for almost every t ∈ (0, T ) , P−a.s. The proof is now complete. �

If the resolvent of the first kind L is the sum of a locally integrable function and a point mass in 0, then
recalling (18) we can apply Lemma 3 (see also the final comment in Remark 3) and argue as in (28) to see
that Zt = (L ∗ (X − g0)) (t) , for a.e. t > 0, P−a.s. In addition, for every h > 0 we define the Cd−valued
function

Π̃h (r)
>

= Πh (r)
>
+ψ (h)

>
L ({0})+ψ (h)

>
L ((0, r]) =

∫ h

0

R (s, ψ (s))
>

(∆h−sK ∗ L) (r) ds, r ∈ R+, (71)
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where the second equality is due to (67). Note that Π̃h is locally absolutely continuous on R+, and that

(
πT−t

> ∗ (X − g0)
)

(t) =
(

dΠT−t
> ∗ (X − g0)

)
(t)

=
(

dΠ̃T−t
>
∗ (X − g0)

)
(t)− ψ (T − t)> (L ∗ (X − g0)) (t) + ψ (T − t)> L ({0}) (X − g0) (t) ,

which holds for a.e. t ∈ (0, T ) , P−a.s. Substituting in (66) we immediately deduce the following result.

Corollary 11. Under the same hypotheses of Theorem 10, if the resolvent of the first kind L is the sum of
a locally integrable function and a point mass in 0, then P−a.s., for a.e. t ∈ (0, T )

V Tt = φ (T − t) +

∫ t

0

f (T − s)>Xs ds+

∫ T−t

0

R (s, ψ (s))
>
g0 (T − s) ds

+ ψ (T − t)> L ({0}) (X − g0) (t)−
(

dΠ̃T−t
>
∗ g0

)
(t) +

(
dΠ̃T−t

>
∗X

)
(t) . (72)

5. The 1−dimensional Volterra square root diffusion process with jumps

In this section we discuss a one–dimensional example (m = d = 1) where not only are we able to infer the
assumptions made in the previous arguments, such as the existence of solutions to the stochastic Volterra
equation (14) and the Riccati–Volterra equation (31) (i.e., Hypothesis 1), but also we can prove the martin-
gale property of the process exp

{
V T
}
. In order to develop the theory we need to require more properties for

the kernel K. In particular, we consider a hypothesis which is standard in the theory of stochastic Volterra
equations, that is (see [1, Condition (2.10)], and also [5, Condition (3.4)] and [4, Assumption B.2])

Condition 1. The kernel K is nonnegative, nonincreasing, not identically zero and continuously differen-
tiable on (0,∞), and its resolvent of the first kind L is nonnegative and nonincreasing, i.e., s 7→ L([s, s+ t])
is nonincreasing for every t ≥ 0.

Notice that, under Condition 1, the map s 7→ L({s}) is nonincreasing, where L is the resolvent of the first
kind of K. Combining this fact with Lebesgue’s decomposition theorem, which ensures that L has at most
a countable number of point masses in (0,∞), we deduce that L has no point masses in (0,∞).
In the sequel, we suppose that K and the shifted kernels ∆1/nK, n ∈ N, satisfy Condition 1. This is the
case, for example, when K is a completely monotone function not identically equal to 0.

We focus on the following stochastic Volterra equation of convolution type:

X = g0 + (K ∗ dZ) , P⊗ dt− a.e., (73)

where Z is a real–valued semimartingale with differential characteristics (with respect to h (ξ) = ξ, ξ ∈ R)
given by (b (Xt) , a (Xt) , η (Xt,dξ)) , t ≥ 0, with

b (x) = bx, a (x) = c x, η (x, dξ) = xν (dξ) , x ≥ 0.

Here b ∈ R, c ≥ 0 and ν is a nonnegative measure on R+ such that
∫
R+
|ξ|2 ν (dξ) < ∞. The function

g0 : R+ → R is an admissible input curve in either one of the following two forms

i. g0 is continuous and non–decreasing, with g0 (0) ≥ 0;

ii. g0 (t) = x0 +
∫ t
0
K (t− s) θ (s) ds, t ≥ 0, where x0 ≥ 0 and θ : R+ → R+ is locally bounded.

Notice that (73) describes a 1−dimensional Volterra square root diffusion with jumps. In this framework,
we can invoke [1, Theorem 2.13] to claim the existence of a weak, predictable solution X = (Xt)t≥0 of (73)
with trajectories in L1

loc (R+) such that X ≥ 0, P ⊗ dt−a.e. Actually, if g0 ∈ L2
loc (R+), the paths of this

solution X are in L2
loc (R+) , P−a.s., as the next result shows.
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Lemma 12. Suppose that g0 ∈ L2
loc (R+) and let X be a solution of (73) with trajectories in L1

loc (R+) such
that X ≥ 0, P⊗ dt−a.e. Then, for every T > 0, E

[( ∫ T
0
|Xt|2 dt

)1/2]
<∞.

Proof. The convolution equation (73) enables us to write, P−a.s.,

|Xt|2 ≤ 4
(
|g0 (t)|2 + |b|2 |(K ∗X) (t)|2 + |(K ∗ dM c)t|

2
+
∣∣(K ∗ dMd

)
t

∣∣2) , for a.e. t ≥ 0.

Integrating over the interval (0, T ) , T > 0, we have

(∫ T

0

|Xt|2 dt

) 1
2

≤ 2

(
2 + ‖g0‖L2([0,T ]) + |b| ‖K ∗X‖L2([0,T ])

+

∫ T

0

|(K ∗ dM c)t|
2

dt+

∫ T

0

∣∣(K ∗ dMd
)
t

∣∣2 dt

)
, P− a.s.,

where we also use that
√
x ≤ 1 +x, x ∈ R+. By [15, Theorem 2.2 (i), Chapter 2] we have ‖K ∗X‖L2([0,T ]) ≤

‖K‖L2([0,T ]) ‖X‖L1([0,T ]), hence taking expectation in the previous inequality we obtain, using Tonelli’s
theorem,

E
[(∫ T

0

|Xt|2 dt

) 1
2
]
≤ 2

(
2 + ‖g0‖L2([0,T ]) + |b| ‖K‖L2([0,T ]) E

[
‖X‖L1([0,T ])

]
+

∫ T

0

E
[
|(K ∗ dM c)t|

2
]

dt+

∫ T

0

E
[∣∣(K ∗ dMd

)
t

∣∣2] dt

)
. (74)

Recall that (K ∗ dM c)t =
∫ t
0
K (t− s) dM c

s , P−a.s. for a.e. t ≥ 0; therefore we use the Burkholder–Davis–
Gundy inequality and the Young’s type inequality in [2, Lemma A.1] to write (always bearing in mind
Tonelli’s theorem)∫ T

0

E
[
|(K ∗ dM c)t|

2
]

dt ≤ c · c1E
[ ∫ T

0

(∫ t

0

|K (t− s)|2Xs ds

)
dt

]
≤ c · c1 ‖K‖2L2([0,T ]) E

[
‖X‖L1([0,T ])

]
, for some c1 > 0.

Analogously, we invoke [21, Theorem 3.2] to assert∫ T

0

E
[∣∣(K ∗ dMd

)
t

∣∣2] dt ≤ 2

(∫
R+

|ξ|2 ν (dξ)

)
c2 ‖K‖2L2([0,T ]) E

[
‖X‖L1([0,T ])

]
, for some c2 > 0.

Now substituting the previous two bounds in (74) we see that the right side is finite by (19). This concludes
the proof. �

Fix f ∈ C (R+;C−). Since ν(dξ) is a nonnegative measure on R+ with finite second moment and, for
every z ∈ C−,

|Re (ez − 1− z)| ≤
∣∣eRe z − 1− Re z

∣∣+ eRe z (1− cos (Im z)) ≤ |z|2 ,

|Im (ez − 1− z)| =
∣∣eRe z sin (Im z)− Im z

∣∣ ≤ |sin (Im z)− Im z|+ |Im z|
(
1− eRe z

)
≤ 2 |z|2 ,

we have C− ⊂ Dν , see (29). We then set D = C− and define the map R : R+ ×D → C as in (30). Notice
that, by the dominated convergence theorem, R is continuous in its domain R+ × C−, hence it is locally
bounded. In addition to Equation (31), we consider the deterministic Riccati–Volterra equation

ψ (t) =

∫ t

0

K (t− s)R
(
s, ψ (s)

)
ds, t ≥ 0, (75)
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where R : R+ × C− → C is defined by

R (t, u) = Re f (t) + bu+
c

2
u2 +

∫
R+

(
euξ − 1− uξ

)
ν (dξ) , (t, u) ∈ R+ × C− (76)

and Re f : R+ → R− denotes the real part of f . We observe that also R is continuous in R+ × C−.
The next theorem shows the existence of global solutions to (31) and (75) (in particular, Hypothesis 1 is
verified), as well as a comparison result between them which is crucial for the subsequent argument on the
martingale property.

Theorem 13. Let f ∈ C (R+;C−) and assume Condition 1.

(i) There exist a continuous global solution ψ ∈ C (R+;C−) of (31) and a real–valued, continuous global
solution ψ ∈ C (R+;R−) of (75).

(ii) Given ψ ∈ C (R+;C−) and ψ ∈ C (R+;R−) satisfying (31) and (75), respectively, the following in-
equality holds:

Reψ (t) ≤ ψ (t) , t ≥ 0. (77)

Proof. The proof of (i) is in Appendix B.1, and the one of (ii) is in Appendix B.2. �

In what follows, we take two continuous functions ψ,ψ as in Theorem 13 (i) and fix T > 0. We aim to
prove the martingale property of the process exp

{
V T
}
, where V T is given by (33)–(34). For this purpose,

we define the process V
T
as in (33)–(34), substituting Re f [resp., ψ] for f [resp., ψ]. Theorem 5 shows that

V
T

t = Ṽ
T

t , P−a.s., for every t ∈ [0, T ], where of course we define Ṽ
T

as in (39) with the same substitution
as before. It is known that exp{V T } is a true, real–valued martingale. This is due to [1, Lemma 6.1], which
in turn is an interesting application of the Novikov–type condition in [20, Theorem IV.3]. The idea of the
present section consists in using the expression (72) in order to prove the bound | exp{V T }| ≤ C exp{V T }
up to indistinguishability for some C > 0, so that we can conclude that exp

{
V T
}
is a martingale, too.

Direct computations based on the Riccati–Volterra equation (31) yield, for every h > 0,

∆hψ (r) = (∆h (R (·, ψ (·))) ∗K) (r) + (R (·, ψ (·)) ∗∆rK) (h) , r ≥ 0.

Focusing on the second addend on the right side, if we convolve it with L then

((R (�, ψ (�)) ∗∆·K) (h) ∗ L) (r) =

∫ r

0

[ ∫ h

0

R (s, ψ (s)) (∆r−uK) (h− s) ds

]
L (du)

=

∫ h

0

R (s, ψ (s)) ((∆h−sK) ∗ L) (r) ds, r ≥ 0,

where the application of Fubini’s theorem is justified because K is nonnegative and nonincreasing and L is
a nonnegative measure. Whence, since ∆h (ψ ∗ L) (r) = (R (·, ψ (·)) ∗ 1) (r + h), recalling (71) we can write

Π̃h (r) = (∆hψ ∗ L) (r)−∆h (ψ ∗ L) (r) +

∫ h

0

R (s, ψ (s)) ds

= −
∫
(0,h]

ψ (h− s)L (r + ds) +

∫ h

0

R (s, ψ (s)) ds, r ≥ 0,

and in particular

Re
(

Π̃h (r)
)

= −
∫
(0,h]

Re (ψ (h− s))L (r + ds) +

∫ h

0

Re (R (s, ψ (s))) ds, r ≥ 0.
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Repeating the same argument for ψ we also obtain

Π̃h (r) = −
∫
(0,h]

ψ (h− s)L (r + ds) +

∫ h

0

R
(
s, ψ (s)

)
ds, r ≥ 0.

Taking the difference between the two previous equations we infer, for every r ≥ 0,

Π̃h (r)− Re
(

Π̃h (r)
)

= −
∫
(0,h]

[
ψ − Reψ

]
(h− s)L (r + ds) +

∫ h

0

[
R
(
·, ψ (·)

)
− Re (R (·, ψ (·)))

]
(s) ds

=
(
ψ − Reψ

)
(h)L ({r})−

∫
[0,h]

[
ψ − Reψ

]
(h− s)L (r + ds)+

∫ h

0

[
R
(
·, ψ (·)

)
− Re (R(·, ψ (·)))

]
(s) ds. (78)

Hence, we see that this function is increasing on the interval (0,∞) by (77) in Theorem 13 (ii) and Condition 1
(see also the subsequent comment). We are now in position to prove the next, important result.

Theorem 14. Assume that the kernel K ∈ L2
loc (R+;R) satisfies the requirements of Corollary 11 together

with Condition 1. Then there exists a constant C > 0 such that∣∣exp
{
V Tt
}∣∣ ≤ C exp

{
V
T

t

}
, t ∈ [0, T ] , P− a.s. (79)

In particular,
(
exp

{
V Tt
})
t∈[0,T ]

is a complex–valued martingale.

Proof. First of all note that
∣∣exp

{
V T
}∣∣ = exp

{
Re
(
V T
)}

. For the reader’s convenience, we write the
expression for Re

(
V T
)
provided by (72)

Re
(
V Tt
)

=

∫ t

0

Re f (T − s)Xs ds+

∫ T−t

0

Re (R (s, ψ (s))) g0 (T − s) ds+ Reψ (T − t)L ({0}) (X − g0) (t)

−
(

d
(

Re
(

Π̃T−t

))
∗ g0

)
(t) +

(
d
(

Re
(

Π̃T−t

))
∗X

)
(t) , for a.e. t ∈ (0, T ) , P− a.s.

The idea of the proof is simply to compare, term by term, the addends of this sum with the corresponding
ones in the expansion of V

T
according to (72). We are going to consider a common set Ω0 ⊂ Ω, with

P (Ω0) = 1, such that both the expressions for Re
(
V Tt
)
and V

T

t are valid on (0, T ) \Nω, being Nω ⊂ (0, T )
a dt−null set for every ω ∈ Ω0.

Regarding the random terms, recall that X ≥ 0, P ⊗ dt−a.e. Therefore, without loss of generality, we
can assume that for every ω ∈ Ω0 and t ∈ (0, T ) \Nω we have Xt (ω) ≥ 0. As a consequence (by (78))(

d
(

Π̃T−t − Re
(

Π̃T−t

))
∗X· (ω)

)
(t) ≥ 0 =⇒

(
d
(

Re
(

Π̃T−t

))
∗X· (ω)

)
(t) ≤

(
dΠ̃T−t ∗X· (ω)

)
(t) .

It is important to stress the fact that such an inequality can be stated because the measure L is absolutely
continuous with respect to the Lebesgue measure on the interval (0,∞). Summing up,(

d
(

Re
(

Π̃T−t

))
∗X

)
(t) ≤

(
dΠ̃T−t ∗X

)
(t) , t ∈ (0, T ) \Nω, ω ∈ Ω0.

Moreover, since L ({0}) ≥ 0, by (77) we immediately have

Reψ (T − t)L ({0})Xt ≤ ψ (T − t)L ({0})Xt, t ∈ (0, T ) \Nω, ω ∈ Ω0.

The other random addend
∫ t
0

Re f (T − s)Xs ds appears in both the expressions for Re
(
V Tt
)
and V

T

t , so it
does not need to be discussed.

As for the deterministic terms, we observe that, by Hölder’s inequality,∣∣∣∣∫ T−t

0

g0 (T − s)
(
Re (R (s, ψ (s)))−R

(
s, ψ (s)

))
ds

∣∣∣∣≤‖g0‖L2([0,T ])

∥∥Re (R (·, ψ (·)))−R
(
·, ψ (·)

)∥∥
L2([0,T ])

,
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for any t ∈ (0, T ) . Hence, calling C1 = ‖g0‖L2([0,T ])

∥∥Re (R (·, ψ))−R (·, ψ)
∥∥
L2([0,T ])

, we have∫ T−t

0

g0 (T − s) Re (R (s, ψ (s))) ds ≤ C1 +

∫ T−t

0

g0 (T − s)R
(
s, ψ (s)

)
ds, t ∈ (0, T ) .

Furthermore, recalling the continuity of ψ, ψ and g0, we call C2 = maxt∈[0,T ]

{∣∣ψ − Reψ
∣∣ (T − t) g0 (t)

}
, so

that we have

−Reψ (T − t)L ({0}) g0 (t) ≤ L ({0})C2 − ψ (T − t)L ({0}) g0 (t) , t ∈ (0, T ) .

Finally, looking at (78) we compute(
d
(

Π̃T−t − Re
(

Π̃T−t

))
∗ 1
)

(t) ≤ −
∫
[0,T−t]

[
ψ − Reψ

]
(T − t− s) [L (t+ ds)− L (ds)]

≤ 2 max
t∈[0,T ]

∣∣ψ (t)− Reψ (t)
∣∣L ([0, T ]) = C3, t ∈ (0, T ) .

Hence exploiting the continuity of the input curve we conclude that∣∣∣(d
(

Π̃T−t − Re
(

Π̃T−t

))
∗ g0

)
(t)
∣∣∣ ≤ C3 max

t∈[0,T ]
|g0 (t)| ,

which in turn implies

−
(

d
(

Re
(

Π̃T−t

))
∗ g0

)
(t) ≤ C3 max

t∈[0,T ]
|g0 (t)| −

(
dΠ̃T−t ∗ g0

)
(t) , t ∈ (0, T ) .

Combining all these results we deduce that

Re
(
V Tt (ω)

)
≤ C1 + L ({0})C2 + C3 max

t∈[0,T ]
|g0 (t)|+ V Tt (ω) , t ∈ (0, T ) \Nω, ω ∈ Ω0. (80)

Since Nω is a null set, its complementary (Nω)
c

= (0, T ) \Nω is dense in [0, T ]. Recalling the regularity for
the trajectories of the processes Re

(
V T
)
and V

T
, we can assume that for every ω ∈ Ω0 both the functions

Re
(
V T· (ω)

)
and V

T

· (ω) are càdlàg in [0, T ] and left–continuous in T . Accordingly, we pass to the limit
–from the right in [0, T ) and from the left in T– to deduce, from (80), that

Re
(
V Tt (ω)

)
≤ C1 + L ({0})C2 + C3 max

t∈[0,T ]
|g0 (t)|+ V Tt (ω) , t ∈ [0, T ] , ω ∈ Ω0,

i.e., (79) holds choosing C = exp
{
C1 + L ({0})C2 + C3 maxt∈[0,T ] |g0 (t)|

}
.

The second statement of the theorem immediately follows from [17, Lemma 1.4], as
(

exp
{
V
T})

t∈[0,T ]

is a real–valued martingale. Thus, the proof is complete. �

Combining Theorem 14 with Theorem 5 (see (41)) we deduce the following result about weak uniqueness
for (73).

Corollary 15. The weak solution X of (73) is unique in law in L2
loc (R+), that is: if Y = (Yt)t≥0 is

another predictable process (defined on a possibly different stochastic basis) such that Y ≥ 0, P ⊗ dt−a.e.,
which satisfies (73), then the laws of X and Y on the spaces L2 ([0, T ]) , T > 0, are the same.

Proof. Fix T > 0 and consider another weak solution Y of (73). We assume that X and Y are defined on
the same stochastic basis to keep notation simple. The paths of Y are in L2 ([0, T ]) , P−a.s., by Lemma 12.
We want to show that

E
[

exp

{
i

∫ T

0

f (s)Xs ds

}]
= E

[
exp

{
i

∫ T

0

f (s)Ys ds

}]
, f ∈ L2 ([0, T ]) . (81)
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First, we verify the previous equation for f ∈ C ([0, T ]). Denoting by f̃ (s) = if (T − s) , s ∈ [0, T ] , by
Theorem 5 and Theorem 14 we have

E
[

exp

{
i

∫ T

0

f (s)Xs ds

}]
= E

[
exp

{∫ T

0

f̃ (T − s)Xs ds

}]
= E

[
exp

{
V T0
}]

= E
[

exp

{∫ T

0

f̃ (T − s)Ys ds

}]
= E

[
exp

{
i

∫ T

0

f (s)Ys ds

}]
,

where we use the fact that V T0 in (34) does not depend on the solution process, but only on the solution
of the Riccati–Volterra equation. Therefore (81) holds for continuous functions. Since C ([0, T ]) is dense in
L2 ([0, T ]), Hölder’s inequality allows to carry out a dominated convergence argument that yields (81) for
all f ∈ L2 ([0, T ]). Hence, the laws of X and Y are the same on the space L2 ([0, T ]) by, for instance, [10,
Proposition 2.5, Chapter 2]. This completes the proof. �

Appendix A. The forward process

Given a kernel K ∈ L2
loc
(
R+;Rm×d

)
, we want to find an expression for the forward process

E
[
XT

∣∣Ft] , 0 ≤ t ≤ T,

for almost every T ∈ R+.
If b ≡ 0, then (18) implies

XT = g0 (T ) +
(
K ∗ dZ̃

)
T

= g0 (T ) +

∫ T

0

K (T − s) dZ̃s, P− a.s., for a.e. T ∈ R+.

By the martingale property ensured by (19) we immediately infer that, for almost every T ∈ R+,

E
[
XT

∣∣Ft] = g0 (T ) +

∫ t

0

K (T − s) dZ̃s, P− a.s., t ∈ [0, T ] . (A.1)

If b 6= 0, then we consider m = d and introduce the resolvent of the second kind RB associated with
−KB. Note that RB ∈ L2

loc
(
R+;Rd×d

)
by [15, Theorem 3.5, Chapter 2]. Convolving (18) with RB and

[15, Theorem 2.2 (viii), Chapter 2] yield

(RB ∗X) (T ) = (RB ∗ g0) (T ) + ((RB ∗K) ∗ b (X)) (T ) +
(
RB ∗

(
K ∗ dZ̃

))
(T ) , for a.e. T ∈ R+, P− a.s.

The associativity of the stochastic convolution proved in Lemma 3 (with ρ = RB) and the joint measurability
of the processes involved enable us to rewrite this equality as follows:

(RB ∗X) (T ) = (RB ∗ g0) (T ) + ((RB ∗K) ∗ b0) (T ) + ((RB ∗KB) ∗X) (T )

+
(

(RB ∗K) ∗ dZ̃
)
T
, P− a.s., for a.e. T ∈ R+. (A.2)

From the resolvent identity (see the footnote 4) we have RB ∗KB = KB + RB a.e. in R+, so we rewrite
Equation (A.2) as follows

0 = (RB ∗ g0) (T ) + ((RB ∗K) ∗ b0) (T ) + (KB ∗X) (T ) +
(

(RB ∗K) ∗ dZ̃
)
T
, P− a.s., for a.e. T ∈ R+.

(A.3)
Consider the canonical resolvent EB = K −RB ∗K; subtracting (A.3) from (18) we have

XT = (g0 − (RB ∗ g0)) (T ) + (EB ∗ b0) (T ) +
(
EB ∗ dZ̃

)
T
, P− a.s., for a.e. T ∈ R+.
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Hence by the martingale property guaranteed by (19) we are able to find an expression for the forward
process E

[
XT

∣∣Ft], namely for almost every T ∈ R+, for every t ∈ [0, T ] it holds

E
[
XT

∣∣Ft] = (g0 (T )− (RB ∗ g0) (T )) + (EB ∗ b0) (T ) +

∫ t

0

EB (T − s) dZ̃s, P− a.s. (A.4)

Finally, notice that (A.4) reduces to (A.1) as b ≡ 0. Indeed, since E0 = K a.e. in R+ as R0 = 0
(
∈ Rd×d

)
,

combining (18) with Lemma 2 (see (21)) we have

XT = g0 (T ) +
(
E0 ∗ dZ̃

)
T
, P− a.s., for a.e. T ∈ R+, (A.5)

and the assertion follows by the martingale property.

Remark 8. Equation (A.4) with t = 0 implies that E [XT ] = (g0 − (RB ∗ g0)) (T ) + (EB ∗ b0) (T ) for a.e.
T ∈ R+. This result can be confirmed with a direct method. Specifically, by (19) and Tonelli’s theorem the
function E [|X·|] ∈ L1

loc (R+;R). Hence taking expectations in (14) we obtain, by Fubini’s theorem,

E [XT ] = (g0 +K ∗ b0) (T ) + (KB ∗ E [X·]) (T ) , for a.e. T ∈ R+,

i.e., E [X·]+((−KB) ∗ E [X·]) = g0 +K ∗b0 a.e. in R+. By the variation of constants formula [15, Theorem
3.5, Chapter 2] we conclude

E [XT ] = (g0 − (RB ∗ g0) + (EB ∗ b0)) (T ) , for a.e. T ∈ R+,

as desired.

Appendix B. On the 1−dimensional, deterministic Riccati–Volterra equation

Here we focus on the Riccati–Volterra equation used in Section 5, i.e., (31) with

R (t, u) = f (t) + bu+
c

2
u2 +

∫
R+

(
euξ − 1− uξ

)
ν (dξ) , (t, u) ∈ R+ × C−, (B.1)

where f ∈ C (R+;C−) . Throughout the section, we require Condition 1 on the kernel K.

Appendix B.1. Existence of a global solution
It is easy to argue that (31) admits a continuous, noncontinuable solution ψ, with Reψ ≤ 0, defined

on the maximal interval [0, Tmax) (see [1, Theorem 2.5, Step 1]). We are concerned with showing that
Tmax =∞, i.e., that ψ does not explode in finite time (cfr. [15, Theorem 1.1, Chapter 12]).
Fix a generic T ∈ (0, Tmax); taking real and imaginary parts in (31) and (B.1) we have, on the interval [0, T ],

Reψ =K ∗
[
Re f+ bReψ+

c

2

(
|Reψ|2− |Imψ|2

)
+

∫
R+

(
cos (Imψ · ξ) eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

]
, (B.2)

Imψ = K ∗
[
Im f + b Imψ + cReψ Imψ +

∫
R+

(
sin (Imψ · ξ) eReψ·ξ − Imψ · ξ

)
ν (dξ)

]
. (B.3)

First we study the imaginary part. In particular, we consider the function h : R−×R→ R defined as follows

h (x, y) =

{
1
y

∫
R+

(sin (y ξ)− y ξ) ex·ξν (dξ) , y 6= 0

0, y = 0
, x ≤ 0.

Note that h is continuous and nonpositive in its domain. By construction

y · h (x, y) =

∫
R+

(sin (y ξ)− y ξ) ex·ξν (dξ) , (x, y) ∈ R− × R.
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Hence we can use this function to rewrite (B.3) in the following form

Imψ = K ∗
[
Im f + b Imψ + cReψ Imψ +

(∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ)

)
Imψ + h (Reψ, Imψ) Imψ

]
,

which holds on [0, T ]. Consider the unique, continuous, non–negative solution on [0, T ] of the linear equation

g = K ∗
[
|Im f |+ b g +

(
cReψ +

∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ) + h (Reψ, Imψ)

)
g

]
.

By Condition 1, we can invoke [4, Theorem C.1] to deduce that |Imψ| ≤ g on [0, T ]. Next we introduce u,
the unique, continuous solution of the linear equation

u = K ∗ [|Im f |+ b u] .

Notice that u is defined on R+, and that g ≤ u on [0, T ] (again by [4, Theorem C.1]), as in this interval one
has

cReψ +

∫
R+

ξ
(
eReψ·ξ − 1

)
ν (dξ) + h (Reψ, Imψ) ≤ 0.

Therefore we have obtained the bound

|Imψ (t)| ≤ u (t) , 0 ≤ t ≤ T. (B.4)

Secondly, Equation (B.2) ensures that Reψ satisfies

Reψ = K ∗
[
Re f + bReψ +

c

2

(
|Reψ|2 − |Imψ|2

)
+

∫
R+

(
eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

−
∣∣∣∣ ∫

R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣]
on [0, T ]. Since |cos (x)− 1| = 1− cos (x) ≤ x2/2, x ∈ R, we have (also recalling (B.4))∣∣∣∣ ∫

R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣ ≤ 1

2

(∫
R+

|ξ|2 ν (dξ)

)
|Imψ|2 ≤ 1

2

(∫
R+

|ξ|2 ν (dξ)

)
u2, (B.5)

which holds on [0, T ]. This suggests to introduce the linear equation

l = K ∗
[
Re f + b l −

(
c

2
+

1

2

∫
R+

|ξ|2 ν (dξ)

)
u2
]
,

which has a unique, continuous, nonpositive solution l defined on the whole R+. At this point, observe that
the difference Reψ − l satisfies the linear equation

χ = K ∗
[
b χ+

c

2
|Reψ|2 +

c

2

(
u2 − |Imψ|2

)
+

∫
R+

(
eReψ·ξ − 1− Reψ · ξ

)
ν (dξ)

+

(
1

2

(∫
R+

|ξ|2 ν (dξ)

)
u2 −

∣∣∣∣ ∫
R+

eReψ·ξ (cos (Imψ · ξ)− 1) ν (dξ)

∣∣∣∣)].
It admits a unique, continuous solution on [0, T ] which is non–negative by (B.4), (B.5) and the fact that
ex − 1− x ≥ 0, x ∈ R. Since T ∈ (0, Tmax) was chosen arbitrarily, we conclude that

l (t) ≤ Reψ (t) ≤ 0 and |Imψ (t)| ≤ u (t) , 0 ≤ t < Tmax.

Now recalling that l and u are continuous in R+, so they are bounded in every compact interval, we conclude
that Tmax =∞, as desired.

Finally we notice that if f takes values in R−, then from (B.4) we deduce that any solution of (31) is
real–valued, as well. In particular, ψ in (75) is R−−valued.
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Appendix B.2. A comparison result
The goal of this appendix is to prove the inequality (77) in Theorem 13 (ii), which is of utmost importance

for the argument in Section 5. Precisely, we want to show that

Reψ (t) ≤ ψ (t) , t ≥ 0,

where ψ ∈ C (R+;C−) and ψ ∈ C (R+;R−) satisfy (31) and (75), respectively. Direct computations based
on the definitions in (B.1) and (76) show that, for every u ∈ C− and t ≥ 0,

Re (R (t, u))=Re f (t)+ bRe (u)+
c

2

(
|Re (u)|2−|Im (u)|2

)
+

∫
R+

(
cos (Im (u) ξ) eRe(u)ξ − 1− Re (u) ξ

)
ν (dξ)

≤ Re f (t) + bRe (u) +
c

2
|Re (u)|2 +

∫
R+

(
eRe(u)ξ − 1− Re (u) ξ

)
ν (dξ) = R (t,Re (u)) .

Summarizing,
Re (R (t, u)) ≤ R (t,Re (u)) , u ∈ C−, t ≥ 0. (B.6)

Then taking the real parts in (31) and recalling that –under Condition 1– the kernel K is nonnegative on
(0,∞), we obtain

Re (ψ (t)) ≤
∫ t

0

K (t− s)R (s,Re (ψ (s))) ds, t ≥ 0.

Therefore we can introduce a nonnegative function γ : R+ → R+ defined by the relation

Re (ψ (t)) = −γ (t) +

∫ t

0

K (t− s)R (s,Re (ψ (s))) ds, t ≥ 0; (B.7)

we immediately note that, using (31), one can rewrite γ as follows

γ (t) =

∫ t

0

K (t− s)
(
R (s,Reψ (s))− Re (R (s, ψ (s)))

)
ds, t ≥ 0. (B.8)

For a generic map g : R+ → R consider the condition

∆hg − (∆hK ∗ L) (0) g − d (∆hK ∗ L) ∗ g ≥ 0, h ≥ 0; (B.9)

we denote by GK = {g : R+ → R s.t. g is continuous, satisfies (B.9) and g (0) ≥ 0} the set of admissible
curves, see [4, Condition B.3], and also [1, Equations (2.14)-(2.15)]. By [4, Remark B.6] and (B.8) we infer
that γ ∈ GK .

At this point we subtract (B.7) from (75) to deduce, calling δ = ψ − Reψ, that

δ (t) = γ (t) +

∫ t

0

K (t− s)
(
R
(
s, ψ (s)

)
−R (s,Re (ψ (s)))

)
ds, t ≥ 0. (B.10)

We then need to study the increments of R in the second variable. Namely, fix u1, u2 ∈ R− and use the
definition (76) to write

R (t, u1)−R (t, u2) = b (u1 − u2) +
c

2

(
u21 − u22

)
+

∫
R+

(
eu1ξ − eu2ξ − (u1 − u2) ξ

)
ν (dξ)

=
[
b+

c

2
(u1 + u2)

]
(u1 − u2) +

∫
R+

(
eu1ξ − eu2ξ − (u1 − u2) ξ

)
ν (dξ) , t ≥ 0.

Hence substituting ψ and Reψ to u1 and u2, respectively, we have

R
(
t, ψ (t)

)
−R (t,Re (ψ (t))) =

[
b+

c

2

(
ψ (t) + Re (ψ (t))

)]
︸ ︷︷ ︸

=z(t)

δ (t) +

∫
R+

(
eψ(t)ξ − eReψ(t)ξ − δ (t) ξ

)
ν (dξ)︸ ︷︷ ︸

=w(t)
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for t ≥ 0. Going back to (B.10),

δ (t) = γ (t) +

∫ t

0

K (t− s) (z (s) δ (s) + w (s)) ds, t ≥ 0. (B.11)

We aim to apply [4, Theorem C.1] in order to conclude δ ≥ 0 in R+.

• In the continuous case the integral in ν (dξ), i.e., the function w, simply disappears, hence the appli-
cation of [4, Theorem C.1] is straightforward.

• In the jump case we need to deal with such an integral. Observe that the function w has opposite sign
with respect to δ, so there is no hope of applying [4, Theorem C.1] unless we modify its expression.
Fortunately this can be done using the mean value theorem, in combination with simple real–analysis
arguments.
First, for every ξ > 0 we define fξ (u) = eξu, u ∈ R, so f ′ξ (u) = ξeξu. Observe that the derivative f ′ξ

is continuous and strictly increasing in R, hence its inverse hξ =
(
f ′ξ

)−1
is continuous on (0,∞), as

well. By the mean value theorem, for every u1, u2 ∈ R there exists cξ ∈ [u1 ∧ u2, u1 ∨ u2] such that

fξ (u2)− fξ (u1) = f ′ξ (cξ) (u2 − u1) .

In particular cξ ∈ (u1 ∧ u2, u1 ∨ u2) when u1 6= u2.
Secondly, we consider the functions ψ and Reψ, and we can say that for every t ∈ R+ there exists
cξ (t) ∈

[
ψ (t) ∧ Reψ (t) , ψ (t) ∨ Reψ (t)

]
(in the interior of such interval whenever ψ 6= Reψ, i.e.,

whenever δ 6= 0) such that

eξψ(t) − eξReψ(t) = f ′ξ (cξ (t))
(
ψ (t)− Reψ (t)

)
= ξeξcξ(t)δ (t) . (B.12)

By the axiom of choice we construct the function c : R+ × R+ → R− defined by

c (ξ, t) = cξ (t) , ξ > 0, t ≥ 0,

and c (0, t) = 0, t ≥ 0. Note that the codomain of c (·, ·) is R− since both ψ and Reψ take values there.
Recalling the definition of w and using (B.12) we can write

w (t) =

∫
R+

[
eψ(t)ξ − eRe(ψ(t))ξ − δ (t) ξ

]
ν (dξ) =

(∫
R+

ξ
[
eξc(ξ,t) − 1

]
ν (dξ)

)
︸ ︷︷ ︸

=w(t)

δ (t) , t ≥ 0.

Now we have to prove that w is continuous on R+. The first step is to show the continuity of the
function c (ξ, ·) in R+ for every fixed ξ ∈ R+. It is of course trivial for ξ = 0, so we just focus on ξ > 0.
If t ∈ (0,∞) such that δ

(
t
)
> 0, then we can find ε > 0 such that δ > 0 in

(
t− ε, t+ ε

)
. Hence we use

(B.12) to prove that

c (ξ, t) = hξ

(
eξψ(t) − eξReψ(t)

δ (t)

)
, t ∈

(
t− ε, t+ ε

)
,

recalling that hξ =
(
f ′ξ

)−1
. So c (ξ, ·) is continuous in the points t ∈ (0,∞) where δ

(
t
)
> 0. An

analogous reasoning shows the continuity in the points where δ < 0. Consider now t ∈ R+ a zero for
δ, i.e., δ

(
t
)

= 0. For every sequence (tn)n ⊂ R+ such that tn → t as n→∞ one has, by construction,

ψ (tn) ∧ Reψ (tn) ≤ c (ξ, tn) ≤ ψ (tn) ∨ Reψ (tn) , n ∈ N.

Therefore an application of the squeeze theorem gives

lim
n→∞

c (ξ, tn) = Reψ
(
t
)

= ψ
(
t
)

= c
(
ξ, t
)
.
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At this point we deduce the continuity of the function w using the dominated convergence theorem.
Indeed, take t ∈ R+, a sequence tn → t, and define g(n) (ξ) = ξ

[
eξc(ξ,t(n)) − 1

]
, ξ ∈ R+. Then gn → g

pointwise in R+ by the continuity of c (ξ, ·) and, for a certain C > 0 s.t. tn ≤ C, n ∈ N (which exists
since (tn)n is bounded), we have∣∣∣ξ [eξc(ξ,tn) − 1

]∣∣∣ = ξ
[
1− eξc(ξ,tn)

]
≤ ξ

[
1− eξmin0≤s≤C c(ξ,s)

]
≤ ξ

[
1− eξmin0≤s≤C{(Reψ∧ψ)(s)}

]
∈ L1 (dν) , n ∈ N.

Therefore we can rewrite (B.11) as follows

δ (t) = γ (t) +

∫ t

0

K (t− s) (z (s) + w (s)) δ (s) ds, t ≥ 0,

and we invoke [4, Theorem C.1] to assert that δ ≥ 0, i.e., that (77) holds.
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