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A Data-Driven Trajectory Representation for Nonlinear Systems
under quasi-Linear Parameter Varying Embeddings

Marcelo M. Morato1,2, Julio E. Normey-Rico1 and Olivier Sename2

Abstract— Recent literature has shown how linear time-
invariant (LTI) systems can be represented through trajectory-
based features, relying on a single measured input-output
(IO) trajectory dictionary, as long as the input is persistently
exciting. The so-called behavioural framework is a promising
alternative for controller synthesis without the necessity of
system identification. In this paper, we extend and translate
previous results to a wide class of nonlinear systems, using
quasi-Linear Parameter Varying (qLPV) embeddings along
suitable IO coordinates. Accordingly, we show how nonlinear
data-driven simulation and predictions can be made based
on the proposed qLPV approach. A parameter-dependent
dissipativity analysis verification setup is also given. Realistic
results are included to demonstrate the effectiveness of the tools.
[Paper under corrections, a new version will be uploaded soon.]

I. INTRODUCTION

Modern control theory relies on the availability of trustwor-
thy process models, and thus system identification has been
an active field of research. Yet, fostering accurate models is
costly, ponderous, and hindered by uncertainties. Thus, over
the last decades, developing controllers directly from data
has received a considerable amount of attention, specially
due to reinforcement learning techniques [1] and virtual
reference feedback tuning approaches [2]. Withal, as argued
extensively in [1], these methods consistently require large
data sets, while lacking formal guarantees on stability and
performance of the resulting closed-loop.

More recently, concrete results were presented using be-
havioural theory as an unified approach to data-driven control
[3]–[6]. This framework enables to characterise all possible
trajectories of an unknown system using a single measured
input–output dictionary of a fixed length, as long as the input
is persistently exciting. This representation structure has been
thoroughly exploited in the context of linear time-invariant
(LTI), as well as for Hammerstein-Wiener plants, offering a
well-suited set of tools for the development of data-driven
control with inherent formal guarantees, such as dissipativity
and corresponding stability properties. Data-driven simula-
tion and prediction have also been assessed, including the
case of Linear Parameter Varying (LPV) systems [7].

In parallel to these results, the LPV toolkit has been
shown capable to describe a wide range of time-varying
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behaviours under linear structures, with experimental exam-
ples registered in [8]. Under differential inclusion properties,
quasi-LPV (qLPV) embeddings are a viable way to en-
compass nonlinearities into bounded scheduling parameters,
thus maintaining linearity along suitable input-output (IO)
channels [9]. W.r.t. this context, our main contributions are:
• A data-driven trajectory representation is proposed for

nonlinear systems, benefiting from qLPV embeddings.
The framework is an extension of the results from [5]
to a much wider class of nonlinear plants.

• In consonance with [5], [7], we present data-driven sim-
ulation and prediction algorithms for nonlinear systems
using input-output data and a scheduling function.

• A parameter-dependent dissipativity analysis framework
is conceived for nonlinear systems, enabled through a
direct verification test, as in [3], [6], yet constrained by
the available scheduling variable space.

• Realistic simulation results of a rotational pendulum
benchmark are presented in order to demonstrate the
effectiveness and accurateness of the proposed tools.

Paper organisation. Sec. II provides preliminaries. Sec.
III gives the main result: the trajectory representation for
nonlinear systems via qLPV embeddings, and also data-
driven simulation and prediction algorithms.
Notation. The identity matrix of size j is denoted as Ij .
The orthogonal complement of a matrix A is denoted A⊥.
For a discrete-time signal v : N→ Rnv , we denote v(k) ∈
Rnv each of its entries and {v(k)}N−1

k=0 the corresponding
sequence of N data entries, or just v in short. We use
col{v} :=

[
v(0)T . . . v(N − 1)T

]T
to denote the column

vectorisation, and diag{v} as the block-diagonal matrix
formed with col{v}. The Kronecker product is represented
by ⊗; the corresponding block-diagonal operator is denoted
~, implying that (v ~ Iξ) = diag{v(0)⊗ Iξ . . . v(N − 1)⊗
Iξ}. For a sequence {v(k)}N−1

k=0 , we have the corresponding
Hankel matrix, for a window of L entries, given by:

HL(v) :=


v(0) v(1) . . . v(N − L)
v(1) v(2) . . . v(N − L+ 1)

...
...

. . .
...

v(L− 1) v(L) . . . v(N − 1)

 .

(?) denotes the corresponding symmetrical transpose. For
two sets W and T, WT marks all maps from T to W.

II. PRELIMINARIES AND SETTING

In this Section, we briefly recall key concepts on behavioural
theory and trajectory representation for LTI systems, as well
as main the arguments used to generate qLPV embeddings.



A. Behavioural Theory

Definition 1 (System Behaviour [10]): A dynamic system
is given by G := (T,W,B), where T ⊂ R is called the time
dimension, W the signal space, and B ⊂ WT the system
behaviour, which represents all possible trajectories of G.

Definition 2 (Manifest Behaviour [10]): The manifest
behaviour of a system G := (T,W,B) with inputs
u ∈ Rnu and outputs y ∈ Rny is given by
BM := {col{u, y} ∈ B | ∃x ∈ (Rnx)N s.t Eq. (1) holds}.{

x(k + 1) = fx(x(k), u(k)) ,
y(k) = fy(x(k), u(k) . (1)

Thus, we say that Eq. (1) is a state-space representation of
G if BM = B, i.e. all possible trajectories of G are mapped.

Definition 3 (Persistent excitation [10]): A signal
{u(k)}N−1

k=0 , with u(k) ∈ Rnu ,∀k ≥ 0, is persistently
exciting of order L if the rank of HL(u) = nuL.

The condition of persistent excitation is widely used in
system identification theory. Def. 3 implies that N ≥ (nu +
1)L− 1. Based on the assumption of a persistently exciting
input u, Willem’s Lemma [10] is exploited in control theory:

Theorem 1 (Trajectory Representation [5]): Consider an
LTI system G with inputs u(k) ∈ Rnu and outputs y(k) ∈
Rny , whose behaviour is given by the set of all trajectories
col{u, y}, s.t. ∃x ∈ (Rnx)N that validates Eq. (2).{

x(k + 1) = Ax(k) +Bu(k) ,
y(k) = Cx(k) +Du(k) . (2)

Consider {u(k), y(k)}N−1
k=0 as a trajectory of G, with u

persistently exciting of order L + nx. Then, any sequence
{u(k), y(k)}L−1

k=0 is also a trajectory of G iff ∃α ∈ RN−L+1

s.t.: [
HL(u)
HL(y)

]
α =

[
col{u}
col{y}

]
. (3)

Proof: Follows from the linearity that the set of all
trajectories of an LTI system is a vector space. Thus, a direct
application of [10, Theo. 1] yields Eq. (3); details in [5].

Remark 1: Theo. 1 uses the LTI model from Eq. (2)
as a vector space that maps all corresponding trajectories.
Moreover, it shows how time-shifts of a single measured
trajectory can serve as a basis for this LTI vector space,
as long as if the input is persistently exciting of sufficient
order. This theorem exploits the well-known property of the
existence of minimal (controllable, observable) realisations
of LTI systems. The particular choice of the specific realisa-
tion is not relevant, but rather the fact that a fixed window
IO trajectory {u(k), y(k)}bk=a imposes an unique LTI state
trajectory {x(k)}bk=a, whenever b− a ≥ nx − 1.

Definition 4 (Dissipativity [3]): A system G is said dis-
sipative w.r.t. a supply rate Π ∈ R(nu+ny)×(nu+ny) if the
following inequality holds for all input-output trajectories of
G, i.e. {u(k), y(k)}∞k=0, for null initial conditions:

r∑
k

[
u(k)
y(k)

]T Π︷ ︸︸ ︷[
Q S
? R

] [
u(k)
y(k)

]
≥ 0 ∀r ≥ 0 , (4)

where Q = QT , R = RT and S are supply weights.
Definition 5 (L-Dissipativity [3]): A system G is said L-

dissipative w.r.t. a supply rate Π if the following inequality
holds for all L-sized input-output trajectories of G, i.e.
{u(k), y(k)}L−1

k=0 , for null initial conditions:∑
(k)r

[
u(k)
y(k)

]T
Π

[
u(k)
y(k)

]
≥ 0∀r ∈ N[0,L−1] .(5)

Theorem 2 (Dissipativity from Data [6]): Suppose that
{u(k), y(k)}N−1

k=0 is a data-dictionary of an LTI system G.
Then, the following statements are equivalent:

1) G is L-dissipative w.r.t. a given supply rate Π.
2) Data {u(k)}N−1

k=0 is persistently exciting of order L+
nx and Ineq. (6) holds for any ν s.t. nx ≤ ν < L.

(?) ΠL

([
HL(u)
HL(y)

]
VL,ν(u, y)

)
≥ 0 , (6)

ΠL :=

[
IL ⊗Q IL ⊗ S
? IL ⊗R

]
,

VL,ν(u, y) :=

(
TL,ν

[
HL(u)
HL(y)

])⊥
,

TL,ν :=
[
I(nu+ny)ν 0((nu+ny)ν)×((nu+ny)(L−ν))

]
.

Proof: Full proof given in [3], [6].

B. qLPV Embeddings

Definition 6 (Differential Inclusion [9]): Consider that
the following difference equation gives the discrete-time
input-output nonlinear manifest behaviour of a system G:

y(k) = f (y(k − 1), . . . , y(k − na), u(k), . . . , u(k − nb)) ,

being u ∈ Rnu the vector of inputs, and y ∈ Rny the
vector of outputs. We say that G satisfies the differential
inclusion property if there exists a map D(y(k−1), . . . , y(k−
na), u(k), . . . , u(k−nb)) ⊆ Rny×(nyna+nu(nb+1)) such that
f(·) := D(·)[y(k − 1)T . . . y(k − na)T u(k)T . . . u(k −
nb)

T ]T . Then, the manifest behaviour of G can be stated as:

y(k)+
∑na
i=1 ai(ρ(k−i))y(k−i)=

∑nb
j=0 bj(ρ(k−j))u(k−j) , (7)

where na, nb ≥ 0, and ai ∈ Rny×ny and ai ∈ Rny×nu are
coefficient functions.

Remark 2: The model in Eq. (7) is quasi-LPV, with an
endogenous nonlinear scheduling function fρ(·)). For sim-
plicity, we use ρ(k) = fρ(y(k − 1)) in the sequel; all the
presented procedures can be applied to the more generic case
without loss of generality.

Proposition 1: Consider a nonlinear system G which sat-
isfies differential inclusion, being states as in Eq. (7) with
ρ(k) = fρ(y(k − 1)). Assume that the following compact,
convex constraints are respected: y(k) ∈ Y ⊂ Rny and
u(k) ∈ U ⊂ Rnu , ∀k ≥ 0. Thus, ρ(k) ∈ P ⊂ Rnρ ,∀k ≥ 0.

Remark 3: Using an IO LPV realisation, as gives Eq.
(7), is rather common in LPV identification, as seen in
many application results [8], [11], [12]. Consider a behaviour
BqLPV := {col(u, ρ, y) ∈ (U × P × Y) | s.t. Eq. (7) holds}.
Note that BqLPV is linear along the (u, y) IO channels, in the
sense that for any (u, ρ, y), (ũ, ρ, ỹ) ∈ BqLPV and λ, λ̃ ∈ R,



it follows that (λu + λ̃ũ, ρ, λy + λ̃ỹ) ∈ BqLPV. Moreover,
BqLPV is time-invariant and well-defined, with a direct state-
space (SS) realisation (e.g. Proposition 2).

Proposition 2: Assume that a nonlinear system G satisfies
differential inclusion, and that there exists a scheduling proxy
fρ(·) s.t. Propo. 1 holds. Then, the corresponding non-
minimal SS realisation of Eq. (7) is:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) , (8)
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,

where x(k) = [y(k − 1)′ , . . . , y(k − na)′ , u(k −
1)′ , . . . , u(k − nb)

′] ∈ Rnx defines the state vector with

nx = (nany + nbnu). Matrices
[
A(·) B(·)
C(·) D(·)

]
are:

−a1(·) . . . −ana(·) b1(·) . . . bnb(·) b0
Iny . . . 0 0 . . . 0 0

...
...

...
0 . . . 0 Inu . . . 0 Iny
0 . . . 0 Inu . . . 0 0

...
...

...
−a1(·) . . . −ana(·) b1(·) . . . bnb(·) b0(·)


.

Remark 4: The system order is nx; nu and ny argue
the number of inputs and outputs, respectively. Next, only
a rough upper bound over nx is required to quantify the
persistent excitation.

III. MAIN RESULT: A TRAJECTORY REPRESENTATION
FOR NONLINEAR SYSTEMS UNDER QLPV EMBEDDING

The remainder of this paper is under corrections. A
suitable version will be uploaded to HAL soon.
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[12] R. Tóth, H. S. Abbas, and H. Werner, “On the state-space realization
of LPV input-output models: Practical approaches,” IEEE Trans. on
Control Systems Technology, vol. 20, no. 1, pp. 139–153, 2011.


	Introduction
	Preliminaries and Setting
	Behavioural Theory
	qLPV Embeddings

	Main result: A Trajectory Representation for Nonlinear Systems under qLPV embedding
	References

