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A Data-Driven Trajectory Representation for Nonlinear Systems
under quasi-Linear Parameter Varying Embeddings

Marcelo M. Morato1,2, Julio E. Normey-Rico1 and Olivier Sename2

Abstract— Recent literature has shown how linear time-
invariant (LTI) systems can be represented through trajectory-
based features, relying on a single measured input-output
(IO) trajectory dictionary, as long as the input is persistently
exciting. The so-called behavioural framework is a promising
alternative for controller synthesis without the necessity of
system identification. In this paper, we extend and translate
previous results to a wide class of nonlinear systems, using
quasi-Linear Parameter Varying (qLPV) embeddings along
suitable IO coordinates. Accordingly, we show how nonlinear
data-driven simulation and predictions can be made based
on the proposed qLPV approach. A parameter-dependent
dissipativity analysis verification setup is also given. Realistic
results are included to demonstrate the effectiveness of the tools.

I. INTRODUCTION

Modern control theory relies on the availability of trustwor-
thy process models, and thus system identification has been
an active field of research. Yet, fostering accurate models is
costly, ponderous, and hindered by uncertainties. Thus, over
the last decades, developing controllers directly from data
has received a considerable amount of attention, specially
due to reinforcement learning techniques [1] and virtual
reference feedback tuning approaches [2]. Withal, as argued
extensively in [1], these methods consistently require large
data sets, while lacking formal guarantees on stability and
performance of the resulting closed-loop.

More recently, concrete results were presented using be-
havioural theory as an unified approach to data-driven control
[3]–[6]. This framework enables to characterise all possible
trajectories of an unknown system using a single measured
input–output dictionary of a fixed length, as long as the input
is persistently exciting. This representation structure has been
thoroughly exploited in the context of linear time-invariant
(LTI), as well as for Hammerstein-Wiener plants, offering a
well-suited set of tools for the development of data-driven
control with inherent formal guarantees, such as dissipativity
and corresponding stability properties. Data-driven simula-
tion and prediction have also been assessed, including the
case of Linear Parameter Varying (LPV) systems [7].

In parallel to these results, the LPV toolkit has been
shown capable to describe a wide range of time-varying
behaviours under linear structures, with experimental exam-
ples registered in [8]. Under differential inclusion properties,
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quasi-LPV (qLPV) embeddings are a viable way to en-
compass nonlinearities into bounded scheduling parameters,
thus maintaining linearity along suitable input-output (IO)
channels [9]. W.r.t. this context, our main contributions are:

• A data-driven trajectory representation is proposed for
nonlinear systems, benefiting from qLPV embeddings.
The framework is an extension of the results from [5]
to a much wider class of nonlinear plants.

• In consonance with [5], [7], we present data-driven sim-
ulation and prediction algorithms for nonlinear systems
using input-output data and a scheduling function.

• A parameter-dependent dissipativity analysis framework
is conceived for nonlinear systems, enabled through a
direct verification test, as in [3], [6], yet constrained by
the available scheduling variable space.

• Realistic simulation results of a rotational pendulum
benchmark are presented in order to demonstrate the
effectiveness and accurateness of the proposed tools.

Paper organisation. Sec. II provides preliminaries. Sec.
III gives the main result: the trajectory representation for
nonlinear systems via qLPV embeddings, and also data-
driven simulation and prediction algorithms. Sec. IV details
the parameter-dependent dissipativity analysis tool. Sec. IV
shows some results. Conclusions are drawn in Sec. VI.
Notation. The identity matrix of size j is denoted as Ij .
The orthogonal complement of a matrix A is denoted A⊥.
For a discrete-time signal v : N → Rnv , we denote v(k) ∈
Rnv each of its entries and {v(k)}N−1

k=0 the corresponding
sequence of N data entries, or just v in short. We use
col{v} :=

[
v(0)T . . . v(N − 1)T

]T
to denote the column

vectorisation, and diag{v} as the block-diagonal matrix
formed with col{v}. The Kronecker product is represented
by ⊗; the corresponding block-diagonal operator is denoted
⊛, implying that (v ⊛ Iξ) = diag{v(0)⊗ Iξ . . . v(N − 1)⊗
Iξ}. For a sequence {v(k)}N−1

k=0 , we have the corresponding
Hankel matrix, for a window of L entries, given by:

HL(v) :=


v(0) v(1) . . . v(N − L)
v(1) v(2) . . . v(N − L+ 1)

...
...

. . .
...

v(L− 1) v(L) . . . v(N − 1)

 .

(⋆) denotes the corresponding symmetrical transpose. For
two sets W and T, WT marks all maps from T to W.

II. PRELIMINARIES AND SETTING

In this Section, we briefly recall key concepts on behavioural
theory and trajectory representation for LTI systems, as well
as main the arguments used to generate qLPV embeddings.



A. Behavioural Theory

Definition 1 (System Behaviour [10]): A dynamic system
is given by G := (T,W,B), where T ⊂ R is called the time
dimension, W the signal space, and B ⊂ WT the system
behaviour, which represents all possible trajectories of G.

Definition 2 (Manifest Behaviour [10]): The manifest
behaviour of a system G := (T,W,B) with inputs
u ∈ Rnu and outputs y ∈ Rny is given by
BM := {col{u, y} ∈ B | ∃x ∈ (Rnx)N s.t Eq. (1) holds}.{

x(k + 1) = fx(x(k), u(k)) ,
y(k) = fy(x(k), u(k) . (1)

Thus, we say that Eq. (1) is a state-space representation of
G if BM = B, i.e. all possible trajectories of G are mapped.

Definition 3 (Persistent excitation [10]): A signal
{u(k)}N−1

k=0 , with u(k) ∈ Rnu ,∀k ≥ 0, is persistently
exciting of order L if the rank of HL(u) = nuL.

The condition of persistent excitation is widely used in
system identification theory. Def. 3 implies that N ≥ (nu +
1)L− 1. Based on the assumption of a persistently exciting
input u, Willem’s Lemma [10] is exploited in control theory:

Theorem 1 (Trajectory Representation [5]): Consider an
LTI system G with inputs u(k) ∈ Rnu and outputs y(k) ∈
Rny , whose behaviour is given by the set of all trajectories
col{u, y}, s.t. ∃x ∈ (Rnx)N that validates Eq. (2).{

x(k + 1) = Ax(k) +Bu(k) ,
y(k) = Cx(k) +Du(k) . (2)

Consider {u(k), y(k)}N−1
k=0 as a trajectory of G, with u

persistently exciting of order L + nx. Then, any sequence
{u(k), y(k)}L−1

k=0 is also a trajectory of G iff ∃α ∈ RN−L+1

s.t.: [
HL(u)
HL(y)

]
α =

[
col{u}
col{y}

]
. (3)

Proof: Follows from the linearity that the set of all
trajectories of an LTI system is a vector space. Thus, a direct
application of [10, Theo. 1] yields Eq. (3); details in [5].

Remark 1: Theo. 1 uses the LTI model from Eq. (2)
as a vector space that maps all corresponding trajectories.
Moreover, it shows how time-shifts of a single measured
trajectory can serve as a basis for this LTI vector space,
as long as if the input is persistently exciting of sufficient
order. This theorem exploits the well-known property of the
existence of minimal (controllable, observable) realisations
of LTI systems. The particular choice of the specific realisa-
tion is not relevant, but rather the fact that a fixed window
IO trajectory {u(k), y(k)}bk=a imposes an unique LTI state
trajectory {x(k)}bk=a, whenever b− a ≥ nx − 1.

Definition 4 (Dissipativity [3]): A system G is said dis-
sipative w.r.t. a supply rate Π ∈ R(nu+ny)×(nu+ny) if the
following inequality holds for all input-output trajectories of
G, i.e. {u(k), y(k)}∞k=0, for null initial conditions:

r∑
k

[
u(k)
y(k)

]T Π︷ ︸︸ ︷[
Q S
⋆ R

] [
u(k)
y(k)

]
≥ 0 ∀r ≥ 0 , (4)

where Q = QT , R = RT and S are supply weights.
Definition 5 (L-Dissipativity [3]): A system G is said L-

dissipative w.r.t. a supply rate Π if the following inequality
holds for all L-sized input-output trajectories of G, i.e.
{u(k), y(k)}L−1

k=0 , for null initial conditions:∑
(k)r

[
u(k)
y(k)

]T
Π

[
u(k)
y(k)

]
≥ 0∀r ∈ N[0,L−1] .(5)

Theorem 2 (Dissipativity from Data [6]): Suppose that
{u(k), y(k)}N−1

k=0 is a data-dictionary of an LTI system G.
Then, the following statements are equivalent:

1) G is L-dissipative w.r.t. a given supply rate Π.
2) Data {u(k)}N−1

k=0 is persistently exciting of order L+
nx and Ineq. (6) holds for any ν s.t. nx ≤ ν < L.

(⋆)ΠL

([
HL(u)
HL(y)

]
VL,ν(u, y)

)
≥ 0 , (6)

ΠL :=

[
IL ⊗Q IL ⊗ S

⋆ IL ⊗R

]
,

VL,ν(u, y) :=

(
TL,ν

[
HL(u)
HL(y)

])⊥

,

TL,ν :=
[
I(nu+ny)ν 0((nu+ny)ν)×((nu+ny)(L−ν))

]
.

Proof: Full proof given in [3], [6].

B. qLPV Embeddings

Definition 6 (Differential Inclusion [9]): Consider that
the following difference equation gives the discrete-time
input-output nonlinear manifest behaviour of a system G:

y(k) = f (y(k − 1), . . . , y(k − na), u(k), . . . , u(k − nb)) ,

being u ∈ Rnu the vector of inputs, and y ∈ Rny the
vector of outputs. We say that G satisfies the differential
inclusion property if there exists a map D(y(k−1), . . . , y(k−
na), u(k), . . . , u(k−nb)) ⊆ Rny×(nyna+nu(nb+1)) such that
f(·) := D(·)[y(k − 1)T . . . y(k − na)

T u(k)T . . . u(k −
nb)

T ]T . Then, the manifest behaviour of G can be stated as:

y(k)+
∑na

i=1 ai(ρ(k−i))y(k−i)=
∑nb

j=0 bj(ρ(k−j))u(k−j) , (7)

where na, nb ≥ 0, and ai ∈ Rny×ny and ai ∈ Rny×nu are
coefficient functions.

Remark 2: The model in Eq. (7) is quasi-LPV, with an
endogenous nonlinear scheduling function fρ(·)). For sim-
plicity, we use ρ(k) = fρ(y(k − 1)) in the sequel; all the
presented procedures can be applied to the more generic case
without loss of generality.

Proposition 1: Consider a nonlinear system G which sat-
isfies differential inclusion, being states as in Eq. (7) with
ρ(k) = fρ(y(k − 1)). Assume that the following compact,
convex constraints are respected: y(k) ∈ Y ⊂ Rny and
u(k) ∈ U ⊂ Rnu , ∀k ≥ 0. Thus, ρ(k) ∈ P ⊂ Rnρ ,∀k ≥ 0.

Remark 3: Using an IO LPV realisation, as gives Eq.
(7), is rather common in LPV identification, as seen in
many application results [8], [11], [12]. Consider a behaviour
BqLPV := {col(u, ρ, y) ∈ (U × P × Y) | s.t. Eq. (7) holds}.
Note that BqLPV is linear along the (u, y) IO channels, in the
sense that for any (u, ρ, y), (ũ, ρ, ỹ) ∈ BqLPV and λ, λ̃ ∈ R,



it follows that (λu + λ̃ũ, ρ, λy + λ̃ỹ) ∈ BqLPV. Moreover,
BqLPV is time-invariant and well-defined, with a direct state-
space (SS) realisation (e.g. Proposition 2).

Proposition 2: Assume that a nonlinear system G satisfies
differential inclusion, and that there exists a scheduling proxy
fρ(·) s.t. Propo. 1 holds. Then, the corresponding non-
minimal SS realisation of Eq. (7) is:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) , (8)
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,

where x(k) = [y(k − 1)′ , . . . , y(k − na)
′ , u(k −

1)′ , . . . , u(k − nb)
′] ∈ Rnx defines the state vector with

nx = (nany + nbnu). Matrices
[

A(·) B(·)
C(·) D(·)

]
are:

−a1(·) . . . −ana
(·) b1(·) . . . bnb

(·) b0
Iny

. . . 0 0 . . . 0 0
...

...
...

0 . . . 0 Inu
. . . 0 Iny

0 . . . 0 Inu
. . . 0 0

...
...

...
−a1(·) . . . −ana

(·) b1(·) . . . bnb
(·) b0(·)


.

Remark 4: The system order is nx; nu and ny argue
the number of inputs and outputs, respectively. Next, only
a rough upper bound over nx is required to quantify the
persistent excitation.

III. MAIN RESULT: A TRAJECTORY REPRESENTATION
FOR NONLINEAR SYSTEMS UNDER QLPV EMBEDDING

In this Section, we extend and translate the main result of
[5] to the case of nonlinear systems that allow differential
inclusion (Def. 6). Specifically, we adapt the framework
from [10], which describes an unknown system through the
trajectory space made from measured data dictionaries, to the
case of nonlinear manifest behaviours, enabled by exploiting
the linearity property that is retained along the IO channels
via differential inclusion. The result is an elegant trajectory
representation proposition for a wide variety nonlinear sys-
tems; in [5], only Hammerstein-Wiener nonlinearities were
treated, whereas herein any nonlinearity can be considered
using an appropriate differential inclusion realisation, under
the assumption that the scheduling proxy fρ(·) is known.
The following theorem syntheses the main result.

Theorem 3 (Nonlinear Trajectory Representation):
Consider a nonlinear system G with inputs u(k) ∈ Rnu

and outputs y(k) ∈ Rny , which satisfies the differential
inclusion property in such a way that its behaviour is given
by the set of all trajectories col{u, y} that validate Eq.
(7) with ρ(k) = fρ(y(k − 1)) and scheduling coefficients
ai and bi affine on ρ. Equivalently, assume that these
trajectories are s.t. ∃x ∈ (Rnx)N that validates Eq. (8).
Assume that the scheduling proxy fρ(·) is a known function.
Suppose that {u(k), ρ(k), y(k)}N−1

k=0 defines a trajectory of
G, being u persistently exciting of order L + nx. Denote
uρ = {ρ(k) ⊗ u(k)}N−1

k=0 and yρ = {ρ(k) ⊗ y(k)}N−1
k=0 .

Assume that uρ is also persistently exciting of order L+nx.

Then, {u(k), ρ(k), y(k)}L−1
k=0 is also a trajectory of G iff

there exists some constant vector α ∈ RN−L+1 s.t.:
HL(u)
HL(uρ)
HL(y)
HL(yρ)

α =


col{u}
col{uρ}
col{y}
col{yρ}

 . (9)

Proof: Consider that the manifest behaviour of G can
indeed be given by Eq. (7). Consider that the input-output
data dictionary {u(k), y(k)}N−1

k=0 is available and thus build
{u(k), ρ(k), y(k)}N−1

k=0 using the scheduling proxy ρ(k) =
fρ(y(k− 1)). Consider that the IO coefficients ai and bi are
affine on ρ ∈ Rnρ and thus write ai(ρ) = ai,0+

∑nρ

j=i ai,jρj ,
and bi(ρ) = bi,0 +

∑nρ

j=i bi,jρj . Append these expressions
to Eq. (7) in order to obtain: y(k) +

∑na

i=0 ai,0y(k −
i) +

∑na

i=1 ãi (ρ(k − i)⊗ y(k − i)) =
∑nb

i=0 bi,0u(k − i) +∑nb

i=1 b̃i (ρ(k − i)⊗ u(k − i)), where ãi := [ai,1 . . . ai,nρ
]

and b̃i := [bi,1 . . . bi,nρ
]. Then, let us define:

Uρ(k) :=

[
u(k)

ρ(k)⊗ u(k)

]
,Yρ(k) :=

[
y(k)

ρ(k)⊗ y(k)

]
,

which generate the following implicit LTI realisation:[
Iny

0
]
Yρ(k) = −

na∑
i=1

[
ai,0 ãi

]
Yρ(k) (10)

+

nb∑
i=1

[
bi,0 b̃i

]
Uρ(k) .

Assume that u and uρ are both persistently exciting of order
L+nx; thus, Uρ is also persistently exciting of order L+nx.
Then, apply Theo. (1) to Eq. (10), which implies that there
exists a vector α such that Eq. (9) holds.

Remark 5: From Eq. (9), it follows that col{u} =
αHL(u) =

∑N−L
i=0 αi{u(k)}L−1+i

k=i , col{uρ} = αHL(uρ) =∑N−L
i=0 αi{ρ(k) ⊗ u(k)}L−1+i

k=i , col{y} = αHL(y) =∑N−L
i=0 αi{y(k)}L−1+i

k=i , and col{yρ} = αHL(yρ) =∑N−L
i=0 αi{ρ(k) ⊗ y(k)}L−1+i

k=i . This means that trajectory
space determined by the manifest IO LPV behaviour of G
is spanned by time-shifts of the measured input-scheduling-
variable-output data trajectory, where the scheduling variable
trajectory is given by the application of the scheduling proxy
fρ(·) over the corresponding output trajectory.

Remark 6: We stress that Eq. (9) is equiv-
alent to {u(k)}L−1

k=0 =
∑N−L

i=0 αi{u(k)}L−1+i
k=i ,

{uρ(k)}L−1
k=0 =

∑N−L
i=0 αi{uρ(k)}L−1+i

k=i , {y(k)}L−1
k=0 =∑N−L

i=0 αi{y(k)}L−1+i
k=i , and {yρ(k)}L−1

k=0 =∑N−L
i=0 αi{yρ(k)}L−1+i

k=i . These expressions implicitly
define the trajectory space spanned by time-shifts of
the measured input-scheduling-data-output trajectory.
Thus, the vector space defined by Eq. (10) maps
some minimal state realisation (as gives Propo. 2) s.t.
{x(k)}L−1

k=0 =
∑N−L

i=0 αi{x(k)}L−1+i
k=i , where x is related to

(u, ρ, y) and x relates to (u, ρ, y).
Remark 7: Theo. 3 requires the persistent excitation con-

dition over the input sequence u and input-scheduling se-
quence uρ (and not on u and ρ as in global LPV identifica-
tion). Nevertheless, since we use a qLPV representation, this



requirement often boils down to having only u as persistently
exciting, since ρ is a function of the inputs and outputs and
thus {ρ(k)⊗ u(k)}N−1

k=0 also becomes persistently exciting.
The main result of this paper, synthesised through The-

orem 3, shows that we can exploit the linearity property
along the IO channels of Eq. (7) to span all trajectories
of a unknown nonlinear system, as long as if it verifies
differential inclusion, the scheduling proxy is known and
at hand, and that the input is persistently exciting. In this
way, one can use a single input-output data dictionary of
a system G to construct a larger input-scheduling-variable-
output dictionary and, then, represent the trajectories G
without using an explicit model identification technique. The
only prior knowledge necessary is the system order size nx

(or an upper bound ν ≥ nx) and the scheduling proxy fρ(·).
The condition of a persistently exciting input signal of

order L+ nx imposes a practical limit to Theo. 3: in order
to construct the qLPV-embedded trajectories of length L, the
window size must be N ≥ (nu + 1)(L+ nx)− 1. Thus, the
major drawback is that the length of the spanned trajectory
L becomes upper-bounded by N+1

nu+1 − nx. This issue can
be attenuated by using multiple measured trajectories to
construct an overall larger trajectory, aligning the internal
non-minimal states at the intersections (e.g. [5, Propo. 4]).

Remark 8: The scheduling proxy description fρ(·) can
be generated by phenomenological insights of the system.
In many cases, the designer can derive an approximate
description of fρ(·) and consider the biases as noises upon
the output measurements. In future works, we will discuss
the issues of noise and non-exact knowledge of fρ(·) in
details. We mention that [13, Theos. 1 and 2] provide
exact conditions for qLPV embeddings of nonlinear systems,
with corresponding discussions on unique choices of the
scheduling proxy, altogether with assessments on developing
projecting scheduling variables that may simplify the depen-
dency. A wide variety of examples is available in [8].

Proposition 3 (Data-driven Simulation): Suppose that
{u(k), ρ(k), y(k)}N−1

k=0 is a trajectory of a discrete-time
nonlinear system G which verifies differential inclusion,
being u persistently exciting of order L + nx. Let
{ũ(k), ρ̃(k), ỹ(k)}L−1

k=0 be an arbitrary input-scheduling-
variable-output dictionary of G. If ν ≥ nx, then
∃α ∈ RN−L+1 s.t. for ξ = N − L+ ν − 1:

HL(u)
HL(uρ)

Hν({y(k)}ξk=0)

Hν({yρ(k)}ξk=0)

α =


col{ũ}
col{ũρ̃}

col{{ỹ(k)}ν−1
k=0}

col{{ỹρ̃(k)}ν−1
k=0}

 ,

while [col{ỹ}T col{ỹρ̃}T ]T = [HL(y)
T HL(yρ)]

Tα.
Proof: Apply [5, Propo. 8] to Eq. (10) via Theo. 3.

Remark 9: The concept behind Proposition 3 is that
the persistently input trajectory {ũ(k)}N−1

k=ν together with
an initial dictionary {ũ(k), ρ̃(k), ỹ(k)}ν−1

k=0 define a vec-
tor α which can be used to map the remaining ele-
ments of ỹ. Notably, one uses an initial data dictionary
{u(k), ρ(k), y(k)}N−1

k=0 and the new input {ũ(k)}N−1
k=ν and

initial conditions {ũ(k), ρ̃(k), ỹ(k)}ν−1
k=0 to determine α and,

then, the remaining elements can be directly given through
col{ỹ} = HL(y)α. For this data-driven simulation tool, the
corresponding scheduling variable data col{ρ̃} is computed
using col{f−1

ρ (ỹ)}, as long as if fρ(·) is bijective.
Proposition 4 (Data-driven Predictor): Suppose that

{u(k), ρ(k), y(k)}N−1
k=0 is a sequence of data from a

nonlinear discrete-time system G which verifies differential
inclusion, being u persistently exciting of order L+nx. Let
{ũ(k), ρ̃(k), ỹ(k)}ν−1

k=0 be another input-scheduling-variable-
output trajectory dictionary of G. Assume that the scheduling
proxy fρ(·) is not known. Let {u(k), ρ(k)}ν+L−1

k=ν be the
future input-scheduling-variable data of G. If ν ≥ nx, then,
∃α ∈ RN−L+1 for ξ = N − L+ ν − 1 s.t.:

Hν({u(k)}ξk=0)

Hν({uρ(k)}ξk=0)

Hν({y(k)}ξk=0)

Hν({yρ(k)}ξk=0)
HL(u)

HL(uρ)− ({ρ(k)}⊛ Inu
)HL(u)

HL(yρ)− ({ρ(k)}⊛ Iny )HL(y)


α =



col{{ũ}
col{{ũρ̃}

col{ỹ}
col{ỹρ̃(k)}

col{u}
0
0


.

Thus, the future output behaviour is col{y} = HL(y)α.
Proof: In order to demonstrate this proposition, we

make use of the reduced nominal form in Theo. 3. From
Eq. (9), use HL(y)α = col{y} and HL(yρ)α = col{yρ}.
Combining these expressions yields HL(yρ)α = col{yρ} =
({ρ} ⊛ Iny )col{y} = ({ρ} ⊛ Iny )HL(yρ)α, i.e. [HL(yρ) −
({ρ}⊛ Iny

)HL(y)]α = 0. Thus, we can expand (9):
HL(u)

HL(uρ)− ({ρ}⊛ Inu
)HL(u)

HL(y)
HL(yρ)− ({ρ}⊛ Iny )HL(y)

α =


col{u}

0
col{y}
0}

 .

Then, by using this expression, we are able to generate
a data-driven predictor, considering that future input and
scheduling variable trajectories are known.

Remark 10: Propo. 4 is similar to the LPV data-driven
predictor from [7, Eqs. (17)-(18)], whereas here we exploit
the qLPV embedding for the nonlinear system description is
a broader sense. We stress that the differences from the data-
driven simulation (Propo. 3) and predictor (Propo. 4) stand
for the knowledge of the scheduling parameter data along
the simulation horizon.

IV. PARAMETER-DEPENDENT DISSIPATIVITY

Using the trajectory representation framework for nonlinear
systems enabled through Theo. 3, the second main result
of this work is a data-driven dissipativity analysis tool for
nonlinear system. Specifically, we note that Theo. 3 con-
strains the representation analysis of the nonlinearities by the
means of the differential inclusion, thus only describing be-
haviours for the measured scheduling variable space, i.e. the
representation depends on {ρ(k)}N−1

k=0 . Thus, the following
theorem adapts the LTI dissipativity analysis from data from
[3] for a partial description of arbitrary nonlinear systems,
valid within the measured scheduling variable space.



Theorem 4 (Nonlinear Dissipativity Analysis from Data):
Consider an arbitrary nonlinear system G for which Propo.
1 holds. Furthermore, assume that the corresponding qLPV
embedding is such that coefficients ai(ρ) and bi(ρ) in Eq.
(7) are affine on ρ. Suppose that {u(k), ρ(k), y(k)}N−1

k=0 is
a measured input-scheduling-variable-output data dictionary
of G and that ρ(k) ∈ Pmes ⊆ P , ∀k ∈ N[0,N−1], being
Pmes := {ρ ∈ Rnρ | ρmes

min ≤ ρ ≤ ρmes
max}. Then, the following

statements are equivalent:

1) G is L-dissipative for any {ρ(k)} s.t. ρ(k) = fρ(y(k−
1)) ∈ Pmes w.r.t. to a given supply rate Π.

2) The input {u(k)}N−1
k=0 and the input-scheduling

{uρ(k)}N−1
k=0 are persistently exciting of order L+ nx

and Ineq. (11) holds for any nx ≤ ν ≤ L.

(⋆)Πρ
L




HL(u)
HL(uρ)
HL(y)
HL(yρ)

VL,ν

([
u
uρ

]
,

[
y
yρ

]) ≥ 0 , (11)

Πρ
L := (⋆)ΠL

[
I I 0 0
0 0 I I

]
.

Proof: Follows directly from the application of Finsler’s
Lemma and Theo. 2 to Eq. (10), assuming Theo. 3 holds.

Remark 11: We say that Theo. 4 provides a “parameter-
dependent” dissipativity condition since Ineq. (11) is related
to the scheduling variable space defined implicitly by Pmes.
Through Theo. 4, dissipativity cannot be assured for all
trajectories of the nonlinear system G; yet enough data can be
collected s.t. Pmes ≈ P and thus the result can be extended
to G entirely. In practice, dissipativity can be checked for a
known operational region Yop ⊂ Y s.t. Pmes = fρ(Yop).

Remark 12: The supply rate Π can indicate different
qualities of the system, such as the induced L2 gain of
the system or its shortage of passivity. In the presence of
measurement noise, Ineq. (11) can be relaxed by a sufficient
and necessary condition, for which its right-side, (·) ≥ 0, is
replaced by (·) ≥ δI , where δ < 0 is a small constant which
indicates the signal-to-noise ratio, e.g. [3, Algo. 1].

Remark 13: All prior developments can be directly trans-
lated to the regular LPV case, with no loss of generality; the
difference is that ρ is not computed via fρ(·), but measured.

V. DATA-DRIVEN RESULTS

Next, we provide realistic simulation results in order to val-
idate proposed set of tools, demonstrating their capabilities
in capturing nonlinear behaviour using the trajectory data-
driven framework via qLPV embeddings. For such, we use
data from a nonlinear benchmark: a rotational pendulum
system (Fig. 1). Accordingly, we show how Theo. 3 can
be applied: we use Propo. 3 to compare the data-driven
simulation results to the true outputs of the nonlinear system,
for which we also compute the dissipativy verification (Theo.
4); further, we illustrate how predictions can be generated via
Propo. 4, enabling the application of predictive controllers.
Setup: Consider the following rotational pendulum discrete-
time dynamics, as detailed in [14], for which y gives the

Fig. 1. Rotational pendulum system setup.
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Fig. 2. Initial input-scheduling-variable-output data dictionary.

angular position, and u is an input voltage signal:

y(k) +

(
Ts

τ
− 2

)
y(k − 1) +

(
1− Ts

τ

)
y(k − 2) (12)

+T 2
sKy sin(y(k − 2))y(k − 2) =

(
T 2
sKu

τ

)
u(k − 2) ,

where τ = 0.6 s is a settling time parameter, Ky = 1.31m
and Ku = 0.76V−1 are static gains, and Ts = 50ms is the
sampling period of the system.. Insight into the rotational dy-
namics of this process leads us to the choice of the following
scheduling variable ρ(k) = sinc(y(k)) = sin(y(k))

y(k) , which
embeds the nonlinear dynamics of Eq. (12) into a qLPV IO
model in the form of Eq. (7), with affine coefficients:

a1(ρ(k − 1)) =
(
Ts

τ − 2
)

,
a2(ρ(k − 2)) =

(
1− Ts

τ + T 2
sKyρ(k − 2)

)
,

b2(ρ(k − 2)) =
(

T 2
s Ku

τ

)
.

The choice1 of a cardinal sinusoidal scheduling map is
natural, being coherent with the rotational dynamics of the
process. Consider henceforth that this system abides to the
following process constraints: u(k) ∈ U = [−5, 5]V, and
y(k) ∈ Y = [−2.5, 2.5] rad, ∀k ≥ 0, thus implying ρ(k) ∈
P = [−0.22, 1],∀k ≥ 0; the system order nx = 4 is known.
Data collection: In order to demonstrate the proposed tra-
jectory representation tools, we first collect an initial data
dictionary {u(k), ρ(k), y(k)}N−1

k=0 for N = 500 samples. The
used input is a persistently exciting frequency-rich pseudo-
random signal. In Fig. 2, we show these system trajectories.
Parameter-dependent dissipativity: First, we test the dis-
sipativy of the rotational pendulum system, enabled through

1In references [8], [13], one can find a wide variety of nonlinear
system with corresponding scheduling parameter maps for coherent qLPV
embeddings, with experimental validation results.
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the inequality check from Theo. 4. For such, we consider the
validity of the dissipativity analysis only within the schedul-
ing parameter space defined implicitly by {ρ(k)}N−1

k=0 , where
ρ(k) ∈ Pmes, with ρmes

min = 0.32 and ρmes
max = 1 (see Fig.

2). As done in [3], we estimate the shortage of input-
and output-strict passivity2 by finding the minimal θ such
that the system is dissipative w.r.t. the following supply

rate Π =

[
θ 1

2
⋆ θ

]
. The trajectory representation from

Theo. 3 is enabled using L − nx = 30. Using a simple
bisection search, taking ν = nx = 4, we determine through
Theo. 4 that the minimal shortage of passivity is given by
θ⋆ = 0.49, for any input-output sequence {u(k), y(k)} such
that ρ(k) = fρ(y(k)) ∈ Pmes. The knowledge of θ⋆ can be
exploited to design robust controller via standard tools [15].
Data-driven simulation: In order to demonstrate the fidelity
of the proposed data-driven representation for nonlinear
systems, we exploit Propo. 3 as follows: taking ν = nx = 4
(known system order) and L = 30, we simulate the system
behaviour using the data-driven tool, taking the simulated
outputs as col{ỹ} = HL(y)α, and comparing them to
the real system outputs. Using a simulation horizon of 28
steps, we show in Fig. 3 the real outputs and the estimated
ones. The average estimation error is of 0.09%. Clearly, the
representation is trustworthy and can be extended to control
synthesis.
Data-driven predictor: Finally, we use Propo. 4 to demon-
strate the prediction qualities of the developed framework.
Now, we disregard the knowledge of fρ(·), thus predicting
the system behaviour for a future horizon with future inputs
and scheduling parameters at hand. Using a prediction hori-
zon of 25 steps, we present in Fig. 4 the real outputs and the
predicted ones. The average estimation error is of 0.06%,
again indicating the quality of the qLPV representation.

2Dissipativity w.r.t. measurement noise can be exploited using the relaxed
inequality from [3, Algo. 1], or through the IQC features debated in [6]. We
are unable to discuss such phenomena due to lack of space, leaving them
as topic of future studies.

VI. CONCLUDING REMARKS

In this brief paper, we propose a novel data-based charac-
terisation framework for nonlinear systems. For such, we
extend previous results on behavioural theory to the context
of nonlinear systems, using qLPV embeddings to ensure
linearity along suitable IO coordinates. The proposed tool
requires only the knowledge of an appropriate scheduling
function and the input trajectory to be persistently excit-
ing over a sufficient length. Then, using a single input-
output data dictionary, a larger input-scheduling-variable-
output dictionary is generated, from which the data-driven
trajectory framework is conceived. Data-driven simulation
and prediction algorithms are also formulated, and a simple
dissipativity test tool is given. Through realistic simulation
of a nonlinear benchmark (rotational pendulum), we demon-
strate the accurateness and fidelity of the proposed set of
tools. In future works, we will discuss the issue of noisy
measurements and the use of biased scheduling functions.
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