
Networking Functions for Wireless Sensor Network
Applications: an SDN-based Approach

Melek Charfi∗, Alexandre Mouradian†, Véronique Vèque‡
Université Paris-Saclay, CNRS, CentraleSupélec,

Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France
∗melek.charfi@u-psud.fr, †alexandre.mouradian@u-psud.fr, ‡veronique.veque@u-psud.fr

Abstract—Wireless Sensor Networks (WSN) are considered to
be a key enabler towards the Internet of Things (IoT) concept
and one of its main underlying technologies. Applications built
on top of IoT infrastructures such as WSNs share a set of
common functions that concern not only data management such
as data collection, dissemination or aggregation, but also classical
networking functions, such as routing or addressing. Even though
application deployment is becoming more feasible, it can still be
a complex process especially in the presence of vertical solutions.
WSNs should, therefore, be more flexible in order to facilitate the
development of efficient applications. A promising networking
paradigm which can help achieve such a requirement is the
Software-Defined Networking (SDN) concept which decouples the
network data plane from the control plane. To allow multiple
applications to share and reuse common networking functions,
we propose to implement them as SDN reusable building blocks
and to instantiate and customize them through SDN rules. On the
other hand, we provide a rigorous definition of these functions
and of their relationships in order to make them reusable to
efficiently develop the applications. We consider the smart city
as a typical WSN/IoT domain of applications. Our approach
aims at facilitating the development, use and management of
such functions in a WSN and thus of IoT applications.

Index Terms—Internet of Things, Wireless Sensor Networks,
Smart city, Software-Defined Networking, Networking functions

I. INTRODUCTION

In recent years, the study and use of Wireless Sensor Net-
works (WSNs) have become increasingly popular as they are
considered to be the main enabler towards the concept of In-
ternet of Things (IoT) [1]. The IoT concept aims at creating an
ecosystem of connected objects using various types of WSNs
depending on the application requirements such as Low-
Power Wide Area Networks (LPWAN), Wireless Personal
Area Networks (WPAN) or Wireless Body Area Networks
(WBAN) [2]. The ease of deployment and the low cost of these
WSNs have made their use more and more popular. Today,
we find WSNs in a wide variety of IoT applications ranging
from the industrial and security domains such as the process
automation and video surveillance applications, to applications
of personal use like home automation and medical supervision.
However, in the last few years, WSNs have become famously
associated with the IoT major application domain of smart
cities, and increasingly popular with applications such as trans-
portation, environment monitoring, water and gas metering,
smart parking, etc [3]. These applications have in common
the data collection aspect because their main objective is to

measure different physical phenomena and communicate these
data to a collector sink. The early adoptions of WSNs were
mostly application-specific deployments leading to various
vertical systems tightly coupled on both the sensing and the
communication planes of the network. Thus, the application
is the only user of the WSN which is strongly coupled with
the sensing and communication capabilities of the nodes. It
is therefore necessary to deploy as many WSNs as there
are applications even when they cover the same area and
could share a single infrastructure. Much efforts have been put
into loosening the vertical approach of deploying WSNs and
allowing applications to share the infrastructure. The first step
towards this goal was to deploy multiple and different types
of sensors and propose integrated solutions where applications
can use the infrastructures sensing capabilities to offer various
services [4]. However, WSN nodes are still coupled with the
vendor’s communication plane which makes the network con-
trol and management difficult, and imposes the reprogramming
of the nodes (using a vendor-specific proprietary process). This
constraint imposed by vertical solutions (Fig. 1 (left)) makes
the development and management of efficient applications a
difficult task, especially when many IoT applications share the
same underlying functions to perform their tasks regardless of
the service they offer.

The wide variety of applications for the smart city raises the
issue of interoperability as different applications have different
requirements [5]. These applications, built on top of an IoT
environment such as a WSN, often share a set of functions
that are necessary and fundamental for their development and
support. At the network level, these basic functions are essen-
tial to enable distributed applications over a WSN-based IoT
network, hence we refer to them as “networking functions”.
Some of these functions are traditional functions encountered
in classical IP networks such as routing, forwarding or address-
ing, and some others are IoT-specific. For instance, in WSN
infrastructures, functions such as aggregation, dissemination,
or clustering are used very often and should be provided in a
middleware layer. Moreover a further key point to facilitate the
task of building efficient applications consists in simplifying
the implementation of these functions which results in a better
control and management of the network.

Therefore, a more flexible solution should be considered to
achieve a practical and powerful method for implementing IoT
networking functions and making them more reusable and less

application-dependent. Software-Defined Networking (SDN)
represents a promising networking paradigm that can address
the above-stated issue by simplifying the network design and
operation through vendor-neutral devices. The SDN paradigm
is based on the physical separation of the network control
plane from the data plane. The control plane represents the
intelligent part of a networking device which is detached from
its data plane and placed in a central entity that acts as the
network brain [6]. Although the SDN concept was originally
created for wired networks, we use its concept for managing
the common networking functions used in WSN-based IoT
applications. Recently, due to its increasing popularity, many
works have been interested into applying the principles of SDN
to the IoT and especially to WSNs [7]. The idea is to make the
sensor devices SDN-capable by breaking the communication
plane, which is classically coupled with the sensor, into a data
plane (forwarding plane) and a logically centralized control
plane as depicted in Fig. 1 (right).

We propose an SDN-based approach to implement common
networking functions for WSN-based IoT applications through
the smart city example. We propose to place these functions
at the controller level to create a toolbox of reusable and
interacting blocks with exposed interfaces, and convert their
behavior into SDN rules and commands to be installed on
the network nodes. We then test this approach by presenting
a use case of some of these functions in a WSN-based data
collecting application, and use a wireless SDN solution as an
experimenting platform.

The rest of the paper is organized as follows: in Sec-
tion II, we give some motivating examples on the use of the
networking functions in WSN-based smart city applications
and introduce our approach to implementing these functions
using an SDN architecture. In Section III, we present, through
two use cases of smart city applications, the implementation
process and simulation of our networking functions toolbox.
Finally, a conclusion is drawn in Section IV.

II. NETWORKING FUNCTIONS FOR WSN

Many WSN-based IoT applications share a set of common
networking functions regardless of the services they provide.
Furthermore, these functions are dependent on each other
when performing a certain task. To demonstrate the validity of
our approach, we consider two smart city application scenarios
which are the smart parking and the smart monitoring in order
to better introduce the concept of the networking functions.

sensing

App1

comm

sensing

App2

comm

sensing

App3

comm

App1 App2 App3

sensing

Data

sensing

Data

sensing

Data

Control plane

Classic WSN

SDN-based WSN

Fig. 1. Vertical versus SDN-based WSNs

A. Networking functions in smart city applications

The goal of a smart parking application is to retrieve
information about parking occupancy and provide enough
information to the users so they can obtain a parking space in
a reasonable time (typically less than randomly looking for a
spot), as illustrated in Fig. 2 (right part). Data collected by the
sensors monitoring the parking spots is transmitted to a sink
and then to a server where it is processed and made accessible
to the users. Here, the main task of the WSN network is
data gathering. Precisely, nodes collect the information about
whether the parking spot is free or occupied. The most obvious
function to perform such a task is routing the packets from
the source node to the sink. For the application to be more
useful, localization is needed to give an exact location of the
free parking spaces. Another useful function to consider is the
data aggregation which is the process of combining the data
arriving from different sources of the network to eliminate
redundancy, minimize the number of transmissions or reduce
energy consumption. Data dissemination is another example
of function used in this scenario. It represents the process of
efficiently spreading data to a set of nodes in the network. For
instance, the sink may disseminate data to nodes in order to
change their status from free to reserved or to update some
parameters.

The second application example is the smart environment
monitoring depicted in Fig. 2 (left part). The goal of this
application is to monitor environmental information such as
temperature, humidity, pollution and noise levels, atmospheric
pressure, etc. In this scenario, sensors are deployed in a
geographic area in order to periodically collect the measured
data. Here again, routing is the main function responsible for
transmitting data from the sensor nodes to the network sink.
In the case of temperature monitoring, it might be sufficient
to collect the average temperature of a certain area, which
can be done using an in-network aggregation function rather
than re-transmitting every single measure by the sensors of
that area. In this use case, localization can also be used to
add relevance to the measured temperature value. In the case
where the application needs to change parameters such as the
collection period, a new value needs to be disseminated into
one or more nodes of the network.

Both applications stated above share a set of networking

Sink

Temperature

 Sensor

 Noise

Sensor

Humidity

 Sensor

Pollution

 Sensor

Sink

Server

Fig. 2. Smart monitoring and smart parking applications

functions on which they base their services namely: routing,
aggregation, dissemination, collection, and localization. They
belong to a wider set of similar functions such as addressing,
forwarding, clustering, topology discovery, etc. When running
a smart city/IoT application on top of a WSN, these functions
are seamlessly executed to ensure the final intended task of the
application and sometimes can be dependent on each other.

B. Dependencies of networking functions

We consider the above-mentioned networking functions
to be a crucial element when designing an IoT application
based on a WSN. Therefore, it is important to facilitate
the implementation of these functions as they represent the
basic components to build efficient applications. Fig. 3 shows
a basic Systems Modeling Language block diagram where
the functions are represented as reusable building blocks
interacting via dependency relationships. Here, a dependency
relationship signifies that a block (a modular unit that describes
the structure of a system or element) requires other blocks for
its specification or implementation [8]. Abstracting these func-
tions as reusable blocks means that each one has to define an
input interface. When a function block is called by a user or by
another block, the corresponding input parameters need to be
provided in order to be properly executed. The implementation
of this function block will then use the controller capabilities in
order to generate the adequate rules and commands to be sent
to the nodes. Each function block has its own input interface
to be properly used by other blocks or directly called by
the application developer, and therefore, abstracts the network
lower levels. Table I provides the interfaces of the different
function blocks. Here, the network discovery block takes as
input all the control packets sent from the infrastructure nodes
to collect network information (e.g. node’s neighbors, battery
levels, link states, location, etc), builds a global view on the
network status, and provides it to other blocks. The path
routing block depends on the network discovery block to
acquire the network’s global topology and provides a shortest
path from a source to a destination. The data collection block
is responsible for instructing the nodes on how and when to
collect the data, and depends on the routing block to create the
route paths from the data gathering nodes to reach the sink.
This block can be called by passing inputs such as the list

Fig. 3. Networking functions dependency.

of collecting nodes and the data collection period. The Data
dissemination block depends on the same network discovery
block to generate the necessary rules for an efficient one-
to-many (from the sink to the nodes) dissemination process,
and takes as input the data to disseminate and the destination
nodes. In a similar way, the data aggregation block depends on
the network discovery block to determine some configuration
parameters (e.g. the nodes that will aggregate the data), as
well as the routing block to get information about the data
flow in the network. Some aggregation parameters should be
provided when this block is called such as the aggregation
period, the aggregation technique or the aggregation nodes if
needed. Once a function block is called with the right input
parameters, it outputs the adequate SDN rules and commands
to be installed on the network nodes. For this, the SDN rules
and commands translation block are in charge to install SDN
rules in the nodes using platform-specific packets.

C. SDN approach

While in classical vertical network architectures each one
of the networking functions is implemented in specific layers
and thus used via vertical interfaces, we take advantage of the
SDN concept and propose to implement these functions in the
network controller. Our goal is to use the SDN principles to
propose a generic implementation of these functions rather
than an application-dependent implementation. SDN offers
the necessary flexibility that helps the process of developing
the networking functions, and facilitates their reusability to
easily control and manage the network. Furthermore, these
functions, mostly implemented in the application middleware,
will be placed in the control plane to profit from the SDN
programmability of nodes as shown in Fig. 4. In this ar-
chitecture, the IoT devices (e.g. WSN nodes) represent the
infrastructure layer (data plane) and are SDN-enabled in order
to communicate with the controller. The controller plays
the role of a middleware where networking functions are
implemented as a toolbox of interacting blocks (as depicted
in Fig. 3). These function blocks expose their input interfaces

TABLE I
NETWORKING FUNCTIONS INTERFACES

Function block Input Output
Network
Discovery

- Control packets Network information
graph

Path Routing
- Network topology
- Source node
- Destination node

Network path

Data
Dissemination

- Network discovery
- Destination nodes
- Data to disseminate

Dissemination and
forwarding rules

Data
Aggregation

- Network topology
- Aggregation method
- Routing function

Forwarding and execu-
tion rules

Data Collection - Collecting nodes
- Collection period
- Routing function

Configuration and for-
warding rules

SDN rules
translation

- SDN rules and
commands

platform-specific
packets

Smart City applications

Smart Parking Smart Monitoring Smart Metering

Application

 Layer

Infrastructure

 Layer

 (Data plane)

Control

Layer

(Control Plane)

Fig. 4. SDN approach for networking functions.

for use by the application developers, and their outputs are
converted into specific SDN rules and commands to be in-
stalled on the network nodes. At the top layer, different types
of IoT applications can be developed based on the networking
functions of the underlying layer.

III. USE CASE AND SIMULATION

In order to further illustrate the benefits of our SDN-
based approach for implementing networking functions, we
consider two scenarios representing the smart parking and
smart monitoring applications, and detail how they work and
how some of the function blocks above-mentioned can be used
at the controller.

A. Scenarios description

As described in Section II-A, the smart parking applica-
tion aims at collecting information about the occupancy of
parking spaces by sensing the presence of a car and relaying
the information to a sink. The gathered information is then
properly provided to the users who can reserve a parking
spot beforehand or reduce the searching time otherwise. On
the other hand, the smart monitoring scenario involves sensor
nodes that will generate periodically the measured temperature
and relay it to a sink. We consider the data collecting aspect
of both applications in order to show how our toolbox can be
reused to control and manage the network for each application
requirements. Here, we consider a separate network for each
scenario and we use our networking function blocks in order
to execute the following tasks:

• Network discovery: the goal of this process, achieved by
the Network discovery block, is to periodically discover
the network status (e.g. topology, nodes battery levels,
link states, etc) and provide it to other function blocks.

• Collecting data: both network devices periodically gen-
erate the data describing either the status of the parking
space or the measured temperature. The data collection
block will be used to program each network nodes to
generate the data by passing to it the input parameters that

specify the list of data generating nodes and the collection
period.

• Routing data: the path routing block task finds the shortest
path from each data generating node to the sink.

• Aggregating data: aggregating the data coming from the
network nodes has the benefit of reducing the number of
packets flowing in the network. An in-network aggrega-
tion of the sensed data is performed depending on the type
of data, either lossless (e.g. data concatenation) or lossy
(e.g. data average, maximum, minimum, etc). Therefore,
some nodes will be programmed using this block with the
input parameters specifying how and when data should
be aggregated.

• Installing SDN rules: Once each function block is cor-
rectly called either by a user or by another block, a set
of platform-specific packets are generated to install the
generated rules and commands in the network nodes. This
task is done using the SDN rules translation block.

Using the SDN-WISE platform [9], we develop a toolbox
of functions at the controller level (Fig. 4) allowing a user to
control the network by calling both the data collection and
aggregation functions and passing specific inputs to achieve
the described tasks.

B. Experimentation platform

The SDN-WISE [9], [10] platform provides a well-
documented solution to implement SDN concepts for WSNs.
It offers an extensible open-source solution as well as multiple
deployment options and programming languages. SDN-WISE
also includes several features that extend the basic principles
of SDN and help carry out our approach. This software sets
flexible rules specification to classify incoming packets and
creating routing and forwarding strategies. A set of actions
are applied once a match is detected. Some of these actions
include forwarding a packet, dropping a packet, modifying a
packet, turning off the node or executing a specific function
in the node. The communication between the network nodes
and the controller are established using a set of different
packets that handle the control of the network and include: (1)
Request/Response packets used when no match is found in the
nodes flow table, (2) Beacon/Report packets which are control
packets sent periodically by the nodes and help the controller
maintain a global view of the network status, and (3) Config
packets used for nodes programming like updating specific
configuration parameters or remotely installing functions [11].
Moreover, SDN-WISE was proved to perform well compared
with popular WSN communication technologies such as Zig-
Bee and 6LoWPA,N and can out-perform them in some case
[12].

We use Cooja [13] for simulating our scenarios based two
WSNs. Cooja is an extensible and widely used simulation tool
for WSNs. Although it was primarily designed for Contiki-OS
sensors [14], it supports adding pure Java code nodes without
any connection to Contiki, which is useful for networking
level experimentations. This feature allows the integration of
the SDN-WISE firmware to the Cooja nodes. The simulation

environment is depicted in Fig. 5. The Unit Disk Graph
Medium (UDGM) is used as a radio medium where each node
has a transmission range modeled as a disk and an interference
range modeled as a bigger disk. No errors in packets reception
or transmission are simulated in our experiments. Although
Cooja’s UDGM model does not accurately model a realistic
medium, results confirm the expected functionality and feasi-
bility of our networking functions implementation approach,
which is the goal of our simulations.

C. Simulations setup

In the smart parking network, as depicted in Fig. 5 (left
network), the sensor nodes play the role of detecting a car
presence by periodically generating one of two possible values:
“0” for a free space and “1” for an occupied space, along with
a time-stamp of the measured value. We simulate a total of
25 sensors managed by one controller. Each node is uniquely
identified (from 1 to 25) with the identifier 1 attributed to the
sink which is directly connected to the controller. Similarly,
the nodes of the smart monitoring network (right network in
Fig. 5) generate periodically a temperature measure which we
simulate here as a random value between 0 and 100. This
network is also represented by 25 nodes (nodes 26 to 50) with
the node 26 playing the role of the network sink. The SDN-
WISE topology discovery protocol is executed at the start of
each node in order to find a path to the sink. Each node then
starts periodically sending control packets to the controller (i.e
Network Discovery block) to build a consistent view of the
network and gather its information [9]. The default SDN-WISE
Dijkstra algorithm is used to find the shortest path between two
nodes.

We have built a tool that provides a terminal where a
function block can be called with the right input parameters,
and directly interacts with our toolbox implemented at the
controller. We demonstrate our work with an example of use of

SDN-WISE Controller

Networking functions framework

Functions terminal

collect -n 2-25 -p 60 -s 1

Fig. 5. The smart parking (left) and the smart monitoring (right) network
topologies in Cooja using a 10 meter grid as a layout scale

two function blocks; the data collection and data aggregation
blocks.

The main goal of the smart parking application is to collect
data from the sensors which is the outcome of executing the
data collection block. Here, we simulate a use case where all
the nodes randomly generate a parking space status and send
it to the sink every minute. Using these inputs for the data
collection function by an application developer, this translates
in the controller terminal tool by calling the data collection
block as follows: {collect -s 1 -n 2-25 -p 60}, where the option
-s specifies the collection packets destination, the -n option
specifies the collecting nodes (all the nodes except the sink)
and -p specifies the collection period in seconds. The same
process goes for the temperature monitoring application, where
its network nodes randomly generate a temperature value every
minute using the following command: {collect -s 26 -n 27-50
-p 60}. In both cases, this prompts the data collection block to
perform the following operations: (1) calling the data routing
block which will use the network discovery block to create
the forwarding rules necessary to set up the shortest path
from the sink to each data generating node, (2) creating the
configuration packets with the specified collection parameters,
(3) Calling the SDN rules translation block which generates
and installs the SDN-WISE packets in the nodes. The structure
of a data collection packet generated by each node is shown
in Fig. 6.

The second networking function we consider is aggregating
the packets generated from the nodes to the sink with the
goal of reducing the number of packets transmitted in the
network. In the smart parking network, we demonstrate with
a scenario where the aggregating nodes are the closest nodes
relaying packets to the sink (1 hop away from the sink)
using a simple concatenation method. The aggregating node
generates an aggregation packet from the n collection packets
received in a specified aggregation period by concatenat-
ing the payloads of all received packets and their source
node IDs (Fig. 6). The input parameters are executed as
follows: {aggregate -n 1hop -f aggConcat -p 120}, where
-n specifies the aggregating nodes (1 hop away from the
sink), -f specifies the aggregation method and -p specifies the
aggregation period in seconds (here, every 2 minutes). We
do the same process for the temperature monitoring network,
only in this case, the aggregation method we consider (here
called aggMaxMinAvrge) generates a packet containing the
maximum, minimum and average of the measures received
in the specified aggregation period (Fig. 6). We also set the
aggregating nodes those located 2 hops away from the sink. We
set these parameters using the following command: {aggregate
-n 2hop -f aggMaxMinAvrge -p 300} (the aggregation period
is set of 5 minutes in this example). These configurations
prompt the data aggregation block to perform the following
operations: (1) creating the configuration packets necessary to
install the aggregation technique in the aggregation nodes, (2)
creating the rules instructing the aggregating nodes on how
and when to aggregate incoming packets, (3) calling the SDN
rules translation block to generate and install the SDN-WISE

SDN-WISE header time-stampnode ID value time-stampnode ID value- - -

Packet 1 payload Packet n payload

Aggregating node Sink

SDN-WISE header time-stampnode ID Max averagetime-stampnode ID Min

Smart Parking

aggregation packet

 Smart Monitoring

aggregation packet

SDN-WISE header time-stampvalueData Collection packet

Fig. 6. Data collection and aggregation packets

packets in the nodes. The rule installed in an aggregating node
and executed when a new collection packet arrives would be
the following :
Condition:
if (packet type = type collection)
and (packet destination = sink address)
Action:
execute (aggregation method)
drop (packet)

D. Numerical results

After presenting the ease of development for both smart city
scenarios, we now exhibit the performance of our tool. We
focus on two performance criteria: execution time and loss
ration. We present our numerical results by reporting some
performance measures when executing the data collection and
aggregation function block using the simulation parameters
presented in Table II. In case of the temperature monitoring
network, Fig. 7 shows the time required to generate the
configuration packets which install the rules and set up the
parameters of the corresponding nodes when the data collec-
tion and aggregation blocks are called. This time is measured
when the nodes are located at a different number of hops from
the sink. The collection function block takes an average time of
53 ms in the case of a node located 3 hops away from the sink,
and 46 ms for 1 hop node. The measure includes the Request
and Response packets generated for the routing process. When
the data aggregation function block is called, it takes on
average 513 ms for the aggregation process to be executed
for the nodes neighboring the sink. This measure includes
all the Config packets necessary for the aggregation method
byte code, and also includes the Request and Response rules
packets generated for routing purposes. This same process
takes around 519 ms for nodes located 2 hops away from the
sink, and 531ms when located 3 hops away. Fig. 7 also shows
that, for function blocks, the number of hops to the sink does
not have a big impact on the installation time. We also compute
the measure loss ratio (mlr), for the smart parking scenario,
after deploying the use case described in Section III-C where
all the network nodes collect the available information of a
parking spot and generate a measure packet every minute to
the sink. Here, we consider the measure loss ratio instead of
the packet loss rate because, in this case, the sink receives
the parking space measures transmitted by the nodes in an
aggregated packet containing different measures. This means

TABLE II
SIMULATION PARAMETERS

Simulation parameter Value
N° of nodes 50 nodes
N° of sinks 2 sinks
Transmission range 30 meters
Interference range 50 meters
Transmission rate 250 kbps
collection period 1 and 2 minutes
Collection packet size 12 bytes

that a packet loss by one of the collecting nodes causes a
missing measure at the sink. The value of mlr is calculated as
follows: mlr = (1 - mr/ms) × 100, where mr is the number
of measures received at the sink and ms is the number of
measure packets sent by the collecting nodes.

We simulate the scenario with 3000 measure packets gener-
ated by the smart parking nodes (ms = 3000) and aggregated
(using the aggregation method described in Section III-C).
Fig. 8 shows the measure loss ratio as a function of the
aggregation period at the aggregating nodes. Measure loss is
essentially due to the loss of either the collection packets
sent by the collecting nodes or to the loss of aggregation
packets sent from the aggregating nodes to the sink. This loss
is caused by the interference at the UDGM radio medium
between these data packets and the SDN-WISE Beacon and
Report control packets (sent periodically every 10 and 20
seconds). Beacon packets are broadcast packets sent by each
node to its neighbors and contain its distance from the sink
and its battery level. Report packets are sent by each node
to the sink and, in addition to the distance from the sink and
the battery level, contains the list of the node neighbors and a
quality indicator of each link. In our scenario, around 32400
control packets are generated. The high frequency of these
control packets causes interference resulting in packet losses.

As presented in Fig. 8, when the Beacon and Report control
packets periodicities are set respectively to 10 and 20 seconds,
and for the different aggregation periods we obtain an average
mlr that is less than 1%: going from 0.4% for a 2mn aggre-
gation period up to 0.83% for a 5mn aggregation period. The

1 hop 2 hops 3 hops
0

200

400

600

46 50 53

513 519 531

Number of hops to the sink

Ti
m

e
(m

s)

Aggregation
Collection

Fig. 7. Time for generating and installing configuration packets.

2mn 3mn 4mn 5mn
0

0.5

1

1.5

0.4%
0.56%

0.76% 0.83%

0.13%
0.26% 0.33%

0.43%

Aggregation period in minutes

M
ea

su
re

lo
ss

ra
tio

(%
)

control packets: 10-20s
control packets: 30-60s

Fig. 8. Measure loss ratio as a function of the aggregation period for 3000
measure packets transmitted.

longer the aggregation period is, the bigger the aggregation
packet gets. Consequently, when a bigger aggregation packet
is lost, more measures are lost, and thus the mlr value becomes
higher. We simulate the same scenario above-mentioned but
modify the control packets periodicity, where Beacon packets
are sent every 30 seconds instead of 10 seconds and Report
packets are sent every minute instead of every 20 seconds. This
reduces the total number of control packets to around 10800
packets. In Fig. 8, we can see the mlr dropping by 0.27% in
the case of a 2 minutes aggregation period, and up to 0.4%
when the aggregation period is set to 5 minutes. We point out
that the average mlr values, for both cases, is less than 1%.

The approach presented in our work can be more useful with
larger networks, as it provides an easy and flexible method to
instantiate the networking functions in the network. We, thus,
plan to target larger infrastructures for future experiments. We
also aim at extending our work by covering more functions
and further defining their interfaces and dependency relations.
Our goal is to create a toolbox that supports a wide set of
networking functions, in order to provide a flexible solution
that is less dependent on the infrastructure.

IV. CONCLUSION

With the increasing popularity and complexity of WSN-
based IoT applications, it becomes crucial to facilitate their
development by facilitating the control and management of
their underlying network infrastructure. Vertical deployments
of WSNs make this process a difficult task and thus a more
flexible solution should be adopted, especially when many
of these applications share a set of common networking
functions. In this paper, we introduced an SDN-based toolbox
for using such functions as controller-level building blocks to
facilitate the network control in a WSN infrastructure, and thus
facilitating the task of building and deploying IoT applications.
We motivated how some of the networking functions can be
used in smart city applications, such as the smart parking and
smart monitoring applications, and illustrated our method of
implementing them using the SDN-WISE platform, a software-
defined solution for WSNs.

The flexibility provided by the SDN principles facilitates
the task of deploying and managing these functions by using
the controller capabilities and abstracting them as blocks
with well-defined interfaces. Our work offers a toolbox of
functions that can be used for different types of WSN-based
IoT applications that share the same networking functions.
This provides re-usability and helps developers easily program
the network infrastructure and create the desired service.

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[2] Jasper Tan and Simon G. M. Koo. A Survey of Technologies in Internet
of Things. In 2014 IEEE International Conference on Distributed
Computing in Sensor Systems, pages 269–274, 2014.

[3] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and
Michele Zorzi. Internet of Things for Smart Cities. IEEE Internet of
Things journal, 1(1):22–32, 2014.

[4] A. Dunkels, R. Gold, S.A. Marti, A. Pears, and M. Uddenfeldt. Janus: An
Architecture for Flexible Access to Sensor Networks. In Proceedings of
the 1st ACM workshop on Dynamic interconnection of networks, pages
48–52, 2005.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communications Surveys & Tutorials,
17(4):2347–2376, 2015.

[6] D. Kreutz, F. MV Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[7] Habib Mostafaei and Michael Menth. Software-defined wireless sensor
networks: a survey. Journal of Network and Computer Applications,
119:42–56, 2018.

[8] Object Management Group. OMG Systems Modeling Language, Version
1.5, May 2017.

[9] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 513–521. IEEE, 2015.

[10] Salvatore Costanzo, Laura Galluccio, Giacomo Morabito, and Sergio
Palazzo. Software Defined Wireless Networks: Unbridling SDNs. In
2012 European Workshop on Software Defined Networking, pages 1–6.
IEEE, 2012.

[11] SDN-WISE The stateful Software Defined Networking solution for the
Internet of Things. http://sdnwiselab.github.io/, accessed January 2019.

[12] C. Buratti, A. Stajkic, G. Gardasevic, Se. Milardo, M D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone. Testing Protocols for the
Internet of Things on the EuWIn Platform. IEEE Internet of Things
Journal, 3(1):124–133, 2016.

[13] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level
sensor network simulation with Cooja. In Proceedings. 2006 31st IEEE
Conference on Local Computer Networks, pages 641–648. IEEE, 2006.

[14] Contiki: The Open Source OS for the Internet of Things. http://www.
contiki-os.org/, accessed February 2019.

