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Abstract

This article aims to finalize the classification of weakly well-posed hyperbolic boundary
value problems in the half-space. Such problems with loss of derivatives are rather classical
in the literature and appear for example in [19] or [2]. It is known that depending on the kind
of the area of the boundary of the frequency space on which the uniform Kreiss-Lopatinskii
condition degenerates then the energy estimate can include different losses. The three first
possible area of degeneracy have been studied in [9] and [3] by the use of geometric optics
expansions. In this article we reiterate the same kind of tools in order to deal with the
last remaining case, namely a degeneracy in the glancing area. In comparison to the first
cases studied we will see that the equation giving the amplitude of the leading order in the
expansion, and thus initializing the whole construction of the expansion, is not a transport
equation any more but it is given by some Fourier multiplier. This multiplier need to be
invert in order to recover the first amplitude. As an application we discuss the existing
estimates of [11]-[10] for the wave equation with Neumann boundary condition.
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1 Introduction

This article deals with geometric optics expansion for hyperbolic initial boundary value problems
and more precisely to the question of the loss of derivatives of such problems when the boundary
condition leads to weak well-posedness. The considered problems read under the form: for fixed
T > 0 

L(∂)u := ∂tu+
d∑
j=1

Aj∂xju = f in ΩT ,

Bu|xd=0 = g on ωT ,

u|t≤0 = 0, on Rd+,

(1)

where the space domain is the half-space Rd+ := {x = (x′, xd) ∈ Rd, xd > 0} and where we
defined the sets ΩT :=]−∞, T ]× Rd+ and ωT :=]−∞, T ]× Rd−1.

In (1) the coefficient matrices A1, ..., Ad belong to MN (R) (N is a strictly positive integer),
the matrix B belongs toMp,N (R) (p is made more precise in Assumption 2.2), and the unknown
u takes its values in RN .

The strong well-posedness of the problem (1) is well established from the seminal work of [14]
in which the author characterizes all the boundary matrices B leading to strong well-posedness.
By strong well-posedness we mean that for all choices of the sources (f, g) ∈ L2(ΩT )×L2(ωT ) the
problem (1) admits a unique solution u (with trace on ωT in L2(ωT )) that satisfies the following
energy estimate : there exists CT > 0 such we have the inequality

‖u‖2L2(ΩT ) + ‖u|xd=0‖2L2(ωT ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g‖2L2(ωT )

)
. (2)

In particular in the equation (2) we have a control of the solution in the same functional
space than the one of the data, this optimal control is referred as strong well-posedness. Without
enter into technical details the full characterization given in [14], the so-called Kreiss-Lopatinskii
condition states that in the normal mode analysis of the problem (1) there is no stable modes
solution of the homogeneous boundary condition. Indeed if we denote by Es the stable space,
in the sense of dynamical systems, associated to the problem (1) in the frequency space then
the existence of some non trivial element in kerB ∩ Es gives rise to a non trivial solution to a
homogeneous linear problem and thus leads to a contradiction.

However as firstly remarked in [17] and [1] on formal geometric optics expansions the uniform
Kreiss-Lopatinskii condition can degenerate without that the problem generates a Hadamard
instability and that it is ill-posed. Indeed when the uniform Kreiss-Lopatinskii condition fails
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then one can expect the problem to admit a unique solution u but in a less regular space than
the one of the sources. Such phenomenon is referred as a loss of derivative in the following and
the associated concept of well-posedness is called the weak well-posedness.

Historically the first result establishing such weak well-posedness behaviour is due to [19] and
is related to elastodynamics. In this paper the author shows the existence and the uniqueness of
the solution u but with an energy estimate reading

‖u‖2L2(ΩT ) + ‖u|xd=0‖2H−1/2(ωT ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g‖2H1/2(ωT )

)
, (3)

that is to say that the solution exhibits a loss of one derivative on the boundary but no loss
of derivative in the interior. Then other kinds of estimates have also been demonstrated in [8]
and [7] and the associated energy estimate both shows a loss of one derivative on the boundary
coupled with a loss of one half derivative respectively one derivative in the interior. Without
enter into technical details we know from the so-called block structure condition that there are
four kinds of degeneracy of the uniform Kreiss-Lopatinskii condition depending on the area of
the frequency space where it fails. Namely the degeneracy can occur in the elliptic, mixed,
hyperbolic or glancing area. Consequently there are four possible estimates, the ones described
above correspond to the three first ones. The aim of the following article is to investigate the last
case that is a degeneracy of the uniform Kreiss-Lopatinskii condition in the so-called glancing
area.

Note that once an estimate of the form (3) has been established then a natural question is the
one of the sharpness of the losses of derivatives. In order to investigate what can be the optimal
losses then geometric optics expansions are commonly used. Indeed they are used for example in
[9] and [3] in order to show that the estimates obtained in [19], [8] and [7] are effectively optimal.

The whole idea of geometric optics expansions is to consider the highly oscillating problem
L(∂)uε = fε in ΩT ,

Buε|xd=0 = gε on ωT ,

uε|t≤0 = 0, on Rd+,

where the (small) parameter 0 < ε� 1 represents the typical wavelength of the highly oscillatory
source terms fε and gε and to look for an approximate solution to uε as a sum of waves packets
with amplitudes that are written as asymptotic expansion with respect to the small parameter
ε. Of course such approximate solution have an interest for their own but moreover if ones is
able to construct sufficiently enough terms in the geometric optics expansions then he can expect
that this expansion is an approximation of uε with high accuracy and to use the approximate
solution to exhibit that some qualitative phenomenon (such that losses of derivatives) occur on
the approximate solution and so they do on the exact one.

As already mentioned this technic has been successfully used firstly in [9] and then in [3] to
show the optimality of the energy estimates with the different possible losses of derivatives for
the degeneracies in the hyperbolic, the mixed and the elliptic area. In this paper we use the
same kind of method to investigate what can be the loss of derivatives for the last remaining
case namely the degeneracy in the so-called glancing area.

A main difference between the construction of geometric optics expansion for a failure of the
uniform Kreiss-Lopatinskii condition in the glancing area compared to the other degeneracies
is the nature of the propagation along the boundary which is the keystone that need to be
understood in order to start the resolution of the WKB cascade. To explain this let us sketch
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the main ideas in the construction of the leading order amplitude as it is done in [9] and [3].
Let u0 denotes the leading order amplitude in the geometric optics expansion and let u1 be the
first corrector. Then because some losses of derivatives are expected, we expect to have some
amplification in the expansion compared with the source terms so that for a boundary source
term of scale εα, α > 0, we expect u0 to be of scale ε0.

The leading order term u0 satisfies in a classical setting in geometric optics expansion some
kind of polarization condition meaning essentially (and to simplify the exposition) that u0 ∈ Es,
the stable subspace of the problem, and that to determine the whole u0 then only the value of
its trace on {xd = 0} is required.

However because of the scale on the boundary source then this leading order should also
satisfied the homogeneous boundary condition Bu0|xd=0

= 0, equation that can not be used in

order to determine u0|xd=0
but that implies that u0|xd=0

∈ kerB ∩ Es := span {e} because of the
failure of the uniform Kreiss-Lopatinskii condition. So that we can write

u0|xd=0
(t, x′) := α0(t, x′)e,

and the question is to determine α0. In order to do this following [9] and [3] we should have a
look to the only boundary condition involving u0|xd=0

that is the boundary condition for u1 in
which u0|xd=0

appears via the unpolarized part of u1. This boundary condition essentially read

Bu1|xd=0
= g −BLu0|xd=0

, (4)

where u1 stands for the polarized part of u1, g is the amplitude of the boundary source and L is
some operator. Then the common point in [9] and [3] is to show that the operator L is in fact
a transport operator (with respect to the boundary variables (t, x′)) so that (4) can be solved
explicitly in order to determine α0.

For the failure of the uniform Kreiss-Lopatinskii condition in the glancing area we will follow
the same approach but the operator L will not be a transport operator any more but some Fourier
multiplier. However equation (4) will still be used in order to determine α0 just by reversing the
Fourier multiplier L. Once that α0 is determined we can initialize the resolution of the cascades
of equations of the geometric optics expansion and then the order of resolution is rather classical
and essentially follows [20] (see also [3]).

Let us point that in contrary to the other degeneracy then we do not have (in general) an
energy estimate for such a degeneracy. Indeed it seems rather difficult to adapt the construction
of the so-called Kreiss symetrizor (the classical tool used to show a priori energy estimates, see
[14]) as it has been done for example in [19] in order to show an a priori estimate. That is why
in our result about losses of derivatives we will only show that losses of one half a derivative
in the interior and/or on the boundary should happened (we refer to Theorem 2.3 for a precise
statement). However because we do not have an energy estimate with such losses we can not
conclude that it is sharp.

But let us say that in some particular setting such estimates can be found in the litterature
(see [11] and [10]). More precisely in [11] the author obtains a weak well-posedness result when
the so-called Kreiss-Sakamoto condition with power s holds. Even if a full characterization of
the fulfilment of the Kreiss-Sakamoto condition in terms of the area of degeneracy of the uniform
Kreiss-Loaptinskii condition as not achieved yet we can use this estimate for the very interesting
(in view of the applications) 2d wave equation with Neumann boundary condition.

The paper is organize as follows Section 2 contains some classical definitions and notations
used for the construction of geometric optics expansion for boundary value problems. The main
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results of the article namely Theorems 2.2 and 2.3 state respectively, the existence of a solution
to the WKB expansion when the uniform Kreiss-Lopatinskii condition fails in the glancing area,
and some results about what can be the losses of derivatives in such a framework can be found
in Paragraph 2.2. Section 3 gives the construction of the WKB expansion and thus the proof
of Theorem 2.2. It is the technical part of the article. Then the proof of Theorem 2.3 is given
in Section 4. Finally some examples namely the 2d-waves equation with Neumann boundary
condition and a linearisation of Euler equation are discussed in Section 5.

2 Assumptions and main result

In all the article C > 0 stands for a constant which can change from one line to the other without
changing of notation. For two vectors of same size u and v we will denote u ·v the euclidian scalar
product of u and v. Finally for p, q ≥ 1 and for a matrix A ∈ Mp,q we will denote AT ∈ Mq,p

for the transpose matrix of A.
We introduce the following frequency space Ξ and its boundary Ξ0:

Ξ := {ζ = (γ + iτ, η) ∈ C× Rd−1 \ {(0, 0)}, γ ≥ 0},
Ξ0 := Ξ ∩ {γ = 0}.

2.1 Assumptions and notations

In the following we consider the boundary value problem:
L(∂)u := ∂tu+

d∑
j=1

Aj∂xju = f in ΩT ,

Bu|xd=0 = g on ωT ,

u|t≤0 = 0 on Rd+.

(5)

We assume that the constant coefficients Aj ∈MN (R) give rise to an operator L(∂) of hyperbolic
type and more precisely a constantly hyperbolic operator. With more details we assume that:

Assumption 2.1. There exists an integer q ≥ 1 and analytic, homogeneous of degree one
functions λ1,...,λq on Rd \ {0} and integers µ1,...,µq such that

∀ξ := (ξ1, ..., ξd) ∈ Sd−1, det
(
τI +

d∑
j=1

ξjAj
)

=

q∏
k=1

(τ − λk(ξ))µk .

The eigenvalues λ1(ξ), ..., λq(ξ) are semi-simple and satisfy λ1(ξ) < ... < λq(ξ) for all ξ ∈ Rd\{0}.

We restrict our analysis to a non characteristic boundary and therefore make the following
assumption:

Assumption 2.2. The matrix Ad is invertible and the matrix B has maximal rank, its rank p be-
ing equal to the number of positive eigenvalues of Ad (counted with their multiplicity). Moreover,
the integer p satisfies 1 ≤ p ≤ N − 1.

Let us assume that the problem (5) is well-posed in the sense that it admits a unique solution
u ∈ L2(ΩT ) then we can perform a Laplace transform in the time variable t and a Fourier
transform in the tangential space variable x′. Let σ := γ + iτ ∈ C+ := {z ∈ C s.t. Re(z) > 0}
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and η ∈ Rd−1 denote the dual variables of t and x′ and let ·̂ be the Fourier-Laplace transform.
So, thanks to Assumption 2.2 the problem (5) reads in the resolvent form:{

d
dxd

û(ζ, xd) = A(ζ)û(ζ, xd) +A−1
d f̂ for xd ∈ R+,

Bû(ζ, 0) = ĝ(ζ),
(6)

in which ζ ∈ Ξ acts like a parameter and where the so-called resolvent matrix is defined by:

A(ζ) := −A−1
d

(
σI + i

d−1∑
j=1

ηjAj

)
, where ζ := (σ, η) ∈ C+ × Rd−1.

So, the spectrum of A(ζ) encodes the behaviour of the solution to (6) and so the one to (5).
The spectrum of A(ζ) is known and given by the following lemma due to Hersh (see [12]).

Lemma 2.1 (Hersh). Under Assumptions 2.1 and 2.2, for all frequency parameter ζ ∈ Ξ \ Ξ0,
the resolvent matrix A(ζ) only admits eigenvalues with non-zero real part, and thus does not have
purely imaginary eigenvalues. We denote by Es(ζ) (reps. Eu(ζ)) the stable (resp. unstable) space
of A(ζ) that is the eigenspace associated with the negative (resp. positive) real part eigenvalues.
Then, independently of ζ ∈ Ξ \ Ξ0, dimEs(ζ) = p and dimEu(ζ) = N − p and we have the
following decomposition:

CN = Es(ζ)⊕ Eu(ζ). (7)

However, this lemma only gives information as long as the frequency parameter lives away
from the boundary Ξ0. The study of hyperbolic boundary value problems needs to have a look
to the frequency parameters ζ ∈ Ξ0 for which Lemma 2.1 does not apply anymore. Indeed in
the limit γ ↓ 0 then the real parts of the eiganvalues may (and they do) vanish. For glancing
modes in which we are especially interested in, such a degeneracy of the eiganvalue occur at the
order at least two meaning that in the limit γ ↓ 0 some eigenvalues associated to Es and some
eigenvalues associated to Eu coincide. More precisely the theorem describing the behaviour of
the eiganvalues of A(ζ) for ζ ∈ Ξ0 is the so-called block structure theorem firstly shown in [14] for
strictly hyperbolic systems (that is to say that Assumption 2.1 is satisfied with µ1 = ... = µq = 1)
and then extended by [18] for constantly hyperbolic operators.

Theorem 2.1 (Block structure). Under Assumptions 2.1 and 2.2, for all ζ ∈ Ξ, there exists a
neighborhood V in Ξ of ζ, an integer L ≥ 1, a partition N = µ1 + ... + µL, with µ1, ..., µL ≥ 1
and an invertible matrix T := T (ζ), regular on V such that:

∀ζ ∈ V, T−1(ζ)A(ζ)T (ζ) = diag(A1(ζ), ...,AL(ζ))

where the blocks Aj ∈Mµj (C) satisfy one of the following alternatives:

1. all the elements in the spectrum of Aj(ζ) have positive real part.

2. all the elements in the spectrum of Aj(ζ) have negative real part.

3. µj = 1, Aj(ζ) ∈ iR, ∂γAj(ζ) ∈ R \ {0} and Aj(ζ) ∈ iR for all ζ ∈ Ξ0 ∩ V.

4. µj > 1 and there exists kj ∈ iR such that

Aj(ζ) =

kj i 0
. . . i

0 kj

 ,
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the coefficient in the lower left corner of ∂γAj(ζ) ∈ R \ {0} and for all ζ ∈ Ξ0 ∩V,Aj(ζ) ∈
iMµj (R).

Such theorem motivates the following definition clarifying the terminology of glancing modes
used in the introduction.

Definition 2.1. For ζ ∈ Ξ0, we define:

• E the elliptic area which is the set of ζ such that Theorem 2.1 is satisfied with blocks of
type 1 and 2 only.

• EH the mixed area which is the set of ζ such that Theorem 2.1 is satisfied with blocks of
type 1, 2 and at least one block of type 3.

• H the hyperbolic area which is the set of ζ such that Theorem 2.1 is satisfied with blocks of
type 3 only.

• G the glancing area which is the set of ζ such that Theorem 2.1 is satisfied with at least
one block of type 4.

Thanks to Theorem 2.1, we thus have the following partition of Ξ0:

Ξ0 = E ∪ EH ∪H ∪G,

and in the following we will be particularly interested in a boundary frequency ζ ∈ G.

However let us say that when ζ ∈ Ξ0 \G, then the decomposition (7) still holds and we write:

CN = Es(ζ)⊕ Eu(ζ), (8)

where Es(ζ) (resp. Eu(ζ)) is the extension by continuity of Es(ζ) (resp. Eu(ζ)) up to the
boundary Ξ0.

These spaces admit the following decompositions:

Es(ζ) = Ese(ζ)⊕ Esh(ζ) and Eu(ζ) = Eue (ζ)⊕ Euh(ζ),

where Ese(ζ) (resp. Eue (ζ)) is the generalized eigenspace associated to eigenvalues of A(ζ) with
negative (resp. positive) real part and where the Esh(ζ), Euh(ζ) are sums of eigenspaces associated
to some purely imaginary eigenvalues of A(ζ).

But for ζ ∈ G, the decomposition (8) does not hold any more because at a glancing frequency,
we have Es(ζ) ∩ Eu(ζ) 6= {0}. In this setting, we introduce the following decomposition of the
stable and unstable spaces:

Es(ζ) = Ese(ζ)⊕ Esh(ζ)⊕ Esg(ζ) and Eu(ζ) = Eue (ζ)⊕ Euh(ζ)⊕ Eug (ζ) (9)

where Esg(ζ), Eug (ζ) are sums of eigenspaces associated to the Jordan block of type 4 of A(ζ) in
Theorem 2.1 and consequently satisfying Esg(ζ) ∩ Eug (ζ) 6= {0}.

In this article we will make the rather classical assumption in geometric optics expansion
construction for glancing modes that these modes are of order two (see [21]). Indeed without
this restriction the construction of geometric optics expansions is a rather open question. What
it is known is that the associated glancing boundary layer may blow up in L∞-norm (see [[20]-
Part III]) We will also make the simplifying (and probably not necessary assumption) that there
is only one block of type 4 in Theorem 2.1.
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Assumption 2.3. Let ζ ∈ G then Theorem 2.1 is satisfied with one block of type 4 only and

moreover this block is of size two. In this setting, there exists ẽ ∈ CN \ {0} such that:

Esg(ζ) = Eug (ζ) = span(ẽ).

In order to perform the geometric optics expansion we need to be more precise about the
hyperbolic and the glancing modes of A(ζ) that is the one associated with purely imaginary
eigenvalues. Let iξ

m
∈ iR be a purely imaginary eigenvalue of A(ζ) then

det
(
τI +

d−1∑
j=1

η
j
Aj + ξ

m
Ad

)
= 0.

From the hyperbolicity Assumption 2.1, there exists an index km such that

τ + λkm(η, ξ
m

) = 0

where λkm is smooth in both variables so that we can introduce

Definition 2.2. The set of incoming (resp. outgoing) phases for the side ωT denoted by I (resp.
O) is the set of indices m such that the group velocity vm := ∇λkm(η, ξ

m
) satisfies vm,d > 0

(resp. vm,d < 0).
The set of glancing phases for the side ωT denoted by G is the set of indices m such that the
group velocity vm := ∇λkm(η, ξ

m
) satisfies vm,d = 0.

With this definition in hand, we can give the following description of the spaces Esh(ζ), Euh(ζ),
Esg(ζ) and Eug (ζ) (see for example [4]).

Lemma 2.2. Under Assumptions 2.1 and 2.2; for all ζ ∈ Ξ0, we have:

Esh(ζ) = ⊕
k∈I

kerL(τ , η, ξk), Euh(ζ) = ⊕
k∈O

kerL(τ , η, ξk), and Esg(ζ) = Eug (ζ) = ⊕
k∈G

kerL(τ , η, ξk)

where L stands for the symbol of L(∂) defined by

∀ω := (ω0, ..., ωd) ∈ Rd+1, L(ω) := ω0I +

d∑
j=1

ωjAj .

Consequently, for ζ ∈ G, (9) reads:

Es(ζ) = ⊕
k∈I

kerL(τ , η, ξk) ⊕
k∈G

kerL(τ , η, ξk)⊕ Ese(ζ), (10)

Eu(ζ) = ⊕
k∈O

kerL(τ , η, ξk) ⊕
k∈G

kerL(τ , η, ξk)⊕ Eue (ζ). (11)

Remark 2.1. In fact, under Assumption 2.3, we can be more precise, the decompositions (10)
and (11) are:

Es(ζ) = ⊕
k∈I

kerL(τ , η, ξk)⊕ span(ẽ)⊕ Ese(ζ),

Eu(ζ) = ⊕
k∈O

kerL(τ , η, ξk)⊕ span(ẽ)⊕ Eue (ζ),

where ẽ has been introduced in Assumption 2.3 can now be chosen as a generator of kerL(τ , η, ξkg ),

where kg ∈ G stands for the only glancing index.
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As mentioned in the introduction, the strong well posedness of the boundary value problem
(5) is totally characterised in [14] by the so-called uniform Kreiss-Lopatinskii condition (that
is recalled below for the reader convenience). Because we are interested in weakly well-posed
problems this condition will not be satisfied in our study and we describe in Assumption 2.4 how
the uniform Kreiss-Lopatinskii condition degenerates.

Definition 2.3 (Uniform Kreiss-Lopatinskii condition). Under Assumptions 2.1 and 2.2, let
ζ ∈ Ξ, and as previously we still denote by Es(ζ) the extension by continuity of Es(ζ) up to
ξ ∈ Ξ0 of the well-defined (for ζ ∈ Ξ \Ξ0) stable subspace of A(ζ). Then the boundary condition
B satisfies the uniform Kreiss-Lopatinskii condition (UKL) if:

∀ζ ∈ Ξ, kerB ∩ Es(ζ) = {0}.

In other words, the restriction of B to Es(ζ) is invertible and we denote its inverse by Φ(ζ) :=
B−1|Es(ζ).

Assumption 2.4. Under Assumptions 2.1, 2.2 we assume that the boundary value problem (5)
satisfies:

1. For all ζ ∈ Ξ \G, kerB ∩ Es(ζ) = {0}

2. There exists ζ ∈ G such that kerB∩Es(ζ) = kerB∩Esg(ζ) 6= {0}. Moreover, we suppose that

kerB∩Es(ζ) is one-dimensional. So that there exist a vector e ∈ CN\{0}, kerB∩Es(ζ) =
kerB ∩ Esg(ζ) = span(e).

Remark 2.2. 1. The first point of Assumption 2.4 implies in particular the so-called (weak)
Kreiss-Lopatinskii condition that is

∀ζ ∈ Ξ \ Ξ0, kerB ∩ Es(ζ) = {0}.

Indeed it is known (see for example [[6] Section 4.2]) that if this condition fails then the
boundary value problem (5) will develop an Hadamard instability meaning that we have an
infinite number of losses of derivatives and thus we can not expected weak well-posedness.
So that the uniform Kreiss-Lopatinskii condition can only degenerate for ζ ∈ Ξ0.

2. The second point of Assumption 2.4 states that the uniform Kreiss-Lopatinskii condition is
not satisfied at one frequency ζ ∈ G (so that it is a glancing frequency) and that the failure
of the uniform Kreiss-Lopatinskii condition occurs on the component of the stable subspace
which is associated to the glancing eigenvalue (that is the block of type 4 in Theorem 2.1).
Moreover we assume in a classical setting (see [9] and [3]) that this non trivial intersection
becomes one dimensional only.

3. We have ẽ = λe for λ ∈ C where ẽ and e are defined respectively in Assumption 2.3 and
2.4. Hence, we have Esg(ζ) = Eug (ζ) = span(ẽ) = span(e).
Indeed, since dimEsg = 1, we have kerB∩Esg(ζ) = span(ẽ) and combining this with the fact
that kerB ∩Esg(ζ) = span(e), we obtain the result. So that in the following we will assume
without loss of generality that ẽ = e

We conclude this preliminary section with the introduction of some projectors that are com-
monly used in the construction of geometric optics expansions.

Definition 2.4. Under Assumptions 2.1 and 2.2, for ζ = (iτ , η) ∈ Ξ0, we define:

• Πs
e := Πs

e(ζ) (resp. Πu
e = Πu

e (ζ)) the spectral projector on Ese(ζ) (resp. Eue (ζ)).

9



• For k ∈ I ∪ O ∪ G, Πk := Πk(ζ) the orthogonal projector on kerL(τ , η, ξk).

• For k ∈ I ∪ O ∪ G, Υk := Υk(ζ) the partial inverse of L(τ , η, ξk) characterized by the
relations: 

ΥkL(τ , η, ξk) = L(τ , η, ξk)Υk = I −Πk,

Im Πk = kerL(τ , η, ξk) = ker Υk,

ker Πk = ImL(τ , η, ξk) = Im Υk.

(12)

Remark 2.3. Since we have only one glancing phase, we denote Πg := Πk and Υg := Υk for
the glancing phase k ∈ G.

We now introduce some material which are commonly used for geometric optics expansions
without the uniform Kreiss-Lopatinskii condition (see [9]). From Assumption 2.4 the vector
space BEs(ζ) is (p− 1)-dimensional. We can therefore write it as the kernel of a complex linear
form

BEs(ζ) = {X ∈ Cp, b ·X = 0} (13)

for a suitable vector b ∈ Cp \ {0}.
Then, we can choose a supplementary vector space Ẽs(ζ) of span(e) in Es(ζ):

Es(ζ) = span(e)⊕ Ẽs(ζ) (14)

The matrix B induces an isomorphism from Ẽs(ζ) to the hyperplane BEs(ζ) and we denote its

inverse Φ := Φ(ζ) := B−1
|Es(ζ).

Remark 2.4. In practice, we can take Ẽs(ζ) = Esh(ζ) ⊕ Ese(ζ), due to Remark 2.2. Thus, we
have the decomposition:

Es(ζ) = Esh(ζ)⊕ span(e)⊕ Ese(ζ) = ⊕
k∈I

kerL(τ , η, ξk)⊕ span(e)⊕ Ese(ζ). (15)

In the following, to determine the hyperbolic and elliptic amplitudes of high order (and more
precisely their traces) we will need the following projectors1.

Definition 2.5. Under Assumptions 2.1, 2.2 and 2.3 for ζ ∈ Ξ0, we define:

• for k ∈ I, P k := P k(ζ) the projector on kerL(τ , η, ξk) with respect to the decomposition
(15).

• P e := P e(ζ) the projector on Ese(ζ) with respect to the decomposition (15).

For technical reasons that will be made precise during the construction of the WKB expansion,
we assume that the following holds.

Assumption 2.5. Under Assumptions 2.1, 2.2, 2.3 and 2.4, we assume that for the index g ∈ G,
b ·BΥgAde 6= 0.

1Note in particular that we do not use or require the boundedness of the projector on Es
g in the decomposition

(15). So for this special point we do not require the glancing mode to be on size two (see [20] and [13]).
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Remark 2.5. If we have Es(ζ) = kerL(τ , η, ξ) = span e which is automatic for 2 × 2 systems,
then we have b ·BΥgAde 6= 0.

Indeed proceed by contradiction and assume that ΥgAde ∈ Es(ζ) = Im Πg. However, ΥgAde ∈
Im Υg = ker Πg and ker Πg ∩ Im Πg = {0}, because Πg is a projection.
So, we deduce that ΥgAde = 0 and so, applying the symbol L(τ , η, ξ),

ΠgAde = Ade.

Next, since e ∈ Es(ζ) = Im Πg, we can write e = Πgf where f ∈ CN \ {0}. And, using Lemma
3.1, we obtain:

Ade = ΠgAde = ΠgAdΠ
gf = 0.

We deduce that e = 0 which is a contradiction and so b ·BΥgAde 6= 0.

2.2 Main results

In this section we state the two main results of the article. The first one deals with the existence
of a solution to the geometric optic expansion cascade of equations at any order. The amplitudes
of the profiles are rather similar to the one introduced in [21] in order to treat glancing phases.
In particular they involve two boundary layers one in 1

ε , it is associated to the elliptic modes,
and one in 1√

ε
which is proper to the glancing mode.

Theorem 2.2. Under Assumptions 2.1-2.2-2.3-2.4 and 2.5 then for all n ∈ N, the cascades of
equations (21)-(22) and (23) admit a unique solution (un,k, u

g
n, Uev,n)n∈N,k∈I∪O,g∈G) ⊂ H∞(ΩT )×

Pg ×Pev where the evanescent and glancing profile sets, Pg and Pev, are defined in Definition
3.1.

The construction of the geometric optics expansion is given in Section 3.

Note that in a general setting because there is no general well-posedness theory for hyperbolic
boundary value problems when the uniform Kreiss-Lopatinskii condition fails in the glancing area
then we can not justify that the approximated solution given by the geometric optics expansion
is effectively an approximate solution to the boundary value problem (5) for highly oscillating
source terms.

However if such a weak well-posedness theory is available then we can show (see Section 4)
that the solution to the geometric optics expansion is effectively an approximate solution. More-
over for some examples like the interesting case of the wave equation for Neumann boundary
condition such a weak well-posedness theory exists (see [11] and [10]) so, on some examples, we
can also conclude that the geometric optics expansion is an approximate solution.

Our second result follows closely [9] and [3] by using the geometric optics expansion in order
to understand what can be (we can not say are here because of the lack of a weak well-posedness
theory) the losses of derivatives in the energy estimate. The result is the following and its proof
is given in Section 4.

Theorem 2.3. Let Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 be satisfied and let s1, s2 ≥ 0 and
T > 0. Assume that for all sources f ∈ L2(R+

xd
;Hs1

t,x′(ωT )) and g ∈ Hs2(ωT ) that vanish for
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t ≤ 0, there exists a unique u ∈ L2(ΩT ) vanishing for t ≤ 0 that is a weak solution to the problem
(5), and that satisfies an energy estimate of the form:

‖u‖L2(ΩT ) ≤ CT
(
‖f‖L2(R+

xd
;H

s1
t,x′ (ωT )) + ‖g‖Hs2 (ωT )

)
. (16)

Then we have the following possible alternatives

1. If the extra Assumption 4.1 about the existence of some suitable for amplification outgoing
mode holds then we have s1 ≥ 1

2 .

2. If the system (5) admits an energy estimate with no loss in the interior i.e. s1 = 0 then
s2 ≥ 1

2 .

3. In the general framework we have a loss of derivative on the interior or on the boundary.
More precisely s1 ≥ 1

2 or s2 ≥ 1
2 .

3 Determination of the WKB expansion

This section is devoted to the construction of the geometric optics expansion that is the proof of
Theorem 2.2. We consider the initial boundary value problem (5) with highly oscillating interior
and boundary source terms. More precisely

L(∂)uε = fε in ΩT ,

Buε|xd=0 = gε on ωT ,

uε|t≤0 = 0.

(17)

In all that follows we fix ζ := (iτ , η) ∈ G such that Asumptions 2.3 and 2.4 are satisfied. In
order to define the sources in (17), we introduce the phases functions:

ψ(t, x′) = τt+ η · x′ and

{
ϕk(t, x) = ψ(t, x′) + ξkxd for k ∈ I ∪ O
ϕg(t, x) = ψ(t, x′) + ξgxd for k ∈ G := {g},

where the ξk stand for the roots in the ξ variable of the dispersion relation detL(τ , η, ξ) = 0.
We define the sources fε and gε under the form

fε := ε
1
2

( ∑
k∈I∪O

e
i
εϕkfk

)
+ e

i
εϕ

g

fg + e
i
εψfev, (18)

gε := ε
1
2 e

i
εψg, (19)

where for all k ∈ I ∪ O, the amplitudes fk ∈ H∞(ΩT ), fg ∈ Pg (see below) and g ∈ H∞γ (ωT ).
All these terms vanish for negative times and for X ⊂ ΩT the space H∞γ (X) being defined by

H∞γ (X) := {u ∈ L2(X) \ e−γtu ∈ H∞(X)}.

The elliptic source term fev lies in Pev the space of elliptic profiles introduced in [16], note
that this treatment of the elliptic modes differs a little from the one of [21] because it is done in
a monoblock framework and in particular no diagonalization property is required on the elliptic
block. Also remark that compared to [16] our elliptic profiles depend on xd only through the
fast variable xd

ε . This will simplify some points of the proofs compared to [3] where some lifting
of double traces on {xd = χ = 0} was required (see [16] or [3] for more details).
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Definition 3.1. [Boundary layer profiles] The set of elliptic (or evanescent) profiles Pev is
defined by

Pev := {F = F (t, x′, Xd) ∈ H∞(ωT × R+) \ ∃δ > 0, eδXdF (t, x′, Xd) ∈ H∞(ωT × R+)}.

We define similarly the set of glancing profiles Pg:

Pg := Pev = {F = F (t, x′, χ) ∈ H∞(ωT × R+) \ ∃δ > 0, eδχF (t, x′, χ) ∈ H∞(ωT × R+)}.

We postulate for ansatz

uε(t, x) ∼
∑
n≥0

ε
n
2

∑
k∈I∪O

e
i
εϕk(t,x)un,k(t, x) +

∑
n≥0

ε
n
2 e

i
εϕ

g(t,x)ugn(t, x′,
xd√
ε

)

+
∑
n≥0

ε
n
2 e

i
εψ(t,x′)Uev,n(t, x′,

xd
ε

), (20)

where for all n ≥ 0 the evanescent profile Uev,n ∈ Pev, the hyperbolic and glancing amplitudes
(un,k)k∈I∪O ∈ H∞(ΩT ) and ugn ∈ Pg.

We denote χ := xd√
ε

the fast variable for the glancing boundary layer and Xd := xd
ε the one

of the elliptic boundary layer.
Remark in particular that the amplitudes ugn for glancing mode and Uev,n for the elliptic

modes are functions of (t, x′, χ) and (t, x′, Xd) so that their only dependency with respect to xd
is made in the fast variable. It differs from the hyperbolic amplitudes un,k.

Plugging the ansatz (20) in the evolution equation of (17) leads, after identification on the ε
n
2

and using the linear independence of the phases functions, to the following cascade of equations:

I−1 :


L(dϕg)ug0 = 0,

L(dϕk)u0,k = 0, ∀k ∈ I ∪ O,
L(∂Xd)Uev,0 = 0,

I− 1
2

:


iL(dϕg)ug1 +Ad∂χu

g
0 = 0,

L(dϕk)u1,k = 0, ∀k ∈ I ∪ O,
L(∂Xd)Uev,1 = 0,

for n ≥ 0, In
2

:


iL(dϕg)ugn+2 +Ad∂χu

g
n+1 + L′(∂)ugn = δn,0f

g,

iL(dϕk)un+2,k + L(∂)un,k = δn,1fk k ∈ I ∪ O,
L(∂Xd)Uev,n+2 + L′(∂)Uev,n = δn,0fev,

(21)

where L(∂Xd) := Ad(∂Xd −A(ζ)) is the operator of derivation with respect to the fast variable

Xd and L′(∂) := ∂t +
d−1∑
j=1

Aj∂xj is the operator of differentiation with respect to the tangential

(slow) variables. In (21), δ·,· stands for the Kronecker symbol.
Plugging the ansatz (20) in the boundary condition of (17) gives:

Bn
2

: B

( ∑
k∈I∪O

un,k|xd=0
+ ugn|χ=0

+ Uev,n|Xd=0

)
= δn,1g. (22)

Finally, plugging the ansatz (20) in the initial condition (17) gives:

∀n ∈ N,∀k ∈ I ∪ O, ugnt<0
= un,k|t<0

= Uev,n|t<0
= 0. (23)
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In the following, we describe how to construct the amplitudes ugn, un,k and Uev,n solving the
cascades of equation (21), (22), (23). The construction is really classical for hyperbolic modes.
Indeed because of polarization conditions and Lax lemma [15] the hyperbolic amplitudes solve
transport equations. If the mode is incoming (resp. outgoing) there is (resp. there is not) a
boundary condition on {xd = 0} to solve. However because the uniform Kreiss-Lopatinskii con-
dition holds for hyperbolic modes this condition can be solved by inversing the boundary matrix
B. The construction for such modes is performed in Paragraph 3.1.1.

The construction for elliptic modes is also rather classical. In the spcae Pev the solution of the
evolution equation in the fast variable Xd can be written via Duhamel formula as the evolution
of the trace on {Xd = 0} plus the contribution to the interior source (which are supposed to be
known). Once again because the uniform Kreiss-Lopatinskii condition holds for elliptic mode we
have an explicit formula for the trace on {Xd = 0}. The determination of elliptic modes occupies
Paragraph 3.1.2.

The main difficulty in the construction is the determination of glancing mode. Indeed on the
one hand Lax lemma applies so that it should solve the tangential (note that for a glancing mode
the group velocity vg := (v′g, 0)) transport equation

∂tu
g
0 + v′g · ∇x′u

g
0 = 0, (24)

equation that does not require any boundary condition on ωT . But on the other hand we require
a boundary condition in (22) to have a good error term on the boundary. Boundary condition
that overdetermined (24). This difficulty has been first encounter in [20] and then overcame in
[21] by the introduction of the large boundary layer of size

√
ε.

One extra difficulty compared to [20] is that to determine the value of the boundary layer trace
on {χ = 0} which is required for its determination we can not use the uniform Kreiss-Lopatinskii
condition any more. Indeed at some step we will obtain that ug0|χ=0

∈ kerB ∩ Esg(ζ) so that

ug0|χ=0
reads ug0|χ=0

(t, x′) := α0(t, x′)e and the whole question is to find a way to determine the

good value amplitude α0. To do so we will follow the method of [9] (see also [3]) consisting in
considering the higher order boundary condition in order to derive some compatibility condition
on the trace. Compared to [9] and [3] the equation determining α0 will not be a simple transport
equation any more but it will involve some Fourier multiplier (see equation (47) for more details).
The construction of the glancing boundary layer is made in Paragraph 3.1.3.

3.1 Construction of the leading order terms

In this paragraph, we first use the pseudo-inverses introduced in Definition 2.4 in order to recover
the usual so-called polarization condition for hyperbolic and glancing modes.

We next use Lax lemma [15] to obtain transport equation with respect to the group velocity for
the hyperbolic and glancing leading amplitudes which are classical in geometric optics expansions.
Finally, we will determine the hyperbolic and elliptic amplitudes first because they are mandatory
to determine the glancing one.

From I−1, we see that ug0 ∈ kerL(dϕg) and for all k ∈ I ∪ O we also have u0,k ∈ kerL(dϕk).
So that it turns out that we have the usual polarization conditions

Πgug0 = ug0, (25)

Πku0,k = u0,k, ∀k ∈ I ∪ O. (26)
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Next, applying the pseudo-inverse Υg to the equation for glancing mode of I− 1
2

gives:

(I −Πg)ug1 = iΥgAd∂χu
g
0. (27)

Now, we apply respectively the projector Πg and Πk to the equations for glancing and hy-
perbolic modes of I0 to obtain:{

ΠgL′(∂)ug0 + ΠgAd∂χu
g
1 = Πgfg,

ΠkL(∂)Πku0,k = 0 k ∈ I ∪ O.
(28)

Decomposing ug1 in terms of polarized and unpolarized parts, gives:

ΠgL(∂)ug0 + ΠgAdΠ
g∂χu

g
1 + ΠgAd∂χ(I −Πg)ug1 = Πgfg. (29)

Using equations (25), (27) and (29), we thus obtain:

ΠgL(∂)Πgug0 + ΠgAdΠ
g∂χu

g
1 + iΠgAdΥ

gAdΠ
g∂2
χu

g
0 = Πgfg. (30)

We now need some lemmas to recover a transport equation due to Williams [21] and Lax [15].

Lemma 3.1 ([21], Lemma 8.1). Under Assumptions 2.1, 2.2 and 2.3 we have:

ΠgAdΥ
gAdΠ

g =
1

c
Πg and ΠgAdΠ

g = 0,

where c ∈ R \ {0}.

Lemma 3.2 (Lax lemma [15]). Under Assumption 2.1, we have:

∀k ∈ I ∪ O ∪ G,ΠkL(∂)Πk = (∂t + vk · ∇x) Πk

where the velocity vk is the so-called group velocity associated to k introduced in Definition 2.2.

We recall that we have only one glancing frequency so that G = {g} and the associated group
velocity vg := (v′g, 0) for some v′g ∈ Rd−1.

Using these two lemmas and equations (25),(26) permit to rewrite equations (30) and (28)
as:

−∂2
χu

g
0 + ic

(
∂t + v′g · ∇x′

)
ug0 = icΠgfg, (31)

(∂t + vk · ∇x)u0,k = 0, k ∈ I ∪ O. (32)

Combined with the equation for the first elliptic mode

L(∂Xd)Uev,0 = 0. (33)

Then we consider the first order boundary condition, namely B0. It reads:

B

( ∑
k∈I∪O

u0,k|xd=0
+ ug0|χ=0

+ Uev,0|Xd=0

)
= 0,

so that we can decouple the boundary condition like:

Bu0,k|xd=0
= 0 ∀k ∈ I ∪ O, (34)

Bug0|χ=0
= 0, (35)

BUev,0|Xd=0
= 0. (36)
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Finally for the initial condition we will solve

∀k ∈ I ∪ O, ug0|t≤0
= u0,k|t≤0

= Uev,0|t≤0
= 0.

To determine the leading order amplitudes, we determine in the following the hyperbolic
one then the elliptic one and finally the glancing one. We can determine the hyperbolic and
evanescent ones but for the glancing one, since the uniform Kreiss-Lopatinskii condition does
not hold, we follow the analysis of Coulombel-Guès [9] which requires to consider the boundary
condition B 1

2
which reveals the hyperbolic and evanescent amplitudes of order one.

3.1.1 Determination of the hyperbolic leading order term

The transport for the outgoing phases goes from the interior of the domain ΩT to the boundary
ωT and consequently in the resolution of (32) no boundary condition has to be imposed on
the boundary ωT . Using (32) we thus determine the outgoing amplitudes by resolving the
homogeneous transport equation:

∀k ∈ O,

{
(∂t + vk · ∇x)u0,k = 0,

u0,k|t≤0
= 0,

and thus u0,k ≡ 0 for all k ∈ O.

To determine the glancing leading order term, we will also require to know the u1,k = Πku1,k

for k ∈ O. Proceeding as it as been done for the leading order term, it is easy to see that these
amplitudes satisfy the transport equations

∀k ∈ O,

{
(∂t + vk · ∇x) Πku1,k = Πkfk,

Πku1,k|t≤0
= 0,

so that integrating the equation along the characteristics, we determine the u1,k for all outgoing
k in terms of the given sources fk. Because they are solution to a linear transport equation with
a source in H∞(ΩT ) the u1,k ∈ H∞(ΩT ).

We now turn to the construction of the incoming amplitudes. In that case the transport goes
from the boundary ωT to the interior of ΩT and it is thus needed to know the value of u0,k in
order to solve the transport equation. For these phases, due to the Remark 2.4, we see that for
k ∈ I, Πku0,k ∈ Ẽs(ζ) and so we deduce that Πku0,k|xd=0

= Φ(0) = 0, for all k ∈ I. Hence, the

amplitudes u0,k for incoming modes solve the transport equations
(∂t + vk · ∇x)u0,k = 0,

u0,k|xd=0
= 0,

u0,k|t≤0
= 0,

which is a homogeneous linear transport equation so the u0,k for k ∈ I are zero.

3.1.2 Determination of the evanescent leading order term

From the cascade of equations I−1 and the boundary condition (36), we have to solve for elliptic
modes: 

L(∂Xd)Uev,0 = 0 for (t, x) ∈ ΩT , Xd ∈ R+

BUev,0|Xd=0
= 0,

Uev,0|t≤0
,
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which is a standard ordinary differential equation with respect to the fast variable Xd in which
the variables (t, x′) act as parameters. In order to solve this equation we will use the following
lemma (see [16] or [3]):

Lemma 3.3 (Lescarret). We define for Xd ≥ 0:

(PevU)(Xd) := eXdA(ζ)Πs
eU(0), (37)

(QevF )(Xd) :=

∫ Xd

0

e(Xd−s)A(ζ)Πs
eA
−1
d F (s)ds−

∫ ∞
Xd

e(Xd−s)A(ζ)Πu
eA
−1
d F (s)ds. (38)

Then, for all F ∈ Pev, the equation L(∂χ)U = F for Xd ≥ 0, admits a unique solution U ∈ Pev

reading U = PevU +QevF .

Using this lemma, we have the polarization condition for elliptic modes Uev,0 = PevUev,0. So
it is sufficient to determine Uev,0|Xd=0

in order to determine Uev,0.

Since Uev,0 = PevUev,0, we deduce that Uev,0 ∈ Ese(ζ). Hence, we can invert B and the
boundary condition (36) gives Uev,0|Xd=0

= 0.

Hence, we deduce that Uev,0 = 0 as the free evolution of the trivial trace Uev,0|Xd=0
.

Next, we will have to be more precise about the form of Uev,1 to determine the glancing leading
order term. Since Uev,0 = 0, we have from the cascade of equations I− 1

2
, L(∂Xd)Uev,1 = 0, so

that from Lemma 3.3 we have, Uev,1 = PevUev,1, polarization condition which will be sufficient
for the determination of the leading order glancing term.

3.1.3 Determination of the glancing leading order term

For γ > 0, let vg0 = e−γtug0. We observe that ∂tv
g
0 = −γvg0 + e−γt∂tu

g
0. Hence, in the new

unknown, the equation for the glancing leading order term (31) becomes:

− ∂2
χv

g
0 + ic

(
γ + ∂t + v′g · ∇x′

)
vg0 = ice−γtΠgfg. (39)

We now perform a Fourier transform in the time variable t and in the tangential space variable
x′ to this equation. Let τ ∈ R and η ∈ Rd−1 denote the dual variables of t and x′ and ·̂ denotes
the Fourier transform. We thus have:

−∂2
χv̂

g
0 + ic

(
γ + iτ + i

d−1∑
j=1

v′g,jηj

)
v̂g0 = icΠg ê−γtfg,

Let X = X(σ, η) := ic
(
γ + iτ + i

d−1∑
j=1

v′g,jηj

)
= c
(
− τ −

d−1∑
j=1

v′g,jηj + iγ
)

, we obtain the following

equation:

− ∂2
χv̂

g
0 +Xv̂g0 = icΠg ê−γtfg. (40)

So, if fg has exponential decay with respect to χ for example if there exists f̃g ∈ L2(Rd) and
C, δ > 0 such that

|fg(t, x′, χ)| ≤ C|f̃g(t, x′)|e−δχ,

then we have a unique solution v̂g0 which is in L2
τ,η(Rd) with exponential decay with respect to

χ (see [21], equation 8.40):

v̂g0(τ, η, χ) = e
√
Xχv̂g0 |χ=0(τ, η) + ic

∫ χ

0

e(χ−χ′)
√
X

∫ ∞
χ′

e−(χ′−χ′′)
√
XΠg ê−γtfg(τ, η, χ′′)dχ′′dχ′.

(41)

17



where
√
X stands for the root of X with negative real part in order that vg0 ∈ L2

χ(R+). Reversing
the Fourier transform, we deduce that:

vg0(t, x′, χ) =
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)e
√
Xχv̂g0 |χ=0(τ, η)dτdη (42)

+
ic

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ χ

0

e(χ−χ′)
√
X

∫ ∞
χ′

e−(χ′−χ′′)
√
XΠg ê−γtfg(τ, η, χ′′)dχ′′dχ′dτdη.

So, to determine vg0 (and so ug0), we have to determine v̂g0 |χ=0. Indeed the second term in (42) is

a known function depending on the source fg. Moreover following [[20]-Proposition 9.6] we have
that vg0 vanishes for negative times if vg0|χ=0

and e−γtfg do so if and only if vg0|χ=0
does.

If we first consider the boundary condition B0 then (25) shows us that ug0 is polarized so
ug0 ∈ Es and the boundary condition shows us that the trace ug0|χ=0

∈ kerB.

Thus, we deduce that ug0χ=0
∈ Esg∩ker(B) so, using Assumption 2.4 there exists a scalar function

α0 defined on ωT such that

ug0|χ=0
(t, x′) = α0(t, x′)e and thus vg0|χ=0

(t, x′) = e−γtα0(t, x′)e, (43)

and for compatibility reasons we should keep in mind that we should have α0|t≤0
= 0.

In order to determine α0, we look at the boundary condition B 1
2

which is the only other

equation involving ug0|χ=0
(via the unpolarized part). More precisely, we have:

B

( ∑
k∈I∪O

u1,k|xd=0
+ ug1|χ=0

+ Uev,1|Xd=0

)
= g

We have already justified that for all k ∈ I ∪O, we have Πku1,k = u1,k so that we can replace
u1,k by Πku1,k in the previous equation. Similarly we have that U1,ev = PevU1,ev so that the
boundary condition can be written as

B

(∑
k∈I

Πku1,k|xd=0
+Bug1|χ=0

+B(PevUev,1)|Xd=0

)
= g −B

∑
k∈O

Πku1,k|xd=0
.

So, decomposing ug1 in terms of polarized and unpolarized parts and applying b defined in
(13), note that for all k ∈ I, Πku1,k ∈ Esh(ζ) and that PevU1,ev ∈ Ese(ζ), we obtain:

b ·B(I −Πg)ug1|χ=0
= b · g − b ·B

∑
k∈O

Πku1,k|xd=0

Using (27), we can rewrite this equation as:

ib ·BΥgAd(∂χu
g
0)|χ=0 = b · g − b ·B

∑
k∈O

Πku1,k|xd=0
. (44)

Multiplying it by e−γt, we obtain:

ib ·BΥgAd(∂χv
g
0)|χ=0 = e−γt

(
b · g − b ·B

∑
k∈O

Πku1,k|xd=0

)
. (45)
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Using (42) and (43), we see that

(∂χv
g
0)|χ=0 =

1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)
√
Xê−γtα0(τ, η)dτdη e (46)

+
ic

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ ∞
0

eχ
′√XΠg ê−γtfg(τ, η, χ′)dχ′dτdη.

This motivates the following definition: let T be the Fourier multipler defined from H∞γ (Rd) into

H∞(Rd) given by

(Tf)(t, x′) :=
1

(2π)d

∫
Rd
ei(t,x

′)·ξ
√
Xê−γtf(ξ)dξ, (47)

where ξ is a short hand notation for (τ, η). We also introduce λ := b · BΥgAde 6= 0 from
Assumption 2.5. In this new notations using (46) in (45) thus gives the following condition on
the unknown trace α0 :

iλT (α0) =b · e−γtg − b ·B
∑
k∈O

e−γtΠku1,k|xd=0
(48)

+
c

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ ∞
0

eχ
′√Xb ·BΥgAdΠ

g ê−γtfg(τ, η, χ′)dχ′dτdη

:= G, (49)

where G is explicit in terms of g, fk, k ∈ O and fg. We also remark for later purposes that all
the terms in the right hand side of (48) vanish for negative times if g, fg and the fk do.

Proposition 3.1. The operator T defined by

T (f)(t, x′) :=
1

(2π)d

∫
Rd
ei(t,x

′)·ξ
√
Xê−γtf(ξ)dξ

maps H∞γ (Rd) into H∞(Rd) where H∞γ (Rd) = {u ∈ L2(Rd) s.t. e−γtu ∈ H∞(Rd)}.
Moreover, T is invertible and T−1 is defined by

T−1(f)(t, x′) =
eγt

(2π)d

∫
Rd
ei(t,x

′)·ξ 1√
X
f̂(ξ)dξ;

it maps H∞(Rd) into H∞γ (Rd).
Finally if the function f vanishes for negative times then so do T (f) and T−1(f).

Proof: In a first time, we show that T maps H∞γ (Rd) into H∞(Rd).
Let f ∈ H∞γ (Rd). We want to show that T (f) ∈ H∞(Rd) or equivalently that

∀m ∈ N, ∃Cm > 0,

∫
Rd
|T̂ (f)(ξ)|2

(
1 + |ξ|2

)m
dξ < Cm.

Then using the definition of X and Cauchy-Schwarz inequality, we have:

|T̂ (f)(ξ)|2 = |c|
√
γ2 + (τ + v′ · η)

2|ê−γtf(ξ)|2,

≤

{
|c| (γ + |(1, v′)|) |ê−γtf(ξ)|2 if |ξ| ≤ 1,

|c|
(
γ +

(
1 + |ξ|2

)
|(1, v′)|

)
|ê−γtf(ξ)|2 if |ξ| > 1.
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Hence, denoting v′1 := (1, v′):∫
Rd
|T̂ (f)(ξ)|2

(
1 + |ξ|2

)m
dξ =

∫
|ξ|≤1

|T̂ (f)(ξ)|2
(
1 + |ξ|2

)m
dξ +

∫
|ξ|>1

|T̂ (f)(ξ)|2
(
1 + |ξ|2

)m
dξ

≤ |c| (γ + |v′1|)
∫
|ξ|≤1

|ê−γtf(ξ)|2
(
1 + |ξ|2

)m
dξ

+ |c|γ
∫
|ξ|>1

|ê−γtf(ξ)|2
(
1 + |ξ|2

)m
dξ

+ |c||v′1|
∫
|ξ|>1

|ê−γtf(ξ)|2
(
1 + |ξ|2

)m+1
dξ,

≤ |c| (γ + |v′1|)
∫
Rd
|ê−γtf(ξ)|2

(
1 + |ξ|2

)m
dξ

+ |c|γ
∫
Rd
|ê−γtf(ξ)|2

(
1 + |ξ|2

)m
dξ

+ |c||v′1|
∫
Rd
|ê−γtf(ξ)|2

(
1 + |ξ|2

)m+1
dξ,

Since f ∈ H∞γ (Rd), we have
∫
Rd |T̂ (f)(ξ)|2

(
1 + |ξ|2

)m
dξ < +∞, ∀m ∈ N, so that T (f) ∈

H∞(Rd). We have shown that ‖T (f)‖Hm(Rd) ≤ C‖e−γtf‖Hm+1(Rd) from which we deduce that
if f vanishes for negative times then so do T (f).

Next, we show that the expression given for T−1 is really the inverse.

We rewrite T (f) = F−1
(√

Xê−γtf
)

and T−1(f) = eγtF−1
(

1√
X
f̂
)

, where F−1 stands for the

inverse of the Fourier transform on L2(Rd).
By easy computations, we can see that T ◦ T−1 = T−1 ◦ T = I.

Finally, we show that T−1 maps H∞(Rd) into H∞γ (Rd). Let f ∈ H∞(Rd). We have:

e−γtT−1(f) = F−1

(
1√
X
f̂

)
.

And so:

| ̂e−γtT−1(f)(ξ)|2 =
1

|X(ξ)|
|f̂(ξ)|2.

But, |X(ξ)| = |c|
√
γ2 + (τ + v′ · η)

2 ≥ |c|γ and c, γ 6= 0 by definition of γ and Lemma 3.1. Hence

| ̂e−γtT−1(f)(ξ)|2 ≤ 1

|c|γ
|f̂(ξ)|2,

and consequently∫
Rd
| ̂e−γtT−1(f)(ξ)|2

(
1 + |ξ|2

)m
dξ ≤ 1

|c|γ

∫
Rd
|f̂(ξ)|2

(
1 + |ξ|2

)m
dξ,

that is to say that ‖e−γtT−1(f)‖Hm(Rd) ≤ C‖f‖Hm(Rd), since f ∈ H∞(Rd), we deduce that

T−1(f) ∈ H∞γ (Rd) and that it vanishes for negative times if f does.
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Then with Proposition 3.1 in hand we can easily determine the unknown trace α0 from (48)
by applying T−1 on each side to obtain

α0(t, x′) =
1

iλ
T−1G.

In order to do so we shall justify that G defined in (49) is in H∞(ωT ) so that we can effectively
apply T−1. We recall that

G :=b · e−γtg − b ·
∑
k∈O

e−γtΠku1,k|xd=0

+
c

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ ∞
0

eχ
′√Xb ·BΥgAdΠ

g ê−γtfg(τ, η, χ′)dχ′dτdη,

the first term is clearly in H∞(ωT ) because g ∈ H∞(ωT ). Similarly if we choose fk ∈ H∞(ΩT )
then as a solution of a transport equation Πku1,k ∈ H∞(ΩT ) ⊂ H∞γ (ΩT ) and thus the second
term is in H∞γ (ωT ). The last term reads under the form

F−1

∫ ∞
0

eχ
′√X F̂dχ′dτdη

where F ∈ H∞(ωT × R+). And thus in order to show that this term is in H∞(ΩT ) we shall
consider the integrals for a multi-index δ ∈ Nd.∫

Rd
ξδ
∣∣∣∣∫ ∞

0

eχ
′√X F̂(ξ, χ′)dχ′

∣∣∣∣2 dξ ≤Cγ
∫
Rd
ξδ sup

χ′∈R+

|F̂(ξ, χ′)|2dξ,

which are finite for all δ because F ∈ H∞(ωT × R+).
To conclude, we have determine ug0 as

ug0(t, x′, χ) = eγt
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)e
√
Xχê−γtα0(τ, η)dτdη e, (50)

where α0 = 1
iλT

−1(G) vanishes for negative times and so do ug0.
For later purpose let us remark that we can read on (50) that ug0 and its derivatives in the

fast variable χ decay exponentially fast with respect to this variable. More precisely we give the
following proposition establishing the regularity of ug0.

Proposition 3.2. We have ug0 ∈ Pg and ug0 vanishes for negative times.

Proof: Let us remark that in view of its expression ug0 has exponential decay with respect to
χ.

In the following we consider α ∈ Nd−1 a multi-index associated to x′ and we use classical
notations for multi-index.

From Leibniz formula to show that ug0 ∈ H∞t,x′,χ(ΩT × R+) it is sufficient to show that the

eγt 1
(2π)d

∫
Rd e

i(t,x′)·(τ,η)e
√
Xχτkηα

√
X
m
ê−γtα0(τ, η)dτdη are in L2

t,x′,χ(ΩT ×R+) for all k,m ∈ N
and α ∈ Nd−1.

Because we are in finite time the factor eγt can be replaced by eγT and we can integrate on
the whole line for t.

Thus, using Plancherel theorem:

‖F−1
(t,x′)↔(τ,η)

(
e
√
Xχτkηα

√
X
m
ê−γtα0

)
‖L2

t,x′,χ(Rd×R+) = ‖e
√
Xχτkηα

√
X
m
ê−γtα0‖L2

τ,η,χ(Rd×R+).
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Integrating with respect to χ first then gives:

‖e
√
Xχτkηα

√
X
m
ê−γtα0‖2L2

τ,η,χ(Rd×R+) =

∫
R+

|e
√
Xχτkηα

√
X
m
ê−γtα0|2dχ,

= |τkηα
√
X
m
ê−γtα0|2

∫
R+

|e
√
Xχ|2dχ,

= −|τkηα
√
X
m
ê−γtα0|2 ×

1

2<(
√
X)

.

But if <(X) > 0 we write −<(
√
X) =

√
1
2 (<(X) + |X|) ≥ 1√

2

√
|c|γ and if <(X) < 0 we write

<(
√
X) = − 1√

2

|=(X)|√
|X|−<(X)

so that in both cases − 1
2<(
√
X)
≤ 1√

2|c|γ
. Consequently

‖e
√
Xχτkηα

√
X
m
ê−γtα0‖2L2

τ,η,χ(Rd×R+) ≤
1√

2|c|γ
‖τkηα

√
X
m
ê−γtα0‖2L2

τ,η(Rd)

We decompose like in Proposition 3.1

‖τkηα
√
X
m
ê−γtα0‖2L2

τ,η(Rd) =

∫
Rd
|τkηα

√
X
m
ê−γtα0|2dτdη

≤ |c|m(γ + |v′1|)m
∫
|ξ|≤1

|ê−γtα0|2dτdη

+

∫
|ξ|>1

|τkηα
√
X
m
ê−γtα0|2dτdη

The first right hand side term is finite because e−γtα0 ∈ H∞(ωT ) and the second term can also

be bounded by using Holder inequality for
√
X
m

by∫
|ξ|>1

|τkηα
√
X
m
ê−γtα0|2dτdη ≤

∫
Rd

(1 + |ξ|2)k+|α|+m|ê−γtα0|2dτdη,

which is finite because e−γtα0 ∈ H∞(ωT ). This prove that ug0 ∈ H∞(ΩT × R+) and so ug0 ∈ Pg

because of the exponential decay with respect to χ.

So we sum up the construction of the Paragraphs 3.1.1, 3.1.2 and 3.1.3 in the following
proposition

Proposition 3.3. Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, for all k ∈ I ∪ O, there exist
u0,k ∈ H∞(ΩT ), ug0 ∈ Pg and Uev,0 ∈ Pev satisfying the cascades of equations (21), (22) and
(23) at order zero. In fact we have that for all k ∈ I ∪ O, u0,k = Uev,0 = 0.

3.2 Construction of terms of order one

In this paragraph, we determine the amplitudes of order one. For this, we find transport equations
for the hyperbolic and glancing amplitudes too. We follow the same steps as the precedent
paragraphs but the determination of the traces is a little more technical than for the leading
amplitudes because the amplitudes are not polarized any more.

Using (12), we apply the pseudo-inverse Υg (resp. Υk) to the equation for the glancing mode
of I0 (resp. to the equation for the hyperbolic modes of I0) to derive:

(I −Πg)ug2 = −iΥgfg + iΥgAd∂χu
g
1 + iΥgL(∂)ug0, (51)

(I −Πk)u2,k = iΥkL(∂)u0,k, k ∈ I ∪ O. (52)
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We remark that (52) gives the unpolarized part of u2,k in terms of the constructed term u0,k.
Similarly in the right hand side of (51) the last term is now a known function.

Now, we apply the projector Πg (resp. Πk) to the glancing (resp. hyperbolic) equation of I 1
2

to obtain (recall that u1,k is polarized):

ΠgL′(∂)ug1 + ΠgAd∂χu
g
2 = 0,

ΠkL(∂)Πku1,k = Πkfk, k ∈ I ∪ O.

Decomposing ug1 and ug2 in terms of polarized and unpolarized parts, we have:

ΠgL′(∂)Πgug1 + ΠgAdΠ
g∂χu

g
2 + ΠgAd∂χ(I −Πg)ug2 = −ΠgL′(∂)(I −Πg)ug1, (53)

ΠkL(∂)Πku1,k = Πkfk,

where (I −Πg)ug1 is known from equation (27) and thus the right hand side of (53) is.
Using equations (51) and (53) and decomposing again ug1 in terms of polarized and unpolarized

parts, we thus obtain:

ΠgL′(∂)Πgug1+ΠgAdΠ
g∂χu

g
2 + iΠgAdΥ

gAd∂
2
χΠgug1 (54)

=−ΠgL′(∂)(I −Πg)ug1 + iΠgAdΥ
g∂χf

g

− iΠgAdΥ
gL′(∂)∂χu

g
0 − iΠgAdΥ

gAd∂
2
χ(I −Πg)ug1,

:=F1.

ΠkL(∂)Πku1,k = Πkfk. (55)

Using Lemmas 3.1 and 3.2, equations (54) and (55) can be rewritten as:

−∂2
χΠgug1 + ic

(
∂t + v′g · ∇x′

)
Πgug1 = icF1, (56)

(∂t + vk · ∇x) Πku1,k = Πkfk k ∈ I ∪ O. (57)

Then we look at the boundary condition: the equation B 1
2

reads

B

( ∑
k∈I∪O

u1,k|xd=0
+ ug1|χ=0

+ Uev,1|Xd=0

)
= g. (58)

In the following, we need to determine the Πku1,k|xd=0
for k ∈ I and PevUev,1|Xd=0

so we will

do this from this boundary condition. We recall that the u1,k for k ∈ I ∪ O are polarized and
that we know Πku1,k, k ∈ O from Paragraph 3.1.1. And so:

B

(∑
k∈I

Πku1,k|xd=0
+ ug1|χ=0

+ Uev,1|Xd=0

)
= g −B

∑
k∈O

Πku1,k|xd=0
. (59)

Equation (27) gives the unpolarized part of ug1. Remember that we have Im Πg = kerL(ζ, ξk) =
Esg(ζ), so we can write, using Assumption 2.3 and Remark 2.2:

Πgug1|χ=0
= α1e where α1 is a scalar function defined on ωT . (60)

Hence, BΠgug1|χ=0
= α1Be = 0 and we can rewrite equation (59) as:

B

(∑
k∈I

Πku1,k|xd=0
+ Uev,1|Xd=0

)
= g −B

∑
k∈O

Πku1,kxd=0
−B(I −Πg)ug1|χ=0

.
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Finally using that Uev,1 = PevUev,1, it turns out

B

(∑
k∈I

Πku1,k|xd=0
+ PevUev,1|Xd=0

)
= g −B

∑
k∈O

Πku1,k|xd=0
−B(I −Πg)ug1|χ=0

,

:= G0.

Since Πku1,k|xd=0
∈ Esh(ζ) and PevUev,1|Xd=0

∈ Ese(ζ), from (14), we can inverse B and so

applying Φ, we deduce that:∑
k∈I

Πku1,k|xd=0
+ PevUev,1|Xd=0

= ΦG0.

Next, applying the projectors of Definition 2.5, we thus obtain:

∀k ∈ I, P kΠku1,k|xd=0
= P kΦG0,

P ePevUev,1|Xd=0
= P eΦG0.

Since Πku1,k|xd=0
∈ Esh(ζ) and PevUev,1|Xd=0

∈ Ese(ζ), we see that P kΠku1,k|xd=0
= Πku1,k|xd=0

and P ePevUev,1|Xd=0
= PevUev,1|Xd=0

. Therefore,

∀k ∈ I,Πku1,k|xd=0
= P kΦG0, (61)

PevUev,1|Xd=0
= P eΦG0. (62)

In the following paragraphs we describe the construction of the higher order hyperbolic and
elliptic terms. We then use this construction for the determination of the glancing amplitude of
order one in Paragraph 3.2.3.

3.2.1 Determination of the hyperbolic amplitudes of order one

The outgoing amplitudes of order one namely the u1,k for k ∈ O have been determined in
Paragraph 3.1.1. However like the leading order, the determination of the first order glancing
amplitude will require the knowledge of one order more on the outgoing modes, more precisely
we will need to know u2,k for k ∈ O.

Reiterating the same analysis as the one performed in Paragraph 3.1.1, these terms can be
determined independently of the other by solving an outgoing transport equation.

Indeed, applying the projector Πk on the hyperbolic equation of I1, we have:

ΠkL(∂)u2,k = 0.

Equation (52) gives the unpolarized part of u2,k. So decomposing u2,k in terms of polarized and
unpolarized parts and using Lemma 3.2, we deduce that:

(∂t + vk · ∇x) Πku2,k = −ΠkL(∂)(I −Πk)u2,k := fk,2.

Hence, we determine Πku2,k and so u2,k by solving the transport equation:{
(∂t + vk · ∇x) Πku2,k = fk,2,

Πku2,k|t≤0
= 0,
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by integration along the characteristics. The obtained solution is explicit in terms of fk,2 that is
to say explicit in terms of u0,k from (52). Moreover the solution u2,k lies in the same functional
space than the source f2,k.

For the incoming phases, we have to consider the boundary equation (61). For these phases,
as in Paragraph 3.1.1 for the outgoing phases of order one, we have (∂t + vk · ∇x) Πku1,k = Πkfk.
Hence, each of the incoming amplitude solves the transport equation:

(∂t + vk · ∇x) Πku1,k = Πkfk,

Πku1,k|xd=0
= P kΦG0,

Πku1,k|t≤0
= 0,

equation that can be explicitly solved in terms of fk, k ∈ I and G0 (which depends on g and on
the fk for k ∈ O) so that u1,k depends on all the sources of the problem. We have that u1,k lies
in H∞(ΩT ) vanishes for negative times if the source does.

3.2.2 Determination of the evanescent amplitudes of order one

We recall that from Paragraph 3.1.2 that Uev,1 = PevUev,1. So that in order to determine the
whole elliptic amplitude it is sufficient, from the definition of Pev to determine Uev,1|Xd=0

.

We use the boundary equation (62) to recover that

Uev,1(t, x′, Xd) = (PevUev,1)(t, x′, Xd) = eXdA(ζ)P eΦG0(t, x′),

equation that determines Uev,1 in terms of G0. Moreover we readily see that Uev,1 ∈ Pev. Note
that as mentioned in the introduction of Section 3 the fact that the elliptic profile is independent
of the normal variable xd permit us to avoid the step of the lifting of some double trace as simple
one as it is done in [4] or [16].

Like for the leading order glancing term, the determination of the term of order one requires
the knowledge of the elliptic amplitude of order plus one. More precisely we will need to know
the form of Uev,2 to determine the glancing leading term of order one.

From the cascade of equations I0 for elliptic modes we have

L(∂χ)Uev,2 = −L′(∂)Uev,0︸ ︷︷ ︸
=0

+fev.

From Lemma 3.3, we deduce that:

Uev,2 = PevUev,2 +Qevfev, (63)

equation that does not fully determine Uev,2 because the polarized part PevUev,2 has not been
determined yet (it is however easy to determine this term by determining the trace Uev,2|Xd=0

like

it has been done for Uev,1|Xd=0
) but which will be sufficient to determine the glancing amplitude

of order one.

3.2.3 Determination of the glancing leading order term

For γ > 0, let vg1 = e−γtΠgug1. As for ug0, equation (56) becomes:

− ∂2
χv

g
1 + ic

(
γ + ∂t + v′ · ∇x′

)
vg1 = ice−γtF1, (64)
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where we recall that the right hand side F1 depends on ug0, the unpolarized part of ug1 and fg

and eventually on their derivatives is defined in (54). In particular this term has exponential
decay with respect to χ.

We now perform a Fourier transform with respect to t and x′, we thus have the same ordinary
differential equation as the one determining the leading order glancing amplitude:

− ∂2
χv̂

g
1 +Xv̂g1 = icê−γtF1, (65)

where we recall that X = X(σ, η) = ic
(
γ + iτ + i

d−1∑
j=1

v′g,jηj

)
.

So, because F̂1 has exponential decay with repesct to χ we have a unique solution with
exponential decay with respect to χ (see [21], equation 8.40):

v̂g1(τ, η, χ) =ic

∫ χ

0

e(χ−χ′)
√
X

∫ ∞
χ′

e−(χ′−χ′′)
√
X ê−γtF1(τ, η, χ′′)dχ′′dχ′ + eχ

√
X v̂g1 |χ=0(τ, η),

:=F2(τ, η, χ) + eχ
√
X v̂g1 |χ=0(τ, η). (66)

Reversing the Fourier transform, we deduce that:

vg1(t, x′, χ) =
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)F2(τ, η, χ)dτdη +
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)eχ
√
X v̂g1 |χ=0(τ, η)dτdη

:=F3(t, x′, χ) +
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)eχ
√
X v̂g1 |χ=0(τ, η)dτdη (67)

So, to determine vg1 (and so Πgug1), it is sufficient to determine v̂g1 |χ=0 because F3 is known

from (54) and (66).
Recall that from (60) we have:

vg1|χ=0
= e−γtα1e. (68)

Thus, it remains to determine α1. For this, we look at the boundary condition B1 that is:

B

( ∑
k∈I∪O

u2,k|xd=0
+ ug2|χ=0

+ Uev,2|Xd=0

)
= 0.

The u2,k, for k ∈ O are known because the polarized part of them are determined from
Paragraph 3.2.1 and the unpolarized part from (52). From (52) we know (I −Πk)u2,k, k ∈ I

Hence, the precedent equation can be rewritten as

B
∑
k∈I

Πku2,k|xd=0
+Bug2|χ=0

+BUev,2|Xd=0
= −B

∑
k∈O

u2,k|xd=0
−B

∑
k∈I

(I −Πk)u2,k|xd=0
.

Furthermore, from (63), we see that:

Uev,2|Xd=0
= Πs

eUev,2|Xd=0
−
∫ +∞

0

e−sA(ζ)Πu
eA
−1
d fev(t, x

′, s)ds.

The first right hand side term is in Ese(ζ) so b ·BΠs
eUev,2|Xd=0

= 0 and the second term is known.
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So, decomposing ug2 in terms of polarized and unpolarized parts and testing against the vector
b defined in (13), we obtain:

b ·B(I −Πg)ug2|χ=0
= −b ·B

∑
k∈O

u2,k|xd=0
− b ·B

∑
k∈I

(I −Πk)u2,k|xd=0

+ b ·B
∫ +∞

0

e−sA(ζ)Πu
eA
−1
d fev(t, x

′, s)ds,

:= G̃1; (69)

clearly as the sum of the solutions of transport equations and the free evolution of the regular
source fev then the new source G̃1 lies in H∞t,x′(ωT ).

Using (51), we can rewrite the left hand side of (69) as:

ib ·BΥgAd (∂χu
g
1)|χ=0 = G̃1 + ib ·BΥgfg|χ=0 − ib ·BΥgL′(∂)ug0|χ=0

. (70)

We stress that the right hand side is known from (50). Multiplying by e−γt, we obtain:

ib ·BΥgAd (∂χv
g
1)|χ=0 = e−γtG̃1 + ie−γtb ·BΥgfg|χ=0 − ie

−γtb ·BΥgL′(∂)ug0|χ=0
. (71)

Using (67) and (68), we see that:

(∂χv
g
1)|χ=0 = (∂χF3)(t, x′, 0) +

1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)
√
Xê−γtα1(τ, η)dτdη e,

=
ic

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ ∞
0

eχ
′√X ê−γtF1(τ, η, χ′)dχ′dτdη + T (α1)e.

Combining (71) and the precedent equation, we deduce that:

iλT (α1) =e−γtG̃1 + ie−γtb ·BΥgfg|χ=0 − ie
−γtb ·BΥgL′(∂)ug0|χ=0

+
c

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)

∫ ∞
0

eχ
′√Xb ·BΥgAdê−γtF1(τ, η, χ′)dχ′dτdη,

:=G1,

where we recall that λ := b ·BΥgAde 6= 0.
The first terms of G1 read e−γtf with f ∈ H∞t,x′(ωT ) vanishes for negative times so that they

are in H∞t,x′(ωT ) and hence in H∞γ (ωT ). The integral term in G1 is shown to be in H∞γ (ωT )
by the same arguments as for the integral term in the source term for the leader order glancing
amplitude (see (49) and Proposition () ). Reversing the operator T , we find α1 as

α1(t, x′) =
1

iλ
(T−1G1)(t, x′).

Arguing like for the first amplitude α0 we can show that such α1 ∈ H∞(ωT ) vanishes for negative
times. To conclude, we have determined Πgug1 ∈ H∞γ (ωT ) as

Πgug1(t, x′, χ) =eγtF3(t, x′, χ) + eγt
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)e
√
Xχê−γtα1(τ, η)dτdη e,

where F3 is given by (54), (66) and (67). Reiterating the same kind of arguments as in the proof
of Proposition () we have fully determined ug1 ∈ Pg such that ug1|t≤0

= 0.

In this paragraph, we thus have shown:

Proposition 3.4. Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, for all k ∈ I ∪ O, there exist
u1,k ∈ H∞(ΩT ), ug1 ∈ Pg and Uev,1 ∈ Pev satisfying the cascades of equations (21), (22) and
(23) at order one.
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3.3 Higher order terms

In this paragraph, we describe briefly how to construct terms of order n for n ≥ 2. The con-
struction is very close to the construction of the terms of order one.

We suppose that we know the terms of order n− 1, n− 2, ... So, applying the pseudo-inverses
on the equation for the glancing mode of In−2

2
and the equation for the hyperbolic mode of In−2

2
,

we know the unpolarized parts of the glancing and hyperbolic amplitudes of order n as :

(I −Πg)ugn = −iδn−2,0Υgfg + iΥgAd∂χu
g
n−1 + iΥgL′(∂)ugn−2(

I −Πk
)
un,k = −iδn−2,1Υkfk + iΥkL(∂)un−2,k

Thus, we know the unpolarized parts of the glancing and the hyperbolic amplitudes of order n
and it remains to determine their polarized terms. For this, we will need to know the unpolarized
parts of the terms of order n+ 1 which are obtain applying the pseudo-inverses to In−1

2
:

(I −Πg)ugn+1 = iΥgAd∂χu
g
n + iΥgL′(∂)ugn−1, (72)(

I −Πk
)
un+1,k = −iδn−1,1Υkfk + iΥkL(∂)un−1,k. (73)

Next, applying the projectors Πk and Πg on In
2

and decomposing the amplitudes in terms of
their polarized and unpolarized parts, we deduce that:

ΠgAdΠ
g∂χu

g
n+1 + iΠgAdΥ

gAdΠ
g∂2
χu

g
n + ΠgL′(∂)Πgugn = Fn,1,

ΠkL(∂)Πkun,k = fk,n,

where F 1
n := −ΠgL′(∂) (I −Πg)ugn − iΠgAdΥ

gL′(∂)∂χu
g
n−1 − iΠgAdΥ

gAd∂
2
χ (I −Πg)ugn and

fk,n := −ΠkL(∂)
(
I −Πk

)
un,k are known.

So using Lemmas 3.1 and 3.2, these equations can be put on a similar form to (56) and (57) that
is:

−∂2
χΠgugn + ic

(
∂t + v′g · ∇x′

)
Πgugn = icFn,1, (74)

(∂t + v · ∇x) Πkun,k = fk,n. (75)

Notice that from the equation of the evanescent mode of In−2
2

, we have:

L(∂Xd)Uev,n = δn−2,0fev − L′(∂)Uev,n−2 := Fev,n. (76)

So, using Lemma 3.3, we know the form of the evanescent profile:

Uev,n = PevUev,n +QevFev,n.

We now look at the boundary condition Bn
2

because we need to know Πkun,k|xd=0 for k ∈ I
and PevUev,n|Xd=0 to determine the incoming hyperbolic and the elliptic amplitude. We suppose
that we know Πkun,k for k ∈ O (it is not an issue because we will determined then before the
other amplitudes). We also recall that the unpolarized part of the incoming hyperbolic and
QevFev,n are known. So the boundary condition gives:

B

(∑
k∈I

Πkun,k|xd=0
+ ugn|χ=0

+ PevUev,n|Xd=0

)
=−B

∑
k∈O

un,k|xd=0
−B

∑
k∈I

(
I −Πk

)
un,k|xd=0

−BQevFev,n|Xd=0
.
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Because the unpolarized part of the glancing amplitude is known and the fact that the
polarized part can be write as (for the same reasons as in Section 3.2, see equation (60)):

Πgugn|χ=0
= αne where αn is a scalar function defined on ωT , (77)

the precedent equation becomes:

B

(∑
k∈I

Πkun,k|xd=0
+ PevUev,n|Xd=0

)
= Gn,

where Gn := −B
∑
k∈O

un,k|xd=0
−B

∑
k∈I

(
I −Πk

)
un,k|xd=0

−BQevFev,n|Xd=0
−B (I −Πg)ugn|χ=0

.

So, reversing B and using the boundary projectors (see Definition 2.5), we deduce the bound-
ary conditions for the Πkun,k for k ∈ I and PevUev,n:

∀k ∈ I,Πkun,k|xd=0
= P kΦGn,

PevUev,n|Xd=0
= P eΦGn.

With this result in hand, we can construct the hyperbolic and elliptic amplitudes of order n:

• The outgoing amplitudes of order n are determined by solving the transport equation
without boundary condition{

(∂t + vk · ∇x) Πkun,k = fk,n,

Πkun,k|t<0
= 0.

Moreover, we will need to know the outgoing amplitudes of order n + 1 to determine the
glancing one of order n. They are given by (73) and by solving the transport equation:{

(∂t + vk · ∇x) Πkun+1,k = fk,n+1,

Πkun+1,k|t<0
= 0.

• The incoming amplitudes of order n are determined by solving the transport equation with
boundary condition: 

(∂t + vk · ∇x) Πkun+1,k = fk,n+1,

Πkun,k|xd=0
= P kΦGn,

Πkun,k|t<0
= 0.

.

• For the evanescent amplitude, we deduce from the boundary condition that

Uev,n(t, x′, Xd) = eXdA(ζ)P eΦGn(t, x′) +QevFev,n(t, x′, Xd).

Furthermore, we will need to know the form of Uev,n+1 to determine the glancing amplitude.
It solve L(∂Xd)Uev,n+1 = Fev,n+1, so (from Lemma 3.3), we have:

Uev,n+1 = PevUev,n+1 +QevFev,n+1.
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Now, we can construct the polarized part of the glancing amplitude. As for the term of order
one, let vgn = e−γtΠgugn (γ > 0). Using this and performing a Fourier transform, (74) gives:

−∂2
χv̂

g
n +Xv̂gn = ic ̂e−γtFn,1.

So, following the same steps as for the glancing amplitude of order one (see Paragraph 3.2.3),
we obtain:

vgn(t, x′, χ) = Fn,2(t, x′, χ) +
1

(2π)d

∫
Rd
ei(t,x

′)·(τ,η)eχ
√
X v̂gn|χ=0(τ, η)dτdη (78)

where Fn,2 := ic
(2π)d

∫
Rd e

i(t,x′)·(τ,η)
∫ χ

0
e(χ−χ′)

√
X
∫∞
χ′
e−(χ′−χ′′)

√
X ̂e−γtFn,1(τ, η, χ′′)dχ′′dχ′dτdη.

So, to determine vgn (and so Πgugn), it is sufficient to determine v̂gn|χ=0. Recall that from (77)
we have:

vgn|χ=0
= e−γtαne. (79)

Thus, it remains to determine αn. For this, we look at the boundary condition Bn+1
2

which can

be rewritten as:

B
∑
k∈I

Πkun+1,k|xd=0
+Bugn|χ=0

+BPevUev,n+1|Xd=0

= −B
∑
k∈O

un+1,k|xd=0
−B

∑
k∈I

(
I −Πk

)
un+1,k|xd=0

−BQevFev,n+1|Xd=0

where the right hand side term is known.
Decomposing ugn+1 in terms of polarized and unpolarized part and testing against the vector

b defined in (13), we obtain:
b ·B (I −Πg)ugn+1|χ=0

= Gn,1

where Gn,1 := −b ·B
∑
k∈O

un+1,k|xd=0
− b ·B

∑
k∈I

(
I −Πk

)
un+1,k|xd=0

− b ·BQevFev,n+1|Xd=0
.

Now, using (72) and multiplying by e−γt, it remains:

ib ·BΥgAd (∂χv
g
n)|χ=0 = e−γtGn,1 − ie−γtb ·BΥgAdL

′(∂)ugn−1|χ=0
.

Next, using (78), we deduce that:

iλT (αn) = Gn,2

where Gn,2 := e−γtGn,1 − ie−γtb · BΥgAdL
′(∂)ugn−1|χ=0

− ib · BΥgAd (∂χFn,2)|χ=0. Hence, we

determine αn ∈ H∞(ωT ) vanishing for negative times as

αn(t, x′) =
1

iλ

(
T−1Gn,2

)
(t, x′).

So, we have determined the polarized part of the glancing amplitude of order n.
To conclude this paragraph, we give the following proposition:

Proposition 3.5. Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, for all n ∈ N, for all k ∈ I∪O,
there exists un,k ∈ H∞(ΩT ), ugn ∈ Pg and Uev,n ∈ Pev satisfying the cascade of equations (21),
(22) and (23) at the order n.
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4 Discussion about the energy estimates

In this section, we consider the non-oscillatory initial boundary value problem
L(∂)u = f in ΩT ,

Bu|xd=0 = g on ωT ,

u|t≤0 = 0 on Rd+.
(80)

The aim of the following is to use the geometric optics expansion to investigate what can be
the looses of derivatives for the solution to (80). Indeed because the uniform Kreiss-Lopatinskii
condition fails then such looses will happened. However for a failure of the uniform Kreiss-
Lopatinskii condition on a glancing frequency then the weak well-posedness theory is not achieved
yet and we do not have precise energy estimates yet. The existing estimates that can apply to
this framework are the ones of [11] and [10]. In [11] the result is that if the uniform Kreiss-
Lopatinskii condition fails at some order δ > 0 (or that it satisfy the Kreiss-Sakamoto condition
of power δ) meaning that we have the estimate |Bv| & γδ|v| then we have the following energy
estimate, there exists C > 0 such that for large values of γ there holds

γ‖u‖2L2
γ(ΩT ) + ‖u|xd=0‖2L2

γ(ωT ) ≤ C
(

1

γ1+2δ
‖L(∂)u‖2Hδγ(ΩT ) +

1

γ2δ
‖Bu|xd=0‖2Hδγ(ωT )

)
,

where for X ⊂ Rd+ the space L2
γ(X) is defined via the norm ‖ · ‖L2

γ(X) := ‖e−γt · ‖L2(X); the

Sobolev spaces Hm
γ (X) being defined accordingly.

In [10] it is shown that if the boundary condition is in the particular so-called conservative
form then one can recover an estimate without loss of derivatives in the interior up to the prize
of a larger loss along the boundary meaning that the estimate reads

γ‖u‖2L2
γ(ΩT ) + ‖u|xd=0‖2H−1/2

γ (ωT )
≤ C

γ

(
‖L(∂)u‖2L2

γ(ΩT ) + ‖Bu|xd=0‖2H1/2
γ (ωT )

)
.

For a sake of completeness we recall that conservative boundary conditions are defined in the
following way

Definition 4.1 (Conservative boundary condition). We say that the boundary condition B ∈
Mp×N (R) is in conservative form is there exists a matrix C ∈Mp×N (R) such that we can write

Ad = Re(CTB) :=
1

2

(
CTB +BTC

)
.

However let us point that the link between the failure of the Kreiss-Lopatinskii condition in
the glancing area and the fulfilment of the Kreiss-Sakamoto condition and or the fact that the
boundary condition is conservative is not well-established. It seems that if the Kreiss-Lopatinskii
condition fails on a glancing mode of order k then the Kreiss-Sakamoto condition of order 1/k
is satisfied but this conjecture is left for future studies.

Before to turn to a precise statement of the existing losses of derivatives first let us point
that if one has an energy estimate for the problem (80) then it can be shown that the truncated
geometric optics expansion is a good approximation of the exact solution of uε (we refer to the
proof of Theorem 2.3 below for a precise proof of this fact (see equation (84)). This answers in
particular the question of the uniqueness of the geometric optics expansion.
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In order to investigate all the possible cases in the losses we will need the following extra
assumption already met in [3] in order to ensure the existence of suitable some outgoing mode
which can turn on the loss of derivative in the interior. Note that the existence of such modes
is automatic in the so-called WR framework studied in [9] but that they are not in the general
setting.

Assumption 4.1. We assume that there exists k ∈ O such that b ·B kerL(dϕk) 6= 0.

Let us also mention that the results of Theorem 2.3 agree with the conjecture about weakly
well-posed problems and the failure of the uniform Kreiss-Lopatinskii condition for glancing
modes of [[6]-Chapter 7.1].

We now turn to the proof of Theorem 2.3.
Proof: We first show that if Assumption 4.1 holds then the boundary value problem (5) has

a loss of at least one half derivative in the interior. Then we show 3. of Theorem 2.3 that is
the fact that in the general framework a loss of at least one half derivative in the interior or on
the boundary occurs. In particular 2. of Theorem 2.3 (the case without loss of derivative in the
interior) is obtained as a particular case of 3. and we will omit the proof.

We assume that Assumption 4.1 holds and we argue by contradiction assuming first that
s1 <

1
2 in order to show that s1 ≥ 1

2 .
Let uε be the solution to the problem

L(∂)uε = fε in ΩT ,

Buε|xd=0 = 0 on ωT ,

uε|t≤0 = 0 on Rd+,
(81)

where fε := ε
1
2 e

iϕk
ε fk with k ∈ O the index given by Assumption 4.1.

For N0 ≥ 0, let

uεN0,app :=

N0∑
n=0

ε
n
2

∑
k∈I∪O

e
i
εϕkun,k +

N0∑
n=0

ε
n
2 e

i
εϕ

g

ugn +

N0∑
n=0

ε
n
2 e

i
εψUev,n, (82)

where the profiles (un,k)n∈N,k∈I∪O ∈ H∞(ΩT ), (ugn)n∈N ∈ Pg and (Uev,n)n∈N ∈ Pg are given by
Theorem 2.2.

We have, using the triangle inequality:

‖uεN0,app‖L2(ΩT ) ≤ ‖uεN0+2,app − uεN0,app‖L2(ΩT ) + ‖uεN0+2,app − uε‖L2(ΩT ) + ‖uε‖L2(ΩT ), (83)

and in the following we will estimate each term separately. The term uεN0+2,app−uε satisfies the
following problem: 

L(∂)
(
uεN0+2,app − uε

)
= fε1 , in ΩT ,

B
(
uεN0+2,app − uε

)
|xd=0

= 0, on ωT(
uεN0+2,app − uε

)
|t<0

= 0 on Rd+,

where

fε1 :=ε
N0+1

2

( ∑
k∈I∪O

e
i
εϕk

(
L(∂)uN0+1,k +

√
εL(∂)uN0+2,k

)
+ e

i
εϕ

g (
Ad∂χu

g
N0+2 + L′(∂)ugN0+1 +

√
εL′(∂)ugN0+2

)
+ e

i
εψ
(
L′(∂)Uev,N0+1 +

√
εL′(∂)Uev,N0+2

) )
.
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We see that ‖fε1‖L2(ΩT ) is O(ε
N0+1

2 ) and ‖fε1‖H1(ωT ) is O(ε
N0−1

2 ). So, using the interpolation

inequalities, we deduce that ‖fε1‖L2(Hs1 (ωT )) ≤ Cε
N0+1

2 −s1 where C is independent of ε.
Consequently,

‖uεN0+2,app − uε‖L2(ΩT ) ≤ C‖fε1‖L2(R+
xd

;H
s1
t,x′ (ωT )) ≤ Cε

N0+1
2 −s1 . (84)

Moreover, ‖fε‖L2(ΩT ) is O(ε
1
2 ) and ‖fε‖H1(ωT ) is O(ε−

1
2 ). So, using the interpolation in-

equalities, we deduce that ‖fε‖Hs1 (ωT ) ≤ Cε
1
2−s1 . Thus, from the energy estimate (16) applied

to problem (81) we obtain

‖uε‖L2(ΩT ) ≤ Cε
1
2−s1 .

Finally ‖uεN0+2,app − uεN0,app
‖L2(ΩT ) is clearly O(ε

N0+1
2 ) ; and so, taking N0 = 0 it follows

that
‖uε0,app‖L2(ΩT ) ≤ C

(
ε

1
2 + ε

1
2−s1 + ε

1
2−s1

)
.

Because uε0,app = e
iϕg

ε ug0, we have on the one hand ‖uε0,app‖L2(ΩT ) = ‖ug0‖L2(ΩT ). On the

other hand because s1 <
1
2 it turns out that ‖ug0‖L2(ΩT ) tends to 0 as ε goes to 0, hence ug0 = 0.

However ug0 is given by (50) in which the source term G defined in (49) reads e−γtb ·
BΠku1,k|xd=0

where Πku1,k|xd=0
only depends on fk as the solution of the associated trans-

port equation. Let us point that from Assumption 4.1 the term b ·BΠku1,k|xd=0
is non-zero. We

are free to choose the interior source term fk in order that Πku1,k|xd=0
is not zero at so do u0

g.

We have a contradiction and we get s1 ≥ 1
2 as desired.

Now we turn to the proof that s1 ≥ 1
2 or s2 ≥ 1

2 . Once again we argue by contradiction and
assume that s1 <

1
2 and s2 <

1
2 .

Let uε be the solution to the problem
L(∂)uε = 0 in ΩT ,

Buε|xd=0 = gε, on ωT ,

uε|t≤0 = 0 on Rd+,
(85)

where gε := ε
1
2 e

iψ
ε g for some regular g, specified below, vanishing for negatives times. We

consider again the approximated solution uεN0,app
given by (82) and once again we will use the

triangle inequality (83) to estimate uεN0,app
.

The term uεN0+2,app − uε satisfies the same problem as before from which we infer that

‖uεN0+2,app − uε‖L2(ΩT ) ≤ Cε
N0+1

2 −s1 .

Now, because ‖gε‖L2(ωT ) is O(ε
1
2 ) and ‖gε‖H1(ωT ) is O(ε−

1
2 ) so we deduce that ‖gε‖Hs2 (ωT ) ≤

Cε
1
2−s2 . Thus, from the energy estimate (16) applied to the problem (85) we obtain

‖uε‖L2(ΩT ) ≤ Cε
1
2−s2 .

Finally ‖uεN0+2,app − uεN0,app
‖L2(ΩT ) is still O

(
ε
N0+1

2

)
. Consequently2 for N0 = 0:

‖uε0,app‖L2(ΩT ) ≤ C
(
ε

1
2 + ε

1
2−s1 + ε

1
2−s2

)
. (86)

2Taking s1 = 0 in estimate (86) gives the proof of point 2. of Theorem 2.3
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Since uε0,app = e
iϕg

ε ug0, we have ‖uε0,app‖L2(ΩT ) = ‖ug0‖L2(ΩT ).

Because of our working assumption on s1 and s2, equation (86) implies that ‖uε0,app‖L2(ΩT )

goes to zero with ε so that one should have ug0 = 0. But recall that ug0 is given by (50) in which
the source G reads b · g. In order to make sure that it gives a non zero leading order term we can
for example set g := χb where χ is some function in D(ωT ). Once again we obtain the desired
contradiction.

5 Some examples

5.1 The 2d-wave equation

We are considering the 2d classical wave equation (with without loss of generality velocity c = 1)
with Neumann boundary condition:

∂2
t u−4u = f for (t, x1, x2) ∈ ]−∞, T ]× R+ × R,

(∂1u)|x1=0 = g for (t, x2) ∈ ]−∞, T ]× R,
u|t≤0 = (∂tu)|t≤0 = 0 for (x1, x2) ∈ R× R,

(87)

If we define U := [∂tu− ∂1u− ∂2u, ∂tu+ ∂1u− ∂2u]
T

then equation (87) becomes
∂tU +A1∂1U +A2∂2U = F for (t, x1, x2) ∈ ]−∞, T ]× R+ × R,
BU|x1=0 = g

2 for (t, x2) ∈ ]−∞, T ]× R,
U|t≤0 = 0 for (x1, x2) ∈ R× R,

(88)

where we defined F := [f, f ]
T

and

A1 :=

[
1 0
0 −1

]
A2 :=

[
0 1
1 0

]
and B :=

[
−1 1

]
.

We can check easily from the coefficients A1 and A2 that the boundary value problem (88) satisfy
Assumptions 2.1 and 2.2. Moreover Assumption 2.3 is also satisfied because the problem is of
size two.

Then in such a setting the boundary condition B breaks down the uniform Kreiss-Lopatinskii
condition in the glancing area. Indeed the resolvent matrix associated to (88) is

A(ζ) =

[
−σ −iη
iη σ

]
,

whose eiganvalues λ± (λ− being the one with negative real part) are the roots of the equation

λ2 = σ2 + η2,

and we can thus parametrize the stable subspace Es(σ, η) := span
{

[−iη, λ− + σ]
T
}

from which

we can verify that kerB ∩ Es(σ, η) = {0} for all γ > 0. For γ = 0 we thus obtain that
the eigenvalues are solution of λ2 = τ2 − η2 so that the elliptic region is given by E :=
{(iτ, η) ∈∈ iR× R \ |τ | > |η|} and that the hyperbolic region isH := {(iτ, η) ∈∈ iR× R \ |τ | < |η|}.
For |τ | = |η| we thus have zero as a root of multiplicity two from which we deduce that
G := ∂H = {(iτ, η) ∈∈ iR× R \ |τ | = |η|}.
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Now fix η < 0 and choose τ = −η for such parameters we have

A(−η, η) = iη

[
1 −1
1 −1

]
,

from which we can read that Es(−η, η) = span
{

[1, 1]
T
}

= kerB so that the uniform Kreiss-

Lopatinskii condition fails in the glancing area. Moreover because dim kerB = dimEs(−η, η) = 1
we are in the framework studied in this article and Assumption 2.5 holds. Indeed because p = 1
we can choose b = 1 and simple computations give that

BΥgA1e =
[
−1 1

] [0 0
0 − 1

2η

] [
1 0
0 −1

] [
1
1

]
= − 1

2η
6= 0.

Consequently one can use Theorem 2.2 to perform a geometric optics expansion of the solution
to (88). About the existence of such a solution we refer to [11] or [10]. Then if one applies
Theorem 2.3 because the system is of size two the expansion only contains one glancing amplitude
(and no hyperbolic outgoing modes) then Assumption 4.1 fails. So we are in cases 2. and 3. of
Theorem 2.3. However in such a configuration we have energy estimates from the work of [11]
and [10].

On the one hand it is shown in [11] that the so-called Kreiss-Sakamoto condition with power
1
2 is satisfied meaning that

∀ζ ∈ Ξ, ∀v ∈ Es(ζ), |Bv| & γ1/2|v|.

So that from [11] we have the energy estimate

γ‖u‖2L2
γ(Ω) + ‖u|xd=0‖2L2

γ(∂Ω) ≤ C
( 1

γ2
‖f‖2

L2
xd

(H
1/2
γ (∂Ω))

+
1

γ
‖g‖2

H
1/2
γ (∂Ω)

)
,

which is sharp because of Theorem 2.2 giving another justification of the fact that the power 1/2
of the Kreiss-Sakamoto condition can not be lowered in [11].

On the other hand we can show that the boundary condition B is conservative in the sense
of Definition 4.1 (take C = B) so that from [10] we also have the boundary estimate without
loss of derivative in the interior

γ‖u‖2L2
γ(ΩT ) + γ‖u|xd=0‖2H−1/2

γ (ωT )
≤ C

γ

(
‖f‖2L2

γ(ΩT ) + ‖g‖2
H

1/2
γ (ωT )

)
.

We can apply 2. of Theorem 2.3 which shows that the index 1/2 in the norm of the right hand
side is optimal.

5.2 Linearisation of Euler equation

We now consider the linearisation of isentropic 2d-Euler equations around some subsonic outgoing
fluid. This system of equations reads

∂tu+A1∂1u+A2∂2u = f, for (t, x1, x2) ∈ ]−∞, T ]× R× R+,

Bu|x2=0 = g, for (t, x1) ∈ ]−∞, T ]× R,
u|t≤0 = 0, for (x1, x2) ∈ R× R+,

(89)
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where the coefficients A1, A2 and B are given by

A1 :=

 0 −1 0
−1 0 0
0 0 0

 , A2 :=

M 0 −1
0 M 0
−1 0 M

 and B :=
[
1 b2 b3

]
in which M ∈ ]−1, 0[ stands for the Mach number and where (b2, b3) ∈ R2 are boundary pa-
rameters that can be chosen arbitrarily. It is rather easy to verifiy that the system (89) satisfies
Assumptions 2.1 and 2.2. Let us mention by the way that the boundary condition B can not be
conservative in the sense of Definition 4.1.

In [3] we can find a discussion about what are the influence of the parameters on the strong
(or weak) well-posedness of (89).

In particular the sets of parameters (b2, b3) ∈ R2 for which the Kreiss-Lopatinskii condition
degenerates in the glancing area in given by

Υ :=

{
(b2, b3) ∈ R2 \ b2 = ± 1 +Mb3√

1−M2

}
:= Ω+

g ∪ Ω−g ,

the union of these two lines constitute the parameters (b2, b3) ∈ R2 that were not cover by the
analysis of [3]. Now Theorem 2.3 ends the picture.

More precisely in order to apply this theorem we should be more precise about the fulfilment
of Assumption 4.1. In order to do so we should have a look to the stable and unstable subspaces
for glancing frequencies. Let ω be an eigenvalue of A(ζ) we thus have det(σI + iηA1 +ωA2) = 0
so that ω satisfies the dispersion relation

(Mω + σ) ·
(
(Mω + σ)2 + η2 − ω2

)
= 0. (90)

For ζ ∈ Ξ0 we thus always have a hyperbolic eigenvalue ωh := − iτ
M which differs from the

roots of the second term of the left hand side of (90) for glancing frequencies (iτ, η) ∈ G ={
(iτ, η) ∈ iR× R \ |τ | =

√
1−M2|η|

}
. In particular Assumption 2.3 holds.

Because p = 1, the hyperbolic eigenvalue ωh contributes to the unstable subspace and some

simple computations show that it is associated to the eigenspace Eu(ζ) := span
{[

0, τM , η
]T}

=

span{vh}. In order to study Assumption 4.1 we have to compute Bvh for τ = ±
√

1−M2|η| and
(b2, b3) ∈ Ω+

g ∪ Ω−g to fix the ideas we set τ = ±
√

1−M2|η| and (b2, b3) ∈ Ω+
g the other case

being treated similarly. We thus have

Bvh =

{
η(1 + b3M + b3) if η > 0,

η(−1− b3M + b3) if η < 0,

from which we deduce that Assumption 4.1 is satisfied for all parameters b3 except for b3 ∈{
−1
M−1 ,

1
1−M

}
. So that when Assumption 4.1 holds we are in 1. of Theorem 2.3 and so the

equation (89) loses at least one half of derivative in the interior. This agree with the fact that
the boundary conditions of (89) can not be of conservative type so that the result of [10] does
not apply.

On Figure 5.2 is depicted the influence of the boundary parameters on the well-posedness of
(89). In this figure WR stands for the parameter giving a problem in the WR class studied in [5],
SU stands for strongly unstable that is problems that do not satisfy the weak Kreiss-Lopatinskii
condition and SS stands for problem satisfying the uniform Kreiss-Lopatinskii condition.
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Figure 1: The different boundary parameters for (89).
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