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ABSTRACT

Using optimal transport in image processing tasks has become
very popular. However, it still faces difficult computational
issues when dealing with high dimensional distributions. We
propose here to use the recently introduced GMM-OT for-
mulation, which consists in restricting the optimal transport
problem to the set of Gaussian mixture models. As a proof of
concept, we use it to revisit the texture model Texto based on
optimal transport between distributions of image patches. Us-
ing GMM-OT in this texture model allows to deal with larger
patches, hence providing results with better geometric details.
This new model allows for synthesis, mixing, and style trans-
fer.

Index Terms— Optimal transport, Gaussian mixture
models, texture synthesis

1. INTRODUCTION

Numerical optimal transport (OT) has undergone spectacular
progress in the last ten years, and is now used in a large variety
of applications [1, 2, 3, 4]. In particular, important advances
have been made in the numerical approximations of optimal
transport, with the emergence of efficient tools like regular-
ized optimal transport [5] or the sliced optimal transport [6].
Nevertheless, it remains complex to compute optimal trans-
port distances between empirical distributions when the di-
mension (the number of samples n or the space dimension d)
of the problem increases too much.

In this context, several questions were raised concern-
ing the ability to compute numerical solutions of high-
dimensional problems or the sample complexity of the differ-
ent transport approximations [7, 8, 9]. However, for several
applications, targeting exact solutions of optimal transport
might not be desirable, whereas proxy formulations sharing
similar properties might deliver more relevant solutions in
practice. Among these alternative formulations, an OT-like
distance between Gaussian Mixture Models (GMM) has been

∗The authors acknowledge support from the French Research Agency
through the PostProdLEAP project (ANR-19-CE23-0027-01) and the
MISTIC project (ANR-19-CE40-005). A. Leclaire acknowledges support of
GdR Isis with Project Rémoga. ©Copyright 2022 IEEE – All rights reserved.

introduced in [10]. It consists in restricting the set of pos-
sible couplings to GMM in the product space. Solutions of
this formulation are easy to compute and merely require to
calculate Bures distances between Gaussian measures and
solve a small-scale discrete OT problem. When applied to
discrete data, the dependency on the dimension d and the
number of samples n lies only in the GMM fitting step on
the data, and in the computation of Bures distances. This
makes the approach very versatile and robust to dimension
in practice. In this paper we explore the use of GMM-OT
for texture modeling, as a proof of concept. To this aim, we
revisit the texture model Texto [11], which is based on semi-
discrete OT on image patches. We end up with a lighter and
simpler formulation of the same problem. More precisely, in
this context, the computing time of GMM-OT is at least one
order of magnitude faster than the ones of semi-discrete OT
or regularized OT, for similar (or even better) quality of syn-
thesized images. This permits to use larger patch dimensions,
and much more patches than the original Texto model.

2. REMINDERS ON OPTIMAL TRANSPORT
BETWEEN GAUSSIAN MIXTURE MODELS

This section recalls the main results on optimal transport be-
tween GMM [10]. The quadratic Wasserstein distance be-
tween two probability measures µ0 and µ1 on Rd with finite
second moments is defined as

W 2
2 (µ0, µ1) := inf

γ∈Π(µ0,µ1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1),

(1)
where Π(µ0, µ1) is the set of probability measures on Rd ×
Rd with marginals µ0 and µ1. A solution γ∗ for the prob-
lem (1) is called an OT plan between µ0 and µ1. This dis-
tance has been extensively used for various applications in
data science, and especially to define Wasserstein barycenters
of probability measures, which are defined similarly to Eu-
clidean barycenters, replacing the Euclidean distance by W2.

2.1. Definition of MW2

Let us denote by GMMd the set of probability distributions
which can be written as finite GMM on Rd. Optimal transport



plans and Wasserstein barycenters between GMM are usually
not GMM themselves, which can be annoying if we rely on
this modeling to analyse or generate data. For this reason,
the authors of [10] propose to modify the formulation of the
classical Wasserstein distance by restricting the set of possible
coupling measures to GMM on Rd × Rd.

More precisely, let µ0, µ1 ∈ GMMd, we can define

MW 2
2 (µ0, µ1) := inf

γ∈ΠGMM(µ0,µ1)

∫
Rd×Rd

‖y0−y1‖2dγ(y0, y1),

(2)
where ΠGMM(µ0, µ1) is the set of probability measures in
GMM2d with marginals µ0 and µ1. It is shown in [10] that
MW2 defines a distance between elements ofGMMd. More-
over, if µ0 =

∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1

l=1 π
l
1µ
l
1, where

the πk0 , π
l
1 are non-negative scalars and where the µk0 , µ

l
1 are

Gaussian measures, it can be shown [10] that

MW 2
2 (µ0, µ1) = min

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0 , µ

l
1), (3)

where Π(π0, π1) is the of K0 × K1 matrices with non neg-
ative entries and discrete marginals π0 and π1. This discrete
expression makes MW2 easy to compute in practice, even in
large dimension. Indeed, the distance W2 between two Gaus-
sian measures µ = N (m,Σ) and µ̃ = N (m̃, Σ̃) has the fol-
lowing closed-form expression

W 2
2 (µ, µ̃) = ‖m− m̃‖2 + tr

(
Σ + Σ̃− 2

(
Σ

1
2 Σ̃Σ

1
2

) 1
2

)
,

(4)
where we denote by M

1
2 the unique semi-definite positive

square-root of a symmetric semi-definite positive matrix M .
If the different parameters of the GMM µ0 and µ1 are known,
computing (3) boils down to compute K0 ×K1 Wasserstein
distances between Gaussians and then to solve a K0 × K1

discrete OT problem.
Similarly to the Wasserstein distance, it is possible to de-

fine barycenters for MW2, and this also gives rise to a simple
discrete formulation if the GMM are known.

2.2. Using MW2 in practice

Optimal plans for MW2 are not supported on the graph of
a function and hence do not directly yield a transport map
between the mixtures µ0 and µ1. In order to define a transport
map from the optimal plan γ∗ we can for instance use

T (x) = E(X,Y )∼γ∗(Y |X = x). (5)

As shown in [10], the closed-form formula for T is given by

T (x) =

∑
k,l w

∗
k,lgmk

0 ,Σ
k
0
(x)Tk,l(x)∑

k π
k
0gmk

0 ,Σ
k
0
(x)

, (6)

where w∗ is the optimal solution of the discrete problem (3),
Tk,l are the optimal affine maps between Gaussians µk0 and
µl1, and gm,Σ is the density of N (m,Σ).

3. TEXTO-GMM, A MULTISCALE TEXTURE
SYNTHESIS APPROACH WITH OPTIMAL

TRANSPORT BETWEEN PATCHES

First, the Texto-GMM model is defined at one single scale, as
a transformation of a stationary Gaussian random field. Next,
it is extended to a multi-scale framework by using successive
exemplar-based upsampling. The construction is similar to
the Texto model [11], except that the semi-discrete OT maps
are replaced with transport maps obtained with GMM-OT.

Let u : Ω → Rd be the exemplar texture defined on a
rectangular domain Ω ⊂ Z2. Let also ω = {0, . . . ,w − 1}2
be the patch domain, and u|a+ω ∈ Rω the patch at position a.

3.1. Monoscale Model

The monoscale model can be decomposed as a coarse Gaus-
sian synthesis followed by a patch-based enhancement. The
Gaussian model [12] used for coarse synthesis is defined by

∀ a ∈ Z2, U(a) = ū+
1√
|Ω|

∑
b∈Ω

(u(b)− ū)W (a− b) (7)

where ū = 1
|Ω|
∑
a∈Ω u(a) and where W is a Gaussian

N (0, 1) white noise on Z2. The field U is a stationary Gaus-
sian random field with mean ū and whose covariance equals
the empirical covariance of u. Then, a patch transformation
T : Rω → Rω is applied to get a new field V given by

∀a ∈ Z2, V (a) =
1

|ω|
∑
h∈ω

T (U|a−h+ω)(h). (8)

The patch transformation T is adjusted so that it sends the dis-
tribution µ of the Gaussian patch U|ω to the patch distribution
of u. This allows to reimpose local features observed in u
in a statistically coherent way. We here exploit GMM-OT to
get a relevant patch transformation. Indeed, we can first use
the EM algorithm to fit a GMM distribution ν to the patches
of u, and then solve the GMM-OT between the Gaussian mea-
sure µ and the GMM ν. Once the GMM-OT problem solved,
we get the patch transformation T given by (5).

3.2. Multiscale Model

We will now see how the texture model can be extended in a
multiscale fashion. For 0 6 s 6 S − 1, we consider a sub-
sampled version us of u defined on a subdomain Ωs ⊂ 2sZ2.
We will also denote by νs a GMM distribution that is fitted by
EM to the empirical distribution of the w × w patches of us.

The multiscale Texto-GMM model is defined in a coarse-
to-fine manner. At the coarsest scale s = S − 1, US−1 is ini-
tialized as the Gaussian field (7) estimated from uS−1. Sup-
pose now that Us at scale s ∈ {1, . . . , S−1} is given. Then, a
GMM model µs is fitted to the patches of Us, and an optimal
transport plan γ∗s for MW2(µs, νs) is computed as explained



V3 V2 V1 V0

Fig. 1. Illustration of the coarse-to-fine synthesis process.

in Section 2.2. Then, Us is transformed using the map Ts
related to γ∗s (Eq.(5)). However, for the need of the upcom-
ing upsampling step, we need to compose with a L2 nearest-
neighbor projection on the exemplar patches at scale s. Thus,
denoting by Cs(a) the coordinate of the nearest neighbor of
Ts(Us|a+2sω) in us, we set

Vs(a) =
1

|ω|
∑
b∈2sω

us
(
Cs(a− b) + b

)
, a ∈ 2sZ2. (9)

This allows to upsample by taking twice larger patches at the
same positions, thus initializing Us−1 for the next finer scale:
for all a ∈ 2sZ2 and for all k ∈ {0, . . . , 2s−1}2, we set

Us−1(a+ k) =
1

|ω|
∑
b∈2sω

us−1

(
Cs(a− b) + b+ k

)
. (10)

At the end, we obtain the sample texture image V0. This
coarse-to-fine synthesis process is illustrated on Fig. 1. Let
us finally mention that, once the model estimation has been
done (i.e. when all GMM models are estimated and all trans-
port plans γ∗s have been computed using one synthesis), then
the model can be synthesized offline to produce (possibly-
larger) images on-demand.

4. EXPERIMENTS

Several synthesis examples are displayed on Fig. 2. In the
captions, the output of the multiscale process explained in
Section 3.2 is referred to as Texto-GMM. In all the results of
Texto-GMM shown here, the estimated GMM models have 4
components. We empirically observed that increasing further
this parameter only brings minor improvements to the visual
results (while considerably slowing the estimation of GMM).

In practice, when working with patches larger than 5× 5,
we do not use all patches in the EM algorithm and the nearest
neighbor projection steps of Texto-GMM, but only Np = 104

randomly chosen patches. Such subsampling of the patch dis-
tribution was observed to be harmless for the texture synthe-
sis application and speed-up these two steps. It also repre-
sents a major improvement compared to the original Texto
method [11], which was proven succesful only for discrete
distributions of 103 patches of size 3 × 3 (since it relies on a
costly stochastic algorithm for semi-discrete OT).

Regarding the computation time, Texto-GMM also al-
lows for a much faster estimation than the original Texto

model [11], even though Texto-GMM handles 10 times more
patches. Indeed, the GMM-OT algorithm runs faster than
the stochastic algorithm used in [11] for semi-discrete OT or
even faster than the Sinkhorn algorithm [5]. For instance, on
a transport problem with 104 points in source and target dis-
tributions in dimension 147 (for 7 × 7 color patches), with a
modern laptop, solving GMM-OT takes≈ 1′, to be compared
with 2.5h for 105 iterations of the stochastic OT algorithm,
or 40′ to perform 103 iterations of Sinkhorn algorithm. With
5 × 5 patches, for an image of size 256 × 256, the whole
synthesis algorithm for Texto-GMM (with Np = 104) takes
≈ 1′ while the synthesis algorithm (including the model es-
timation) for Texto (with Np = 103) takes more than 1h.
Moreover, the most costly step of Texto-GMM is actually
the nearest neighbor projection that is needed for upsam-
pling, and which could be greatly accelerated with dedicated
algorithms [13].

GMM-OT allows to partially cope with the curse of di-
mensionality, and thus permits to use much larger patches
in Texto-GMM than Texto (also because GMM-OT can han-
dle distributions with much more points). This leads to more
faithful synthesis of structured textures, with a better preser-
vation of the sharp details, as illustrated in Fig. 2. The second
column of Fig. 2 (NN) confirms the importance of using OT
for patch transformation and not only simple nearest-neighbor
matching. Also, the third and fourth columns confirm that
the previous Texto model works only with small patches. In
contrast, Texto-GMM produces remarkable results on these
textures with the proper choice of parameters w and S. How-
ever, we do not claim here to reach state-of-the art results for
texture synthesis. Our aim is only to show how the original
Texto model can be greatly improved by relying on GMM-OT
instead of semi-discrete OT.

Finally, let us mention that the Texto-GMM model can
be easily adapted for style transfer and texture mixing. The
adaptation to style transfer is a straightforward extension of
the technique explained in [14] where the texture informa-
tion can be treated with GMM-OT maps and then blended
with the geometric features. For mixing, we exploit the ex-
plicit formula of [10] for mixing with GMM-OT. For a mix-
ing parameter α ∈ [0, 1], starting from a mixed Gaussian
random field US−1 as in [15], at each scale s we apply a
patch transformation that targets the mixed patch distribu-
tion ναs obtained by mixing GMM patch distributions ν0

s , ν
1
s

of two source images u0, u1. For exemplar-based upsam-
pling, we rely on a nearest-neighbor projection on patches
(1−α)p+αT (p) where p is a patch of ν0

s and T the map (6)
for the GMM transport between ν0

s , ν
1
s . On Fig. 3 and Fig. 4,

one can see that Texto-GMM leads to relevant results for both
applications. However it is still unclear how the mixed texture
model could be formulated globally (thus avoiding the ad-hoc
projection on mixed patches).



Original Nearest-neighbor Texto Texto Texto-GMM Texto-GMM Texto-GMM Texto-GMM
w = 5, S = 5 w = 3, S = 5 w = 5, S = 5 w = 5, S = 3 w = 7, S = 3 w = 5, S = 5 w = 7, S = 5

Fig. 2. In this figure, we display several 512 × 512 original texture images (column 1), and synthesized images obtained with
different models explained in the paper, with different parameters w (patch size) and S (number of scales). In column 2, the
synthesis is obtained by using only patch nearest-neighbor projections at each scale. And then, we display the results obtained
with the previous Texto model [11] (columns 3,4) and the Texto-GMM model proposed here (columns 5–8).

Fig. 3. In this figure, we show that adapting the style transfer technique from [14] to the Texto-GMM model can produce
convincing style transfer results.

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

Fig. 4. We display here examples of texture mixing computed from two source images u0, u1 (not shown in this figure). From
left to right, we display a sample of the mixed texture model with mixing parameter α ∈ [0, 1]. For α = 0 (resp. 1), we get a
sample of the Texto-GMM model associated with u0, u1. It is interesting to see how the mixed Texto-GMM model is able to
combine the geometric structures of u0, u1. Parameters are set to (w, S) = (7, 5) for the first row and (5, 4) for the second row.



5. REFERENCES

[1] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris,
and Wolfgang Heidrich, “Displacement interpolation
using lagrangian mass transport,” in Proceedings of the
2011 SIGGRAPH Asia conference, 2011, pp. 1–12.
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Cuturi, and Gabriel Peyré, “Sample complexity of
Sinkhorn divergences,” in The 22nd international con-
ference on artificial intelligence and statistics. PMLR,
2019, pp. 1574–1583.

[9] Lenaic Chizat, Pierre Roussillon, Flavien Léger,
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