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Abstract. Using optimal transport in image processing tasks has be-
come very popular. However, it still faces difficult computational issues
when dealing with high-dimensional distributions. We propose here to
use the recently introduced GMM-OT formulation, which consists in re-
stricting the optimal transport problem to the set of Gaussian mixture
models. As a proof of concept, we use it to improve the texture model
Texto based on optimal transport between distributions of image patches.
Using GMM-OT in this texture model allows to deal with larger patches,
hence providing results with better geometric details. This new model
allows for synthesis, mixing, and style transfer.
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1 Introduction

Numerical optimal transport (OT) has undergone spectacular progress in the
last ten years, and is now used in a large variety of applications [1, 4, 11, 7]. In
particular, important advances have been made in the numerical approximations
of optimal transport, with the emergence of efficient tools like regularized optimal
transport [5] or the sliced optimal transport [2]. Nevertheless, it remains complex
to compute optimal transport distances between empirical distributions when the
dimension (the number of samples n or the space dimension d) of the problem
increases too much.

In this context, several questions were raised concerning the ability to com-
pute numerical solutions of high-dimensional problems or the sample complexity
of the different transport approximations [15, 10, 3]. However, for several appli-
cations, targeting exact solutions of optimal transport might not be desirable,
whereas proxy formulations sharing similar properties might deliver more rel-
evant solutions in practice. Among these alternative formulations, an OT-like
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distance between Gaussian Mixture Models (GMM) has been introduced in [6].
It consists in restricting the set of possible couplings to GMM in the product
space. Solutions of this formulation are easy to compute and merely require to
calculate Bures distances between Gaussian measures and solve a small-scale
discrete OT problem. When applied to discrete data, the dependency on the
dimension d and the number of samples n lies only in the GMM fitting step on
the data, and in the computation of Bures distances. This makes the approach
very versatile and robust to dimension in practice. In this paper we explore the
use of GMM-OT for texture modeling, as a proof of concept. To this aim, we im-
prove the texture model Texto [8], which is based on semi-discrete OT on image
patches. We end up with a lighter and simpler formulation of the same problem.
More precisely, in this context, the computing time of GMM-OT is at least one
order of magnitude faster than the ones of semi-discrete OT or regularized OT,
for similar (or even better) quality of synthesized images. This permits to use
larger patch dimensions, and much more patches than the original Texto model.

2 Reminders on optimal transport between Gaussian
mixture models

This section recalls the main results on OT between GMM [6]. The quadratic
Wasserstein distance between two probability measures µ0, µ1 on Rd with finite
second moments is defined as

W 2
2 (µ0, µ1) := inf

γ∈Π(µ0,µ1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1), (1)

whereΠ(µ0, µ1) is the set of probability measures on Rd×Rd with marginals µ0, µ1.
A solution γ∗ of (1) is called an OT plan between µ0 and µ1. This distance has
been extensively used for various applications in data science, and especially to
define Wasserstein barycenters of probability measures, which are defined simi-
larly to Euclidean barycenters, replacing the Euclidean distance by W2.

2.1 Definition of MW2

Let us denote by GMMd the set of probability distributions which can be written
as finite GMM on Rd. OT plans and Wasserstein barycenters between GMM
are usually not GMM themselves, which can be troublesome if we rely on this
modeling to analyse or generate data. For this reason, the authors of [6] propose
to modify the formulation of the classical Wasserstein distance by restricting
the set of possible coupling measures to GMM on Rd × Rd. More precisely, for
µ0, µ1 ∈ GMMd, we define

MW 2
2 (µ0, µ1) := inf

γ∈ΠGMM(µ0,µ1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1), (2)

whereΠGMM(µ0, µ1) is the set of probability measures inGMM2d with marginals
µ0 and µ1. It is shown in [6] that MW2 defines a distance on GMMd. Moreover,
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if µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1

l=1 π
l
1µ
l
1, where the πk0 , πl1 are non-negative

scalars and where the µk0 , µl1 are Gaussian measures, it can be shown [6] that

MW 2
2 (µ0, µ1) = min

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0 , µ

l
1), (3)

whereΠ(π0, π1) is the ofK0×K1 matrices with non-negative entries and discrete
marginals π0 and π1. This discrete expression makes MW2 easy to compute in
practice, even in large dimension. Indeed, the distanceW2 between two Gaussian
measures µ = N (m,Σ) and µ̃ = N (m̃, Σ̃) has a closed-form expression:

W 2
2 (µ, µ̃) = ‖m− m̃‖2 + tr

(
Σ + Σ̃ − 2

(
Σ

1
2 Σ̃Σ

1
2

) 1
2

)
, (4)

where we denote by M
1
2 the unique semi-definite positive square-root of a sym-

metric semi-definite positive matrix M . If the different parameters of the GMM
µ0 and µ1 are known, computing (3) boils down to computing K0×K1 Wasser-
stein distances between Gaussian measures and then to solve a K0 × K1 dis-
crete OT problem. Similarly to the Wasserstein distance, it is possible to define
barycenters for MW2, and this also gives rise to a simple discrete formulation.

2.2 Using MW2 in practice

Optimal plans for MW2 are not supported on the graph of a function and hence
do not directly yield a transport map between the mixtures µ0 and µ1. In order
to define a transport map from the optimal plan γ∗ we can for instance use

T (x) = E(X,Y )∼γ∗ [Y |X = x]. (5)

As shown in [6], the closed-form formula for T is given by

T (x) =

∑
k,l w

∗
k,lgmk

0 ,Σ
k
0
(x)Tk,l(x)∑

k π
k
0gmk

0 ,Σ
k
0
(x)

, (6)

where w∗ is the optimal solution of the discrete problem (3), Tk,l are the optimal
affine maps between Gaussians µk0 and µl1 and gm,Σ is the density of N (m,Σ).
In the following, this map (6) will be called the GMM-OT map.

As shown in [6], this allows to express also theMW2-barycenters between µ0

and µ1 with a closed-form formula:

∀α ∈ [0, 1] µα =
∑
k,l

w∗k,l
(
(1− α)Id + αTk,l

)
]µ0, (7)

where T]µ is the pushforward measure of the measure µ by the map T .
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3 TextoGMM, a multiscale texture synthesis approach
with optimal transport between patches

Let u : Ω → Rd be a texture defined on a rectangle Ω ⊂ Z2. Let U be an
initialization for the synthesized texture. The idea of TextoGMM, inspired by [8],
is to use OT to force the patch distribution of U to look like the one of u at several
scales. The synthesized texture is then recomposed from this patch distribution
by simple local averages. In what follows, we denote by ω = {0, . . . ,w− 1}2 the
patch domain, and by u|a+ω ∈ Rω the patch at position a in u.

3.1 Monoscale Model

We start by describing the synthesis at a single scale. To initialize the process,
we generate a stationary Gaussian random field U with the same mean and
covariance as the example u, defined by

∀a ∈ Z2, U(a) = ū+
1√
|Ω|

∑
b∈Ω

(u(b)− ū)W (a− b) (8)

where ū = 1
|Ω|
∑
a∈Ω u(a) and where W is a random field on Z2 whose pixel

values are i.i.d. with distribution N (0, 1).
The random field U has some global features of u, but not its details. The

distribution µ̂ of patches of U is then sent by optimal transport towards the
distribution ν̂ of patches of u in order to reimpose these details on the synthe-
sized image. To make this transport calculation fast, we use here GMM-OT as
described in the previous section, approximating the discrete distributions µ̂, ν̂
by GMMs µ and ν using the EM algorithm4. The formula (5) allows us to de-
duce a transport map T : Rω → Rω in the patch space from the GMM-OT plan
that solves MW2(µ, ν). Finally, the new synthesized image V is computed by
averaging all the transported patches:

∀a ∈ Z2, Ũ(a) =
1

|ω|
∑
h∈ω

T (U|a−h+ω)(h). (9)

Note that because of averaging, the distribution of patches of Ũ is not quite that
of the transported patches. Imposing more precisely the distribution of patches
of the synthesized image would require more sophisticated techniques.

3.2 Multiscale Model

Let us now extend the previous model to several scales. For 0 ≤ s ≤ S − 1,
consider a subsampled version us of u defined on the subdomain Ωs ⊂ 2sZ2. At
the coarse scale, US−1 is initialized as the Gaussian field (8) estimated from uS−1.
4 It would be interesting here to have a GMM estimation method that directly mini-
mizes a transport cost between the GMM and the discrete patch distribution.
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Now assume that Us at scale s ∈ {1, . . . , S − 1} is given. Again, we estimate
GMMs µs and νs from the patch distributions of Us and us, and derive a GMM-
OT map Ts between µs and νs, and then recompute a synthesized image Ũs at
scale s from the transported patches:

∀a ∈ 2sZ2, Ũs(a) =
1

|ω|
∑
b∈2sω

Ts(Us|a−b+2sω)(b). (10)

However, for the need of the upcoming upsampling step, we need to compose
with a L2 nearest-neighbor (NN) projection on the exemplar patches at scale s.
Therefore, we set

∀a ∈ 2sZ2, Vs(a) =
1

|ω|
∑
b∈2sω

us
(
Cs(a− b) + b

)
, (11)

where the coordinate map Cs is defined by

∀a ∈ 2sZ2, Cs(a) = Argmin
a′ st. a′+2sω⊂Ωs

‖Ts(Us|a+2sω)− us|a′+2sω‖2. (12)

This mechanism makes it easy to initialize synthesis at the next scale, by taking
patches twice as large at the same positions. More precisely, Us−1 is initialized
by setting for all a ∈ 2sZ2 and all k ∈ {0, 2s−1}2,

Us−1(a+ k) =
1

|ω|
∑
b∈2sω

us−1
(
Cs(a− b) + b+ k

)
. (13)

At the end of the process, we obtain the synthesized image V0. This coarse-to-fine
synthesis process is illustrated on Fig. 1. Let us mention that, once the model
estimated (i.e. all GMMs and transport plans computed from one synthesis), it
can be used off-line to do image synthesis on demand (and of arbitrary size).

3.3 Adaptation to Style Transfer and Texture Mixing

The TextoGMM model can be easily adapted for style transfer and texture
mixing. The adaptation to style transfer is a straightforward extension of the
technique explained in [12] where the texture information can be treated with
GMM-OT maps and then blended with the geometric features.

The adaptation to texture mixing requires more explanation, because it relies
on a benefit of the GMM-OT cost, which is to have closed-form barycenters. For
mixing, we exploit the explicit formula (7) that gives the expression of theMW2

barycenter between µ0 and µ1. Let us fix a parameter α ∈ [0, 1] that controls the
mixing between the texture models associated with two source images u0, u1. For
the initialization at the coarse scale, we can rely on the Gaussian model US−1
obtained as the W2 barycenter of the Gaussian models associated to u0 and u1,
which can still be expressed as a convolution of a Gaussian white noise with an
explicit image as in (8) [16]. For the patch transport at each scale s we apply a
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U3 Ũ3 V3 u3

U2 Ũ2 V2 u2

U1 Ũ1 V1 u1

U0 Ũ0 V0 u0

After GMM-OT After NN-proj Exemplar

Fig. 1. Coarse-to-fine process (w = 5, S = 4). On this figure, we illustrate the
coarse-to-fine synthesis process of one exemplar texture (shown on the 4th column).
It must be read from left to right and then top to bottom. At the coarse scale (here
S − 1 = 3), the synthesis is initialized with the Gaussian field U3. At each scale, from
the current synthesis (Us, 1st column), the patches are first transported with GMM-OT
(Ũs, 2nd column) and then projected back on exemplar patches with a NN projection
(Vs, 3rd column). One can notice here the effect of the patch GMM-OT maps that will
help to better cover the exemplar patch distributions, thus counter-acting the effects of
NN projections that may sometimes flatten the image dynamic (especially for coarse
scales with fewer patches).
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Fig. 2. Synthesis results. In this figure, we display several 512×512 original texture
images (row 1), and synthesized images obtained with different models explained in the
paper, with different parameters w (patch size) and S (number of scales). In row 2, the
synthesis is obtained by using only patch nearest-neighbor projections at each scale.
And then, we display the results obtained with the previous Texto model [8] (rows 3,4)
and the TextoGMM model proposed here (rows 5–8).
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GMM-OT map that targets the mixed patch distribution ναs obtained by mixing
the GMM patch distributions ν0s , ν1s associated with u0, u1.

But a delicate point is that, for mixing, one cannot use a direct NN projection
on exemplar patches to perform exemplar-based upsampling, because there is a
priori no “mixed exemplar” that is available. We solve this issue by creating
a collection of mixed patches by relying, again, on the GMM-OT map T (6)
between ν0s , ν1s : once this transport map obtained, the mixed patches are defined
as a linear interpolation (1− α)p+ αq between a patch p of ν0s and the nearest
neighbor q = PNN (T (p)) of the transported patch T (p) in the patches of ν1s .
Since p and q are both patches taken from the original images at scale s, it
is possible to compute the corresponding mixed patch at the next scale, by
interpolating twice-larger patches taken at the same positions.

4 Experiments

Implementation details. In order to keep a reasonable computational time, even
for very large images and large patches, we do not use all patches in the EM
algorithms and the NN projection steps. More precisely, the GMM distributions
µs, νs at each scale are estimated using only Np = 104 patches (or less for small
images) randomly taken in Us, us respectively. Such subsampling of the patch
distribution was observed to be harmless for the texture synthesis application
and speed-up these two steps. For the NN projection step (12), we also use
the same set of patches taken in us. Notice also that, in order to fasten the
whole synthesis process, the patch operations (extraction, aggregation and NN
projections) must be performed efficiently by relying on existing libraries. These
NN projections may even be accelerated with dedicated algorithms [13].

Let us emphasize on the fact that the TextoGMM model associated to a
texture can be computed with one pass of analysis-synthesis. Once the model
has been estimated, it can be sampled on-the-fly by directly applying the pre-
learnt GMM-OT maps, NN projections and upsampling step at each scale.

Computation time. TextoGMM allows for a much faster estimation step than the
original Texto model [8], even though TextoGMM handles 10 times more patches.
Indeed, the GMM-OT algorithm runs faster than the stochastic algorithm used
in [8] for semi-discrete OT or even faster than the Sinkhorn algorithm [5]. For
instance, on an OT problem with 104 points in source and target distributions
on R147 (for 7 × 7 color patches), with a modern laptop with parallel CPU
computations, solving GMM-OT takes ≈ 1′, to be compared with 2.5h for 105

iterations of the stochastic OT algorithm, or 40′ to perform 103 iterations of
Sinkhorn algorithm. With 5 × 5 patches, for an image of size 256 × 256, the
whole analysis-synthesis algorithm for TextoGMM (with Np = 104) takes ≈ 15”
while the analysis-synthesis algorithm for Texto (with Np = 103) takes more
than 1h. In the same setting, once the model estimated, one synthesis takes
≈ 5”. Therefore, a major benefit of the TextoGMM model is to considerably
fasten the model estimation, while allowing for larger patches.
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Visual comments. Several synthesis examples are displayed on Fig. 1, Fig. 2,
Fig. 3. In the captions, the output of the multiscale process explained in Sec-
tion 3.2 is referred to as TextoGMM. In all the results of TextoGMM shown
here, the estimated GMM models have 4 components, except in Fig. 4.

GMM-OT allows to partially cope with the curse of dimensionality, and thus
permits to use much larger patches in TextoGMM than Texto (also because
GMM-OT can handle distributions with much more points). This leads to more
faithful synthesis of structured textures, with a better preservation of the sharp
details, as illustrated in Fig. 2. The second row of Fig. 2 confirms the impor-
tance of using OT for patch transformation and not only simple NN matching.
Also, the third and fourth rows confirm that the previous Texto model works
only with small patches. In contrast, TextoGMM produces remarkable results
on these textures with the proper choice of parameters w and S. In Fig. 3, we
observe that the TextoGMM attains a visual quality similar to the model of [12]
based on a multi-layer approximation of OT, while allowing for much faster esti-
mation. Also, compared to recent texture synthesis methods, TextoGMM is able
to reproduce large strutures in a coherent way, while allowing for much faster
estimation. In Fig. 4, we vary the number of number of Gaussian components K
used in the GMM. Even if the visual details are more precisely retrieved when
using more components, one can see that the syntheses obtained with very few
Gaussian components (even 1 or 2!) appear already convincing. For K = 1, this
illustrates the capacity of a very light texture synthesis algorithm based only on
affine transformations and NN projections.

Finally, on Fig. 5 and Fig. 6, we display some results of style transfer and
texture mixing, respectively, with the TextoGMM model. For both these appli-
cations, the visual results appear convincing. In particular, for texture mixing,
it is interesting to notice how the intermediate patch models are able to mix
some structures seen in the exemplar textures u0, u1. To confirm the relevance
of this approach, it would be interesting to compare the output distribution
of the intermediate images to the true W2-barycenter obtained with the patch
distributions of u0, u1.

5 Conclusion

In this paper we proposed to exploit a new formulation of optimal transport spe-
cific to Gaussian mixture models, in order to improve the texture model Texto
which is based on optimal transport in patch space. This new formulation al-
lows to work with larger patches using a very simple parameterization of the
transportation maps. Compared to Texto, it thus brings a clear improvement on
the visual quality of generated textures, while considerably reducing the com-
putational time required for estimating the model. Also, this model allows for
fast on-the-fly synthesis because it only needs, from coarse to fine scales, a few
affine transformations of the patches composed with a nearest neighbor search.
Finally, this texture model can also be used for style transfer or texture mixing,
exploiting the closed-form barycenters for the GMM-OT cost.
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Original TextoGMM TextoML [12] Gatys [9] Ulyanov [14]

Fig. 3. Comparison with other synthesis algorithms. We display synthesis re-
sults obtained with several recent models: the here proposed TextoGMM model, the
TextoML model from [12] also based on OT (both with patch size w = 5 and S = 5
scales), and the neural-network based techniques from [9] and [14]. One can see that
the synthesis quality with TextoGMM gets close to the one attained by TextoML,
while keeping a considerably simpler model estimation step. One can also observe that
TextoGMM is able to recover some complex and large structures (since it works on
large patches) as [9] and [14], but produces blurrier results due to patch aggregation.

Original K = 1 K = 2 K = 4 K = 8

Fig. 4. Number of Gaussian components with (w = 5, S = 4). We display synthesis
results obtained with the TextoGMM model with varying number of components in
the GMM. Even if results appear surprisingly good for K = 1, increasing K allows to
better retrieve fine details of the exemplar.
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The main limitation of this new model is now the practical complexity of
the EM algorithm used to approximate empirical patch distributions by GMM.
Even if the number of used components can be set small (between 1 and 10),
the practical behavior of the EM algorithm applied to very rich empirical dis-
tributions in high dimension remains problematic. It would be interesting to
examine more thoroughly the impact of the obtained GMM approximation on
the quality of synthesized textures, and to see if another GMM learning algo-
rithm could be used in order to better scale up to the dimension of the patch
space. Also, it would be interesting to compare more thoroughly the GMM-OT
approximation of the OT cost with the semi-discrete multilayer approximation
of [12]. These methods are respectively based on a soft and hard clustering of
a target distribution, and it would be useful to draw a theoretical connection
between them.

Fig. 5. Style transfer with TextoGMM. Adapting the style transfer technique
from [12] to the TextoGMM model produces convincing style transfer results.
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