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Delaunay-like Triangulation of Smooth Orientable Submanifolds by `1-Norm Minimization

. Since the objective is a weighted `1-norm and the contraints are linear, the triangulation process can thus be implemented by linear programming.

Introduction

In many practical situations, the shape of interest is only known through a finite set of data points. Given these data points as input, it is then natural to try to construct a triangulation of the shape, that is, a set of simplices whose union is homeomorphic to the shape. This paper focuses on one particular instance of this problem, in which the shape we wish to reconstruct is a smooth d-dimensional submanifold of the Euclidean space. We show that, when the submanifold is orientable and under appropriate conditions, a triangulation of that submanifold can be expressed as the solution of a weighted `1-norm minimization problem under linear constraints. This formulation gives rise to new algorithms for the triangulation of manifolds, in particular when the manifolds have large codimensions.

Variational formulation of Delaunay triangulation and generalizations. Our work is based on the observation that when we consider a point cloud P in R d , its Delaunay complex can be expressed as the solution of a particular `p-norm minimization problem. This fact is best explained by lifting the point set P vertically onto the paraboloid P ✓ R d+1 whose equation is

x d+1 = P d i=1 x 2 i .
It is well-known that the Delaunay complex of P is isomorphic to the boundary complex of the lower convex hull of the lifted points P .

Starting from this equivalence, Chen has observed in [START_REF] Chen | Optimal delaunay triangulations[END_REF] that the Delaunay complex of P minimizes the `p-norm of the difference between two functions over all triangulations T of P . The graph of the first function is the lifted triangulation T and the graph of the second one is the paraboloid P. This variational formulation has been successfully exploited in [START_REF] Alliez | Variational tetrahedral meshing[END_REF][START_REF] Chen | Efficient mesh optimization schemes based on optimal delaunay triangulations[END_REF][START_REF] Chen | Revisiting optimal delaunay triangulation for 3d graded mesh generation[END_REF] for complex K, since it is known that by choosing the scale parameter of these complexes carefully, they are guaranteed to have the same homotopy type as M [START_REF] Chazal | Smooth Manifold Reconstruction from Noisy and Non Uniform Approximation with Guarantees[END_REF][START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF][START_REF] Attali | Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes[END_REF][START_REF] Niyogi | Finding the Homology of Submanifolds with High Confidence from Random Samples[END_REF][START_REF] Kim | Homotopy reconstruction via the cech complex and the vietoris-rips complex[END_REF]. Recall that, when M is orientable and connected, its d-homology group with real coefficients is one-dimensional, and a normalized generator of it is called the manifold fundamental class. Hence, when K and M are homotopy equivalent, the d-homology group of K is also one-dimensional. It follows that extracting any non-boundary cycle of K (using standard linear algebra operations on the boundary operators @ d and @ d+1 of K) provides a d-cycle 0 which is, up to a multiplicative constant, a representative of a generator of the fundamental class of M. An alternate algorithm could then search, among chains homologous to 0 , for the one with the minimal Delaunay energy. The solution of the corresponding linear optimization problem would then be a chain which carries the Delloc complex. While elegant in theory, the size required for the (d + 1)-skeleton of the Čech or Vietoris-Rips complex may be prohibitive in practice.

Instead, we describe a procedure that only requires the milder condition on K to be a simplicial complex large enough to contain the Delloc complex, at the cost of adding a certain form of normalization constraint. For the purpose of the proof, it is convenient to first consider a rather artificial problem, where, besides the sample P , the manifold M is known. In Section 8, we show how to turn this problem into a more realistic one that takes as input only the sample of the unknown manifold, and is correct assuming that reasonable sampling conditions hold. While we do not yet explore practical efficient algorithms in this paper, the minimization of a `1-norm under linear constraints in R n , where n is the number of d-simplices in the considered simplicial complex K, can be turned into a linear optimization problem in the standard form through slack variables, and can be addressed by standard linear programming techniques such as the simplex algorithm.

Preliminaries

In this section, we review the necessary background and explain some of our terms.

Subsets and submanifolds

Given a subset A ✓ R N , the affine space spanned by A is denoted by a↵ A and the convex hull of A by conv A. The medial axis of A, denoted as axis(A), is the set of points in R N that have at least two closest points in A. By definition, the projection map ⇡ A : R N \ axis(A) ! A associates to each point x its unique closest point in A. The reach of A is the infimum of distances between A and its medial axis, and is denoted as reach A. By definition, the projection map ⇡ A is well-defined on every subset of R N that does not intersect the medial axis of A. In particular, recalling that the r-tubular neighborhood of A is the set of points A r = {x 2 R N | d(x, A)  r}, the projection map ⇡ A is well-defined on every r-tubular neighborhood of A with r < reach A. We denote the ball centered at x 2 R N and with radius ⇢ 2 R by B(x, ⇢). For short, we say that a subset ✓ R N is ⇢-small if it can be enclosed in a ball of radius ⇢.

Throughout the paper, M designates a compact connected orientable C 2 d-dimensional submanifold of R N for d < N. For any point m 2 M, the tangent plane to m at M is denoted as T m M. Because M is C 2 and therefore C 1,1 , the reach of M is positive [START_REF] Federer | Curvature measures[END_REF]. We let R be a fixed finite constant such that 0 < R  reach M.

Simplicial complexes

In this section, we review some background notation on simplicial complexes [START_REF] Munkres | Elements of algebraic topology[END_REF]. We also introduce the concept of faithful reconstruction which encapsulates what we mean by a "desirable" approximation of a manifold.

All simplices and simplicial complexes that we consider in the paper are abstract. Each abstract simplex ✓ R N is naturally associated to a geometric simplex defined as conv . The dimension of conv is the dimension of the affine space a↵ , and cannot be larger than the dimension of the abstract simplex . When the dimension of the geometric simplex conv coincides with that of the abstract simplex , we say that is non-degenerate. Equivalently, the vertices of form an affinely independent set of points. The star of x 2 R N in a simplicial complex

K is St(x, K) = { 2 K | x 2 conv }.
Given a set of simplices ⌃ with vertices in R N (not necessarily forming a simplicial complex), we let ⌃ [d] designate the d-simplices of ⌃. We define the shadow of ⌃ as the subset of R N covered by the relative interior of the geometric simplices associated to the abstract simplices in ⌃, |⌃| =

S

2⌃ relint(conv ). We shall say that ⌃ is geometrically realized (or embedded ) if (1) dim( ) = dim(a↵ ) for all 2 ⌃, and (2) conv(↵ \ ) = conv ↵ \ conv for all ↵, 2 ⌃. Definition 1 (Faithful reconstruction). Consider a subset A ✓ R N whose reach is positive, and a simplicial complex K with a vertex set in R N . We say that K reconstructs A faithfully (or is a faithful reconstruction of A) if the following three conditions hold:

Embedding: K is geometrically realized; Closeness: |K| is contained in the r-tubular neighborhood of A for some 0  r < reach A; Homeomorphism: The restriction of ⇡ A : R N \ axis(A) ! A to |K| is a homeomorphism.

Height, circumsphere and smallest enclosing ball

The height of a simplex is height( ) = min v2 d(v, a↵( \ {v})). The height of vanishes if and only if is degenerate. If is non-degenerate, then, letting d = dim = dim a↵ , there exists a unique (d 1)-sphere that circumscribes and therefore at least one (N 1)-sphere that circumscribes . Hence, if is non-degenerate, it makes sense to define S( ) as the smallest (N 1)-sphere that circumscribes . Let Z( ) and R( ) denote the center and radius of S( ), respectively. Let c and r denote the center and radius of the smallest N -ball enclosing , respectively. Clearly, r  R( ) and both c and Z( ) belong to a↵ . The intersection S( ) \ a↵ is a (d 1)-sphere which is the unique (d 1)-sphere circumscribing in a↵ .

Delaunay complexes

Consider a finite point set Q ✓ R N . We say that ✓ Q is a Delaunay simplex of Q if there exists an (N 1)-sphere S that circumscribes and such that no points of Q belong to the open ball whose boundary is S. The set of Delaunay simplices form a simplicial complex called the Delaunay complex of Q and denoted as Del(Q).

Definition 2 (General position). Let d = dim(a↵ Q). We say that Q ✓ R N is in general position if no d + 2 points of Q lie on a common (d 1)-dimensional sphere. Lemma 3. When Q is in general position, Del(Q) is geometrically realized.
Let us recall a famous result which says that building a Delaunay complex in R N is topologically equivalent to building a lower convex hull in R N +1 . For simplicity, we shall identify each point x 2 R N with a point (x, 0) in R N +1 . Consider the paraboloid P ✓ R N +1 defined as the graph of the function k

• k 2 : R N ! R, x 7 ! kxk 2 ,
where k • k designates the Euclidean norm. For each point x 2 R N , its vertical projection onto P is the point x = (x, kxk 2

) 2 R N +1 , which we call the lifted image of x. Similarly, the lifted image of Q ✓ R N is Q = {q | q 2 Q}. Recall that the lower convex hull of Q is the portion of conv Q visible to a viewer standing at x d+1 = 1. A classical result says that is a Delaunay simplex of Q if and only if conv ˆ is contained in the lower convex hull of Q [START_REF] Edelsbrunner | Incremental topological flipping works for regular triangulations[END_REF].

Delaunay energy for triangulations

We recall that a triangulation T of Q designates a simplicial complex with vertex set Q which is geometrically realized and whose shadow covers conv Q. It is well-known that the Delaunay complex of Q optimizes many functionals over the set of triangulations of Q [START_REF] Boissonnat | Algorithmic geometry[END_REF][START_REF] Rippa | Minimal roughness property of the delaunay triangulation[END_REF][START_REF] Oleg R Musin | Properties of the delaunay triangulation[END_REF], one of them being the Delaunay energy that we shall now define [START_REF] Chen | Mesh smoothing schemes based on optimal delaunay triangulations[END_REF]. Let d = dim(a↵ Q). Given a triangulation T of Q, the Delaunay energy E del (T ) of T is defined as the (d + 1)-volume between the d-manifold | T | = S 2T conv ˆ and the paraboloid P. Let us derive an expression for this (d + 1)-volume. Consider a point x 2 conv Q. By construction, x belongs to at least one geometric d-simplex conv for some 2 T . Erect an infinite vertical half-line going up from x. This half-line intersects the paraboloid P at point x and the lifted geometric d-simplex conv ˆ at point x ⇤ . We have

E del (T ) = X Z x2conv kx x ⇤ k dx.
Theorem 4 (Delaunay complex by a variational approach). When Q is in general position, the triangulation of Q that minimizes the Delaunay energy is unique and equals Del(Q).

Theorem 4 is a direct consequence of the lifting construction [START_REF] Oleg R Musin | Properties of the delaunay triangulation[END_REF][START_REF] Chen | Optimal delaunay triangulations[END_REF].

Delaunay weight

To each non-degenerate d-dimensional abstract simplex ↵ 2 R N we assign a non-negative real number that we call the Delaunay weight of ↵. The reasons for this will become clear shortly. Let ↵ ✓ R N be a non-degenerate abstract simplex. We recall that the power distance of point

x 2 R N from S(↵) is Power ↵ (x) = kx Z(↵)k 2 R(↵) 2 .
Definition 5 (Delaunay weight). The Delaunay weight of a non-degenerate simplex ↵ is:

!(↵) = Z x2conv ↵ Power ↵ (x) dx.
Easy computations show that Power ↵ (x) = kx x ? ↵ k; see for instance [START_REF] Edelsbrunner | Geometry and topology for mesh generation[END_REF]. Hence, if d = dim(↵), we see that !(↵) represents the (d + 1)-volume between the lifted geometric simplex conv ˆ and the paraboloid P. Therefore the Delaunay energy can be expressed as

E del (T ) = P ↵ !(↵)
, where ↵ ranges over all d-simplices of T . Below, we give a closed expression for the Delaunay weight due to Chen and Holst in [START_REF] Chen | Efficient mesh optimization schemes based on optimal delaunay triangulations[END_REF]. Writing vol(↵) for the d-dimensional volume of conv ↵, we have:

Lemma 6 ([18]). The weight of the non-degenerate d-simplex ↵ = {a 0 , . . . , a d } is !(↵) = 1 (d + 1)(d + 2) vol(↵) 2 4 X 0i<jd ka i a j k 2 3 5 .
For completeness, we provide a proof of Lemma 6 in Appendix A. The expression of the Delaunay weight given in Lemma 6 shows that two simplices that are isometric have the same Delaunay weight. Hence, a Delaunay energy can be straightforwardly associated to any "soup"

⌃ of d-simplices living in R N by setting E(⌃) = P 2⌃ !( ).
It is then tempting to ask what would happen if one minimizes this energy when the vertices of ⌃ sample a d-manifold.

Chains and weighted norms

In this section, we recall some standard notation concerning chains. Chains play an important role in this work as they provide a tool to embed the discrete set of candidate solutions (faithful reconstructions of M) into a larger continuous space. Consider an abstract simplicial complex K and assume that each simplex in K is given an arbitrary orientation. A d-chain of K with coefficients in R is a formal sum = P ( ) , where ranges over all d-simplices of K and ( ) 2 R is the value (or the coordinate) assigned to the oriented d-simplex . The set of such d-chains is a vector space denoted by C d (K, R). Recall that the `1-norm of is defined by

k k 1 = P | ( )|.
Let W be a weight function which assigns a non-negative weight W ( ) to each d-simplex of K. The W -weighted `1-norm of is expressed as k k 1,W = P W ( )| ( )|. We shall say that a chain is carried by a subcomplex D of K if has value 0 on every simplex that is not in D. The support of is the set of simplices on which has a non-zero value. It is denoted by Supp .

Delloc complex

Given a finite set of points P in R N , a dimension d, and a scale parameter ⇢, we introduce a construction which we call the d-dimensional Delloc complex of P at scale ⇢. First, we define the property for a simplex to be delloc. Definition 7 (Delloc complex). We say that a simplex is delloc in P at scale ⇢ if 2

Del(⇡ a↵ (P \B(c , ⇢))). The d-dimensional Delloc complex of P at scale ⇢ is the set of d-simplices that are delloc in P at scale ⇢ together with all their faces, and is denoted by Delloc d (P, ⇢).

We now state a theorem which establishes conditions under which the Delloc complex is a faithful reconstruction of M. The theorem can be seen as a corollary of the main theorem that we establish in the companion paper [START_REF] Attali | Flat delaunay complexes for homeomorphic manifold reconstruction[END_REF]. We need some notations and definitions. Definition 8 (Dense, accurate, and separated). We say that P is an "-dense sample of M if for every point m 2 M, there is a point p 2 P with kp mk  " or, equivalently, if M ✓ P " . We say that P is a -accurate sample of M if for every point p 2 P , there is a point m 2 M with kp mk  or, equivalently, if P ✓ M . Let separation(P ) = min p6 =q2P kp qk.

We stress that our definition of a protected simplex differs slightly from the one in [START_REF] Boissonnat | The stability of delaunay triangulations[END_REF][START_REF] Boissonnat | Geometric and topological inference[END_REF].

Definition 9 (Protection). We say that a non-degenerate simplex ✓ R N is ⇣-protected with respect to Q ✓ R N if for all q 2 Q \ , we have d(q, S( )) > ⇣. Let H( ) = {T m M | m 2 ⇡ M (conv )} [ {a↵ }, and ⇥( ) = max H 0 ,H 1 2H( ) \(H 0 , H 1 ).
To the pair (P, ⇢) we now associate three quantities that describe the quality of P at scale ⇢:

• height(P, ⇢) = min height( ), where the minimum is over all ⇢-small d-simplices ✓ P ;

• ⇥(P, ⇢) = max ⇥( ), where ranges over all ⇢-small d-simplices of P ;

• protection(P, ⇢) = min min q d(q, S( )), where the minima are over all ⇢-small d-simplices ✓ P and all points q 2 ⇡ a↵ (P \ B(c , ⇢)) \ .

Theorem 10 (Faithful reconstruction by a geometric aproach). Let ", , ⇢, ✓ 0 and set

A = 4 ✓ + 4⇢✓ 2 . Assume that ✓  ⇡ 6 ,  " and 16"  ⇢ < R 4 .
Suppose that P is a -accurate "-dense sample of M that satisfies the following safety conditions:

1. ⇥(P, ⇢)  ✓ 2 arcsin ⇣ ⇢+ R ⌘ ;
2. separation(P ) > 2A + 6 + 2⇢ 2 R ; 3. height(P, ⇢) > 0 and protection(P, 3⇢) > 2A ⇣ 1 +

4d" height(P,⇢)

⌘

.

Then D = Delloc d (P, ⇢) enjoys the following properties:

Faithful reconstruction: D is a faithful reconstruction of M; Circumradii: For all d-simplices 2 D, we have that R( )  ";

Local behaviour: For all x 2 |D|, ⇡ TxM (St(x, D)) is geometrically realized.

Incidentally, under the assumption of Theorem 10, Delloc d (P, ⇢) coincides FlatDel M (P, ⇢), the complex introduced and studied in the companion paper [START_REF] Attali | Flat delaunay complexes for homeomorphic manifold reconstruction[END_REF]. Since all the results in this paper are based on the delloc property, we find it more enlightening to formulate the results of this paper using the Delloc complex. We recall that the safety conditions can be met in practice by assuming P to be a sample of M sufficiently dense and sufficiently accurate, and then perturbing the point set P as explained in the companion paper [START_REF] Attali | Flat delaunay complexes for homeomorphic manifold reconstruction[END_REF].

Remark 11. It is easy to see that if 2R( )  ⇢, then a delloc simplex in P at scale ⇢ is also a Gabriel simplex of P , by which we mean that its smallest circumsphere S( ) does not enclose any point of P in its interior. In particular, if 2R( )  ⇢, the delloc simplex is a Delaunay simplex of P . Hence, under the assumptions of Theorem 10, we have the inclusion Delloc d (P, ⇢) ✓ Del(P ).

Statement of main result

In this section, we state our main result. Hereafter, we suppose that K is a simplicial complex whose vertices are the points of P .

Orienting and signing. We also assume that M together with all d-simplices of K have received an (arbitrary) orientation. For each d-simplex ↵ 2 K such that ⇥(↵) < ⇡ 2 , we define the sign of ↵ with respect to M as follows:

sign M (↵) = ( 1 if the orientation of ↵ is consistent with that of M, 1 otherwise. 
We refer the reader to Appendix F for a formal definition of consistency and more details. We associate to any subcomplex D ✓ K the d-chain D of K whose coordinates are: of conv ⌧ 0 have disjoint interiors, we obtain that @(s 1

D (↵) = ( sign M (↵) if ↵ 2 D [d] , 0 
0 1 + s 2 0 
2 ) is 0 on ⌧ 0 , and consequently @(s 1 1 + s 2 2 ) is 0 on ⌧ .

Least `1-norm problem. We define the Delaunay energy of the chain 2 C d (K, R) to be its !-weighted `1-norm:

E del ( ) = k k 1,! = X ↵ !(↵) • | (↵)| = X ↵ ✓Z x2conv ↵ Power ↵ (x) dx ◆ • | (↵)|, (1) 
where ! is the Delaunay weight function defined in Section 2 and ↵ ranges over all d-simplices of K. Given a d-manifold A, a point a 2 A, a set of simplices ⌃ ✓ K and a d-chain of K, we also introduce the real number:

load a,A,⌃ ( ) = X 2⌃ [d] ( ) sign A ( )1 ⇡ A (conv ) (a)
and call it the load of on A at a restricted to ⌃. Letting m 0 be a generic2 point on M, we are interested in the following optimization problem over the set of chains in C d (K, R):

minimize E del ( )
subject to @ = 0, (?)

load m 0 ,M,K ( ) = 1
Problem (?) is a convex optimization problem and as such is solvable by linear programming. More precisely, it is a least-norm problem whose constraint functions @ and load m 0 ,M,K are clearly linear. The first constraint @ = 0 expresses the fact that we are searching for d-cycles. The second constraint load m 0 ,M,K ( ) = 1 can be thought of as a kind of normalization of . It forbids the zero chain to belong to the feasible set and we shall see that, under the assumptions of our main theorem, it forces the solution to take its coordinate values in {0, +1, 1}.

In Problem (?), besides the simplicial complex K that one can build from P , the knowledge of the manifold M seems to be required as well for expressing the normalization constraint. In Section 8.1, we discuss how to transform Problem (?) into an equivalent problem that does not refer to M anymore.

Main theorem. In our main theorem (see below), there is a constant ⌦( d ) that depends only upon the dimension d and whose definition is given in the proof of Lemma 20.

Theorem 13 (Faithful reconstruction by a variational approach). Let ", , ⇢ and ✓ be nonnegative real-numbers such that ✓  ⇡ 6 ,  " and 16"  ⇢ < R 4 . Set

J = (R + ⇢) d (R ⇢) d (cos ✓) min{d,N d} 1 and A = 4 ✓ + 4⇢✓ 2 .
Let ⇣ = protection(P, 3⇢) and suppose that P is a -accurate "-dense sample of M that satisfies the following safety conditions:

1. ⇥(P, ⇢)  ✓ 2 arcsin ⇣ ⇢+ R ⌘ .
2. separation(P ) > 2A + 6 + 3⇢ 2 R ; 3. height(P, ⇢) > 0 and ⇣ > 2A ⇣ 1 +

4d" height(P,⇢) ⌘ ;

4. ⇣ 2 + ⇣ separation(P ) > 10⇢ sin ✓(" + ⇢ sin ✓);

5. J⇢ 2 < (1 + J) 1 (d+2)(d 1)! 4 ⇣ 2
+ ⇣ separation(P ) ⌦( d ). Suppose that Delloc d (P, ⇢) ✓ K and that the d-simplices of K are ⇢-small. Then Problem (?) has a unique solution which is Delloc d (P,⇢) . The support of that solution together with all its faces coincides with Delloc d (P, ⇢) and is a faithful reconstruction of M.

One may ask about the feasability of realizing the assumptions of Theorem 13. While assuming the sample to be "-dense and -accurate seems realistic enough (perhaps after filtering outliers), the safety conditions seem less likely to be satisfied by natural data. In Section 8.2, we show how to apply Moser Tardos Algorithm ( [START_REF] Moser | A constructive proof of the general lovász local lemma[END_REF] and [START_REF] Boissonnat | Geometric and topological inference[END_REF]Section 5.3.4]) as a perturbation scheme to enforce the safety conditions of Theorem 13.

Choosing the simplicial complex K. Recall that the Čech complex of P at scale ⇢, denoted as C(P, ⇢), is the set of simplices of P that are ⇢-small. The Rips complex of P at scale ⇢, denoted as R(P, ⇢), is a more easily-computed version which consists of all simplices of P with diameter at most 2⇢. We stress that our main theorem applies to any simplicial complex K such that Delloc d (P, ⇢) ✓ K ✓ C(P, ⇢). Since C(P, r) ✓ R(P, r) ✓ C(P, p 2r) and Delloc d (P, ⇢) ✓ C(P, "), it applies to any K = R(P, r) with "  r  ⇢ p 2 . This choice of K is well-suited for applications in high dimensional spaces. Observe that under the assumptions of Theorem 13, Delloc d (P, ⇢) ✓ Del(P )\C(P, ") (see Remark 11) and choosing K = Del(P )\C(P, r) for any "  r  ⇢ may then be more suited for applications in low dimensional spaces.

Technical lemma

The proof of our main theorem relies on a technical lemma which we now state and prove. Lemma 14. Let D ✓ R N be a d-manifold (with or without boundary) and K a simplicial complex with vertices in R N . Assume that there is a map ' : |K| ! D. Suppose that for each d-simplex ↵ 2 K, we have two positive weights W (↵) W min (↵) and that there exists a map f : D ! R such that W min (↵) = R '(conv ↵) f . Consider the d-chain min on K defined by

min (↵) = ( 1 if W min (↵) = W (↵), 0 otherwise. Suppose that P ↵2K [d] min (↵)1 '(conv ↵) (x) = 1, for almost all x 2 D. Then the `1-like norm k k 1,W attains its minimum over all d-chains such that X ↵2K [d] (↵)1 '(conv ↵) (x) = 1, for almost all x 2 D (2)
if and only if = min .

Proof. We write ↵ = '(conv ↵) throughout the proof for a shorter notation. We prove the lemma by showing that for all d-chains on K that satisfy constraint (2), we have:

k k 1,W k k 1,W min Z D f = k min k 1,W min = k min k 1,W , (3) 
with the first inequality being an equality if and only if

= min . Clearly, k k 1,W k k 1,W min because W (↵) W min (↵).
To obtain the second inequality, recall that we have assumed P ↵ (↵)1 ↵(x) = 1 almost everywhere in D. We use this to write that:

k k 1,W min X ↵ (↵) Z ↵ f = X ↵ (↵) Z D f 1 ↵ = Z D f X ↵ (↵)1 ↵ = Z D f, (4) 
where sums are over all d-simplices ↵ in K. Setting = min in (4), we observe that the inequality in ( 4) becomes an equality because none of the coefficients of min are negative by construction. It follows that R

D f = k min k 1,W min . Finally, k min k 1,W min = k min k 1,W
because min has been defined so that for all simplices ↵ in its support, W min (↵) = W (↵). We have thus established [START_REF] Attali | Reconstructing shapes with guarantees by unions of convex sets[END_REF]. Suppose now that 6 = min and let us prove that

k k 1,W > k k 1,W min , or equivalently that X ↵2Supp | (↵)| (W (↵) W min (↵)) > 0.
Since none of the terms in the above sum are negative, it suffices to show that there exists at least one simplex ↵ 2 Supp for which W (↵) > W min (↵). By contradiction, assume that for all ↵ 2 Supp , W (↵) = W min (↵). By construction, we thus have the implication:

(↵) 6 = 0 =) min (↵) = 1
, and therefore Supp ✓ Supp min . But, since

P ↵ min (↵)1 ↵(x) = 1
for almost all x 2 D and coefficients of min are either 0 or 1, it follows that for almost all x 2 D, point x is covered by a unique d-simplex in the support of min . Hence, the simplices in Supp min have pairwise disjoint interiors while their union covers D. Since P ↵ (↵)1 ↵(x) = 1 for almost all x 2 D, the simplices in Supp must also cover D while using only a subset of simplices in Supp min . The only possibility is that = min , yielding a contradiction.

Comparing power distances

The goal of this section is to relate the two maps Power ↵ (x) and Power (y) for two d-simplices ↵ 2 Delloc d (P, ⇢) and ✓ P , and for two points x 2 conv ↵ and y 2 conv , such that ⇡ M (x) = ⇡ M (y). The main result of the section is stated in the following lemma and proved at the end of the section.

Lemma 15. Let ", , ⇢ 0 such that 0  2"  ⇢, and 16  ⇢  R 3 . Suppose that P ✓ M . Let ⇣ = protection(P, 3⇢) and assume that ⇥(P, ⇢)  ⇡ 6 , separation(P ) > 3⇢ 2 R + 3 and

10⇢ ⇥(P, ⇢) • (" + ⇢ ⇥(P, ⇢)) < ⇣ 2 + ⇣ separation(P ).
Then, for every "-small d-simplex ↵ 2 Delloc d (P, ⇢), every ⇢-small d-simplex ✓ P , every x 2 conv ↵, and every y 2 conv such that ⇡ M (x) = ⇡ M (y):

Power (y)  Power ↵ (x) 1 2 ⇣ 2 + ⇣ separation(P ) X b2 \↵ µ b ,
where µ b 0 are real numbers such that y = P b2 µ b b and

P b2 µ b = 1.
To prove the lemma, we need a few auxiliary results. We start by recalling a useful expression of the power distance of a point x from the circumsphere S(↵) of ↵ when x is an affine combination of the vertices of ↵.

Lemma 16. Let ↵ ✓ R N . If x = P a2↵ a a with P a2↵ a = 1, then for every z 2 R N Power ↵ (x) = kx zk 2 X a2↵ a ka zk 2 . Proof. Recall that Power ↵ (x) = kx Z(↵)k 2 R(↵) 2 . On one hand, we have that kx Z(↵)k 2 = kx zk 2 + 2(x z) • (z Z(↵)) + kz Z(↵)k 2 .
On the other hand, we have that

R(↵) 2 = X a2↵ a kZ(↵) ak 2 = X a2↵ a ⇥ kZ(↵) zk 2 + 2(Z(↵) z) • (z a) + kz ak 2 ⇤ = kZ(↵) zk 2 + 2(Z(↵) z) • (z x) + X a2↵ a kz ak 2 .
Substracting the above expressions of kx Z(↵)k 2 and R(↵) 2 yields the result. 

Power (y)  Power ↵ (⇡ a↵ ↵ (y)) (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b .
Proof. See Figure 1. Let Z(↵) be the radius of the (d 1)-dimensional circumsphere of ↵. Clearly,

ka Z(↵)k = R(↵) for all a 2 ↵. Let Q = ⇡ a↵ ↵ (↵ [ ). Since ↵ 2 Del(Q) and is ⇣-protected with respect to Q, we get: (R(↵) + ⇣) 2 < k⇡ a↵ ↵ (b) Z(↵)k 2 , for all b 2 \ ↵, R(↵) 2 = k⇡ a↵ ↵ (b) Z(↵)k 2 , for all b 2 \ ↵.
Multiplying both sides of each equation above by µ b and summing over all b 2 , we obtain:

R(↵) 2 + (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b  X b2 µ b k⇡ a↵ ↵ (b) Z(↵)k 2 . ( 5 
)
For short, write y 0 = ⇡ a↵ ↵ (y) and 0 = ⇡ a↵ ↵ ( ). Noting that y 0 = P b2 µ b b 0 and applying Lemma 16 with z = Z(↵), we get that

Power 0 (y 0 ) = ky 0 Z(↵)k 2 X b2 µ b k⇡ a↵ ↵ (b) Z(↵)k 2 .
Substracting ky 0 Z(↵)k 2 from both sides of (5) and using the above expression, we obtain

Power ↵ (y 0 ) + (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b  Power 0 (y 0 ).
Applying Lemma 16 again, with Z = y 0 and Z = y respectively, we get that:

Power 0 (y 0 ) = X b2 µ b k⇡ a↵ ↵ (b) ⇡ a↵ ↵ (y)k 2  X b2 µ b kb yk 2 = Power (y),
which concludes the proof.

Lemma 18. Let ↵ and be two non-degenerate abstract d-simplices in R N . Suppose that

↵ 2 Del(⇡ a↵ ↵ (↵ [ )) and ↵ is ⇣-protected with respect to ⇡ a↵ ↵ (↵ [ ).
Suppose that the map ⇡ a↵ ↵ ↵[ is injective and that both conv ↵ and conv are contained in the ⇢-tubular neighborhood of M. Suppose furthermore that is ⇢-small. If ⇥(↵) < ⇡ 6 and

5⇢ sin ⇥(↵) • (2R(↵) + 2⇢ sin ⇥(↵)) < ⇣ 2 + 2⇣R(↵),
then for every x 2 conv ↵ and every y 2 conv with ⇡ M (x) = ⇡ M (y), we have

Power (y)  Power ↵ (x) 1 2 (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b ,
where µ b 0 are real numbers such that y = P b2 µ b b and

P b2 µ b = 1. Proof. Consider a point x 2 conv ↵ and a point y 2 conv with ⇡ M (x) = ⇡ M (y).
We distinguish two cases depending on whether y belongs to conv(↵ \ ) or not.

First, assume that y 2 conv(↵ \ ). In that case, we claim that the only possibility is that x = y. Indeed, assume for a contradiction that this is not the case. Then, we would have two distinct points x 6 = y of conv ↵ that share the same projection onto M, showing that \(a↵ ↵, T ⇡ M (x) M) = ⇡ 2 for some x 2 conv ↵ and contradicting our assumption that ⇥(↵) < ⇡ 6 . Hence, x = y 2 conv(↵\ ). We claim that furthermore Power ↵ (x) = Power (y). Indeed, Lemma 16 implies that when x is an affine combination of points in ↵, that is, when x = P a2↵ a a with P a a = 1, then Power ↵ (x) = P a2↵ a kx ak 2 . In particular, if x belongs to the convex hull of a face of ↵, the expression of the power distance depends only upon the vertices of that face. It follows that 

Power ↵ (x) = Power ↵\ (x) = Power ↵\ (y) = Power (y). Since y 2 conv(↵ \ ),
Power (y)  Power ↵ (y 0 ) (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b . (6) 
Because y 6 2 conv(↵\ ), we have P b2↵\ µ b 6 = 1 and therefore

P b2 \↵ µ b 6 = 0.
First, suppose that y = x. In that case, y 0 = x and the result follows immediately. Second, suppose that y 6 = x. We claim that in that case we also have y 6 = y 0 . Indeed, if we were to have that y = y 0 , then both x and y would belong to a↵ ↵ and since ⇡ M (x) = ⇡ M (y), this would mean that \(a↵ ↵, T ⇡ M (x) M) = ⇡ 2 for x 2 conv ↵, contradicting our assumption that ⇥(↵) < ⇡ 6 . Thus, x 6 = y and y 6 = y 0 , 

Power ↵ (y 0 ) Power ↵ (x) = ky 0 Z(↵)k 2 kx Z(↵)k 2 = (y 0 x) • (x + y 0 2Z(↵))  kx y 0 k • kx Z(↵)k + ky 0 Z(↵)k  kx y 0 k • 2kx Z(↵)k + kx y 0 k  kx yk sin ✓ • (2R(↵) + kx yk sin ✓) . (7) 
Writing m = ⇡ M (x) = ⇡ M (y), we have kx yk  kx mk + km yk  2⇢. Summing up Inequalities ( 6) and ( 7), we get

Power (y) Power ↵ (x)  (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b | {z } A + kx yk sin ✓ • (2R(↵) + 2⇢ sin ⇥(↵)) | {z } B .
To establish the lemma in the second case, it suffices to show that 2B < A, that is,

2kx yk sin ⇥(↵) • (2R(↵) + 2⇢ sin ⇥(↵)) < (⇣ 2 + 2⇣R(↵)) X b2 \↵ µ b . (8) 
We consider two subcases:

Subcase 1: ↵ \ = ;. In that case, P b2 \↵ µ b = 1, and because 2kx yk  4⇢  5⇢, one can see that (8) follows from our assumptions. Subcase 2: ↵ \ 6 = ;. In that case, we know that there exists a point

u 2 conv( \ ↵) and a point v 2 conv( \ ↵) such that y = P b2 \↵ µ b u + P b2 \↵ µ b v; see Figure 2. Furthermore, letting v 0 = ⇡ a↵ ↵ (v) we have X b2 \↵ µ b = ky uk kv uk ky y 0 k kv uk kx yk cos ✓ Diam( ) kx yk cos ✓ 2⇢ p 3 4⇢
• kx yk.

Again, (8) follows from our assumptions.

Proof of Lemma 15. Since ↵ is a d-simplex of Delloc d (P, ⇢), we have that ↵ 2 Del(⇡ a↵ (P \ B(c , ⇢))), and because ↵ is "-small, we have that B(Z(↵), R(↵)) ✓ B(c , 2") ✓ B(c , ⇢) and consequently ↵ 2 Del(⇡ a↵ (P \ B(c , 3⇢))). Consider a ⇢-small d-simplex ✓ P such that ⇡ M (↵) \ ⇡ M ( ) 6 = ; and let us show that ✓ P \ B(c , 3⇢). Suppose that x 2 conv ↵ and y 2 conv share the same projection m onto M, that is, m = ⇡ M (x) = ⇡ M (y). Since both ↵ and are ⇢-small, Lemma 23 implies that both conv ↵ and conv are contained in the ⇢ 4 -tubular neighborhood of M and in particular kx yk  kx mk + km yk

 ⇢ 4 + ⇢ 4  ⇢ 2 .
For all vertices b 2 , we thus have

kc ↵ bk  kc ↵ xk + kx yk + ky bk  " + ⇢ 2 + 2⇢  3⇢,
showing that ✓ P \ B(c , 3⇢). Hence, we get that ↵ 2 Del(⇡ a↵ (↵ [ )) and the fact that protection(P, 3⇢) = ⇣ implies that ↵ is ⇣-protected with respect to ⇡ a↵ ↵ (↵ [ ). By Lemma 24, the restriction of ⇡ a↵ ↵ to P \ B(c ↵ , ⇢) is injective. To apply Lemma 18, it simply remains to verify that

5⇢ sin ⇥(↵) • (2R(↵) + 2⇢ sin ⇥(↵)) < ⇣ 2 + 2⇣R(↵).
Since separation(P ) 2  R(↵)  " and sin t  t for all t 0, this follows from:

10⇢⇥(↵) • (" + ⇢⇥(↵)) < ⇣ 2 + ⇣ separation(P ),
which is a consequence of our hypotheses.

Proving the main result

Suppose that K is a simplicial complex with vertex set P . Write D = Delloc d (P, ⇢), D = |D| and K = |K| for short. In this section, we prove our main theorem by applying Lemma 14. This requires us to define two maps ' : K ! D and f : D ! R, two weights W (↵) and W min (↵) for each d-simplex ↵ 2 K, and to check that these maps and weights satisfy the requirements of Lemma 14. For each ↵ 2 K, let W (↵) = !(↵) be the Delaunay weight of ↵. To be able to define ', f , and W min , we assume that the following conditions are met:

(1) D is a faithful reconstruction of M;

(2) For every d-simplex ✓ K, the map ⇡ M conv is well-defined and injective.

These conditions are easily derived from the assumptions of the main theorem. We are now ready to introduce additional notation. Consider a subset X ✓ R N and suppose that the map ⇡ M X is well-defined and injective. Then it is possible to define a bijective map ⇡ X!M : X ! ⇡ M (X).

Because D is a faithful reconstruction of M, the map ⇡ D!M is well-defined and bijective.

Similarly, for every d-simplex 2 K, the map ⇡ conv !M is well-defined and bijective. We now introduce the map ' : K ! D defined by ' = [⇡ D!M ] 1 ⇡ M and let f : D ! R be the map defined by:

f (x) = min Power ([⇡ conv !M ] 1 ⇡ M (x)) , (9) 
where the minimum is taken over all d-simplices 2 K such that x 2 '(conv ). Note that f (x) can be defined equivalently as the minimum of Power (y) over all d-simplices 2 K and all points y 2 conv such that ⇡ M (x) = ⇡ M (y). Given a d-simplex 2 K, we associate to the weight:

W min ( ) = Z x2'(conv ) f (x) dx. ( 10 
)
Lemma 19. Under the assumptions of Theorem 13:

• For every d-simplex ↵ 2 D and every point x 2 conv ↵, we have f (x) = Power ↵ (x).

• For every d-simplex ↵ 2 D, we have W min (↵) = W (↵).

Proof. Consider a d-simplex ↵ 2 D, a d-simplex 2 K, x 2 conv ↵ and y 2 conv such that ⇡ M (x) = ⇡ M (y). Applying Lemma 15, we obtain that Power (y)  Power ↵ (x) or equivalently

Power ([⇡ conv !M ] 1 ⇡ M (x))  Power ↵ (x) and therefore f (x) = Power ↵ (x).
To establish the second item of the lemma, notice that for all ↵ 2 D, the restriction of ' to conv ↵ is the identity function, ' | conv ↵ = Id and therefore '(conv ↵) = conv ↵. Since we have just established that f (x) = Power ↵ (x), we get that

W min (↵) = Z x2'(conv ↵) f (x) dx = Z x2conv ↵ Power ↵ (x) dx = !(↵) = W (↵),
which concludes the proof.

Lemma 20. Under the assumptions of Theorem 13, for every d-simplex 2 K \ D, we have

W min ( ) < W ( ).
Proof. We need some notation. Given ↵ and in K, we write conv |↵ for the set of points y 2 conv for which there exists a point x 2 conv ↵ such that ⇡ M (x) = ⇡ M (y). We define the map

' !↵ : conv |↵ ! conv | ↵ as ' !↵ (y) = [⇡ conv ↵!M ] 1 ⇡ conv !M (y). Note that ' !↵
is invertible and its inverse is ' ↵! . Also, note that J in Theorem 13 has been chosen precisely so that one can apply Lemma 38 and guarantee that 

| det(J' !↵ )(y)| 2 [ 1 1+J , 1 + J] for all ↵, 2 K and all y 2 conv |↵ . Consider a d-simplex 2 K \ D. By Lemma 19, f (x) = Power ↵ (x) and therefore: W min ( ) = X ↵2D [d] Z x2conv | ↵ Power ↵ (x) dx.
⇣ 2 + ⇣ separation(P ) ,
and making the change of variable x = ' !↵ (y), we upper bound W min ( ) as follows:

W min ( )  X ↵2D [d] Z x2conv | ↵ 2 4 Power (' ↵! (x)) c X b2 \↵ µ b (' ↵! (x)) 3 5 dx = X ↵2D [d] Z y2conv |↵ 2 4 Power (y) c X b2 \↵ µ b (y) 3 5 | det(J' !↵ )(y)| dy  (1 + J)W ( ) (1 + J) 1 c X ↵2D [d] Z y2conv |↵ X b2 \↵ µ b (y) dy.
A key observation is that, because 6 = ↵, then \ ↵ 6 = ;. Therefore the sum P b2 \↵ µ b (y) does not vanish and is always lower bounded by inf b2 µ b (y). Associating the quantity

⌦( ) = Z y2conv inf b2 µ b (y) dy,
to we thus obtain that W min ( )

 (1 + J)W ( ) (1 + J) 1 c ⌦( ). Hence, W min ( ) < W ( ) as long as JW ( ) < (1 + J) 1 c ⌦( ). (11) 
Using a change of variable, it is not too difficult to show that ⌦( ) = d! vol( )⌦( d ), where

d = { 2 R d | P d i=1 i  1; i 0, i = 1, 2, .
. . , d} represents the standard d-simplex. Remark that ⌦( d ) is a constant that depends only upon the dimension d and is thus universal. Plugging in ⌦( ) = d! vol( )⌦( d ) on the right side of [START_REF] Boissonnat | Algorithmic geometry[END_REF], and the expression of W ( ) = !( ) given by Lemma 6 on the left side of [START_REF] Boissonnat | Algorithmic geometry[END_REF], and recalling that is ⇢-small, we find that condition [START_REF] Boissonnat | Algorithmic geometry[END_REF] is implied by the following condition:

J⇢ 2 < (1 + J) 1 (d + 2)(d 1)! 4 ⇣ 2 + ⇣ separation(P ) ⌦( d ),
which we have assumed to hold.

Proof of Theorem 13. We start with pointing out that Problem (?) is invariant under change of orientation of d-simplices in K and thus we may assume that every d-simplex ↵ in K has an orientation that is consistant with that of M, that is, sign 

M (↵) = 1 for all ↵ 2 K [d] . Let D =
min (↵) = ( 1 if W min (↵) = W (↵), 0 otherwise. 
By Lemma 19 and Lemma 20, the following property holds: for all ↵ 2 K, W min (↵) = W (↵) if and only if ↵ is a d-simplex of D. It follows that min = D . Furthermore, we have

P ↵2K [d] min (↵)1 '(conv ↵) (x) = P ↵2D [d] 1 conv ↵ (x) = 1 for almost all x 2 D.
Recalling that W = ! and therefore k k 1,W = E del ( ), and applying Lemma 14, we deduce that min = D is the unique solution to the following optimization problem over the set of chains in C d (K, R):

minimize E del ( ) subject to X ↵2K [d] (↵) sign M (↵)1 '(conv ↵) (x) = 1, for almost all x 2 D (??)
One can see that Problem (??) remains unchanged if one replaces the constraint with X

↵2K [d] (↵) sign M (↵)1 ⇡ M (conv ↵) (m) = 1, for almost all m 2 M. ( 12 
)
Let m 0 be the arbitrary generic point of M, as in Problem (?). By Lemma 48, the above constraint is equivalent to the following set of constraints:

( @ = 0, P ↵2K [d] (↵) sign M (↵)1 ⇡ M (conv ↵) (m 0 ) = 1.
We deduce that Problem (?) and Problem (??) are equivalent, and we get the result.

Practical aspects

In this section, we discuss practical aspects.

Transforming the problem into a realistic algorithm

Besides the complex K that one can build from P , Problem (?) seems to require the knowledge of M for expressing the normalization constraint load m 0 ,M,K ( ) = 1. What we call a realistic algorithm is an algorithm that takes only the point set P as input. In this section, we explain how to transform Problem (?) into an equivalent problem that does not refer to M anymore, thus providing a realistic algorithm. Roughly, we simply replace the constraint load m 0 ,M,K ( ) = 1 by a constraint of the form load p 0 ,⇧,⌃ ( ) = 1, where p 0 2 P , ⇧ is a d-flat that "roughly approximates" M near p 0 and ⌃ are simplices of K "close" to p 0 . Lemma 21 (see below) makes this idea precise. Given a point x 2 R N and r 0, let us introduce the subset of K:

K[x, r] = { 2 K | conv \ B(x, r) 6 = ;}. Note that K[x, r] is not necessarily a simplicial complex. Lemma 21. Suppose 0  ⇢  R 25 .
Consider a point x 2 M ⇢ and a d-dimensional affine space ⇧ passing through x. Suppose that \(⇧, T ⇡ M (x) M)  ⇡ 8 and that the orientation of ⇧ is consistent with that of T ⇡ M (x) M. Then, Problem (?) is equivalent to the problem obtained by replacing the constraint load m 0 ,M,K ( ) = 1 with the constraint load x,⇧,K[x,4⇢] ( ) = 1.

Proof. This is a direct consequence of Lemma 49 which may be found in Appendix G.

Observe that the conditions on the d-flat ⇧ in the above lemma are rather mild. Indeed, we only require ⇧ to pass through a point x such that d(x, M)  R 25 and \(⇧, T ⇡ M (x) M)  ⇡ 8 . Hence, ⇧ only needs to be what we could call a rough approximation of M near x. In practice, we may take for x any point p 0 2 P and for ⇧ the d-dimensional affine space T p 0 (P, ⇢) passing through p 0 and parallel to the d-dimensional vector space V p 0 (P, ⇢) defined as follows: V p 0 (P, ⇢) is spanned by the eigenvectors associated to the d largest eigenvalues of the inertia tensor of (P \ B(p 0 , ⇢)) c, where c is the center of mass of P \ B(p 0 , ⇢). By Lemma 51, for ⇢ R small enough and " < ⇢ 16 , we have \(T p 0 (P, ⇢),

T ⇡ M (p 0 ) M)  ⇡ 8 .
See Section H for more details. Hence, the assumptions of the above lemma hold for x = p 0 and ⇧ = T p 0 (P, ⇢). This shows that the normalization constraint in Problem (?) can be replaced by a constraint whose definition depends only upon the point set P , thus providing a realistic algorithm.

Perturbing the data set for ensuring the safety conditions

In this section, we assume that P 0 is a 0 -accurate " 0 -dense sample of M and perturbe it to obtain a point set P that satisfies the assumptions of our main theorem. For this, we use the Moser Tardos Algorithm [START_REF] Moser | A constructive proof of the general lovász local lemma[END_REF] as a perturbation scheme in the spirit of what is done in [7, Section 5.3.4].

The perturbation scheme is parametrized with real numbers ⇢ 0, r pert. 0, Heigh min > 0, and Prot min > 0. To describe it, we need some notations and terminology. Let T ⇤ p 0 = T p 0 (P 0 , 3⇢) be the d-dimensional affine space passing through p 0 and parallel to the d-dimensional vector space V p 0 (P 0 , 3⇢) whose definition has been given in the previous section. To each point p 0 2 P 0 , we associate a perturbed point p 2 P , computed by applying a sequence of elementary operations called reset. Precisely, given a point p 2 P associated to the point p 0 2 P 0 , the reset of p is the operation that consists in drawing a point q uniformely at random in V p 0 \ B(p 0 , r pert. ) and assigning q to p. Finally, we call any of the two situations below a bad event:

Violation of the height condition by : A ⇢-small d-simplex ✓ P such that height( ) < Heigh min ;

Violation of the protection condition by (p, ): A pair (p, ) made of a point p 2 P and a d-simplex ✓ P \ {p} such that p 2 B(c , 3⇢) and is not Prot min -protected with respect to {⇡ a↵ (p)}.

In both situations, we associate to the bad event E a set of points called the points correlated to E. In the first situation, the points correlated to E are the d + 1 vertices of and in the second situation, they are the d + 2 points of {p} [ .

Moser-Tardos Algorithm:

1. For each p 0 2 P 0 , compute the d-dimensional affine space T ⇤ p 0 2. For each point p 2 P , reset p 3. WHILE (some bad event E occurs):

--------For each point p correlated to E, reset p ---END WHILE 4. Return P Roughly speaking, in our context, the Moser Tardos Algorithm reassigns new coordinates to any point p 2 P that is correlated to a bad event as long as a bad event occurs. A beautiful result from [START_REF] Moser | A constructive proof of the general lovász local lemma[END_REF] tells us that the Moser-Tardos Algorithm terminates in a number of steps that is expected to be linear in the size of P . We thus have: 21 20 " 0 , and = 2 0 . There are positive constants c 1 , c 2 , c 3 , and c 4 that depend only upon ⌘ 0 , C ste , and d such that if " 0 R < c 1 then, given a point set P 0 such that M ✓ (P 0 ) " 0 , P 0 ✓ M 0 , and separation(P 0 ) > ⌘ 0 " 0 , the point set P obtained after resetting each of its points satisfies M ✓ P " , P ✓ M , and separation(P ) > 9 10 ⌘ 0 " 0 . Moreover, whenever we apply the Moser-Tardos Algorithm with Heigh min = c 2 ⇢ R 1 3 ⇢ and Prot min = c 3 ⇢ R 1 3 ⇢, the algorithm terminates with expected time O(]P 0 ) and returns a point set P that satisfies:

Lemma 22. Let " 0 0, ⌘ 0 > 0, and ⇢ = C ste " 0 , where C ste 32. Let 0 = ⇢ 2 R , r pert. = ⌘ 0 " 0 20 , " =
height(P, ⇢) c 2 ⇣ ⇢ R ⌘ 1 3 ⇢ protection(P, ⇢) c 3 ⇣ ⇢ R ⌘ 1 3 ⇢
As a consequence of the above lower bound on height(P, ⇢), we have:

⇥(P, ⇢)  c 4 ⇣ ⇢ R ⌘ 2 3 .
The point set P returned by the Moser-Tardos Algorithm is a -accurate "-dense sample of M that satisfies the assumptions of Theorem 13 with parameters ", , ⇢, and some ✓ 0.

Sketch of proof.

The computation for the perturbation section in Appendix C of [START_REF] Attali | Flat delaunay complexes for homeomorphic manifold reconstruction[END_REF] can be adapted in order to meet the claimed asymptotic bounds for height and protection, with the same perturbation radius r pert. . Then it is possible to verify that, with these asymptotic bounds, when ⇢ R is small enough, the safety conditions of Theorem 13 hold.

A Additional lemmas and a missing proof

Proof of Lemma 6. Let ↵ = {a 0 , a 1 , . . . , a d } ✓ R N . If ↵ is degenerate, then vol(↵) = 0 and the result is clear. Suppose that ↵ is non-degenerate and recall that the standard simplex is

d = { 2 R d | d X i=1 i  1; i 0, i = 1, 2, . . . , d}.
We introduce the map : R d ! R d , defined by ( ) = a 0 + P d i=1 i (a i a 0 ), which establishes a one-to-one correspondence between the points of the standard simplex d and the points x = ( ) of conv ↵. Making the change of variable x = ( ) ! , we get that:

w(↵) = Z 2 d Power ↵ ( ( )) • | det(J )( )| d .
Noting that J ( ) is the matrix whose ith column is the vector a i a 0 , we deduce that | det(J )( )| = d! vol(↵). Observing that ( ) has absolute barycentric coordinates (1 P d i=1 i , 1 , 2 , . . . , d ) and applying Lemma 16 with z = a 0 , we can write:

Power ↵ ( ( )) = d X i=1 i ka i a 0 k 2 ! + k ( ) a 0 k 2 ,
and thus obtain (after plugging in the expression of ( ))

w(↵) = d! vol(↵) Z 2 d 2 4 d X i=1 i ka i a 0 k 2 d X i=1 i (a i a 0 ) 2 3 5 d .
We then use the following formula [START_REF] Zeller | Almost sure escape from the unit interval under the logistic map[END_REF] for integrating a homogeneous polynomial on the standard simplex: Z

2 d ⌘ 1 1 . . . ⌘ d d d = ⌘ 1 ! . . . ⌘ d ! (d + P i ⌘ i )! , to obtain that w(↵) = 1 (d + 1)(d + 2) vol(↵) 2 4 d d X i=1 ka i a 0 k 2 2 X 1i<jd (a i a 0 ) • (a j a 0 ) 3 5 . 
Observing that ka i a 0 k 2 + ka j a 0 k 2 2(a i a 0 ) • (a j a 0 ) = ka i a j k 2 , we can further rearrange the above formula to get the result.

The next lemma says that if a subset ✓ R N is sufficiently small and sufficiently close to a subset A ✓ R N compare to its reach, then the convex hull of is not too far away from A. The lemma will be useful to provide conditions under which the map ⇡ A conv is well-defined.

Lemma 23. Let 16  ⇢  reach A 3 . If the subset ✓ A is ⇢-small, then conv ✓ A ⇢ 4 . Proof. Let R = reach A. Applying Lemma 14 in [3], we get that conv ✓ A r for r = R p (R ) 2 ⇢ 2 . Since  ⇢ 16 , we deduce that r R  1 q 1 ⇢ 16R 2 ⇢ R
2 and since for all 0  t  1 3 we have 1

q 1 t 16 2 t 2  t 4
, we obtain the result.

Lemma 24 (Injectivity of ⇡ a↵ ↵ P \B(c↵,⇢) ). Suppose that P ✓ M with 16  ⇢  R 3 and

separation(P ) > 3⇢ 2 R + 3 . Consider a ⇢-small d-simplex ↵ ✓ P such that ⇥(↵)  ⇡ 6 . Then, ⇡ a↵ ↵ P \B(c↵,⇢) is injective. Proof. Let c ⇤ ↵ = ⇡ M (c ↵ ).
Consider two points a, b 2 P \ B(c ↵ , ⇢). We have cos \(a↵ ↵, ab) • ka bk  k⇡ a↵ ↵ (a) ⇡ a↵ ↵ (b)k, showing that the restriction of ⇡ a↵ ↵ to B(c ↵ , ⇢) is injective as soon as \(a↵ ↵, ab) < ⇡ 2 . Applying Lemma 36 with ⌧ = {a, b} and z = c ↵ , we obtain that \(a↵ ↵, ab) is upper bounded by

\(a↵ ↵, ab)  \(a↵ ↵, T c ⇤ ↵ M) + \(T c ⇤ ↵ M, ab)  ⇥(↵) + arcsin ✓ 2 ka bk ✓ ⇢ 2 R + ◆◆  ⇡ 6 + arcsin ✓ 2 separation(P ) ✓ ⇢ 2 R +

◆◆

and thus becomes smaller than ⇡ 2 for separation(P ) > 3⇢ 2 R + 3 .

B Angle between affine spaces

If V 1 and V 2 are two vector subspaces of a same euclidean space then their angle \V 1 , V 2 2 [0, ⇡/2] is defined as:

Definition 25. The angle between two vector subspaces V 1 and V 2 of a same euclidean space is defined as (see also [START_REF] Jordan | Essai sur la géométrie à n dimensions[END_REF]):

\V 1 , V 2 = def. sup v 1 2 V 1 kv 1 k = 1 inf v 2 2 V 2 kv 2 k = 1 \v 1 , v 2 = max v 1 2 V 1 kv 1 k = 1 min v 2 2 V 2 kv 2 k = 1 \v 1 , v 2 (13) 
The angle between affine subspaces A 1 and A 2 is defined as the angle between associated vector spaces.

One gets trivially the equivalent definition:

\V 1 , V 2 = inf ✓ 0, 8v 1 2 V 1 \ {0}, 9v 2 2 V 2 \ {0}, \v 1 , v 2  ✓ (14) 
Since when dim V 1 = dim V 2 there is an isometry (mirror symmetry) that swaps V 1 and V 2 and preserves angles we have:

dim V 1 = dim V 2 ) \V 1 , V 2 = \V 2 , V 1
and one gets from ( 14) and the triangular inequality on angles between vectors that:

\V 1 , V 3  \V 1 , V 2 + \V 2 , V 3
The remainder of section B is classical, see [START_REF] Jordan | Essai sur la géométrie à n dimensions[END_REF] (Also the Wikipedia page "Angles between flats") .But Lemma 28 allows an explicit expression of the path of the orthonormal frame.

Lemma 26 (Minimal angle corresponds to orthogonal projection). Let V ✓ R N be a vector subspace and ⇡ V the orthogonal projection on V . Let v 0 2 R N a vector such that kv 0 k = 1, ⇡ V (v 0

) 6 = 0 and ✓ = min v ? 2V,kv ? k=1 \v ? , v 0 . Then

arg min v ? 2V,kv ? k=1 \v ? , v 0 = 1 cos ✓ ⇡ V (v 0 )
Proof. One has by definition of ⇡ V :

⇡ V (v 0 ) = arg min v ? 2V (v ? v 0 ) 2 (15) 
and since kv 0 k = 1 and ⇡

V (v 0 ) v 0 is orthogonal to V , one has (⇡ V (v 0 ) v 0 ) 2 = (sin \⇡ V (v 0
), v 0 ) 2 . Also, for any vector v ? 6 = 0, one has (sin \v ? , v 0

) 2 = min ( v ? v 0 ) 2 so that (15) implies that ⇡ V (v 0

) (as well as all its positively collinear vectors) minimises v ? ! sin 2 \v ? , v 0 in V . It follows that ⇡ V (v 0

) is collinear to arg min v ? 2V,kv ? k=1 \v ? , v 0 and since its norm is cos ✓ we get the result.

If V is a vector subspace of R N , and ⇡ V the orthogonal projection on V then it is well known that:

• ⇡ V is self-adjoint and therefore its matrix in any orthonormal frame is symmetric.

• ⇡ V ⇡ V = ⇡ V
• the kernel of ⇡ V is the vector space normal to V and its restriction to V is the identity. Let V and V 0 be two d-dimensional vector subspaces of R N such that ✓ = \V 0 , V < ⇡/2 and let ⇡ V and ⇡ V 0 be their corresponding orthogonal projections. Thanks to Lemma 26, and since cos is decreasing on [0, ⇡/2], one has:

cos ✓ = min v 0 2V 0 ,kv 0 k=1 k⇡ V (v 0 )k So that, since v 0 2 V 0 ) v 0 = ⇡ V 0 (v 0 ): (cos ✓) 2 = min v 0 2V 0 ,kv 0 k=1 h⇡ V ⇡ V 0 (v 0 )|⇡ V ⇡ V 0 (v 0 )i
Denoting M V and M V 0 the respective symmetric matrix of ⇡ V and ⇡ V 0 in some orthonormal basis it gives, since M V M V = M V :

(cos ✓) 2 = min v 0 2V 0 ,kv 0 k=1 M V M V 0 v 0 t M V M V 0 v 0 = min v 0 2V 0 ,kv 0 k=1 v 0t M t V 0 M V M V M V 0 v 0 = min v 0 2V 0 ,kv 0 k=1 v 0t M t V 0 M V M V 0 v 0 Since M t V 0 = M V 0 and v 0 2 V 0 ) M V 0 v 0 = v 0 : (cos ✓) 2 = min v 0 2V 0 ,kv 0 k=1 v 0t M V 0 M V v 0 Let A V 0 : V ! V 0 be the restriction of M V 0 to V and A V : V 0 ! V the restriction of M V to V 0 .
One has:

(cos ✓) 2 = min v 0 2V 0 ,kv 0 k=1 v 0t A V 0 A V v 0 (16) Since M t V 0 M V M V M V 0 : R N ! V 0 ✓ R N is self-adjoint, so is its restriction C 0 = A V 0 A V : V 0 ! V 0 .
It follows that C 0 has d (counting multiplicities) real eigenvalues, associated to d eigenvectors of C 0 making an orthogonal basis of V , and ( 16) is the Rayleigh quotient of C 0 which gives that the smallest eigenvalue of C 0 is (cos ✓) 2 . Since ✓ < ⇡/2 we have that all eigenvalues of C 0 are positive, in particular C 0 is invertible. It follows that A V and A V 0 have rank d and are also invertible so that

C = A V A V 0 : V ! V is also invertible. If v 0 i is an eigenvector of C 0 with eigenvalue i , then C 0 v 0 i = A V 0 A V v 0 i = i v 0 i and: A V A V 0 A V v 0 i = i A V v 0 i (17) Since A V is invertible, A V v 0 i 6 = 0 and (17) says that v i = A V v 0 i is an eigenvector of C = A V A V 0 with eigenvalue i : Cv i = A V A V 0 v i = i v i
Also, since A V and A V 0 have their L 2 operator norms upper bounded by 1, so is the operator norm of C and C 0 . We have shown that:

Lemma 27. A V , the restriction to V 0 of the orthogonal projection on V , sends an orthogonal basis of V 0 made of eigenvectors of C 0 = A V 0 A V to an orthogonal basis of V made of eigenvectors of C = A V A V 0 with same the eigenvalues. These eigenvalues are included in

h (cos ✓) 2 , 1
i with the smallest one equal to (cos ✓) 2 .

Lemma 28 (Rotation between two vector spaces). Let V and V 0 be d-dimensional vector subspaces of Euclidean space such that the angle ✓ = \V, V 0 satisfies:

0 < \V, V 0 < ⇡ 2 and d 0 = d dim(V \ V 0 ). Then there is an orthonormal basis v 1 , . . . , v d 0 , v 0 1 , . . . , v 0 d 0 , w 1 , . . . , w d d 0 and a sequence of angles ✓ 1 ✓ 2 . . . , ✓ d 0 > 0 such that ✓ 1 = ✓, v 1 , . . . , v d 0 , w 1 , . . . , w d d 0
is a basis of V and:

cos ✓ 1 v 1 + sin ✓ 1 v 0 1 , . . . , cos ✓ d 0 v d 0 + sin ✓ d 0 v 0 d 0 , w 1 , . . . , w d d 0 is a basis of V 0 .
Proof. We first claim that, for v 2 V one has:

Cv = v () A V 0 v = v () v 2 V \ V 0 (18) Indeed, if v 2 V \ V 0 one has trivially A V 0 v = v and Cv = A V A V 0 v = A V v = v. In the other direction, if CV = A V A V 0 v = v, since the operator norm of A V 0 is 1, one must have kA V 0 vk  kvk and, since the operator norm of A V is 1, one must have kvk = kA V A V 0 vk  kA V 0 vk. Therefore one has kA V 0 vk = kvk. But since kA V 0 vk = kvk cos \v, A V 0 v we get cos \v, A V 0 v = 1 and \v, A V 0 v = 0. This with kA V 0 vk = kvk gives A V 0 v = v 2 V \ V 0 .
It follows from ( 18) that the eigenspace of C corresponding to the eigenvalue 1 coincides with V \ V 0 . We sort the eigenvalues of C in increasing order (see Lemma 27):

(cos ✓) 2 = 1  2  . . .  d , with d 0 +1 = . . . = d = 1 for d 0 = d dim(V \ V 0
). For any k, 1  k  d 0 , we define v k as an unit eigenvector associated 3 to the eigenvalue k . For any l, 1  l  d d 0 we define w l 2 V \ V 0 such that w 1 , . . . , w d d 0 is an orthonormal basis of V \V 0 , where w l is associated to the eigenvalue d 0 +l = 1 by [START_REF] Chen | Efficient mesh optimization schemes based on optimal delaunay triangulations[END_REF]. Then (v 1 , . . . , v d 0 , w 1 , . . . , w d d 0 ) is an orthonormal basis of V and, from ( 18), (w l ) d 0 ld is an orthonormal of V \ V 0 .

For

1  k  d 0 define ✓ k as ✓ k = \v k , A V 0 v k .
We have seen that ✓ 1 = ✓ and one has 0 < ✓ k  ✓ < ⇡/2 and:

✓ k = \v k , A V 0 v k = \ k v k , A V 0 v k = \Cv k , A V 0 v k = \A V (A V 0 v k ), A V 0 v k
It follows that:

k kv k k = kCv k k = cos ✓ k kA V 0 v k k = cos 2 ✓ k kv k k So that (cos ✓ k ) 2 = k . We define now for 1  k  d 0 : v 0 k = A V 0 v k hv k , A V 0 v k iv k kA V 0 v k hv k , A V 0 v k iv k k
where the denominator is no zero since ✓ k > 0. One has by construction that kv 0

k k = 1, v 0 k is orthogonal to v k and: A V 0 v k kA V 0 v k k = cos ✓ k v k + sin ✓ k v 0 k (19) Since ✓ ⇣ A V 0 v k kA V 0 v k k ⌘ 1kd 0 , w 1 , . . . , w d d 0
◆ are unit eigenvectors of C 0 they form an orthonormal basis of V 0 . In order to complete the proof, it remains to prove that, for

k 0 6 = k, v k is orthogonal to v 0 k 0 . One has from (19), using that A V A V 0 v k = cos 2 ✓ k v k and kA V 0 v k k = cos ✓ k : sin ✓ k v 0 k = A V 0 v k kA V 0 v k k cos ✓ k v k = A V 0 v k kA V 0 v k k cos ✓ k A V (A V 0 v k ) cos 2 ✓ k = A V 0 v k kA V 0 v k k A V ✓ A V 0 v k kA V 0 v k k ◆
Recall thet A V is the orthogonal projection on V and the last equality shows then that v 0 k is orthogonal to V and therefore orthogonal to any v k 0 for 1  k 0  d 0 .

C C 2 -submanifold of Euclidean space

We recall the definition of a smooth submanifold. (https://maths-people.anu.edu.au/~andrews/ DG/DG_chap3.pdf).

Definition 29. A subset M of R N is a C 2 d-dimensional submanifold if for every point x in M there exists a neighborhood V of x in R N , an open set U ✓ R d and a C 2 map ⇠ : U ! R N such that ⇠ is a homeomorphism onto M \ V , and D y ⇠ is injective for every y 2 U . A C 2 d-dimensional submanifold is a C 2 manifold
topologically embedded in R N but the converse in not true in general, as for example the circle S 1 is a C 1 manifold that can be topologically embedded as a square in R 2 as the image by a C 1 map that is not regular (i.e. whose derivative is not injective) at the pre-images of the square corners. A compact C 2 submanifold has positive reach [START_REF] Federer | Curvature measures[END_REF]. Moreover one has (see for example Lemma 4 and following paragraph in [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF] or Proposition 2.3 in [START_REF] Aamari | Estimating the reach of a manifold[END_REF]) that:

Lemma 30 (The inverse of the reach bounds the curvature). If M ✓ R N is a C 2 d-dimensional submanifold with reach reach(M) > 0 then 1/ reach(M) bounds the (absolute values of the ) principal curvatures at m 2 M in the direction v for any vector v in the space normal to M at m. In particular 1/ reach(M) bounds the principal curvatures when M has codimension 1.

The following lemma, due to Federer, bounds the distance of a point q 2 M to the tangent space at a point p 2 M. It holds for any set with positive reach and in particular for C 2 submanifolds.

Lemma 31 (Distance to tangent space, Theorem 4.8 [START_REF] Boissonnat | Geometric and topological inference[END_REF] of [START_REF] Federer | Curvature measures[END_REF]). Let p, q 2 M ✓ R N such that kp qk < reach(M). We have

sin \ ([pq], T p M)  kp qk 2 reach(M) , (20) 
and

d(q, T p M)  kp qk 2 2 reach(M) . ( 21 
)
Next lemma bounds the angle variation for C 2 manifolds (a slightly weaker condition si given for C 1,1 manifolds in the same paper):

Lemma 32 (Corollary 3 in [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF]). For any p, q 2 M, we have

sin ✓ \(T p M, T q M) 2 ◆  kp qk 2 reach M .
Using Lemmas 31 and 32 we can show that the projection on a tangent space defines a local chart for M. Indeed, if m 2 M then for any p, q 2 M \ B m, sin(⇡/4) reach M , [START_REF] Chen | Optimal delaunay triangulations[END_REF] gives:

sin \([pq], T p M)  kp qk 2 reach(M)  2 sin(⇡/4) reach M 2 reach(M) = sin(⇡/4)
So that:

\([pq], T p M)  ⇡/4, (22) 
and Lemma 32 gives:

sin ✓ \(T p M, T m M) 2 ◆  kp mk 2 reach M  sin(⇡/4) reach M 2 reach M = sin(⇡/4) 2 so that: \(T p M, T m M)  2 arcsin ✓ sin(⇡/4) 2 ◆ < ⇡/4
Summing with [START_REF] Cohen-Steiner | Regular triangulations as lexicographic optimal chains[END_REF] gives:

\([pq], T m M) < ⇡/2
and this in turn implies:

p 6 = q ) ⇡ TmM (p) 6 = ⇡ TmM (q)
We have shown that the restriction of ⇡ TmM to M \ B(m, sin(⇡/4) reach M is injective, and, by Invariance of Domain Theorem ( [START_REF] Luitzen | Zur invarianz des n-dimensionalen gebiets[END_REF]), it is an homeomorphism on its image, which gives us: 

\(T p M, T m M) < ⇡/4
Following [9, Notation 1.1], we call Thickness of a k-simplex:

t( ) = h kL
where h is the smallest altitude of and L the length of the longest edge. Then we have (adaptation of [START_REF] Whitney | Geometric integration theory[END_REF]Section IV.15], proven in [START_REF] Boissonnat | Geometric and topological inference[END_REF]Lemma 8.11]):

Lemma 34 (Angle between simplices tangent space). If M is a compact C 2 submanifold of Euclidean space, a d-simplex with vertices in M, and p a vertex of : then:

\ a↵ , T p M  L t( ) reach M = dL 2 h reach M
We shall also need the Whitney angle bound established in [START_REF] Boissonnat | The stability of delaunay triangulations[END_REF].

Lemma 35 (Whitney angle bound [8, Lemma 2.1]). Consider a d-dimensional affine space H and a simplex such that dim  d and ✓ H t for some t 0. Then

sin \(a↵ , H)  2t dim( ) height( )
Building on these results, we derive yet another bound between the affine space spanned by a simplex and a nearby tangent space.

Lemma 36. Consider a non-degenerate ⇢-small simplex ⌧ ✓ M with 16  ⇢  R 3 . Let z be a point such that ⌧ ✓ B(z, ⇢) and d(z, M)  ⇢ 4 . Then, \(a↵ ⌧, T ⇡ M (z) M)  arcsin ✓ 2 dim(⌧ ) height(⌧ ) ✓ ⇢ 2 R + ◆◆ . Proof. Let v 2 ⌧ . Write v ⇤ = ⇡ M (v) and z ⇤ = ⇡ M (z).
We know from [27, page 435] that for 0  h < reach M, the projection map

⇡ M onto M is ⇣ R R h

⌘

-Lipschitz for points at distance less than h from M. Since both z and v belong to M h for h = ⇢ 4 , we thus have

kv ⇤ z ⇤ k  R R ⇢ 4 ⇥ kv zk  R R R 3⇥4 ⇥ kv zk  p 2⇢.
Applying Lemma 31, we get that

d(v, T z ⇤ M)  d(v ⇤ , T z ⇤ M) + kv v ⇤ k  kv ⇤ z ⇤ k 2 2R +  ⇢ 2 R + .
Hence, ⌧ ✓ (T z ⇤ M) t for t = ⇢ 2 R + and applying Whitney angle bound (Lemma 35), we conclude that sin \(a↵ ⌧,

T z ⇤ M)  2 dim(⌧ ) height(⌧ ) ⇣ ⇢ 2 R + ⌘ .

D Smooth local parametrization of the normal bundle

Let M ✓ R N be a C 2 d-dimensional submanifold with reach greater than ⇢ > 0. If x 2 M, the vector spaces T x M and N x M are the respective tangent and normal spaces to M at x. To avoid confusion, we denote by T x M and N x M the corresponding affine subspaces of ambient R N :

T x M = x + T x M and N x M = x + N x M.
We denote by M ⇢ the ⇢-tubular neighborhood of M. The normal bundle of M is denoted N M and defined as:

N M = def. a x2M N x M
where `is the disjoint union. The normal bundle restricted to radius ⇢ is denoted N ⇢ M:

N ⇢ M = def. a x2M {(x, v) 2 N x M, kvk  ⇢}
We know from [START_REF] Federer | Curvature measures[END_REF][Item (13) of Theorem 4.8] that, since ⇢ < reach M, the map :

M ⇢ ! N ⇢ M ✓ R N ⇥ R N defined by: (y) = (⇡ M (y), y ⇡ M (y))
is a Lipschitz homeomorphism between M ⇢ and N ⇢ M whose inverse : N ⇢ M ! M ⇢ defined as

(x, v) = x + v (23) 
is Lipschitz as well. We have [START_REF] Robert L Foote | Regularity of the distance function[END_REF] that inside M ⇢ the distance function d M is C 2 and the projection ⇡ M is C 1 . It follows that is C 1 and since its inverse is Lipschitz, its Jacobian cannot be singular. It follows that is a C 1 diffeomorphims between M ⇢ and N ⇢ M.

For x 2 M we consider an open neighborhood U 0 of 0 in R d and a C 2 injective map ⇠ : U 0 ! M, regular in the sense that differential Also, we consider, as in the proof of Lemma 6.3 of [START_REF] Milnor | Morse theory[END_REF], a set of (N d) C 1 -smooth vector valued maps (w k ) k=1...N d , where w k : U 0 ! R N and such that, for any u 2 U 0 , (w k (u)) k=1,N d is an orthonormal basis of N ⇠(u) M.

As done by J.Milnor in [32, paragraph 6, proof of Lemma 6.3], ⇠ and (w k ) k=1...N d defines a local trivialization of the normal bundle N M, that is a chart of N M in the neighborhood of (x, 0) where the parameter u 1 , . . . , u d , t 1 , . . . , t N d 2 U 0 ⇥ B N d (0, ⇢) corresponds to the point:

(u, t) = ⇣ u1, . . . , u d , t 1 , . . . , t N d ⌘ = ⇠ ⇣ u 1 , . . . , u d ⌘ , N d X k=1 t k w k (u 1 , . . . , u d ) ! 2 N ⇢ M and (u, t) = ⇠ ⇣ u1, . . . , u d ⌘ + N d X k=1 t k w k (u 1 , . . . , u d ) 2 M ⇢ ✓ R N (24) 
Derivating ( 24) at u = 0 gives:

d du j | u=0 (u, t) = d⇠ du j | u=0 + N d X k=1 t k dw k du j | u=0 (25) 
d dt k | u=0 (u, t) = w k (0) (26) 
In order to express the derivative of :

N ⇢ M ! M ⇢ at point (x, v) 2 N ⇢ M we need, besides the chart of a neighborhood of (x, v), a chart ˆ of a neighborhood of (x, v) = x + v in euclidean space. A natural choice for ˆ is ˆ y = ˆ y 1 , . . . y N = x + v + d X k=1 y k d⇠ du k | u=0 + N d X k=1 y d+k w k Observe that, since d⇠ du 1 | u=0 . . . , d⇠ du d | u=0
, w 1 , . . . , w N d is an orthonormal basis, seeing N ⇢ M and M ⇢ as Riemannian manifolds, the metric tensor associated to the charts and ˆ respectively at (x, v) and (x, v) = x + v are the identity matrix. One has:

D | y=0 ˆ = ⇣ d⇠ du 1 | u=0 . . . , d⇠ du d | u=0 , w 1 , . . . , w N d ⌘ (27) 
and since te columns of ( 27) are unitary and pairwise orthogonal, taking the inner product of ( 25) and ( 26) with the columns of D | u=0 ˆ , namely

⇣ d⇠ du j | u=0 ⌘ j=1,d
and (w k ) k=1,N d , gives an expression of the Jacobian of : N ⇢ M ! M ⇢ ✓ R N at the point (0, t) in the charts and ˆ as:

D | u=0 ⇣ ˆ 1 ⌘ = D d⇠ du i , d⇠ du j E + P N d k=1 t k D dw k du i , d⇠ du j E P N d k=1 t k D dw k du i , w l E 0 1 ! (28) 
Where in both N ⇢ M ✓ R N and M ⇢ the tangent space is decomposed as direct sum of the tangential and orthogonal fibers.

Denoting by I the first fundamental form of M:

I = ⌧ d⇠ du i , d⇠ du j .
Since we have chosen ⇠ in such a way that

⇣ d⇠ du j | u=0 ⌘ j=1,d
is an orthonormal basis of T x M, we have at x = ⇠(0) that I = 1.

For a unit vector v 2 N x M with v = P N d k=1 t k v w k we can call, following J. Milnor again, the second fundamental form in the direction v:

II v = N d X k=1 t k v ⌧ dw k du i , d⇠ du j .
We also denote the "torsion" term by T v :

T v = N d X k=1 t k v ⌧ dw k du i , w l
In fact we claim that, without loss of generality, one can choose the maps (w k ) k=1,N d in such a way that T v = 0. Indeed, since, for any u 2 U 0 , hw k (u), w l (u)i = k,l where k,l , the Kronecker delta, is constant, one has:

0 = d du i hw k , w l i = ⌧ dw k du i , w l + ⌧ w k , dw l du i in other words, D dw k du i , w l
E is antisymmetric and can then be seen as an infinitesimal rotation, i.e., formally, an element of the Lie algebra of SO(N d). It results that if we replace w by w 0 defined by :

w 0 (u 1 , . . . , u d ) = exp d X i=1 u i ⌧ dw k du i | u=0 , w l ! w(u 1 , . . . , u d ),
we get:

⌧ dw 0 k du i | u=0 , w 0 l = 0.
Since the exp term is a rotation depending smoothly (C 1 ) on the u i and is applied to the basis w, w can be replaced by w 0 which proves the claim.

We have that for ⌧ 2 [0, ⇢], at the point 28) can be expressed as, with the assumption T v = 0:

(x, ⌧ v) 2 N ⇢ M with (x, ⌧ v) = x + ⌧ v 2 M ⇢ the Jacobian (
✓ 1 + ⌧ II v T v 0 1 ◆ = ✓ 1 + ⌧ II v 0 0 1 ◆ (29) 
Thanks to Lemma 30, kII v k 2 , the operator L 2 norm of II v , which is the maximal extrinsic curvature of M, is upper bounded by the inverse of the reach of M: [START_REF] Guillemin | Differential topology[END_REF], is inversible. It follows that matrix ( 29) is inversible:

8v 2 N x M, kvk = 1, kII v k 2  1 reach M (30) Since in (29) one has ⌧  ⇢ < reach M, we get that k⌧ II v k 2  ⌧ reach M < 1 and 1 + ⌧ II v , the upper left bloc in
D | y=0 ⇣ 1 ˆ ⌘ = ✓ 1 + ⌧ II v 0 0 1 ◆ 1 = ✓ (1 + ⌧ II v ) 1 0 0 1 ◆ (31) 
By local inversion Theorem, [START_REF] Kim | Homotopy reconstruction via the cech complex and the vietoris-rips complex[END_REF] gives us the Jacobian of

= 1 at x + ⌧ v 2 M ⇢ .
In particular, the first row of (31):

(1 + ⌧ II v ) 1 0 (32) 
is the Jacobian of

⇠ 1 ⇡ M ˆ at x + ⌧ v 2 M ⇢ . E Restriction of ⇡ M to a d-dimensional affine space in a neigh- borhood of x + ⌧ v 2 M ⇢ Let ⇧ ✓ R N denote a d-dimensional affine space that contains the point y = x + ⌧ v 2 M ⇢ for x 2 M, v 2 N x M a unit vector and ⌧ < ⇢. If (y, e 1 , . . . , e d ) is an orthonormal frame of ⇧ centered at y. This frame defines a parametrization R d ! ⇧ defined by ⇣ z 1 , . . . , z d ⌘ 7 ! y + d X i=1 z i e i . (33) 
Each vector e i can be decomposed uniquely as a sum e i = e T i + e N i where e T i 2 T x M and e N i 2 N x M. From the definition (13) one has:

min z2R d ,kzk=1 d X i=1 z i e T i = min z2R d ,kzk=1 ⇡ TxM d X i=1 z i e i ! = cos \⇧, T x M (34) 
Using [START_REF] Milnor | Morse theory[END_REF] we get:

d dz j | z=0 ⇠ 1 ⇡ M y + d X i=1 z i e i ! = (1 + ⌧ II v ) 1 e T j (35) 
Since ⌧  ⇢ and the eigenvalues of II v are the principal curvatures, by Lemma 30 they are upper bounded by R 1 , the inverse of the reach of M. The eigenvalues of the symmetric matrix

(1 + ⌧ II v ) 1 are therefore included in:  R R + ⇢ , R R ⇢
and therefore its determinant included by:

" ✓ R R + ⇢ ◆ d , ✓ R R ⇢ ◆ d #
From [START_REF] Moser | A constructive proof of the general lovász local lemma[END_REF] we have that the determinant of

⇣ z 1 , . . . , z d ⌘ 7 ! ⇡ TxM y + d X i=1 z i e i ! = d X i=1 z i e T i is included in: h cos \⇧, T x M d , 1 i
In fact, a finer analysis exploiting Lemma 28 allows to improve this bound to:

h cos \⇧, T x M min(d,N d) , cos \⇧, T x M i ,
since, when N < 2d, T x M and the vector space associated to ⇧ have a common subspace of dimension at least 2d N . Therefore, the determinant of the differential of z 1 , . . . , z We consider now ⇧ 1 , ⇧ 2 ✓ R N , two d-dimensional affine space, where, for i = 1, 2 the affine space ⇧ i contains the point y i = x + ⌧ i v i 2 M ⇢ for x 2 M, v i 2 N x M a unit vector and ⌧ i < ⇢. We assume that, for i = 1, 2, one has \⇧ i , T ⇡ M (y) M < ⇡/3.

d 7 ! ⇠ 1 ⇡ M ⇣ y + P d i=1 z i e i ⌘ is bounded by: det d dz j | z=0 ⇠ 1 ⇡ M y + d X i=1 z i e i !! (36) 2 " ✓ R R + ⇢ ◆ d (cos \⇧, T x M) min(d,N d) , ✓ R R ⇢ ◆ d cos \⇧, T x M # If \⇧, T x M < ⇡/2,
By Lemma 37, the projection on M restricted to some neighborhood of y i in ⇧ i , is an homeomorphism. For i = 1, 2, let U i be is an open neighborhood of y i in ⇧ i such that ⇡ M| U i is an homeomorphism on its image and U i ✓ M ⇢ . Assume moreover that ⇡ M (U 1 ) = ⇡ M (U 2 ). Then one can defines an homomorphism ' 1!2 : U 1 ! U 2 as:

' 1!2 = def. ⇣ ⇡ M| U 2 ⌘ 1 ⇡ M| U 1
One has, for a chart ⇠ : U 0 ! M, where U 0 ✓ R d , and is such that ⇠(U 0 ) ⇡ M (U 1 ) = ⇡ M (U 2 ), that:

' 1!2 = ⇣ ⇡ M| U 2 ⌘ 1 ⇡ M| U 1 ⇣ ⇡ M| U 2 ⌘ 1 ⇠ ⇠ 1 ⇡ M| U 1
Choosing some coordinate systems for ⇧ 1 and ⇧ 2 defined by respective orthonormal frame (y 1 , e 11 , . . . , e 1d ) and (y 2 , e 21 , . . . , e 2d ), as in [START_REF] Morgan | Geometric measure theory: a beginner's guide[END_REF], we denote by D' 1!2 the matrix of the derivative of ' 1!2 in theses coordinate systems we have:

D' 1!2 (y) = d dz j 2 | z=0 ⇠ 1 ⇡ M y + d X i=1 z i 2 e 2i !! 1 d dz j 1 | z=0 ⇠ 1 ⇡ M y 1 + d X i=1 z i 1 e 1i !!
So that, using [START_REF] Oleg R Musin | Properties of the delaunay triangulation[END_REF] , we get:

det D' 1!2 (y) 2 2 6 4 ⇣ R R+⇢ ⌘ d (cos \⇧ 1 , T x M) min(d,N d) ⇣ R R ⇢ ⌘ d cos \⇧ 2 , T x M , ⇣ R R ⇢ ⌘ d cos \⇧ 1 , T x M ⇣ R R+⇢ ⌘ d (cos \⇧ 2 , T x M) min(d,N d) 3 7 5
In other words:

det D' 1!2 (y) 2 " (R ⇢) d (cos \⇧ 1 , T x M) min(d,N d) (R + ⇢) d cos \⇧ 2 , T x M , (R + ⇢) d cos \⇧ 1 , T x M (R ⇢) d (cos \⇧ 2 , T x M) min(d,N d)

#

To sum up, we have proven:

Lemma 38. Let ⇧ 1 , ⇧ 2 ✓ R N , be two d-dimensional affine spaces, where, for i = 1, 2 ⇧ i contains the point y i 2 M ⇢ with ⇡ M (y i ) = x 2 M. For i = 1, 2, let U i ✓ ⇧ i \ M ⇢ be an open subset of ⇧ i such that ⇡ M (U 1 ) = ⇡ M (U 2 ) and, for i = 1, 2, 8z 2 U i , \⇧ i , T ⇡ M (z) M < ✓ < ⇡/3.
Then, the Jacobian, of the map

' 1!2 = def. ⇣ ⇡ M| U 2 ⌘ 1 ⇡ M| U 1
, taking as chart for U 1 and U 2 the coordinates associated to an orthonormal frame, is bounded by:

|det D' 1!2 (y)| 2 " (R ⇢) d (cos ✓) min(d,N d) (R + ⇢) d , (R + ⇢) d (R ⇢) d (cos ✓) min(d,N d) # (37) 
Remark 39. The bound (37) can be expressed as:

|det D' 1!2 (y)| 2 ⇥ (1 + J) 1 , 1 + J ⇤ (38) 
with

J = (R + ⇢) d (R ⇢) d (cos ✓) min(d,N d) 1
where, as ⇢ R ! 0, one has:

J = O ⇣ ⇢ R ⌘ (39) 

F Transfering orientation

In this section, we start by recalling what it means for a manifold to be orientable. Given a manifold with a prescribed orientation, we then explain how to orient a simplex consistently with the manifold (Definition 43). Finally, we provide conditions under which the property for a simplex to be consistently oriented with a manifold is preserved under projection onto a nearby tangent plane (Lemma 47).

Definition 40 (Manifold orientation). An orientation of a C 1 -manifold M consists of an atlas

U i ✓ M, i : U i ! R d i2I such that: U i \ U j 6 = ; =) 8m 2 U i \ U j , det D j 1 i ( i (m)) > 0.
M is said to be orientable if such an atlas exists.

Definition 41 (Chart consistent with the orientation). If U is an open subset of the oriented manifold M, a local chart : U ! R d is called consistent with the orientation of M defined by the atlas {(U i , i )} i2I if the following implication holds:

U i \ U 6 = ; =) 8m 2 U i \ U, det D 1 i ( i (m)) > 0.
Let ✓ R N be a non-degenerate abstract d-simplex. An orientation of = [u 0 , u 1 , . . . , u d ] given by the order of the vertices induces an orientation on the affine subspace a↵ by the multivector (u 1 u 0 ) ^• • • ^(u d u 0 ). In other words, for = [u 0 , u 1 , . . . , u d ], the set conv is an oriented d-manifold (with boundary) whose orientation is defined by the map :

( a↵ ! R d x 7 ! (t 1 , . . . , t d ), (40) 
where t 1 , . . . , t d are the coordinates of x in the natural frame (u 0 , u 1 u 0 , . . . , u d u 0 ), that is, real numbers such that x = u 0 + P d i=1 t i (u i u 0 ). Obviously, we may replace the natural frame by any frame with a consistent orientation, that is, any frame for which the change of coordinate matrix with respect to the natural frame has a positive determinant.

Remark 42. Let be a d-simplex such that conv ✓ M ⇢ for some ⇢ < reach M. Consider x 2 conv and suppose that for an open neighborhood U x of x in a↵ , one has \(a↵ , T ⇡ M (x) M) < ⇡ 2 . Then, by Lemma 37, the map

⇣ ⇡ M| Ux ⌘ 1 : ⇡ M (U x ) ✓ M ! (U x ) ✓ R d is a valid C 1 -chart for M.
This remark allows us to transfer the orientation of M to :

for any x 2 conv . Equivalently:

det D ⇣ ⇡ T mM| Mm ⇡ M| Ux ⌘ (x) > 0. (43) 
Since M and T x are tangent at x, we obtain, by using the chart ⇡ T xM| M x for M in a neighborhood M x of x in M:

D ⇣ ⇡ T xM| M x ⌘ (x) = 1. (44) 
Since [START_REF] Munkres | Elements of algebraic topology[END_REF] assumes the projection on T xM equipped with the orthonormal basis (e 1 , . . . , e d ) of T xM as a chart for M in a neighborhood M x of x, it gives us an expression of the derivative of

⇡ T xM| M x ⇡ M| Ux : D ⇣ ⇡ T xM| M x ⇡ M| Ux ⌘ (x) = (1 + II v (x)) 1 e T j = (1 + II v (x)) 1 ⇡ T xM| Ux ,
where v is a unit vector such that x = x + v, and

⇡ T xM| Ux is the differential of ⇡ T xM|

Ux

. Then, using (44):

D ⇣ ⇡ M| Ux ⌘ (x) = (1 + II v (x)) 1 ⇡ T xM| Ux . (45) 
Using (44), that is the tangent space at x to M m or M x coincides, with the same chart, with the tangent space at at x to T xM, we get:

D ⇣ ⇡ T mM| Mm ⌘ (x) = D ⇣ ⇡ T mM| T xM ⌘ (x) = ⇡ TmM| T xM , (46) 
since

⇡ TmM| T xM
is the derivative of ⇡ T mM| T xM . In order to get (43), we need to use (45) and (46) and prove that the determinant of

⇡ TmM| T xM (1 + II v (x)) 1 ⇡ T xM|

Ux

is positive. This holds since each of the matrices associated to the three linear maps has a positive determinant: indeed, it holds for the two projections by the choice of coordinate systems, and for (1 + II v (x)) 1 because, since  ⇢ < reach M and k II v (x)k 2 < 1, the matrix 1 + II v (x) is symmetric and positive definite.

G Establishing practical conditions

Lemma 48. Let K be a simplicial complex with vertices in R N such that |K| ✓ M ⇢ and suppose that the d-simplices of K are non-degenerate and have a diameter upper bounded by ⇢. We also assume that for all d-simplices ⌧ 2 K and all points y 2 conv ⌧ , we have

\ a↵ ⌧, T ⇡ M (y) < ⇡ 2 . ( 47 
)
Choose an orientation for M and assume that all d-simplices of K inherit this orientation. Then, for any d-cycle in K, the map X

↵ (↵)1 ⇡ M (conv ↵)
is constant almost everywhere.

to V and V 0 and borrowing its notation, we define the parametrized family of orthonormal bases B(t) for t 2 [0, 1] as:

B(t) = def. (B 1 (t), . . . , B d (t)) = (u 1 (t), . . . , u d 0 (t), w 1 , . . . , w d d 0 ) , where u k (t) = cos(t✓ k )v k + sin(t✓ k )v 0 k . (59) 
For any t 2 [0, 1], (t) = (x, B(t)) is an orthonormal frame of ⇧(t). We want to follow the evolution of the function : [0, 1] ! R defined as:

(t) = def. X ↵2K 0[d] (↵)1 ⇡ ⇧(t) (conv ↵) (x),
or its regularization ˆ , defined similarly as in the proof of Lemma 48:

ˆ (t) = def. lim h!0 1 min(1, t + h) max(0, t h) Z min(1,t+h max(0,t h) (s)ds.
The proof then consists of showing that ˆ (t) remains constant along the path t 7 ! ⇧(t) and thus, since Equation 55 is satisfied for ⇧ 0 = ⇧(0) by ( 57), it will extend to ⇧ = ⇧(1).

The family of bases B(t) = (u 1 (t), . . . , u d 0 (t), w 1 , . . . , w d d 0 ), parametrized by t 2 [0, 1], induces a smooth map : [0, 1] ⇥ R N ! R d where, for y 2 R N , the components of (t, y) 2 R d are the coordinates of ⇡ ⇧(t) (y) x in the basis B(t):

(t, y) k = def. hB k (t), ⇡ ⇧(t) (y) xi = hB k (t), y xi.
With this definition one has:

(t, y) = 0 () ⇡ ⇧(t) (y) = x. ( 60 
) If 2 K 0[d 2]
, the set ([0, 1], conv ) is included in a compact smooth (d 1)-manifold with boundary in R d . Since it corresponds to the finite union of complements of sets of codimension 1, the condition:

0 / 2 0 @ [0, 1], [ 2K 0[d 2] conv 1 A (61) 
is generic. We now make the assumption that this generic condition holds, since, if it does not, it can be satisfied after an arbitrarily small perturbation of t 7 ! (t). One can easily check using (59) that for any t 2 [0, 1], \⇧(t), ⇧ 0  \⇧, ⇧ 0 , and even if a small perturbation is required for ensuring the generic condition, we can assume that, from (54):

8t 2 [0, 1], \⇧(t), T ⇡ M (x) M = \⇧(t), ⇧ 0 < ⇡ 8 . ( 62 
)
We will need the following claim:

8t 2 [0, 1], ⇡ ⇧(t) 1 (x) \ M ⇢ \ B(⇡ M (x), 6⇢) ✓ B(⇡ M (x), 3⇢). (63) 
Indeed, consider y 2 ⇡ ⇧(t)

1 (x) \ M ⇢ \ B(⇡ M (x), 6⇢). Then ⇡ M (y) 2 B(⇡ M (x), 7⇢
), and using Lemma 31, one has:

⇡ M (y) 2 T ⇡ M (x) M (7⇢) 2 2R ✓ T ⇡ M (x) M ⇢ ,
which, since d(y, ⇡ M (y)) < ⇢, implies:

y 2 T ⇡ M (x) M 2⇢ . (64) 
Denote the orthogonal projection onto

N ⇡ M (x) M by ⇡ N ⇡ M (x) M . Then, since x 2 N ⇡ M (x) M \ T ⇡ M (x) M
⇢ , one has with (64):

⇡ N ⇡ M (x) M (y) ⇡ N ⇡ M (x) M (x)  2⇢ + ⇢ = 3⇢.
From (62), one has that \(y x), N ⇡ M (x) M < ⇡ 8 , which gives:

d(y, N ⇡ M (x) M)  3⇢ tan ⇡ 8 < 3 2 ⇢.
Applying (64) again, we obtain

d(y, ⇡ M (x))  q d(y, T ⇡ M (x) M) 2 + d(y, N ⇡ M (x) M) 2 < r 4 + 9 4 
⇢ < 3⇢, which proves Equation (63). Since B(x, 5⇢) ✓ B(⇡ M (x), 6⇢) and B(⇡ M (x), 3⇢) ✓ B(x, 4⇢), Equation (63) gives us:

8t 2 [0, 1], ⇡ ⇧(t) 1 (x) \ M ⇢ \ B(x, 5⇢) ✓ B(x, 4⇢). (65) 
Since K 0 is not a simplical complex, it is convenient to introduce the smallest simplicial complex K 0 containing K 0 , in other words the set of all faces of simplices in K 0 . In particular, K 0 contains all (d 1)-faces of the d-simplices in K 0 . One has K 0 ✓ B(x, 5⇢) and, using (60), (65) yields:

2 K 0 [d 1] , and 0 2 ([0, 1], conv ) ) 2 K 0[d 1] . (66) 
As shown below, the changes in t 7 ! ˆ (t) may happen only when (t, conv ) = 0, where is a (d 1)-face of some d-simplex ↵ 2 K 0 [d] , in other words 2 K 0 [d 1] . We need (66) to ensure that every such in fact belongs to K

0[d 1] . Let 2 K 0[d 1]
be such that 0 2 ([0, 1], conv ), and denote the set of d-cofaces of in K 0 (respectively in K) by St( , K 0 ) (respectively St( , K)). Note that, if ⌧ is a d-coface of in K, and since conv ✓ conv ⌧ , one has the implication conv \ B(x, 4⇢) 6 = ; ) conv ⌧ \ B(x, 4⇢) 6 = ;. Thus, ⌧ 2 K 0 and we have:

2 K 0[d 1] =) St( , K 0 ) = St( , K). (67) 
Remark 50. Thanks to (67), the cycle condition (@ )( ) = 0 is inherited on each (d 1)-

simplex 2 K 0[d 1]
by the restriction of to K 0 . This is not true for the (d 1)-simplices of

K 0 [d 1] \ K 0[d 1]
. Thanks to (66) we only have to consider how (t) evolves as t continuously increases from 0 to 1 on (d 1)-simplices in K 0[d 1] and benefit from the cycle condition.

From Condition (ii) and (62) we get that:

8t 2 [0, 1], ⌧ 2 K 0[d] =) \ a↵(⌧ ), ⇧(t) < 3⇡ 8 . ( 68 
)
As a consequence of Lemma 28, the restriction of ⇡ ⇧(t) to a↵ is an affine bijection and in particular an homeomorphism. It sends the boundary of a d-simplex conv ↵ onto the boundary of the image of conv ↵: ⇡ ⇧(t) (@ conv ↵) = @⇡ ⇧(t) (conv ↵).

The fact that is uniformly continuous (in fact C 1 with a compact domain) also in t, means that in particular:

8✏ > 0, 9⌘ > 0, 8y 2 a↵ , 8t, t ? 2 [0, 1], |t ? t| < ⌘ =) k (t ? , y) (t, y)k < ✏.
If 0 is not on the boundary of (t, conv ↵) there is a ✏ > 0 such that either B(0, ✏) ✓ (t, conv ↵) or B(0, ✏) \ (t, conv ↵) = ;. It follows that:

0 2 (t, conv ↵) =) 9⌘ > 0, 0 2 \ t ? 2[t ⌘,t+⌘] (t ? , conv ↵) , ( 69 
) 0 / 2 (t, conv ↵) = ) 9⌘ > 0, 0 / 2 ([t ⌘, t + ⌘], conv ↵) . (70) 
We are now ready to track the evolution of t 7 ! ˆ (t). For that we consider two cases. First we consider the values of t such that x / 2 ⇡ ⇧(t)

⇣ K 0 [d 1] ⌘ , or in other words 0 / 2 ⇣ t, K 0 [d 1] ⌘ . Let ↵ 2 K 0[d]
. Since 0 is not on the boundary of (t, conv ↵), one of the two cases (69) or (70) must occur. This implies that, for some ⌘ > 0, t 7 ! (t) is constant on [t ⌘, t + ⌘], which in turn implies that in this case and ˆ coincide:

0 / 2 ⇣ t, K 0 [d 1] ⌘ ) (t) = ˆ (t).
We now consider the second case, namely when t is such that x 2 ⇡ ⇧(t)

⇣ K 0 [d 1] ⌘ . According to (66), if x 2 ⇡ ⇧(t) (conv ) for some 2 K 0 [d 1] , then 2 K 0[d 1]
. Therefore (67) and Remark 50 applies. We are interested in the possible change of value of (t ?

) when t ? belongs to a neighborhood of t.

Generically, if x 2 ⇡ ⇧(t) K 0[d 1] , there is a unique 2 K 0[d 1] such that x 2 ⇡ ⇧(t) (conv ).
However, we do not need this generic condition, since (t ?

) can be expressed as the following sum for any t ? 2 [0, 1]. We consider the d-simplices ↵ separately, depending on whether the inverse image of 0 by (t, .) is (1) interior: 0 2 (t, conv ↵) (the first sum below), (2) on the boundary: 0 2 @( (t, conv ↵)) (the second sum below), or (3) the complement: 0 2 (t, conv ↵) c (the third sum below):

8t ? 2 [0, 1], (t ? ) = X ↵2K 0[d] 02 (t ? ,conv ↵) (↵) = X ↵2K 0[d] 02 (t,conv ↵) 02 (t ? ,conv ↵) (↵) + X ↵2K 0[d] 02@( (t,conv ↵)) 02 (t ? ,conv ↵) (↵) + X ↵2K 0[d] 02 (t,conv ↵) c 02 (t ? ,conv ↵) (↵).
Thanks to (69) and (70) there is a ⌘ > 0 such that, for any t ? 2 [max(0, t ⌘), min(1, t + ⌘)], 0 2 (t ? , conv ↵) always holds in the first sum and never occurs in the third one. Then: 

In (71), the d-simplices in the second sum have been regrouped by the stars of (d 1)-simplices.

Notice that no d-simplex can be counted twice as, under the generic condition (61) and with the angle bound (68), one has:

1 6 = 2 and 0 2 (t, conv 1 ), and 0 2 (t, conv 2 ) ) St( 1 , K 0 ) \ St( 2 , K 0 ) = ;. (72)

The first sum does not depend on t ? 2 [max(0, t ⌘), min(1, t+ ⌘)] and therefore remains constant in this interval, as in the first case. Thanks to (72), there are several (d 1)-simplices 2 K 0[d 1] such that 0 2 (t, conv ) in the second sum, their stars are disjoint. It is then enough to study the variation of: t ? 7 ! (t ? ) =

def.

X ↵2St( ,K 0 ) 02 (t ?

,conv ↵)

(↵)
for a single 2 K 0[d 1] such that 0 2 (t, conv ), when t ? belongs to a neighborhood of t 2 [0, 1].

According to Lemma 33, the projection ⇡ ⇧(0) is a chart of M with a domain U 0 = M \ B (⇡ M (x), sin(⇡/4) reach M). Since M is orientable, we can orient M consistently with a given orientation of ⇡ ⇧(0) . The simplices in K 0[d] ✓ B(x, 5⇢) are sent into M \ B(x, 6⇢) ✓ M \ B(⇡ M (x), 7⇢) by ⇡ M . Since, as assumed in the lemma, one has ⇢ < R 25 , we get ⇡ M K 0[d] ✓ U 0 . In other words, (0, .) restricted to U 0 is a chart of M consistent with the orientation.

Let ⌧ be a d-simplex in K 0 oriented consistently with the orientation of M, y 2 ⌧ , and U y a neighborhood of y in a↵(⌧ ). According to Lemma 47, the projection (0, .)(⌧ ) onto ⇧(0) is positively oriented with respect to the orientation of ⇧(0). Since, for y 2 ⌧ , the map We have proven that (t, .) | conv ⌧ preserves the orientation of any d-simplex in K 0 , which means that the projection (t, ⌧ ) = [ (t, v 0 ), . . . , (t, v d )] of any d-simplex ⌧ = [v 0 , . . . , v d ] oriented consistently with M is positively oriented with respect to the orientation of ⇧(t).

Therefore, we can apply the same argument as for Claim 3 of the proof of Lemma 48 to the d-simplices in the star of : if x 2 ⇡ ⇧(t) (conv ), in other words if for some y 2 conv one has (t, y) = 0, and if H and H + are the two half spaces in R d bounded by the hyperplane spanned by (t, ), then ↵ 2 St( , K 0 ) appears positively (resp. negatively) in the boundary of a d-coface ↵ 2 St( , K 0 ) if (t, ↵) ✓ H + (resp. (t, ↵) ✓ H ).

It follows that, for a point z in a neighborhood of V 0 of 0,

z 7 ! X ↵2St( ,K 0 ) z2 (t ? ,conv ↵) (↵)
has the same value in V 0 \(H ) and in V 0 \(H + ) . We consider the C 1 map F : [0, 1]⇥conv ! [0, 1] ⇥ R d defined by: F (t ? , y ? ) =

def.

(t ? , (t ? , y ?

)) .

We note that, in particular, F (t, y) = (t, 0). By the Thom Transversality Theorem [29, Chapter 2] the map F is generically transversal to the manifold [0, 1] ⇥ {0}, which implies that F is regular at (t, y), i.e., its derivative at (t, y) has rank d and the vector (1, 0) 2 R ⇥ R d does not belong to the image of the derivative of F when F (t ? , y ?

) 2 (0, 1) ⇥ {0}. Since the transversality property on F is generic, if it does not hold, it will after an arbitrary small perturbation of F . distance less than 2 (⇢+ ) 2 2R  2 ⇢ 2 R (assuming (⇢ + ) 2  2⇢ 2 ) from the space c p + T ⇡ M (p) M. Then, there are constants C T N and C NN such that the operator norms of A T N and A NN induced by the Euclidean vector norm are upper bounded by:

8u, v 2 R d , kuk = kvk = 1 ) v t A T N u  C T N ⇢ 2 R ⇢, (75) 
and:

8u 2 R d , kuk = 1 ) u t A NN u  C NN ⇢ 2 R ⇢ 2 R . ( 76 
)
Let v 2 R N be a unit eigenvector of A with an eigenvalue : where for a matrix u, u t denotes the transpose of u. (77) can be rewritten as:

A v = v. (77 
✓ A T T A T N A t T N A NN ◆ ✓ (cos ✓)v T (sin ✓)v N ◆ = ✓ (cos ✓)v T (sin ✓)v N ◆ . (78) 
Equivalently: 

(cos ✓)A T T v T + (sin ✓)A T N v N = (cos ✓)v T , (79) 
Multiplying the two equations on the left hand side by (sin ✓)v t T and (cos ✓)v t N respectively, we get:

(sin ✓)(cos ✓)v t T A T T v T + (sin ✓) 2 v t T A T N v N = (sin ✓)(cos ✓), (cos ✓) 2 v t N A t T N v T + (cos ✓)(sin ✓)v t N A NN v N = (cos ✓)(sin ✓).
Thus,

(sin ✓)(cos ✓)v t T A T T v T + (sin ✓) 2 v t T A T N v N = (cos ✓) 2 v t N A t T N v T + (cos ✓)(sin ✓)v t N A NN v N .
Using (75) and (76), we get:

(sin ✓)(cos ✓)v t T A T T v T  2C T N ⇢ 2 R ⇢ + C NN ⇢ 2 R ⇢ 2 R .
Using (74), we get:

(sin ✓)(cos ✓)  2 C T N C T T ⇢ R + C NN C NN C T T ⇢ 2 R 2 .
Using sin 2✓ = 2 sin ✓ cos ✓, we get:

1 2 sin 2✓  2 C T N C T T ⇢ R + C NN C NN C T T ⇢ 2 R 2 = O ⇣ ⇢ R ⌘ . (81) 
Thus,

✓ 2 [0, t] [ h ⇡ 2 t, ⇡ 2 i , with t = 1 2 arcsin 2 ✓ 2 C T N C T T ⇢ R + C NN C NN C T T ⇢ 2 R 2 ◆ = O ⇣ ⇢ R ⌘ .
This means that the eigenvectors of A form an angle less than O ⇢ R with either T or N . For the non-generic situation of a multiple eigenvalue, one chooses arbitrarily the vectors of an orthogonal basis of the corresponding eigenspace. Since no more than d pairwise orthogonal vectors can make a small angle with the d-dimensional space T , and the same holds for the (N d)-dimensional space T , we know that d eigenvectors form an angle O ⇢ R with T and the (N d) others, an angle O ⇢ R with N . Multiplying the left hand side of (79) by v t T , and the left hand side of (80) by v t N , we get: 

(cos ✓)v t T A T T v T + (sin ✓)v t T A T N v N = (cos ✓), (cos ✓)v t N A t T N v T + (sin ✓)v t N A NN v N = (sin ✓).
a i v i ⇡ T ⇡ M (p) M 0 @ X i=1,d a i v i 1 A = X i=1,d a i ⇣ v i ⇡ T ⇡ M (p) M (v i ) ⌘  X i=1,d |a i | v i ⇡ T ⇡ M (p) M (v i )  X i=1,d |a i |C ⇣ ⇢ R ⌘  p d C ⇣ ⇢ R ⌘

otherwise. Lemma 12 .

 12 If D is a faithful reconstruction of M and, for all x 2 |D|, ⇡ TxM (St(x, D)) is geometrically realized, then D is a cycle. In particular, this is true when D = Delloc d (P, ⇢) under the assumptions of Theorem 10. Proof. Since D is a faithful reconstruction of M, |D| is a d-manifold. Hence, each (d 1)simplex ⌧ 2 D has exactly two d-cofaces 1 and 2 . Consider a point x in the relative interior of ⌧ and its projection m = ⇡ M (x) onto M. The set ⇡ TxM (St(x, D)) possesses exactly two d-simplices 0 1 = ⇡ TmM ( 1 ) and 0 2 = ⇡ TmM ( 2 ), and one (d 1)-simplex ⌧ 0 = ⇡ TmM (⌧ ). As we project the d-simplex i = [u 0 , . . . , u d ], we preserve the vertex ordering, that is, we let 0 i = [⇡ TmM (u 0 ), ⇡ TmM (u 1 ), . . . , ⇡ TmM (u d )]. It follows from Appendix F that each d-simplex 0 i in Star P,M (m, ⇢) has the same orientation with respect to T m M than that of i with respect to M. Let s i = sign TmM ( 0 i ) = sign M ( i ). Since the two geometric d-cofaces conv 0 1 and conv 0 2

Figure 1 :

 1 Figure 1: Notation for the proof of Lemma 17.

b2 µ b b with µ b 0 and P b2 µ b = 1 .

 1 we have P b2 \↵ µ b = 0 and combining this with the above equality, we get the desired inequality.Second, assume that y 2 conv \ conv(↵ \ ); see Figure2. Suppose y = P Letting y 0 = ⇡ a↵ ↵ (y), we know by Lemma 17 that:

Figure 2 :

 2 Figure 2: Right: Notation for the proof of Lemma 18.

For

  any convex combination y of points in , let {µ b (y)} b2 designate the family of non-negative real numbers summing up to 1 such that y = P b2 µ b (y)b. Plugging in the upper bound on Power ↵ (x) provided by Lemma 15, letting c = 1 2

  Delloc d (P, ⇢), D = |D| and K = |K|. Theorem 10 ensures that D is a d-manifold and ⇡ M : D ! M is a homeomorphism. Define ' : K ! D, f : D ! R, W , and W min as explained at the beginning of the section. Consider the d-chain min on K:

Lemma 33 (

 33 Projection on tangent space is a local chart). If M is a compact C 2 submanifold of Euclidean space, and m 2 M then, identifying T m M with R d through a given frame, the restriction of ⇡ TmM to M \ B (m, sin(⇡/4) reach M) is a local chart of M. Moreover, for any p 2 M \ B (m, sin(⇡/4) reach M) , one has:

  has rank d for any 2 U 0 , and such that ⇠(0) = x. Let us choose ⇠ such that, moreover, basis of T x M.

⇠ 1 Lemma 37 .

 137 it follows from[START_REF] Moser | A constructive proof of the general lovász local lemma[END_REF] that the set of vectors e T i i=1,d spansT x M. Since (1 + ⌧ II v ) 1 has full rank d we get that d dz j | z=0 Let ⇧ ✓ R N denote a d-dimensional affine space that contains the point y 2 M ⇢ . If \⇧, T ⇡ M (y) M < ⇡/2, then, in some open neighborhood U y of y in ⇧, ⇡ M| Uy is a C 1 -diffeomorphism on its image.

8t ? 2 X

 2 [max(0, t ⌘), min(1, t + ⌘)], ↵2K 0[d] 02 (t,conv ↵) (↵) + X 2K 0[d 1] 02 (t,conv ) X ↵2St( ,K 0 ) 02 (t ?,conv ↵) (↵).

t 7 !

 7 det D ⇣ (t, .) | conv ⌧ ⌘(y) is continuous and does not vanish by (68), one hasdet D ⇣ (0, .) | conv ⌧ ⌘ (y) > 0 ) 8t 2 [0, 1], det D ⇣ (t, .) | conv ⌧ ⌘ (y) > 0.

R

  d ⇥ {0} N d ✓ R N and N = def. {0} d ⇥ R N d ✓ R N , corresponding, in the space of coordinates, to T ⇡ M (p) M and N ⇡ M (p) M respectively.Let ✓ be the angle between v and T . There are unit vectorsv T 2 R d and v N 2 R N d such that: v = ((cos ✓)v T , (sin ✓)v N ) t ,

(

  cos ✓)A t T N v T + (sin ✓)A NN v N = (sin ✓)v N .

R 2 ⌘R 2 ⌘

 22 When the angle between the eigenvector v and the space T is in O ⇢ R , then |1 cos ✓| = O ⇣ ⇢ and | sin ✓| = O ⇢ R . The first equation implies that approximately equals v t T A T T v T C T T ⇢ 2 . When the angle between the eigenvector v and the space N is in O ⇢ R , the second equation implies that = O ⇣ ⇢ , which is smaller than C T T ⇢ 2 for ⇢ R small enough. So far we have proven that the d orthonormal eigenvectors v 1 , . . . , v d corresponding to the d largest eigenvalues of A form an angle with T ⇡ M (p) M that is upper bounded by C ⇢ R , for some constant C that depends only upon d and ⌘. For any unit vector u, its angle with T ⇡ M (p) M satisfies: sin \u, T ⇡ M (p) M = ku ⇡ T ⇡ M (p) M (u)k. Any unit vector u = P i=1,d a i v i in the d-space spanned by v 1 , . . . , v d satisfies: sin \u, T ⇡ M (p) M = X i=1,d

Generic in the sense that it is not in the projection on M of the convex hull of any (d 1)-simplex of K.

For multiple eigenvalues we choose orthogonal unit vectors as the eigenspace basis.

Definition 43 (Transfering orientation between a manifold and a simplex). Let M ✓ R N be an orientable manifold with a reach greater than ⇢ > 0. Let = [u 0 , u 1 , . . . , u d ] ✓ R N be a non-degenerate d-simplex such that conv ✓ M ⇢ , and suppose that

We say that the orientation of is consistent with a given orientation of M if there exists a point x 2 conv and an open neighborhood U x of x in a↵ such that the chart

is consistent with the orientation of M.

Note that, in the above definition, the orientation consistency between and M does not depend upon the choice of x inside conv . Indeed, thanks to Lemma 37, the determinant of 1 , whose sign determines the orientation consistency, does not on conv , and, since it is continuous and conv is connected, this sign is constant over conv . Remark 44. Recall that the boundary of an oriented simplex [v 0 , . . . , v d ] is defined as:

where vi means that vertex v i is omitted, so that the simplex ⌧ = [v 0 , . . . , v d 1 ] has the sign

( 1) d in @[v 0 , . . . , v d ]. It follows that for any d-coface 0 = ⌧ [ {v 0 d } of ⌧ , ⌧ appears in @ 0 with the same sign as in @ if and only if 0 is oriented as [v 0 , . . . , v d 1 , v 0 d ]. Given two d-dimensional vector subspaces V and V 0 of R N such that \(V, V 0 ) < ⇡ 2 , Lemma 28 implicitly gives an expression of the matrix of the orthogonal projection ⇡ V | V 0 on V restricted to V 0 in an orthonormal basis. In particular, it says that the matrix of ⇡ V | V 0 has a full rank and therefore is invertible. Observe that if B 0 is a basis of V 0 that defines an orientation of V 0 , then

) is a basis of V that induces an orientation on V . This allows us to transfer the orientation of V 0 to V as follows.

Definition 45 (Transfering orientation between simplices). Let B (resp. B 0 ) be a basis of V (resp. V 0 ). We say that V and V 0 have a consistent orientation through projection if the determinant of the matrix of ⇡ V | V 0 in basis (B 0 , B) is positive. As seen in the proof of Lemma 28, the map

admits a positive definite matrix in an orthonormal basis and therefore preserves the orientation. It follows that the relation "to have a consistent orientation through projection" is symmetric and could have been defined either by saying (as in the definition above) that the determinant of the matrix of

in basis (B 0 , B) is positive, or by saying that the determinant of the matrix of

) is positive. However, the relation "to have a consistent orientation through projection" is not transitive in general. For example, if 1 , 2 , 3 are three 1-dimensional vector spaces in R 2 , each oriented by a basis

3 )} respectively, then ( 1 , B 1 ) and ( 2 , B 2 ) have a consistent orientation through projection, as do ( 2 , B 2 ) and ( 3 , B 3 ), but not ( 1 , B 1 ) and ( 3 , B 3 ). However, one has the following lemma, useful for the proof of Lemma 47:

Lemma 46 (Making orientation propagating through projections transitive). Let V , V 1 , V 2 , and V 3 be d-dimensional vector subspaces of R N such that:

Then, in any basis

has a positive determinant. Equivalently, assuming B 1 , B 2 , and B 3 are bases defining orientation of V 1 , V 2 , and V 3 respectively, we have the following: If V 1 and V 2 , and V 2 and V 3 have a consistent orientation through projection, then so do V 1 and V 3 .

Proof. The lemma holds trivially when V 1 = V 2 = V 3 = V . In this case, the matrix associated to

is the identity and its determinant is 1. Using Lemma 28, it is easy to build a basis B i (t) of a d-dimensional vector space V i (t) for each i 2 {1, 2, 3}, parametrized by t 2 [0, 1] and continuous as a function of t, such that B i (0) is a basis of V , B i (1) a basis of V i , and \(V, V i (t)) < ⇡ 4 for all t 2 [0, 1]. In this condition, the determinant of:

is a continuous function of t which equals 1 when t = 0. Since for any i, j 2 {1, 2, 3} one has

, each projection has a full rank and therefore so does their composition. Thus, the determinant does not vanish and must remain positive for all t 2 [0, 1].

Lemma 47 (Projection on a tangent space gives the orientation). Let M be a compact, orientable, C 2 d-submanifold of the Euclidean space with a reach greater than ⇢ > 0, and let m 2 M. For a given orientation of T m M, we assume M to be oriented by the chart 4 

Then the orientation of is consistent with the orientation of M if and only if the orientation of

is consistent with the orientation of T m M.

Proof. For x 2 conv , let us denote by x = ⇡ M (x) the projection of x on M. According to Lemma 33, since x 2 conv implies x 2 M \ B m, sin( ⇡ 4 ) reach M , one has:

Using the above inequality and our assumption that \(a↵ , T m M) < ⇡ 4 , Lemma 46 can be applied with spaces a↵ , T m M, and T xM, and, we can therefore choose orthonormal bases for T m M, a↵ , and T xM which have a consistent orientation through projection. These bases define respective frames of T m M, a↵ , and T xM centered at m, x, and x, respectively. These frames define coordinate systems, or charts, for T m M, a↵ , and T xM.

Since, with this choice of charts, the projection of a↵ to T xM preserves the orientation,

is oriented positively with respect to the orientation of T m M. To prove the lemma, it is enough to prove that, with this choice of coordinate systems, the orientation of is consistent with the orientation of M.

According to Definitions 43 and 41, if U x is an open neighborhood of x in a↵ , using the coordinate system : U x ! R d , consistent with the orientation of , is consistent with the orientation of M if and only if, using the notation M m for M \ B m, sin( ⇡ 4 ) reach M :

Indeed, by Lemma 33 the restriction of

Proof. Given a set ⌃ of d-simplices in K and a d-chain in K, we denote by | ⌃ the restriction of to ⌃. In other words, | ⌃ is the chain that coincides with on ⌃ and is zero elsewhere. We define the map ⇡ ] M : M ! R as the regularization of m 7 !

The notation ⇡ ]

M is justified by the fact that ⇡ ] M is a linear map from the set of chains in K to the set of piecewise-constant real valued functions on M modulo equality almost everywhere. The regularized version of it is:

where, as usual, B(m, r) designates the ambient ball with center m and radius r, and µ M is the d-volume on M. This regularization will allow us to conclude the proof by exploiting the continuity of this regularized function.

For a simplex 2 K, we denote the set of d-simplices in the star of in K by St( , K). We denote the k-skeleton of K by Sk k (K). We start by proving three claims: (K)) connecting m 1 to m 2 . This proves Claim 1.

Indeed, St(⌧, K) = {⌧ } and for any

Note that Claim 2 does not use the assumption that @ = 0. Since, for any d-simplex ⌧ , the complement of

In order to prove the claim, pick one d-dimensional coface ⌧ of and let y 2 be such that ⇡ M (y) = m. Thanks to Remark 42, one can use

Without loss of generality, assume that = [v 0 , . . . , v d 1 ] and that the orientation of ⌧ defined by ⌧ = [v 0 , . . . , v d 1 , v d ] is consistent with the given orientation of M.

From the definition of ⇠ and ⌧ in Definition 43, one has:

For a d-simplex ⌧ 0 2 St( , K), since the restriction of ⇠ ⇡ M to ⌧ 0 is an homeomorphism, the boundary of

d ] and if both ⌧ and ⌧ 0 have been given orientations consistent with M, we have (Definition 43):

which is equivalent to:

But by definition of ⇠ one has that for i = 1, . . . , d 1, D

where the 1 appears in position i and thus (48) implies that the last coordinate of D

) is positive, which implies that, for t small enough,

At the same time, we know from Remark 44 that appears with the same sign in @⌧ 0 as in @⌧ if and only if ⌧ 0 is oriented as [v 0 , . . . , v d 1 , v 0 d ]. Since the orientations of ⌧ and ⌧ 0 are consistent with the chosen orientation of M, ⇠ U m \ ⇡ M (⌧ 0

) is therefore included in H = R d 1 ⇥ R or H + = R d 1 ⇥ R + respectively depending on whether appears negatively or positively in @⌧ . The set St( , K) of d-cofaces of can be decomposed in St( , K) and St( , K) + such that:

Then:

Now ( 49), (50), and (51) give us:

which proves Claim 3.

One has, for any m 2 M:

then the simplices such that m 2 ⇡ M ( ) that contribute to the sum (52) are of dimension either d either d 1. It follows from Claims 1, 2, and 3, that if

Since ,K and m 7 !

, and since, due to Claim 1, ⇡ M (Sk d 1 (K)) has a zero Lebesgue measure, we have shown that

The next lemma is useful to derive a realistic algorithm in Section 8.1. Roughly, it says that the normalization constraint in Problem (?) can be replaced by a constraint which does not refer to M anymore but refers only to a rough approximation ⇧ of M. Such an approximation can be derived from the mere knowledge of the point set P , as explained in Section 8.1. For any x 2 R N and any r 0, recall that K[x, r] = { 2 K | conv \ B(x, r) 6 = ;} and note that K[x, r] is not necessarily a simplicial complex.

Lemma 49 (Practical normalization lemma). Suppose 0  ⇢  R 25 . Let K be a simplicial complex with vertices in R N such that |K| ✓ M ⇢ and suppose that the d-simplices of K are non-degenerate and have a diameter upper bounded by ⇢. Suppose furthermore that for all d-simplices ⌧ 2 K and all points y 2 conv ⌧ , we have

and that every d-simplex in K inherits the orientation of the manifold M. Consider a ddimensional affine space ⇧ passing through a point x 2 M ⇢ such that

Assume that ⇧ is oriented consistently with M. Let K 0 = K[x, 4⇢] and suppose that the following conditions hold:

↵ inherits its orientation from ⇧.

Then, for all d-cycles in K and all points m 2 M \ ⇡ M K [d 1] , we have

Proof. Let ⇧ 0 be defined as the unique affine space passing through x and parallel to T ⇡ M (x) M.

We distinguish two cases depending on whether ⇧ = ⇧ 0 or not.

Case ⇧ = ⇧ 0 . We first claim that:

Indeed, the left hand member is equal to

Notice that N ⇡ M (x) M contains x and coincides with ⇡ 1 ⇧ 0 {x} -the affine space through x orthogonal to ⇧ 0 . Since B(⇡ M (x), ⇢) ✓ B(x, 5⇢), the left hand member is included in the right hand member. To get the reverse inclusion we only need to show that:

For that observe that for y 2 ⇡ 1 ⇧ 0 {x} \ M ⇢ \ B(x, 5⇢) one has y 2 B(⇡ M (x), 6⇢) and, since 6⇢ < R and y 2 N ⇡ M (x) M, one has ⇡ M (y) = ⇡ M (x) and d(y, M) = d(y, ⇡ M (x)). Thus, y 2 M ⇢ implies y 2 B(⇡ M (x), ⇢). Equality (56) is proved.

Let y 2 conv ↵ ✓ M ⇢ and assume that x = ⇡ ⇧ 0 (y).

If we assume the diameter of simplices to be upper bounded by ⇢, then conv ↵ \ B(x, 4⇢) 6 = ; implies conv ↵ ✓ B(x, 5⇢), and we get:

It results that for any ↵ 2 K, ⇡ M (x) 2 ⇡ M (conv ↵) implies ↵ 2 K 0 , and:

We assume the following generic condition:

The condition is generic because, if it does not hold, a sufficiently small C 2 -perturbation M 0 of M would satisfy it and still meet all the conditions of the lemma. Assuming the generic condition to hold, one can see using (57) that, in the particular case where ⇧ = ⇧ 0 , the lemma is just another formulation of Lemma 48.

Case ⇧ 6 = ⇧ 0 . From now on, we assume that ⇧ 6 = ⇧ 0 . Consider a differentiable path

(x, B(t)) in the space of orthonormal d-dimensional frames in R N . Precisely, (t) = (x, B(t)) is the orthonormal frame of a d-dimensional affine space ⇧(t) containing x, with ⇧(0) = ⇧ 0 and ⇧(1) = ⇧, and B(t) is an orthonormal basis of the vector space associated to ⇧(t). Lemma 28 allows us to give an explicit formulation for B. Since ⇧ 6 = ⇧ 0 , ✓ = \(⇧ 0 , ⇧) satisfies 0 < ✓ < ⇡ 8 , and both affine spaces contain x. Consider two d-dimensional vector spaces V and V 0 such that ⇧ 0 = x + V and ⇧ = x + V 0 , respectively. Applying Lemma 28 It follows that the image of F in a neighborhood of F (t, y) is a smooth hyper-surface whose tangent space does not contain the vector (1, 0) 2 R ⇥ R d and therefore separates the two vectors (t ⌘, 0) and (t + ⌘, 0) of R ⇥ R d for ⌘ > 0 small enough. In particular, (since K 0[d 1] is finite) the set of all t 0 such that t 0 , K 0[d 1] is made of isolated values. Therefore, for some ✏ > 0 and ↵ > 0, the complement of B((t, 0), ✏) \ F ([t ⌘, t + ⌘], conv ) in B((t, 0), ✏) has exactly two connected components, which are open and contain ({t}⇥(H ) )\ B((t, 0), ✏) and ({t} ⇥ (H +

) ) \ B((t, 0), ✏) respectively. We know by ( 69) and (70) that the sum X ↵2St( ,K 0 ) 02 (t ?

,conv ↵)

is locally constant in each connected component. Then, since it has same value in ({t} ⇥ (H ) ) \ B((t, 0), ✏) and ({t} ⇥ (H + ) ) \ B((t, 0), ✏), it has same value in both connected components. We have proven that t ? 7 ! (t ?

) has the same value for t ? 2 (t ⌘, t) and t ? 2 (t, t + ⌘), and therefore its regularization ˆ is locally constant. This ends the proof of the lemma.

H Approximate tangent space computed by PCA Lemma 51. Let 0 < 16"  ⇢ < R 10 , and suppose that P ✓ M for some 0  < ⇢ 2 4R , M ✓ P " and separation(P ) > ⌘" for some ⌘ > 0. If, for any point p 2 P , c p is the center of mass of P \ B(p, ⇢) and V p the linear space spanned by the n eigenvectors corresponding to the n largest eigenvalues of the inertia tensor of P \ B(p, ⇢) c p , then one has: 

where the tangental inertia A T T is a d ⇥ d symmetric define positive matrix. Because of the sampling conditions, we claim 5 that there is a constant C T T > 0 depending only on ⌘ and d such that the smallest eigenvalue of A T T is at least C T T ⇢ 2 :

Observe that, by Lemma 31, the points in P \ B(p, ⇢) are at a distance less than (⇢+ ) 2 2R from the space ⇡ M (p) + T ⇡ M (p) M, and therefore so is c p . Thus, the points in P \ B(p, ⇢) are at a 5 This claim has to be detailed if one wants to provide an explicit expression of the quantity ⌅0(⌘, d).