
HAL Id: hal-03613558
https://hal.science/hal-03613558

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Methodology to Build Decision Analysis Tools
Applied to Distributed Reinforcement Learning

Cédric Prigent, Loïc Cudennec, Alexandru Costan, Gabriel Antoniu

To cite this version:
Cédric Prigent, Loïc Cudennec, Alexandru Costan, Gabriel Antoniu. A Methodology to Build Decision
Analysis Tools Applied to Distributed Reinforcement Learning. ScaDL 2022 - Scalable Deep Learning
over Parallel and Distributed Infrastructures - An IPDPS Workshop, Jun 2022, Lyon / Virtual, France.
pp.1-10. �hal-03613558�

https://hal.science/hal-03613558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Methodology to Build Decision Analysis Tools
Applied to Distributed Reinforcement Learning

Cédric Prigent∗, Loı̈c Cudennec†, Alexandru Costan∗, Gabriel Antoniu∗
∗University of Rennes, Inria, CNRS, IRISA - Rennes, France
{cedric.prigent, alexandru.costan, gabriel.antoniu}@irisa.fr

†DGA Maı̂trise de l’Information, Rennes, France
{loic.cudennec}@intradef.gouv.fr

Abstract—As Artificial Intelligence-based applications become
more and more complex, speeding up the learning phase (which
is typically computation-intensive) becomes more and more
necessary. Distributed machine learning (ML) appears adequate
to address this problem. Unfortunately, ML also brings new
development frameworks, methodologies and high-level program-
ming languages that do not fit to the regular high-performance
computing design flow. This paper introduces a methodology to
build a decision making tool that allows ML experts to arbitrate
between different frameworks and deployment configurations, in
order to fulfill project objectives such as the accuracy of the
resulting model, the computing speed or the energy consumption
of the learning computation. The proposed methodology is
applied to an industrial-grade case study in which reinforcement
learning is used to train an autonomous steering model for a
cargo airdrop system. Results are presented within a Pareto front
that lets ML experts choose an appropriate solution, a framework
and a deployment configuration, based on the current operational
situation. While the proposed approach can effortlessly be applied
to other machine learning problems, as for many decision making
systems, the selected solutions involve a trade-off between several
antagonist evaluation criteria and require experts from different
domains to pick the most efficient solution from the short
list. Nevertheless, this methodology speeds up the development
process by clearly discarding, or, on the contrary, including
combinations of frameworks and configurations, which has a
significant impact for time and budget-constrained projects.

Index Terms—Machine Learning, Distributed Computing, De-
cision Making

I. INTRODUCTION

Nowadays, machine learning (ML) has turned into a critical
approach to ensure the success of operational research projects
and the design of complex systems. Beyond the classical engi-
neering steps that lead to a piece of software, ML requires new
methods, data processing and even dedicated hardware to run
the ever-demanding computing needs of learning algorithms.
This requires to commit hardware resources and provision
enough time to run the computations. Therefore, there is a
huge challenge to streamline machine learning within the
development of operational projects in order to stick to the
budget.

In this context, a significant effort is made by researchers
to find an efficient trade-off between the accuracy of the
results, the computing time and the energy consumption. One
of the most promising approach is to distribute the learning

among computing nodes in order to benefit from the aggre-
gated capacity of processing elements and physical memories.
Distributed computing is a well-studied problem since the late
eighties in the field of high-performance computing (HPC) and
has lead to major established methodologies (e.g., workflows)
and runtimes (e.g., MPI). Unfortunately, ML workloads come
with their own dedicated frameworks and some new program-
ming models, usually at a higher level of abstraction than the
regular HPC applications. The early days in machine learning
were not based on distributed implementations and, as a
consequence, most of the architectures and system knowledge
required to deploy efficient HPC code have to be adapted,
re-invented and transparently managed for ML experts.

Numerous frameworks have been recently proposed [1]–[4]
to parallelize and distribute learning algorithms over GPUs
and computing nodes. With the diversity of frameworks and
the countless configuration possibilities ML experts have to
face many choices, each of them leading to software design
constraints, different scalability capabilities at deployment and
even different accuracies when retrieving the results.

One of the main contribution of this paper is to propose
a methodology to facilitate decision making within ML
projects. These decisions occur from the early stage of the
project and down to the operational deployment. This includes:
choosing a distributed framework, choosing the learning algo-
rithms, exploring the resource sizing and mapping. While all
these steps cannot be fully automated, this methodology aims
at providing decision making tools based on the evaluation and
the comparison of different implementations and deployment
possibilities.

A secondary contribution is based on an illustration with a
real-life case study: the proposed methodology is applied to
an industrial-grade problem, and evaluated using state-of-
art ML frameworks. The motivating example is to provide
autonomous steering for a cargo airdrop system used to deliver
supplies in complex landing areas. We rely on a reinforcement
learning (RL) project developed to build the autonomous
steering inference model. A RL project consists in designing
a reaction loop in which agents take actions in a specific
environment and change their state based on a reward. In
the context of the airdrop case study, the environment is a
simulator used to compute the parachute physics along the



actions taken by the agent on the steering commands. The
complexity of the computation comes from the need to explore
a large number of scenarios and that the simulation is CPU-
consuming. This is a classical RL problem and the returns on
campaign are twofold: 1) this methodology enables to clearly
highlight and discard specific combinations of frameworks
and deployment parameters in a generic approach and 2) its
application on a real use case allows to speed up the decision
process within a running project development.

This paper is organized as follows: Section II gives some
background and motivation to propose a methodology for deci-
sion making. In section III the methodology is presented from
the design principles to the implementation ideas. Section IV
describes the airdrop package delivery simulator and how the
methodology can support this use case. In section V we report
on the application of the methodology. A description of the
experiments and the analysis of the collected results are given
in section VI. Section VII gives some elements of discussion
about the proposed approach. Finally, section VIII concludes
this work and opens some perspectives.

II. BACKGROUND AND MOTIVATION

A. Context: Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning
paradigm in which an agent tries to improve a policy in order
to maximize rewards by interacting with an environment. A
RL problem may be formulated as a Markov Decision Process
(S,A, T,R) where S is a set of states of the system, A is a set
of actions that can be performed by the agent, T is a transition
function mapping a state and an action to a new state, and
R is a reward function mapping a state and an action to a
reward. In other words, at each time-step the agent selects
an action to perform in the environment, based on the last
observation of the system. This action affects the environment
and changes its internal state. Depending on the quality of the
action performed in the current state, the environment returns
a reward and a new observation of the system to the agent. A
sequence of interactions of an agent with an environment is
called an episode (made up of state-actions pairs ending with
a terminal state).

Several algorithms have been proposed to solve RL prob-
lems. With on-policy learning agents learn from their current
policy, while in off-policy learning they learn from experi-
ence generated by other policies. Other algorithms include:
value-based methods such as Q-learning [5], policy gradient
methods [6] such as Proximal Policy Optimization (PPO) [7],
and experience replay [8].

Distributed techniques have proved to be efficient in the con-
text of deep learning [9] by enabling the use of more resources
and accelerating the training process. Multiple architectures
have been proposed for distributed RL. A common approach
is to separate acting from learning. With this configuration,
several actors generate experiences in parallel while a central
learner uses these experiences to learn an optimal policy.
Examples of architecture include A3C [10], an asynchronous
version of advantage actor-critic, IMPALA [11], a highly

scalable agent introducing a new off-policy algorithm called V-
trace, or Ape-X [12], a synchronous learner using a distributed
replay buffer to sample experiences from actors.

Numerous tools have been developed in order to help users
implementing these algorithms. OpenAI Baselines [13] and
Stable Baselines [14] (a Torch version of OpenAI Baselines)
provide high quality implementations of RL algorithms. TF-
Agents [15] provides multiple tools to implement RL algo-
rithms. Other tools include Ray RLlib [16], a highly scal-
able framework with simple APIs, Fiber [17], a framework
for large-scale parallel computation, Acme [18], a research-
oriented framework for distributed RL which aims to enable
simple descriptions of RL agents, or TorchBeast [18], a Torch
implementation of IMPALA.

B. Related Work: Optimizing software configuration

Several contributions not specifically related to ML, have
been proposed to help in configuring and sizing an application,
in search of a trade-off between multiple evaluation criteria.
For example, mARGOt [19] is an autotuning framework that
is able to dynamically adapt some parts of the application.
However, this approach requires to refactor the domain code
in order to insert probes and triggers, called software knobs.
In this case study [20], the authors propose to evaluate several
implementations of the same application to reduce the energy
consumption. These code versions are automatically generated
based on a domain-specific language (DSL) which requires
to re-think the application. Another approach is to rely on
the job scheduler to dynamically choose the deployment
configuration [21] or to rely on a complete monitoring system
that can tune the software and the hardware, as proposed
in the GEOPM [22] project to manage power consumption
in Exascale computing architectures. In this work [23], a
tool is proposed to configure a software-distributed shared
memory and evaluate different mappings over heterogeneous
computing resources in order to find a trade-off between
the computing time and the energy consumption. Similar
works [24], [25] also rely on operational research and design
space exploration tools to return a Pareto front highlighting
the most efficient solutions.

While the presented works have similar objectives to ours,
none of them tackle the problem of choosing the appropriate
framework for developing the application and running the
computation. Furthermore, distributed machine learning run-
times are quite new compared to established HPC runtimes
and several subtleties arise when dealing with probabilities
and non-deterministic distributed computing. This latter point
motivates the need to explore different frameworks to deal with
the accuracy and the reproducibility of the learning.

C. Problem Statement

The advances in ML lead to the emergence of multiple
frameworks, algorithms and architectures. Choosing between
them and, more importantly, ensuring a high confidence of the
suitability of that choice is non trivial given the specificities
of each tool and each use case. Clearly, there is distinction



Fig. 1: Our Methodology for Decision Analysis

(in terms of application impact, performance and feasibility)
between the choices made after the deployment, and the
choices that must be made before implementing a solution.

In this paper, we focus on the latter (e.g., choices such
as frameworks and learning algorithms which have to be
made before the implementation) since they are critical: they
influence the applications for all the rest of their life-cycles
and have impact on all dimensions of performance. Re-
implementing a whole system from scratch because of some
wrong initial framework choices is not suitable. A better
approach is to test different sets of parameter on prototypes
in order to make suitable choices.

III. A METHODOLOGY TO BUILD
DECISION ANALYSIS TOOLS

A. Design Principles

We briefly describe the design principles of our method-
ology, which are largely based on current state-of-the-art
practices.

Stage-based approach. Inspired from the applications life
cycle, our methodology breaks down to several steps corre-
sponding to dedicated roles and responsibilities. Examples
of such roles are, from a general perspective: collecting the
details about the targeted system or use case; analyzing and
evaluating those details to determine what and how needs to
be changed; creating the plan of actions etc. These stages work
together, communicate and collaborate with one another and
exchange appropriate knowledge and data to provide a holis-
tic control decision support functionality. The methodology
should not prescribe the specific implementation choices for
the internal structure of each stage. Instead, the methodology
should organize the internal structure into a set of capabili-

ties or functions. These are illustrated and described in the
following sections.

Support for early and intelligent decision making. When
the previously mentioned functions can be automated, an
intelligent decision support mechanism is achieved. Given the
complexity of deploying large-scale, real-life use cases on
heterogeneous infrastructures, searching the ideal deployment
configuration is challenging. This breaks down to configuring a
myriad of system-specific parameters and reconciling many re-
quirements or constraints. Bad choices may result in increased
financial expenses during deployment and production phases,
decreased processing efficiency and poor user experience.
The decision analysis tools supported by this methodology
should instead enable informed, intelligent and early choices
in application development and deployment, with an impact
on the rest of their life cycle.

User transparency. Identifying, evaluating and ranking
the relevant configurations is non-trivial due to the multiple
combination possibilities, as described in the next section.
Using standard interfaces enables the underlying stages of the
methodology to be composed together in a manner that is
transparent to the user. The methodology would eventually
work as a black box from the perspective of the user, who is
freed from the burden of complex empirical explorations of
the parameter space.

B. Methodology Overview

Our methodology guides the user to right choices upstream.
It gives information about the software and the system scala-
bility. This methodology is well suited for budget- and time-
constrained projects. It consists in several steps, depicted in
Figure 1 and described below.

a) The case study: The first step sets the initial problem.
In RL, the case study defines the environment and all the



interactions that come with it. Examples include gym environ-
ments [26] such as Atari Breakout or Atari Pong in which
the agent has to learn how to play games and obtain the best
score.

b) Learning configurations: The second step defines the
set of learning configurations one wants to study. A learning
configuration is a set of parameters selected for a learning task.
The parameters and the search space must be well defined,
otherwise the risk is to get unsuitable results at the end of the
process.

The parameters may be differentiated according to whether
they are related to the algorithm configuration, the system
configuration or the case study configuration. For instance,
a parameter related to the algorithm might be the choice of
the framework, the actual algorithm used or the learning rate,
a parameter related to the system might be the topology of
the network, the number of nodes or the nature of the nodes,
and a parameter related to the case study could be the wind
setting if any wind is simulated in the environment.

c) Exploratory method: If the search space is continuous
or it is a large set containing many configurations, or if the
expected experimentation time is long, then a better strategy
than trying all the possibilities is to partially explore the search
space. So the next step of our methodology is to choose an
exploratory method.

This step sets the strategy for the exploration of the con-
figuration pool. For instance, Random Search takes random
combinations of hyper parameters to define configurations.
By leveraging random combinations, the system might pro-
pose configurations which were not considered initially, and
potentially find new, interesting solutions.

d) Evaluation metrics: The fourth step of the method-
ology defines the evaluation metrics. They are collected for
each tested configuration and they provide different results
throughout each learning process. These metrics sets the main
objective of the study. Power consumption or bandwidth usage
are examples of evaluation metrics.

e) Ranking method: The last step of the methodology
consists in setting a ranking method. This method classifies
the different solutions by building a hierarchy between them.
It helps understanding the strengths and weaknesses of each
solution. This ranking method might take the form of a graph
or be textual. This last step provides the decision analysis tool
to help the user in the decision making. Pareto front or sorted
arrays are examples of ranking methods.

C. Implementation Ideas

In this subsection, we explore implementation ideas for our
methodology.

The first approach, detailed in section V, is the one used
for our experimental study. In this approach, the learning
configurations are manually selected by picking parameters
that seem relevant for the use case. The exploratory method is
Random Search. Evaluation metrics such as Reward, Compu-
tation Time and Power Consumption are selected as important

Algorithm 1 Execution of an episode of the Airdrop Package
Delivery Simulator

Inputs:
args← wind, gust, gust probability, altitude limits

Initialize:
env ← gym.make(′simulator′, args)
agent← init agent(env)
observation← env.drop package()

while env.current altitude() > 0 do
action← agent.selectaction(observation)
observation← env.computedynamics(action)

end while
return env.reward()

for the study. The chosen ranking method is Pareto Front,
which provides a simple-to-interpret graph for the user.

Another interesting approach is to implement the methodol-
ogy by using a hyperparameter optimization framework such
as Optuna [27] or Hyperopt [28]. Optuna provides multiple
optimization algorithms including sampling algorithms such
as Random Search or Grid Search, and pruning algorithms
which automatically stop unpromising trials. Hyperopt pro-
vides Random Search, Tree of Parzen Estimators (TPE) and
Adaptive TPE as optimization algorithms. Both frameworks
allow distributed hyperparameter search which is interesting
when working with large clusters.

IV. MOTIVATING USE CASE:
AIRDROP PACKAGE DELIVERY SIMULATOR

We illustrate the use of the proposed methodology with a
real life use case: an Airdrop Package Delivery Simulator, that
we describe in this section.

A. Application Framework

The goal of this simulator is to teach an autonomous agent to
pilot a parachute canopy for a precision landing. The simulator
is provided as a gym environment (gym is a library from
openAI that provides the tools to develop customized RL
environments).

Algorithm 1 gives a simplified description of the execution
workflow of an episode, as follows.

1) The package is dropped from a random altitude included
in a defined interval.

2) For each time-step until package landing:
a) The simulator computes the dynamic of the

parachute canopy and provides the agent with
an observation of its new state. The observation
includes rotation, position, orientation and velocity
vectors of the airdrop package. A schematic repre-
sentation of the package is provided in Figure 3.

b) Taking into account the last observation, the
agent selects a rotation direction for the parachute
canopy.

3) The agent gets a reward depending on how close the
package landed from the target point.



(a) Random policy (b) Trained PPO agent

Fig. 2: Airdrop package trajectory throughout an episode

.
Top views of trajectories taken by the package during two

episodes using different policies are represented in Figure 2.
The simulator was developed by taking into account the

dynamics of the parachute canopy, the drop altitude, the wind
and the gusts of wind in order to simulate real conditions.
Although it was designed to be used in the context of military
operations, this use case is in fact representative for many
applications including package delivery services by drone such
as Amazon PrimeAir (e.g., wind and other environmental fac-
tors), airdrop of rescue kits in emergency situations (e.g., likely
to use parachute). More generally, all simulations leveraging a
decomposition of the environment at different granularities and
the computation of some metrics (e.g., temperature, humidity
in climate contexts; plane speed, drag in aviation contexts etc.)
share the same episode principles.

B. Configurable Environment

The simulator provides multiple parameters for the config-
uration of the environment (i.e., environment-specific param-
eters):

• Activation and deactivation of the wind. This parameter
may need to be activated depending on the environment
context in which one wants the agent to learn.

• Activation and deactivation of the gusts of wind. This
parameter adds some randomness to the environmental
events.

• The gust probability. This parameter sets the occurrence
probability of the gusts of wind.

• The drop altitude limits. The package will be dropped in
this interval of altitudes.

The learning difficulty varies according to the settings of each
of these parameters.

Another important parameter for the study is the Runge-
Kutta methods order. Runge-Kutta methods are iterative
methods that provide approximated solutions of differential
equations. These methods are used by the simulator in order
to compute the dynamic of the parachute canopy. As these
methods are iterative, we may vary the order used for the
computation of the dynamics. This will impact the accuracy
of the observation but also the computation time. In general, if

Fig. 3: Rotation axes of the airdrop package

the Runge-Kutta order is lower, then the computation time will
be lower but the accuracy of the solution will also be lower.
Instead, if the Runge-Kutta order is higher, then the accuracy
will be higher but the computation time will also be higher.

To illustrate this, we refer to the results in Table I, sum-
marizing different performance metrics according to various
parameter settings from our experimental evaluation. For in-
stance, solutions 4 and 7 have the same parameter values
except for the Runge-Kutta order. Solution 4 used 3rd order
Runge-Kutta methods and solution 7 used 5th order Runge-
Kutta methods. The results show that solution 4 with lower
order Runge-Kutta methods gets lower reward and better
computation time, which is coherent since the approximated
solutions provided by 3rd order Runge-Kutta are less accurate
but also need less time to be computed. On the other hand,
solution 7 with higher order Runge-Kutta methods gets higher
reward and takes more computation time.

C. How Does the Methodology Help Solving the Use Case?

The simulator was designed to be used on constrained and
shared computing resources, hence an important objective is
to rationalize the available resources while at the same time
speeding-up the learning. Moreover, since the learning phase
might get reproduced in the future, it would be better to set
a good learning configuration beforehand. For instance, if the
characteristics of the parachute canopy are changed, an agent
has to be retrained from scratch. In this case, it would be better
to already have a good configuration to learn from.

Our methodology provides the right tools for it. If the right
parameter search space is set from the beginning and if the
appropriate metrics are fixed, then potentially better trade-
offs should be returned. For instance, power consumption
is an important metric for constrained devices. With our
methodology, we are able to find solutions that minimize this
metric. Another example is the use of the computing platform
by several operational projects at the same time, hence making
the processing units (CPUs, GPUs) a disputed resource. In
that case, our methodology allows to find solutions that best
fit to the number of available resources at the moment. More
detailed on the application of the methodology to this use case
are given in the next section.



TABLE I: Configuration settings and results of the experimental evaluation.

Configuration Results
Environment-dependent Environment-independent

Runge-Kutta order Framework Algorithm Nodes CPUs per node Reward Computation time (minutes) Power consumption (kJ)
1 3 RLlib PPO 2 2 -1.30 57 286
2 3 RLlib PPO 2 4 -1.19 46 201
3 3 RLlib SAC 1 2 -14.14 147 307
4 5 RLlib PPO 1 4 -1.01 51 125
5 5 RLlib PPO 2 4 -0.96 49 201
6 5 RLlib SAC 1 4 -13.63 59 151
7 8 RLlib PPO 1 4 -0.52 85 220
8 8 RLlib PPO 2 4 -0.73 51 249
9 3 TF-Agents SAC 1 4 -0.47 218 390
10 3 TF-Agents PPO 1 2 -1.10 72 143
11 3 TF-Agents PPO 1 4 -0.72 49 120
12 8 TF-Agents SAC 1 4 -0.78 337 614
13 8 TF-Agents PPO 1 4 -1.00 58 152
14 3 Stable Baselines PPO 1 2 -0.47 85 172
15 3 Stable Baselines SAC 1 4 -1.30 278 604
16 8 Stable Baselines PPO 1 4 -0.45 65 176
17 8 Stable Baselines SAC 1 4 -0.97 299 675
18 8 Stable Baselines PPO 1 2 -0.48 108 222

V. APPLICATION OF THE METHODOLOGY

In this section, we present the configuration we selected
to apply our methodology to the Airdrop Package Delivery
Simulator. We further detail the choices made at each step of
the methodology.

a) Configuration of the case study: Previous experiments
on the simulator have shown that learning for 200,000 time-
steps is sufficient to provide significant results, hence we chose
this configuration. The drop altitude, which is not the main
focus of our study, is left to its basic configuration, which
is an interval between 30 and 1,000 units. Similarly, since
the wind impact is not of concern for our study, we chose to
disable it in order to get significant results faster.

b) Learning configurations: We have extracted 5 impor-
tant parameters to study for our learning configurations:

• The Runge-Kutta methods order. This parameter is
environment-specific. It allows to configure the compu-
tation accuracy for the dynamic of the parachute canopy.
We selected 3rd, 5th and 8th orders which correspond to
the values provided by the SciPy library [29].

• The Framework for implementing the algorithm. We
selected 3 frameworks providing tools to implement RL.
The first one, Ray RLlib [16], is a library for distributed
RL built on top of the Ray framework [30]. The second
framework, Stable Baselines [14], is another RL library
which provides parallelized environments through vec-
torization. The third framework, TF-Agents [15], is a
TensorFlow library for Contextual Bandits and RL.

• The RL algorithm. For this parameter we selected
two popular algorithms, Proximal Policy Optimization
(PPO) [7] and Soft Actor-Critic (SAC) [31].

• The number of nodes. As the number of available
devices is limited to two machines, the number of nodes
will vary between one and two nodes. Distributed training
on 2 nodes is available with RLlib framework. TF-

Agents and Stable-Baselines implementations parallelize
the training on a single node, using multiple CPUs.

• The number of CPU cores used on each nodes. For this
parameter, the number of CPU cores on each node is the
same and it varies between 2 and 4 cores.
c) Exploratory method: For parameter search, we se-

lected Random Search. This method takes random combina-
tion of parameters and has turned out to be effective for hyper-
parameter optimization [32].

d) Evaluation metrics: We decided to study 3 metrics:
• Reward is the initial metric for any RL problem. In this

case study, it defines how good the landing was (i.e., if
it was close enough to the target point).

• Computation Time measures the application running
time, an important metric for time-constrained systems.
The measure takes into account the whole process, from
the launch time of the first actor until the last stop.

• Power Consumption is crucial for constrained devices
using batteries. Since the process is mainly CPU in-
tensive, we based the measurement on the CPU usage,
computed as an equivalence with a consumption curve
of the CPU.
e) Ranking method: We leverage Pareto Fronts, which

provide an easy-to-understand graph and present the results as
trade-offs between metrics.

VI. EXPERIMENTAL EVALUATION

In this section we report on the experimental results of
applying the methodology to the simulator use case. The ob-
jectives of this experimentation campaign is to assess whether:

• the methodology provides a decision analysis tool that
answers the needs of the user;

• the different steps of the methodology are specific enough
to provide suitable results.

To this purpose, the experiments are held on a small cluster
of 2 nodes. These nodes are physical machines equipped with



Fig. 4: Reward vs. Computation Time trade-off.

Intel Xeon W-2102 CPU, Nvidia GeForce 1080 Ti GPU,
Nvidia Quadro P400 GPU and 16GB of memory each. They
are connected with a 1Gbps Ethernet Switch.

Three Pareto Fronts generated by applying our methodology
are represented in Figures 4- 6, and discussed in the following
subsections. For each of them, we refer to the configurations
presented in Table I.

A. Trade-off between Reward and Computation Time

A first Pareto Front is represented on Figure 4. It highlights
the best trade-offs between reward and computation time. The
four non-dominated solutions are solutions 2, 5, 11 and 16.

First, solution 2 (corresponding to configuration 2 in Table I)
is the fastest solution regarding the computation time with a
total of 46 minutes. This result is the consequence of using all
available resources and running the lowest Runge-Kutta order.
As we can see on the generated graph, other solutions (4,
5, 8 and 11) provide close computation times. Again, these
configurations are also using all available resources (except
for solution 11 running on a single machine), with different
order for Runge-Kutta methods. We highlight that Ray RLlib
(configurations 2, 4, 5, 8) provides quite good solutions with
respect to the computation time. Solutions 5 (RLlib) and 11
(TF-Agents) provide a good trade-off between the solution
with the best computation time (configuration 2) and the
solution with the best reward (configuration 16).

Finally, solution 16 (Stable Baselines) provides the best
reward with −0.45. It is not as fast as the previous solutions,
taking 65 minutes, but the results are still interesting since this
configuration uses a single machine and leverages 8th order
Runge-Kutta methods (with a strong impact on computation
time and accuracy). Solutions 14 (Stable Baselines) and 7 (RL-
lib) also provide good rewards, −0.47 and −0.52 respectively,
but take longer to compute, up to 85 minutes.

Note that all the presented solutions for this trade-off are
using PPO. SAC solutions didn’t perform well for these
metrics and could not be displayed in the graph because of
the scale and for the sake of clarity.

The best trade-offs from the tested configurations include 2
solutions from RLlib, 1 from TF-Agents and 1 from the Stable
Baselines framework. All configurations are using the PPO

Fig. 5: Power Consumption vs. Computation Time trade-off.

algorithm. Regarding the RLlib setup, both configurations are
distributed on 2 nodes, each node using 4 CPU cores. Runge-
Kutta is the selective parameter, giving the best computation
time when set to order 3 and the better reward when set to
order 5. Configuration 11 using TF-Agents provides a good
trade-off between reward and computation time. This solution
using Runge-Kutta of order 3 prioritizing the computation
time and is parallelized on one node using 4 CPU cores.
Finally, configuration 16 using Stable Baselines provides the
best reward with −0.45. This solution uses 4 CPU cores on
one node and Runge-Kutta of order 8, therefore prioritizing
the reward over the computation time.

B. Power Consumption and Computation Time Trade-offs

The second Pareto Front, represented on Figure 5, highlights
the best trade-offs between Power Consumption and Computa-
tion Time. Solutions 2, 5 and 11 are highlighted as best trade-
offs. Note that each of these solutions were already highlighted
as good trade-offs in the previous experiment.

Solution 11 (TF-Agents), besides being a good trade-off
between reward and computation time, is also the less power
consuming solution with a total of 120 kJ. This is likely due
to a cost-effective use of the CPUs by the framework, coupled
with working on a single node.

Solution 4, a RLlib configuration on a single node, while
not highlighted as one of the best trade-off by the Pareto Front,
is quite close to solution 11 (125 kJ for 51 minutes, compared
to 120 kJ for 49 minutes respectively). Moreover, solution 11
used 3rd order Runge-Kutta methods while solution 4 used
5th order Runge-Kutta methods. Hence, a RLlib configuration
on a single node using 3rd order Runge-Kutta methods would
potentially be closer-or-better than solution 11.

Solution 2, as seen on the previous Pareto Front, is the best
solution with respect to the computation time. It takes less
time to compute but provides less reward and consumes more
power than solution 11.

Solution 5, although highlighted in this Pareto Front, is
less interesting as this solution consumes as much as solution
2 (both consume 201 kJ) and takes as long to compute as
solution 11 (both taking 49 minutes). This difference may be
explained by the Runge-Kutta order (3rd order for solutions 2
and 11, and 5th order for solution 5).



Fig. 6: Reward vs. Power Consumption trade-off.

No Stable Baselines solutions appear to offer a good trade-
off between power consumption and computation time. All
selected solutions use the PPO algorithm as well as all the
4 available CPUs cores. However, the number of nodes may
vary: for this use case, and with a limited number of computing
nodes, the intra-node parallelism is a more efficient choice than
distributing the computation among the nodes.

C. Trade-off between Reward and Power Consumption

The last Pareto Front, represented on Figure 6, highlights
the best trade-offs between reward and power consumption.
Solutions 11, 14 and 16 are highlighted as non-dominated
configurations.

Solution 11 (TF-Agents) and 16 (Stable Baselines) were al-
ready described and discussed in the previous experiments. So-
lution 14, implementing PPO with Stable Baselines, provides
a good trade-off between reward and power consumption, that
is close to solution 16. While it uses a low Runge-Kutta
order (3), it still provides high accuracy −0.47 (in comparison
with −0.45 for solution 16). Our analysis is that it is the
consequence of using environments that are less vectorized, as
one vectorized environment is used per CPU core and solution
14 uses only 2 CPU cores.

D. Impact of the Methodology

According to our experiments, each framework has proven
efficient in different situations. It appears that RLlib is a
good candidate to deal with the computation time, as it
supports distributed training on multiple nodes. A second
observation is that TF-Agents with PPO offers the lowest
power consumption, as a consequence of running efficient
parallel computations on a single node. Stable Baselines offers
the best accuracy for the objective and obtained the best
rewards. Regarding the learning algorithm, PPO provided
accurate results with rather short computing times. On the
contrary, SAC was inefficient and obtained poor results, either
taking too much time for computation and consuming too
much power, or failing in learning tasks and collecting low
rewards.

As expected, when decreasing the Runge-Kutta order, the
result accuracy decrease (as the reward is lower) and in the
same time the computation time and the power consumption

are enhanced. Instead, when increasing the Runge-Kutta order,
the reward is higher but the computation takes longer, together
with a higher power consumption. However, there are some
exceptions: solutions 14 and 16 located at both extreme ranges
of Runge-Kutta order result in almost the same performance
for reward and power consumption. This shows that the
number of vectorized environments has major consequences
on the results.

For the system part, using all the available CPU cores
speeds-up the training and seems to decrease the power
consumption, as seen with solutions 10 and 11, while at the
same time preserving the accuracy of the landing. On the RLlib
side, using more nodes speeds-up the process but working on
a single node seems to result in better reward. For instance,
solutions 7 and 8 using the same configuration except for the
number of nodes, do not provide the same reward. Solution
7 using a single node obtained a score of −0.52, while
solution 8 working with two nodes obtained a score of −0.73.
Distributing the learning to speed up the computation comes
with uncertainties and a lack of reproducibility regarding the
accuracy. This is quite similar to some simulation codes in
which the order of computing events is not deterministic (due
to the lack of strong causal dependencies), each ordering
leading to a different -but hopefully converging- result.

To conclude this section, while some parameters appear
at first sight easy to determine, the others are less so. For
instance, using all the available resources (all nodes and all
CPU cores) and setting the lowest Runge-Kutta order is an in-
tuitive strategy to lower the computation time. However, when
dealing with multiple objectives, this approach requires a more
in-depth analysis. With our methodology, we built a decision
analysis tool that helps users in finding a suitable learning
configuration for optimizing accuracy, computation time and
power consumption. Applied to the context of the Airdrop
Package Delivery Simulator, multiple solutions with different
configurations provide interesting trade-offs highlighted by
Pareto Fronts.

VII. DISCUSSION

Generality. We provide a tool to help users in their deci-
sions to determine a suitable solution depending on the objec-
tives set. This applies to some set of parameters, algorithmic-
system- or environment- dependent. The environment param-
eters used in this paper are specific to our motivating use-
case, however we claim that our methodology is applicable
to any other use case for optimizing algorithmic- and system-
parameters.

Scale of the experiments. In this paper, a first evaluation
of our methodology was done on a small cluster by applying
it to a real use case. It served as a successful proof of concept
and it provided tools to better visualize the performance of
each solution. One future direction we plan to explore is
to scale up the experiments, potentially using a large-scale
distributed testbed such as Grid’5000 [33] and an automatic
experimentation framework like E2Clab [34].



Abstract vs. concrete methods. Our methodology provides
the tools to help users in their decision making, however
it remains rather abstract. Another interesting direction is to
provide more specific tools to define which exploratory method
or which ranking method is the most adapted depending on
the use case.

VIII. CONCLUSIONS

Machine learning has become a critical step within the life-
cycle management of many applications, carried out by the
use of AI-based methods in every sector of activity prone to
automation. The success of this ML step directly depends on
using the appropriate development tools and an efficient sizing
of the computation.

This paper introduces a methodology to help in making
such decisions. This methodology allows to compare different
ML runtimes, different algorithms and different strategies to
collocate or to distribute the computation on remote nodes.
This results in a decision making tool that highlights relevant
combinations of runtimes and deployment parameters, offering
a trade-off between multiple criteria such as the computing
time and the energy consumption. This methodology has
been applied to an industrial-grade case study for which it
has demonstrated to be efficient in deciding between the
accuracy of the computation, the computing time and the
energy consumption.

As for many systems intended to relieve the developer
from arduous and repetitive tasks, a fully automated toolchain
remains illusory: the expertise of ML developers is still needed
to implement some computing kernels and to arbitrate within
a short list of solutions. While not providing a baked product
on the table, this paper advocates for undertaking method-
ologies and tools that lead to a more efficient and wiser use
of (super-)computing resources in the context of distributed
machine learning at the age of green computing.

ACKNOWLEDGMENT

The authors would like to thank Guillaume Berthé and
Samuel Hangouët (DGA MI) for their invaluable help in using
the airdrop package delivery simulator and the application
of reinforcement learning methods on this use case. Parts of
this work were conducted while the first author was at DGA
Maı̂trise de l’Information and at the University of Western
Brittany.

REFERENCES

[1] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” CoRR, vol. abs/1802.05799, 2018.

[2] M. Baines, S. Bhosale, V. Caggiano, N. Goyal, S. Goyal, M. Ott,
B. Lefaudeux, V. Liptchinsky, M. Rabbat, S. Sheiffer, A. Sridhar,
and M. Xu, “Fairscale: A general purpose modular pytorch library
for high performance and large scale training.” https://github.com/
facebookresearch/fairscale, 2021.

[3] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. A. Hecht-
man, “Mesh-tensorflow: Deep learning for supercomputers,” in Advances
in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 10435–10444,
2018.

[4] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. L.
Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang,
B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A distributed deep
learning framework for big data,” in Proceedings of the ACM Symposium
on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-
23, 2019, pp. 50–60, ACM, 2019.

[5] C. J. C. H. Watkins and P. Dayan, “Technical note q-learning.,” Mach.
Learn., vol. 8, pp. 279–292, 1992.

[6] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proceedings of the 12th International Conference on Neural Information
Processing Systems, NIPS’99, (Cambridge, MA, USA), p. 1057–1063,
MIT Press, 1999.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[9] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, (Red Hook, NY, USA), p. 1223–1231, Curran
Associates Inc., 2012.

[10] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016.

[11] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
“IMPALA: scalable distributed deep-rl with importance weighted actor-
learner architectures,” CoRR, vol. abs/1802.01561, 2018.

[12] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, “Distributed prioritized experience replay,” CoRR,
vol. abs/1803.00933, 2018.

[13] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines.” https:
//github.com/openai/baselines, 2017.

[14] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines.”
https://github.com/hill-a/stable-baselines, 2018.

[15] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly,
S. Fishman, K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz,
J. Smith, G. Bartók, J. Berent, C. Harris, V. Vanhoucke, and E. Brevdo,
“TF-Agents: A library for reinforcement learning in tensorflow.”
https://github.com/tensorflow/agents, 2018.

[16] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gon-
zalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for distributed rein-
forcement learning,” in Proceedings of the 35th International Conference
on Machine Learning (J. Dy and A. Krause, eds.), vol. 80 of Proceedings
of Machine Learning Research, pp. 3053–3062, PMLR, 10–15 Jul 2018.

[17] J. Zhi, R. Wang, J. Clune, and K. O. Stanley, “Fiber: A platform for
efficient development and distributed training for reinforcement learning
and population-based methods,” CoRR, vol. abs/2003.11164, 2020.

[18] M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behba-
hani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli,
S. Henderson, A. Novikov, S. G. Colmenarejo, S. Cabi, Ç. Gülçehre,
T. L. Paine, A. Cowie, Z. Wang, B. Piot, and N. de Freitas, “Acme:
A research framework for distributed reinforcement learning,” CoRR,
vol. abs/2006.00979, 2020.

[19] D. Gadioli, G. Palermo, and C. Silvano, “Application autotuning to
support runtime adaptivity in multicore architectures,” in 2015 Inter-
national Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation, SAMOS 2015, Samos, Greece, July 19-23,
2015 (D. Soudris and L. Carro, eds.), pp. 173–180, IEEE, 2015.

https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
https://github.com/openai/baselines
https://github.com/openai/baselines


[20] I. Raı̈s, H. Coullon, L. Lefèvre, and C. Pérez, “Automatic energy efficient
HPC programming: A case study,” in IEEE International Conference
on Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, So-
cial Computing & Networking, Sustainable Computing & Communi-
cations, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, Melbourne,
Australia, December 11-13, 2018 (J. Chen and L. T. Yang, eds.),
pp. 995–1002, IEEE, 2018.

[21] Y. Georgiou, E. Jeannot, G. Mercier, and A. Villiermet, “Topology-aware
resource management for HPC applications,” in Proceedings of the 18th
International Conference on Distributed Computing and Networking,
Hyderabad, India, January 5-7, 2017, p. 17, ACM, 2017.

[22] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: A vehicle for HPC community collaboration on
co-designed energy management solutions,” in High Performance Com-
puting - 32nd International Conference, ISC High Performance 2017,
Frankfurt, Germany, June 18-22, 2017, Proceedings (J. M. Kunkel,
R. Yokota, P. Balaji, and D. E. Keyes, eds.), vol. 10266 of Lecture
Notes in Computer Science, pp. 394–412, Springer, 2017.

[23] K. Trabelsi, L. Cudennec, and R. Bennour, “Application topology defi-
nition and tasks mapping for efficient use of heterogeneous resources,”
in Euro-Par 2019: Parallel Processing Workshops - Euro-Par 2019
International Workshops, Göttingen, Germany, August 26-30, 2019,
Revised Selected Papers (U. Schwardmann, C. Boehme, D. B. Heras,
V. Cardellini, E. Jeannot, A. Salis, C. Schifanella, R. R. Manumachu,
D. Schwamborn, L. Ricci, O. Sangyoon, T. Gruber, L. Antonelli, and
S. L. Scott, eds.), vol. 11997 of Lecture Notes in Computer Science,
pp. 258–269, Springer, 2019.

[24] R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G. A. Koenig,
S. Powers, M. Hilton, J. Rambharos, G. Okonski, and S. W. Poole,
“An analysis framework for investigating the trade-offs between system
performance and energy consumption in a heterogeneous computing

[33] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science (I. I. Ivanov, M. van Sinderen, F. Leymann, and
T. Shan, eds.), vol. 367 of Communications in Computer and Information
Science, pp. 3–20, Springer International Publishing, 2013.

environment,” in 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, Cambridge, MA,
USA, May 20-24, 2013, pp. 19–30, IEEE, 2013.

[25] L. Zaourar, M. A. Aba, D. Briand, and J. Philippe, “Task management
on fully heterogeneous micro-server system: Modeling and resolution
strategies,” Concurr. Comput. Pract. Exp., vol. 30, no. 23, 2018.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[27] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[28] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms,” 2013.

[29] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[30] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” 2018.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” CoRR, vol. abs/1801.01290, 2018.

[32] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research, vol. 13, no. 10,
pp. 281–305, 2012.

[34] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, “E2clab:
Exploring the computing continuum through repeatable, replicable and
reproducible edge-to-cloud experiments,” in IEEE International Confer-
ence on Cluster Computing, CLUSTER 2020, Kobe, Japan, September
14-17, 2020, pp. 176–186, IEEE, 2020.


	Introduction
	Background and Motivation
	Context: Reinforcement Learning
	Related Work: Optimizing software configuration
	Problem Statement

	A Methodology to Build Decision Analysis Tools
	Design Principles
	Methodology Overview
	Implementation Ideas

	Motivating Use Case: Airdrop Package Delivery Simulator
	Application Framework
	Configurable Environment
	How Does the Methodology Help Solving the Use Case?

	Application of the Methodology
	Experimental Evaluation
	Trade-off between Reward and Computation Time
	Power Consumption and Computation Time Trade-offs
	Trade-off between Reward and Power Consumption
	Impact of the Methodology

	Discussion
	Conclusions
	References

