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SATURATION, SEMINORMALIZATION AND HOMEOMORPHISMS OF
ALGEBRAIC VARIETIES

FRANÇOIS BERNARD, GOULWEN FICHOU, JEAN-PHILIPPE MONNIER AND RONAN QUAREZ

Abstract. We address the question under which conditions a bijective morphism between
algebraic varieties over an algebraically closed field of characteristic zero is an isomorphism.
Our two answers involve a study of seminormalization and saturation for morphisms between
algebraic varieties, together with an interpretation in terms of continuous rational functions
on the closed points of an algebraic variety. The continuity refers here to the usual Euclidean
continuity in the complex case, and comes from the theory of real closed fields otherwise.

Let π : Y → X be a morphism between algebraic varieties over a field k such that the
induced map πk : Y (k) → X(k) at the level of closed points is bijective. The main question
we address is under which topological conditions on π and geometric conditions on X the
morphism π is an isomorphism.

We also compare bijections and isomorphisms with homeomorphisms with respect to Zariski
topology. Recall from the Nullstellensatz that π is an homeomorphism if and only if πk is an
homeomorphism when k is algebraically closed, assumption we make in the paper.

Of course an isomorphism is an homeomorphism and an homeomorphism induces a bijection
at the level of closed points. Conversely, starting from a bijection at the level of closed points,
it is an homeomorphism in the case of irreducible curves. This is no longer true in general,
however a bijection induces an isomorphism when the target variety is normal by Zariski Main
Theorem. Assuming now π to be an homeomorphism, there are similar results involving the
notion of seminormality in place of normality. Andreotti and Bombieri [2] proved that π
is an isomorphism if X is seminormal and π is finite. Vitulli [38] managed to remove the
finiteness assumption on π, by requiring that X does not have one-dimensional components.
This dimensional condition is necessary, as illustrated by the normalization of a nodal curve
with one of the preimage of the singular point removed : we obtain an homeomorphism onto a
seminormal curve which is not an isomorphism. The dimensional condition of Vitulli assures
in fact that the homeomorphism is a finite morphism.

Our results are of a similar flavour, but we manage to avoid both the finiteness assumption
and the dimensional restriction, by modifying either the topological condition on π or the
geometric condition on X. To state our results, assume in the first instance that k is the
field of complex numbers, so that one can use additionally the strong topology on the complex
points of the varieties.
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Theorem A. Let π : Y → X be a morphism between complex algebraic varieties. Then π is
an isomorphism if one of the following conditions is satisfied :

(i) X is seminormal in Y and πC is an homeomorphism with respect to the strong topology,
(ii) X is saturated in Y and πC is an homeomorphism with respect to Zariski topology.

Our interpretation is that, for complex varieties at least, the relevant topology to associate
to seminormality is the strong topology, whereas Zariski topology is rather related to the
notion of saturation. Before discussing a generalization to any algebraically closed field of
characteristic zero, let us briefly recall the notions of seminormality and saturation. The
seminormalization of X is the biggest algebraic variety between X and its normalization in
bijection with X. Introduced first by Andreotti and Norguet [3] for complex analytic varieties,
then by Andreotti and Bombieri [2] for schemes, it appears in the study of Picard groups or
as singularities in the minimal model program [25]. Seminormality corresponds algebraically
to subintegral extensions, meaning an integral ring extension bijective at the spectrum level
and equiresidual. Seminormalization and subintegral extensions are studied in section 1. The
close notion of radicial extension, as introduced by Grothendieck [17], only requires that the
(non necessarily integral) extension is injective at the spectrum level and equiresidual. We
study in section 2 the saturation for varieties as the geometric counterpart of radiciality. The
saturation appears first in the context of Lipschitz geometry with works of Pham and Teissier
[32] in complex analytic geometry and Lipman [28] for ring extensions. For integral extensions,
saturation and seminormalization coincide, providing a different approach to seminormality
as proposed by Manaresi [29]. However, it is not established that the saturation produces a
variety, contrarily to the seminormalization.

The study of seminormalization over non algebraically closed fields presents some difficulty,
and the last three authors managed to define a sort of seminormalization for algebraic varieties
over the field of real numbers [14]. This notion has to do with the central points of a real
algebraic variety, that is the Euclidean closure of the set of regular points. This approach
would not have been possible without the recent study of continuous rational functions in
real algebraic geometry, as initiated by Kucharz [27] and Kollár and Nowak [26], and further
developed in [13] as regulous functions. These regulous functions happens to be related to
seminormality for complex algebraic varieties too as studied by the first author [7]. It is
this approach of seminormality via continuous functions with respect to the strong topology,
performed in the affine case in [7] and naturally extended to general varieties at the end of
section 1, that leads us to the proof of Theorem A in section 3. Note moreover that, if the
second part of Theorem A does not refer to the strong topology, our proof is a consequence of
the first result where the use of the strong topology is crucial. We prove along the way that
an homeomorphism with respect to the strong topology is an homeomorphism, the converse
being true except for curves.

Our approach being intrinsically related to the strong topology, it looks at first sight rather
improbable to extend it beyond complex algebraic varieties. However, our second main result
is such a generalization for any algebraically closed fields of characteristic zero.

Theorem B. Let π : Y → X be a morphism between algebraic varieties over k. Then π is an
isomorphism if one of the following conditions is satisfied :

(i) X is seminormal in Y and πk is an homeomorphism with respect to the R-topology,
(ii) X is saturated in Y and πk is an homeomorphism with respect to Zariski topology.
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The point is to make sense of the R-topology which appears in the first condition in the
statement of Theorem B, and plays a crucial role in the proof of the second. The Euclidean
topology on Rn has a basis of open sets given by semialgebraic subsets of Rn, i.e. given
by real polynomial equalities and inequalities. The theory of semialgebraic sets provides an
algebraic way to discuss about topological question in real algebraic geometry, as developed in
[8]. The great advantage of this approach is that it generalizes from R to any real closed field.
A real closed field is an ordered field that does not admit any ordered algebraic extension.
Equivalently, adding a square root of −1 to a real closed field gives an algebraically closed
field of characteristic zero. Real closed fields have been initially studied by Artin and Schreier
[4] in the way of Artin’s proof of Hilbert XVIIth Problem [1]. The most basic examples away
from R are the field of algebraic real numbers, which is the real closure of Q, and the field of
Puiseux series with real coefficients, which is the real closure of R((T )) ordered by T positive
and infinitely small. There are many of them, as illustrated by the fact that any algebraically
closed field k of characteristic zero contains (infinitely many) real closed subfields R ⊂ k with
k = R[

√
−1]. Fixing such a choice of R leads to an identification k ' R2 and equips k with

an order topology, called the R-topology on k. Note that in general R is not connected, and a
closed and bounded interval is not compact.

It is within this framework that we prove Theorem B in section 4. In particular, we provide
a full study of the relation between seminormality and the R-topology completely parallel to
the complex case in [7]. We introduce additionally the continuous rational functions over k
in section 5. A remarkable fact is that the continuity of a rational function defined on an
algebraic variety X over k does not depend on the choice of the real closed field R, since these
functions coincide with the regular functions on the seminormalization of X, cf. Theorem 5.4.
As a consequence, fixing a real closed field R ⊂ k brings all the flexibility of semialgebraic
geometry over R to algebraic geometry over k, without loosing in generality.

In the paper, k denotes a field of characteristic zero (sometimes algebraically closed), and
an algebraic variety over k is a reduced and separated scheme of finite type over k.

1. Subintegral extensions and seminormalization

After some reminders on integral extensions and normalization, we recall the notions of
subintegral extensions and Traverso’s construction [37] of the seminormalization for ring ex-
tensions and morphisms between affine algebraic varieties. We finally pay a special attention
to the case of complex algebraic varieties, where the strong topology and regulous functions
give another point of view in the spirit of [7]. We extend in particular the results from the
affine setting in [7] to general complex algebraic varieties.

Notation and terminology. Let A be a ring. The Zariski spectrum SpecA of A is the set
of prime ideals of A. It is a topological space for the topology whose closed sets are generated
by the sets V(f) = {p ∈ SpecA | f ∈ p} for f ∈ A. We denote by MaxA the subspace of
maximal ideals of A. For p ∈ SpecA, we denote by k(p) the residue field at p.

Let (X,OX) be a variety over k. For x ∈ X we denote by k(x) the residue field at x;
for an affine neighborhood U of x then x corresponds to a prime ideal px of OX(U) and we
have k(x) = k(px). In case X is affine then we denote by k[X] the coordinate ring of X i.e
k[X] = OX(X). Let K be a field containing k. We denote by X(K) the set Mor(SpecK,X)
of K-rational points. If K = k then X(k) is also the set of k-closed points of X, i.e the points
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of X with residue field equal to k. We have thus an inclusion

X(k) ↪→ X

that makes X(k) a topological space for the Zariski topology. We denote by OX(k) the sheaf
of regular functions on X(k), for x ∈ X(k) we have OX,x = OX(k),x. In the case k al-
gebraically closed, for an open subset U of X, we may identify MaxOX(U) with U(k) by
the Nullstellensatz, and similarly we identify the regular functions on U with U(k), namely
OX(U) = OX(k)(U(k)). If T is a subset of X or X(k) or SpecA then we will denote by TZ the
closure of T for the Zariski topology.

A ring extension i : A → B induces a map Spec(i) : SpecB → SpecA, given by p 7→
(p∩A) = i−1(p). If π : Y → X is a morphism between algebraic varieties over k, with
OX → π∗OY the associated morphism of sheaves of rings on X, then for any open subset
U ⊂ X the ring morphism OX(U)→ OY (π−1(U)) is an extension if π is dominant. For a field
extension k → K, we denote by πK : Y (K)→ X(K) the induced map. Remark that πk is also
the restriction of π to the k-closed points.

In the sequel, K(A) (resp. K) will denote the total ring of fractions of A (resp. the sheaf of
total ring of fractions on X).

1.1. Reminder on integral extensions and normalization. A ring extension A → B is
said of finite type (resp. finite) if it makes B a finitely generated A-algebra (resp. A-module).
The extension A→ B is birational if it induces an isomorphism between K(A) and K(B).

An element b ∈ B is integral over A if b is the root of a monic polynomial with coefficients
in A, which is equivalent for A[b] to be a finite A-module by [5, Prop. 5.1]. As a consequence

A′B = {b ∈ B| b is integral over A}

is a ring called the integral closure of A in B. The extension A → B is said to be integral
if A′B = B. In case B = K(A) then the ring A′K(A) is denoted by A′ and is simply called
the integral closure of A. The ring A is called integrally closed (resp. in B) if A = A′ (resp.
A = A′B).

We recall that a dominant morphism Y → X between algebraic varieties over k is said of
finite type (resp. finite, birational, integral) if for any open subset U ⊂ X the ring extension
OX(U) → OY (π−1(U)) is of finite type (resp. finite, birational, integral). In this paper, a
morphism between algebraic varieties is always of finite type.

Let X be an algebraic variety over k. The normalization of X, denoted by X ′, is the
algebraic variety over k with a finite birational morphism π′ : X ′ → X, called the normalization
morphism such that for any open subset U ⊂ X we have OX′(π′−1(U)) = OX(U)′. We say
that X is normal if π′ is an isomorphism. A point x ∈ X is said normal if OX,x is integrally
closed.

We will use frequently that an integral extension of rings induces surjectivity at the spectrum
level (See [30, Thm. 9.3] or [5, Thm. 5.10, Cor. 5.8]).

Proposition 1.1. Let A → B be an integral extension of rings. The maps SpecB → SpecA
and MaxB → MaxA are surjective and closed.

As a consequence, if π is a finite morphism between algebraic varieties over k then Proposition
1.1 implies that π and πk are surjective.
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1.2. Subintegral extensions and seminormalization. We recall the concept of subintegral
extensions introduced by Traverso [37].

Definition 1.2. Let A→ B be an extension of rings.
(1) For p ∈ SpecB, we say that SpecB → SpecA is equiresidual at p if the extension

k(p∩A) → k(p) is an isomorphism. Let W ⊂ SpecB, we say that SpecB → SpecA
is equiresidual (resp. by restriction to W ) if for any p ∈ SpecB (resp. p ∈ W ),
SpecB → SpecA is equiresidual at p.

(2) The extension A→ B is said equiresidual if SpecB → SpecA is.
(3) The extension A → B and the map SpecB → SpecA are said subintegral if the

extension is integral and SpecB → SpecA is bijective and equiresidual.

Note that a field extension is equiresidual if and only if it is an isomorphism. We extend
these definitions to the geometric setting, adding moreover a notion of hereditarily birational
morphism that have been introduced in the real setting in [14].

Definition 1.3. Let π : Y → X be a dominant morphism between algebraic varieties over k.
(1) We say that π is equiresidual if for any y ∈ Y then the field extension k(π(y))→ k(y)

is an isomorphism.
(2) We say that π is subintegral if π is integral, bijective and equiresidual.
(3) We say that π : Y → X is hereditarily birational if for any open subset U ⊂ X and for

any irreducible algebraic subvariety V = V(p) ' Spec(OY (π−1(U))/ p) in π−1(U), the
morphism

π|V : V → W = V(p∩OX(U)) ' Spec
(
OX(U)/(p∩OX(U))

)
is birational.

Geometrically speaking, a dominant morphism π : Y → X is equiresidual if and only if it is
hereditarily birational. Indeed, for any open subset U ⊂ X and for any irreducible algebraic
subvariety V = V(p) ' Spec(OY (π−1(U))/ p) in π−1(U), the restricted morphism

π|V : V → W = V(p∩OX(U)) ' Spec
(
OX(U)/(p∩OX(U))

)
is birational if and only if the extension k(p∩OX(U)) = K(W )→ k(p) = K(V ) is an isomor-
phism.

An hereditarily birational morphism is not necessarily bijective. However, adding an inte-
grality assumption and using Proposition 1.1, we get the following characterization.

Lemma 1.4. Let π : Y → X be an integral morphism between algebraic varieties over k. The
following properties are equivalent:

1) π is hereditarily birational and injective.
2) π is subintegral.

The notion of subintegral extension leads to the notion of seminormalization, in a similar
way than integral extensions lead to normalization.

In order to define the notion of seminormality, we need to consider sequences of rings ex-
tensions. A ring C is said intermediate between the rings A and B if there exists a sequence
of extensions A → C → B. In that case, we say that A → C and C → B are intermediate
extensions of A→ B and we say in addition that A→ C is a subextension of A→ B.

Seminormal extensions are maximal subintegral extensions.
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Definition 1.5. Let A → C → B be a sequence of two extensions of rings with A → C
subintegral. We say that C is seminormal between A and B if for every intermediate ring D
between C and B, with C different from D, then A→ D is not subintegral.

We say that A is seminormal in B if A is seminormal between A and B. We say that A is
seminormal if A is seminormal between A and A′.

Given an extension of rings A→ B, Traverso (see [37] or [39]) proved there exists a unique
intermediate ring which is seminormal between A and B. To this purpose, he introduced the
ring

A+
B = {b ∈ A′B| ∀ p ∈ SpecA, bp ∈ Ap + Rad((A′B)p)},

where Rad stands for the Jacobson radical, namely the intersection of all the maximal ideals.
The idea to build A+

B is, for all p ∈ SpecA, to glue together all the prime ideals of A′B lying
over p (see [31]).

Theorem 1.6. [37] Let A→ B be an extension of rings. Then A+
B is the unique ring which is

seminormal between A and B.
Moreover, for any intermediate ring C between A and B, the extension A→ C is subintegral

if and only if C ⊂ A+
B.

The ring A+
B is called the seminormalization of the ring extension A → B or the seminor-

malization of A in B. The ring A+
A′ is called the seminormalization of A and is simply denoted

by A+. Note that when A and B are domain, then A and A+
B have in particular the same

fraction field.

1.3. Seminormalization of a morphism between algebraic varieties. Andreotti and
Bombieri [2] have introduced and built the seminormalization of a scheme in another one. In
this section, we provide a different and elementary construction of the seminormalization of an
affine algebraic variety in another one. The seminormalization answers the following question.
Let Y → X be a dominant morphism between algebraic varieties over k. Does there exist a
biggest algebraic variety Z such that Y → X factorizes through Z and Z → X is subintegral ?

We recall first the notion of normalization of a variety in another one. Let π : Y → X be a
dominant morphism between algebraic varieties over k. The integral closure (OX)′π∗(OY ) of OX
in π∗(OY ) is a coherent sheaf [36, Lem. 52.15] and by [18, II Prop. 1.3.1] it is the structural
sheaf of a variety over k.

Definition 1.7. Let Y → X be a dominant morphism of finite type between algebraic varieties
over k. The variety with structural sheaf equal to the integral closure of OX in π∗(OY ) is called
the normalization of X in Y and is denoted by X ′Y .

Be aware that the normalization of a variety in another one is not necessarily a normal
variety, nor it admits a birational morphism onto to the original variety.

For a dominant morphism Y → X between algebraic varieties over k, we say that an algebraic
variety Z over k is intermediate between X and Y if Y → X factorizes through Z. For affine
varieties, it is equivalent to say that k[Z] is an intermediate ring between k[X] and k[Y ]. The
normalization of a variety in another one satisfies the following property :

Proposition 1.8. Let Y → X be a dominant morphism between algebraic varieties over k.
Let Z be an intermediate variety between X and Y . Then Z → X is finite if and only if it
factorizes X ′Y → X.
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We describe now an elementary construction of the seminormalization of an affine algebraic
variety in another one. Let Y → X be a dominant morphism between affine algebraic varieties
over k. We want to check that the ring A = k[X]+k[Y ] is the coordinate ring of an algebraic
variety. We know that the morphism X ′Y → X is finite by Proposition 1.8, so we can apply
next Lemma 1.9 to the extensions

k[X] ⊂ A ⊂ k[X ′Y ] = k[X]′k[Y ] ⊂ k[Y ]

to conclude.

Lemma 1.9. Let π : Y → X be a finite morphism between affine algebraic varieties over k.
Let A be a ring such that k[X] ⊂ A ⊂ k[Y ]. Then A is the coordinate ring of a unique affine
algebraic variety over k and π factorizes through this variety.

Proof. Since k[Y ] is a finite module over the Noetherian ring k[X] then it is a Noetherian k[X]-
module. Thus the ring A is a finite k[X]-module as a submodule of a Noetherian k[X]-module.
It follows that A is a finitely generated algebra over k and the proof is done. �

For the general construction of the seminormalization, one needs to check that the semi-
normalization of the local charts of an affine covering glue together to give a global variety.
This is done by Andreotti and Bombieri [2] using Grothendieck criterion [18, II Prop. 1.3.1]
concerning the quasi-coherence of sheaves. It leads to the following definition.

Definition 1.10. Let π : Y → X be a dominant morphism between algebraic varieties over
k. The seminormalization of X in Y is the algebraic variety X+

Y over k with structural sheaf
equal to the seminormalization of OX in π∗(OY )

We call X+ the seminormalization of X in its normalization Y = X ′. We say that X is
seminormal in Y (resp. seminormal) if X = X+

Y (resp. X = X+).

Remark 1.11. Note that the seminormalization of X in Y is birational to X, even if Y → X
is not birational. It was not the case for the normalization of X in Y . We have in general

Y → X ′Y → X+
Y → X.

The seminormalization of a variety in another one satisfies the following universal property :

Proposition 1.12. Let Y → Z → X be a sequence of dominant morphisms between algebraic
varieties over k. Then Z → X is subintegral if and only if X+

Y → X factorizes though Z.

Proof. It is a reformulation of the second part of Theorem 1.6. �

1.4. Relation with the strong topology and regulous functions for complex algebraic
varieties. Subintegral extensions and regulous functions are strongly related in real algebraic
geometry as developed in [15]. Working with the field of complex numbers, we know from the
work of Bernard [7] that the same holds true in the affine and geometric case. The aim of this
section is to generalize the work of Bernard to non-necessarily affine varieties over C.

Continuous rational functions and regulous functions have been originally studied in real
algebraic geometry [27, 26, 13], where the continuity is regarded with respect to the Euclidean
topology, which can be studied algebraically via semialgebraic open sets [8]. Let X be an
algebraic variety over C. In the sequel, we consider the Euclidean (or strong) topology of the
complex points X(C) seen as a topological variety (see [35]). For example, if X is affine then
we have X ⊂ An for some n ∈ N and the strong topology is induced by the natural inclusion
X(C) ⊂ R2n.
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We define the sheaf of continuous rational functions on an algebraic variety X over C as
follows. Let U ⊂ X be an open subset of X. A continuous rational functions on U(C) is a
C-valued function on U(C), continuous with respect to the strong topology, that is rational
on X (i.e it coincides with a regular function on a dense Zariski open subset of U(C)). The
continuous rational functions on U(C) are the sections of a presheaf of C-algebras on X(C),
denoted by K0

X(C) in the sequel. Since K is a sheaf, and the presheaf of locally continuous
functions on X(C) for the strong topology is also a sheaf for the Zariski topology, then K0

X(C)
is a sheaf called the sheaf of continuous rational functions. It makes (X(C),K0

X(C)) a ringed
space. In case X is affine then we simply denote by K0(X(C)) the global sections of K0

X(C)
on X(C). A dominant morphism π : Y → X between varieties over C induces an extension
K0
X(C) → (πC)∗K0

Y (C), hence a morphism (Y (C),K0
Y (C))→ (X(C),K0

X(C)) of ringed spaces.

Remark 1.13. A regulous function f is a continuous rational function that satisfies the ad-
ditional property that f remains rational by restriction to any subvariety. The first author
proved that it is always the case [7, Prop. 4.14], contrarily to the real case [26].

In the sequel, we also say regulous for continuous rational. An important fact is that regulous
functions on a normal variety are regular. More precisely, next proposition says that regulous
functions are integral on the regular ones and thus are already regular if the variety is normal.

Proposition 1.14. Let X be an algebraic variety over C. We have:
1) K0

X(C) ⊂ (π′C)∗OX′(C) where π′ : X ′ → X is the normalization map.
2) If x is a normal closed point of X(C) then K0

X(C),x = OX,x.

Proof. The properties are local, so the proof follows from the affine case proved in [7, Prop.
4.7, Prop. 4.10]. �

Definition 1.15. Let π : Y → X be a dominant morphism between algebraic varieties over C.
We say that the map πC is biregulous if it is an homeomorphism for the strong topology and
the inverse map is rational (i.e coincides with a regular map on a dense Zariski open subset of
X(C)).

In such a situation, the morphism K0
X(C) → (πC)∗K0

Y (C) is an isomorphism and thus the
ringed spaces (Y (C),K0

Y (C)) and (X(C),K0
X(C)) are isomorphic. The following theorem ex-

plains how subintegral extensions, continuous rational functions and biregulous morphisms are
related.

Theorem 1.16. Let π : Y → X be a finite morphism between algebraic varieties over C. The
following properties are equivalent:

1) π is subintegral.
2) πC is bijective.
3) πC is biregulous.
4) The ringed spaces (Y (C),K0

Y (C)) and (X(C),K0
X(C)) are isomorphic.

5) πC is an homeomorphism for the strong topology.
6) πC is an homeomorphism for the Zariski topology.
7) π is an homeomorphism.

Proof. The properties are local, so the proof follows from the affine case in [7, Thm. 3.1, Prop.
4.12]. �
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Note that a crucial point in the proof is played by properness properties : a finite morphism
is proper with respect to the Zariski topology, but also with respect to the strong topology.
We will come back to this point in section 4. Remark also that a morphism satisfying the
conditions of Theorem 1.16 is (bijective thus) automatically birational.

In the context of complex algebraic geometry, we already get a first answer to the question
regarded in this text : under which conditions a bijection is an isomorphism.

Proposition 1.17. Let π : Y → X be a finite morphism between algebraic varieties over C
such that X is seminormal in Y . Then π is an isomorphism if and only if πC is a bijection if
and only if πC is an homeomorphism for the strong topology if and if π is an homeomorphism.

Proof. Assume πC is bijective. Then π is subintegral by Theorem 1.16, and so X+
Y → X

factorises through Y by Proposition 1.12. However by assumption X = X+
Y , so that π is an

isomorphism.
The rest of the proof follows directly from the equivalences of Theorem 1.16. �

In the remaining of the paper, we improve this result in two different directions. First we
investigate on how to drop the finiteness hypothesis, and second we aim to replace the field
of complex numbers with any algebraically closed field of characteristic zero. We may already
mention that the result of the previous proposition is no longer true without the finiteness
hypothesis (cf. Example 2.18).

In the remaining of this section, we show how seminormalization and regulous functions are
in relation for varieties over C. We begin with a description of regular functions on the relative
seminormalization in terms of regular functions on the relative normalization, description that
is valid over any algebraically closed field.

Proposition 1.18. Let Y → X be a dominant morphism between algebraic varieties over an
algebraically closed field k. Let U be an open subset of X. Then

OX+
Y

((π+)−1(U)) = {f ∈ OX′Y ((π′)−1(U)) | f is constant on the fibers of π′k}

where π′ : X ′Y → X (resp. π+ : X+
Y → Y ) is the relative normalization (resp. seminormaliza-

tion) morphism.

Proof. By [7, Cor. 3.7] (which is written in the case U is affine and k = C, but all section
3 there is valid for any open subset U and over any algebraically closed field of characteristic
zero), we have

OX+
Y

((π+)−1(U)) = {f ∈ OX′Y ((π′)−1(U)) | ∀x ∈ U(k), fmx ∈ OX,x +Rad(OX′Y ,x)}

The radical being an intersection of maximal ideals, we see that the functions inOX+
Y

((π+)−1(U))

correspond to the elements of OX′Y ((π′)−1(U)) constant on the fibers of π′k. �

We give a characterization of the structural sheaf of the seminormalization of an algebraic
variety over C in another one with regulous functions generalizing the main result in [7]. In
order to state the result, we use the fibred product of two sheaf extensions.

Theorem 1.19. Let π : Y → X be a dominant morphism between algebraic varieties over C.
Then

(π+
C )∗OX+

Y (C) = K0
X(C)×(πC)∗K0

Y (C)
(πC)∗OY (C)

where π+ : X+
Y → X is the relative seminormalization morphism.
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Proof. We may assume X and Y are affine and thus we want to prove that

C[X+
Y ] = K0(X(C))×K0(Y (C)) C[Y ],

where the right hand side stands for the fibred product of the rings. Let π′ : X ′Y → X be the
relative normalization map.

We consider the following diagram

C[X] → C[X ′Y ] → C[Y ]
↓ ↓ ↓

K0(X(C)) → K0(X ′Y (C)) → K0(Y (C))

where the horizontal maps from the top (resp. the bottom) are given by composition with
respectively π′ and Y → X ′Y (resp. π′C and Y (C)→ X ′Y (C)).

Let f ∈ C[X+
Y ]. We have already f ∈ C[Y ] by definition. Moreover f ∈ K0(X+

Y (C)), so
f ∈ K0(X(C)) because K0(X+

Y (C)) and K0(X(C)) are isomorphic by Theorem 1.16 (more
precisely, as a function on X+

Y (C), the function f is equal to the composition of a regulous
function on X(C) with X+

Y (C)→ X(C)). In particular C[X+
Y ] ⊂ K0(X(C))×K0(Y (C)) C[Y ].

Let f ∈ K0(X(C))×K0(Y (C))C[Y ]. The continuous rational function f is integral over C[X] by
Proposition 1.14, therefore f ∈ C[X ′Y ] since additionally f ∈ C[Y ]. As a function on X ′Y (C),
the function f is constant on the fibers of X ′Y (C) → X(C) since f induces a continuous
function on X(C). By Proposition 1.18, we obtain then f ∈ C[X+

Y ]. It gives the reverse
inclusion K0(X(C))×K0(Y (C)) C[Y ] ⊂ C[X+

Y ]. �

A continuous rational function on a normal complex variety is a regular function by Propo-
sition 1.14. The fact that the normalization of X in Y is not necessarily normal imposes to
take the fibred product with OY (C) in Theorem 1.19. We state as a corollary the particular
case Y = X ′, the statement becoming much simpler by Proposition 1.14.

Corollary 1.20. Let X be an algebraic variety over C. Then (π+
C )∗ : OX+(C) → K0

X(C) is an
isomorphism, where π+ : X+ → X is the seminormalization morphism, and thus

(X+(C),OX+(C)) = (X(C),K0
X(C))

as ringed spaces.

This result will be generalized over any algebraically closed field in Theorem 5.4.

2. saturation

In the classical study of the seminormalization, some basic properties such as the local nature
happen to be not so straightforward to prove. A nice algebraic approach has been proposed
by Manaresi [29], in the spirit of the relative Lipschitz saturation [28], via the saturation of
a ring A in another ring B. The saturation coincides with the seminormalization when the
ring extension is finite. We aim to study the properties of this saturation for more general
extensions, and establish its universal properties.

In this section, we work with a (non-necessarily algebraically closed) field k.

2.1. Universal property of the saturation. The saturation of a ring extension is defined
as follows in [28].
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Definition 2.1. Let A → B be an extension of rings. The saturation of A in B, denoted by
ÂB, is defined by

ÂB = {b ∈ B | b⊗A 1− 1⊗A b ∈ NilRad(B⊗A B)}
where the nil radical NilRad denotes the ideal of nilpotent elements.

We say that A is saturated in B if ÂB = A. The saturation of A is its saturation in A′ and
it is simply denoted by Â. We say that A is saturated if Â = A.

Recall that the nilradical is the intersection of all prime ideals. In order to study the
saturation, we need to understand better the relation between prime ideals in A and B and
prime ideals in B⊗A B. For a ring extension A→ B, we introduce the notation ϕ1, ϕ2 for the
ring morphisms ϕi : B → B⊗A B defined by

(a) ϕ1(b) = b⊗A 1 and ϕ2(b) = 1⊗A b.
The data of a prime ideal ω in B⊗A B, or more precisely the data of a surjective morphism

g : B⊗A B→ k(ω) with kernel ω, is equivalent to the data of a 4-tuple of prime ideals

(p1, p2, q, p) ∈ SpecB × SpecB × SpecA× Spec(k(p1)⊗k(q) k(p2))

such that

p1 = ker(g ◦ ϕ1), p2 = ker(g ◦ ϕ2), q = p1 ∩A = p2 ∩A, k(ω) = k(p)

and such that the composition

B⊗A B→ k(p1)⊗k(q) k(p2)→ k(p)

coincides with g.
We recall that the saturation is a ring, compatible with inclusion.

Lemma 2.2. Let A→ B be an extension of rings.
(1) ÂB is a subring of B containing A.
(2) If A ⊂ C ⊂ B, then ÂB ⊂ ĈB.

Proof. (1) The set ÂB is an A-module as the kernel of the A-module morphism

B
ϕ1−ϕ2−−−−→ B⊗A B

NilRad(B⊗A B)
.

The stability under product comes from the identity

b1b2 ⊗A 1− 1⊗A b1b2 = (b1 ⊗A 1)(b2 ⊗A 1− 1⊗A b2) + (1⊗A b2)(b1 ⊗A 1− 1⊗A b1)
and the fact that NilRad(B⊗A B) is an ideal.

(2) The image of a nilpotent element by the ring morphism B⊗A B → B ⊗C B remains
nilpotent.

�

In order to give a universal property of the saturation, we recall the notion of radicial
extension introduced by Grothendieck [17, I, def. 3.7.2]. We also introduce a notion of radicial
sequence of extensions similarly to [31].

Definition 2.3. (1) An extension of rings A → B is said radicial if SpecB → SpecA is
injective and equiresidual.
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(2) A sequence of extensions A → C → B of rings is said radicial if the restriction of
SpecC → SpecA to the image of SpecB → SpecC is injective and equiresidual.

Remark 2.4. An extension (resp. A sequence of extensions) of fields K → K ′ (resp. K →
K ′ → K ′′) is radicial if and only if K → K ′ is an isomorphism.

The saturation furnishes radicial sequences of extensions.

Proposition 2.5. Let A→ B be a ring extension. For any C ⊂ ÂB, the sequence A→ C → B
is radicial.

Before entering into the proof, we state an elementary result about field extensions. Remark
that it gives a proof of (2) implies (3) of Theorem 2.8 in the special case of a sequence of field
extensions.

Lemma 2.6. Let K → K ′ → K ′′ be a non radicial sequence of field extensions i.e such
that K → K ′ is not an isomorphism. Then, there are two K-morphisms K ′′ → L into a
(algebraically closed) field L whose compositions with K ′ → K ′′ are distinct.

Proof. Since K → K ′ is not an isomorphism, there are two distinct K-morphisms ψ1, ψ2 :
K ′ → L′ into a field L′ by [17, Prop. I.3.7.1.c]. The point is to extend them to K ′′.

For i ∈ {1, 2}, one can embed the field extensions K ′ → K ′′ and ψi : K ′ → L′ into a common
extension K ′ → L′i by amalgamation [9, Chap 5, §4, Prop. 2]. Denote by ψ′i : K ′′ → L′i the
induced extension. By amalgamation of L′1 and L′2 over K ′′, one can assume that the ψ′i take
values in a common field L.

The morphisms ψ′1, ψ′2 : K ′′ → L fulfil the requirements since the restriction of ψ′i to K ′
coincides with ψi. �

Remark 2.7. It is classical that one can choose L = L′ in the proof of Lemma 2.6 if the
extension K ′ → K ′′ is moreover algebraic, and this is used in [28] to prove that the Lipschitz
saturation is stable under contraction : in the setting of Proposition 2.5, if C → B is integral,
then the Lipschitz saturation of A in C is equal to the intersection of C with the Lipschitz
saturation of A in B. In our context the extensions are not assumed to be integral, and this
contraction property does not hold, as illustrated by Example 2.18.

Proof of Proposition 2.5. Let p1, p2 be two prime ideals of B lying over the same ideal q of A.
A first step is to prove that p1 and p2 lye over the same ideal of C.

Let p be a prime ideal of k(p1) ⊗k(q) k(p2), and ω = (p1, p2, q, p) ∈ Spec(B⊗A B) be the
corresponding element, coming with a morphism g : B⊗A B → k(ω) with ker g = ω. For
c ∈ p1 ∩C, we have g ◦ϕ1(c) = g(c⊗A 1) = 0 by construction of g. The element 1⊗A c - c⊗A 1
is nilpotent in B⊗A B by assumption, so that

0 = g(1⊗A c - c⊗A 1) = g ◦ ϕ1(c)− g ◦ ϕ2(c).

As a consequence g ◦ ϕ2(c) = 0 and thus c ∈ p2 ∩C. By symmetry we obtain

p1 ∩C = p2 ∩C.
The second step is to prove the equiresiduality, namely that the extension φ : k(q) →

k(p1 ∩C) is an isomorphism, where q = p1 ∩A. Assume by contradiction that φ is not surjective,
and consider the composition

k(q)
φ−→ k(p1 ∩C)→ k(p1).
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By Lemma 2.6, there are two distinct k(q)-morphisms ψ1, ψ2 : k(p1) → L into some field
L, which remain distinct by restriction to k(p1 ∩C). Thus there exists c ∈ C such that
ψ1 ◦ π(c) 6= ψ2 ◦ π(c), where π : B → k(p1) denote the natural morphism.

The morphisms ψ1 and ψ2 induce a morphism ψ : k(p1)⊗k(q) k(p1)→ L given by
ψ(π(b1)⊗k(q) π(b2)) = ψ1 ◦ π(b1) ψ2 ◦ π(b2)

for b1, b2 ∈ B. The kernel p of ψ gives rise to a prime ideal ω = (p1, p2, q, p) of B⊗A B coming
with a morphism

g : B⊗A B→ k(ω)→ L.

By our choice of c, the element
ψ(π(c)⊗ 1− 1⊗ π(c)) = ψ1 ◦ π(c)− ψ2 ◦ π(c)

is not zero, so that 1⊗A c - c⊗A 1 does not belong to ker g = ω, contradicting the inclusion
C ⊂ ÂB. �

Actually the converse of the preceding result holds true, and it gives rise to universal prop-
erties of the saturation, in terms of radicial sequences of extensions. This result is, up to our
knowledge, not present in the literature.

Theorem 2.8. Let A i−→ C
j−→ B be a sequence of extensions of rings. The following properties

are equivalent:
(1) For any field K, the map

Spec(j) ◦ (Mor(SpecK, SpecB))→ Mor(SpecK, SpecA)

(Spec(j) ◦ α) 7→ Spec(i) ◦ (Spec(j) ◦ α)

is injective.
(2) For any field K, if ψ1 : B → K and ψ2 : B → K are two field morphisms distinct by

composition with j, then they are distinct by composition with j ◦ i.
(3) The sequence A→ C → B is radicial.
(4) j(C) ⊂ ÂB.
(5) The kernel of the morphism C⊗A C→ C defined by c1 ⊗A c2 7→ c1c2 is included in the

nilradical of B⊗A B.

Proof. The equivalence between (1) and (2) is straightforward. Since ker(C⊗A C → C) is
generated by the elements of the form c ⊗A 1 − 1 ⊗A c for c ∈ C, then (4) ⇔ (5). Note that
(4) implies (3) by Proposition 2.5.

Let us prove that (3) implies (2) by contraposition. Let ψ1 : B → K and ψ2 : B → K be
two morphisms in a field K such that ψ1 ◦ j 6= ψ2 ◦ j and ψ1 ◦ j ◦ i = ψ2 ◦ j ◦ i. Let p1, p2
and q denote respectively the kernels of ψ1, ψ2 and ψ1 ◦ j ◦ i : A→ K. For i = 1, 2 we get the
following commutative diagram:

A
i−→ C

j−→ B
ψi−→ K

↓ ↓ ↓ ↗
k(q) → k(pi ∩C) → k(pi)

If p1 ∩C is not equal to p2 ∩C, then SpecC → SpecA is not injective on the image of SpecB.
If p1 ∩C is equal to p2 ∩C, then ψ1 and ψ2 induce two different k(q)-morphisms ψ′ι : k(p1 ∩C)→
K since ψ1 ◦ j 6= ψ2 ◦ j. As a consequence the extension k(q) → k(p1 ∩C) cannot be an
isomorphism.
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In both cases, the extension A→ C → B is not radicial.

Finally we prove that (2) implies (4) by contraposition. By assumption there are c ∈ C
and ω ∈ Spec B⊗A B such that 1⊗A c - c⊗A 1 /∈ ω. The ideal ω comes with a morphism
g : B⊗A B→ K with ker g = ω. Consider the composition of g with the morphisms ϕ1 and ϕ2

defined in (a). By construction g ◦ϕ1 : B → K coincides with g ◦ϕ2 : B → K when composed
with j ◦ i, but not when composed with j because g ◦ ϕ1(j(c)) 6= g ◦ ϕ2(j(c)). It contradicts
(2). �

If we focus on the particular case of radicial extensions rather that sequences, we recover
[17, Prop. I.3.7.1].

Proposition 2.9. Let i : A → B be an extension of rings and Spec(i) : SpecB → SpecA be
the associated map. The following properties are equivalent:

(1) For any field K, the map

Mor(SpecK, SpecB)→ Mor(SpecK, SpecA)

α 7→ Spec(i) ◦ α
is injective.

(2) If ψ1 : B → K and ψ2 : B → K are two distinct morphisms in k then the compositions
ψ1 ◦ i and ψ2 ◦ i are different.

(3) i : A→ B is radicial.
(4) B = ÂB.
(5) The kernel of the morphism B⊗A B→ B defined by b1 ⊗A b2 7→ b1b2 is included in the

nilradical of B⊗A B.

Proof. Direct consequence of Theorem 2.8, using the fact that an extension A→ B is radicial
if and only if the sequence of extensions A→ B → B is so. �

2.2. Comparison between saturation and seminormalization. In general, the seminor-
malization is only included in the saturation.

Lemma 2.10. Let A→ B be an extension of rings. Then

A+
B ⊂ ÂB.

Proof. Since A → A+
B is subintegral then A → A+

B → B is radicial. The inclusion follows by
Theorem 2.8. �

Note that there is no special relationship between the saturation and the relative normal-
ization. However saturation and seminormalization coincide when we restrict to integral ex-
tensions.

Proposition 2.11. Let A→ B be an integral extension of rings. Then

A+
B = ÂB.

Proof. The direct inclusion comes from Lemma 2.10.
The sequence A → ÂB → B is radicial by Theorem 2.8. Since ÂB → B is integral then

SpecB → Spec ÂB is surjective by Proposition 1.1. It follows that A → ÂB is radicial and
integral and thus subintegral. This forces ÂB to be equal to the seminormalization A+

B of A in
B by Theorem 1.6. �
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2.3. Saturation for varieties. We begin with the definition of radiciality and saturation for
morphisms.

Definition 2.12. (1) Let π : Y → X be a dominant morphism between algebraic varieties
over k. We say that OX → π∗OY is radicial if for any open subset U ⊂ X the extension
OX(U)→ OY (π−1(U)) is radicial.

(2) Let Y φ→ Z
ψ→ X be a sequence of dominant morphisms between algebraic varieties over

k. We say that OX → ψ∗OZ → (ψ ◦ φ)∗OY is radicial if for any open subset U ⊂ X
the sequence of extensions OX(U)→ OZ(ψ−1(U))→ OY ((ψ ◦ φ)−1(U)) is radicial.

(3) We say that X is saturated in Y if OX is saturated in π∗OY , i.e for any open subset
U ⊂ X then OX(U) is saturated in OY (π−1(U)).

In order to translate the universal property of the saturation in terms of varieties, we recall
the notion of universal injectivity from [17, Chap. I, 3.4.3].

Definition 2.13. (1) A morphism π : Y → X between algebraic varieties over k is said
universally injective if for any field extension k → K, the map πK : Y (K) → X(K) is
injective.

(2) A sequence of morphisms Y → Z → X between algebraic varieties over k is said
universally injective if for any field extension k → K, the map Z(K) → X(K) is
injective by restriction to the image of Y (K)→ Z(K).

In this setting, the universal property given in Theorem 2.8 implies the following statement.

Proposition 2.14. Let Y φ→ Z
ψ→ X be a sequence of dominant morphisms between algebraic

varieties over k. The following properties are equivalent:
(1) Y → Z → X is universally injective.
(2) The sequence OX → ψ∗OZ → (ψ ◦ φ)∗OY is radicial.
(3) For any open subset U ⊂ X we have OZ(ψ−1(U)) ⊂ ÔX(U)OY ((ψ◦φ)−1(U)).

In the case of a morphism rather than a sequence of morphisms, we obtain the analogue of
Proposition 2.9 :

Proposition 2.15. Let π : Y → X be a dominant morphism between algebraic varieties over
k. The following properties are equivalent:

(1) π is universally injective.
(2) OX → π∗OY is radicial.
(3) For any open subset U ⊂ X we have OY (π−1(U)) = ÔX(U)OY (π−1(U)).

Remark 2.16. Let π : Y → X be a dominant morphism between affine algebraic varieties
over k. Contrarily to seminormalization case it is not clear if k̂[X]k[Y ] is a finitely generated
algebra over k and thus lead to the existence of a variety.

Finally we state the relation between saturation and seminormalization for varieties induced
by Lemma 2.10 and Proposition 2.11.

Proposition 2.17. Let π : Y → X be a dominant morphism between varieties over k. If X is
saturated in Y , then X is seminormal in Y . If π is moreover integral, then the converse holds
true.
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We end this section by providing explicit examples to illustrate that the notion of saturation
and seminormalization do not coincide for varieties, in any dimension. The examples are built
on Example 2.18, constructed from a nodal curve, for which we offer two arguments : a simple
geometric one, and a direct computational one in order to construct the generalization in any
dimension in Example 2.19.

Example 2.18. (1) Let X be the nodal plane curve with coordinate ring A = k[X] =
k[x, y]/(y2 − x2(x + 1)). Its normalization X ′ has coordinate ring A′ = k[X ′] =
k[x, z]/(z2 − (x + 1)) = A[y/x] and the inclusion A → A′ is given by (x, y) 7→ (x, xz).
Let Y be defined by removing one of the two points p = (0, 1) and q = (0,−1) of X ′(k)
lying above the singular point of X(k), say p. The coordinate ring of Y is

B = k[Y ] = k[x, z, s]/(z2 − (x+ 1), s(z − 1)− 1) = A′[1/s],

and we have a sequence of inclusions A→ A′ → B.
Then A+

B = A whereas ÂB = B. To see the first point, note that X is seminormal in
Y since the variety X is seminormal (see [16]). For the second point, note that A→ B
is radicial because, for irreducible curves, the prime ideals correspond to the generic
point and the closed points, and here Y → X is birational with Y (k)→ X(k) bijective.
As a consequence ÂB = B by Proposition 2.9.

(2) We revisit the nodal curve example proving the equality ÂB = B using the very defi-
nition of the saturation. Keeping previous notation, set α = (z ⊗A 1) − (1 ⊗A z) and
β = (s ⊗A 1) − (1 ⊗A s). It suffices to prove that α and β are nilpotent elements of
B⊗A B. Indeed ÂB is a ring containing x, z and s so that ÂB = B in that case.

Note that

xα = x
(
(z + 1)⊗A 1− 1⊗A (z + 1)

)
=

(
x(z + 1)⊗A 1

)
−
(
1⊗A x(z + 1)

)
=

(
(y + x)⊗A 1

)
−
(
1⊗A (y + x)

)
since y + x = x(z + 1) in B

= 0

hence

α2 = α
(
(z + 1)⊗A 1− 1⊗A (z + 1)

)
= α(xs⊗A 1− 1⊗A xs) since xs = z + 1 in B
= xα(s⊗A 1− 1⊗A s)
= 0.

Actually we even have α = 0 in B⊗A B, since a straightforward computation shows
that α = 1

4
α3. Finally, using the equality α = (z − 1) ⊗A 1 − 1 ⊗A (z − 1) and the

relation s(z − 1) = 1, we observe that

0 = (s⊗A 1)α(1⊗A s) = −β.

Example 2.19. Consider the curves X and Y as in Example 2.18. For n ≥ 1, the variety
X × An is seminormal in Y × An, whereas the saturation of X × An in Y × An is Y × An.

To see this, note that X and An are seminormal, so X × An is also seminormal [16, Cor.
5.9] and thus X × An is seminormal in Y × An.

For the saturation, if the radiciality of

k[X × An] = A[t1, . . . , tn]→ B[t1, . . . , tn] = k[Y × An]
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is not so straightforward since we no longer work with curves as in Example 2.18.(1), the
computations done in Example 2.18.(2) still prove that ̂A[t1, · · · , tn]B[t1,··· ,tn] contains x, z and
s, and so is equal to B[t1, . . . , tn].

3. Isomorphism versus homeomorphism for complex varieties

Given a morphism π : Y → X between algebraic varieties, we are looking for topological
conditions on π together with geometric conditions onX which assure that π is an isomorphism.

After some generalities on the relation between homeomorphism with respect to Zariski
topology, isomorphism and normality, we focus on the particular case of complex varieties for
which we provide a complete solution to this problem using the strong topology. A generaliza-
tion over any algebraically closed field of characteristic zero is developed in Section 4.

From now on k is algebraically closed.

3.1. Bijection, birationality, homeomorphism. We aim to compare the notions of bijec-
tion, birational morphism, homeomorphism with respect to Zariski topology at the spectrum
level and homeomorphism with respect to Zariski topology at the level of closed points.

To begin with, recall that it follows from the Nullstellensatz that the property for a morphism
to be an homeomorphism with respect to the Zariski topology is already decided at the level
of closed points.

Proposition 3.1. Let π : Y → X be a morphism between algebraic varieties over k. Then π is
an homeomorphism if and only if πk is an homeomorphism with respect to the Zariski topology.

It is clear that an homeomorphism induces a bijection at the level of k-rational points, the
converse being false in general as illustrated by Example 3.3 below.

Restricting our attention to curves, note that the converse holds true in the case of a mor-
phism between irreducible algebraic curves. The irreducibility of the source space is crucial
here, consider for instance the disjoint union of a point with a line minus a point, sent to
a line. However even for morphisms between irreducible curves, a birational homeomorphism
need not be an isomorphism as illustrated by Example 2.18, where the morphism Y (k)→ X(k)
is a bijection between irreducible curves, so Y → X is an homeomorphism which is not an
isomorphism since X is singular.

An important contribution to these questions is the fact that the bijectivity at the level of
closed points induces the birationality for irreducible varieties, by Zariski Main Theorem.

Proposition 3.2. Let X and Y be irreducible varieties over k. Then a morphism from Y to X
inducing a bijection at the level of k-rational points is birational. If in addition X is normal,
it is an isomorphism.

The proof is classical, but we include it for the clarity of the exposition.

Proof. First note that Y → X is quasi-finite by [36, Lem. 20.10] and the Nullstellensatz. By
Grothendieck’s form of Zariski Main Theorem, a quasi-finite morphism π : Y → X between
irreducible algebraic varieties over k factorizes into an open immersion Y → Z and a finite
morphism Z → X. So we identify Y with an open subset of Z and further assume that Y is
Zariski dense in Z.

Assume πk : Y (k) → X(k) bijective, so that X, Y and Z have the same dimension. Recall
that the degree of the extension K(X) → K(Z) = K(Y ) is the cardinal of a generic fiber
of Z(k) → X(k) by [34, Thm. 7]. Such a generic fiber is in general in Y (k), otherwise the



18 FRANÇOIS BERNARD, GOULWEN FICHOU, JEAN-PHILIPPE MONNIER AND RONAN QUAREZ

dimension of dim(Z \ Y ) would be ≥ dimX, in contradiction with the density of Y . Thus the
finite morphism Z → X has necessarily degree one, so that Z → X is birational and thus also
π.

Assuming in addition X normal implies that Z is isomorphic to X. The open immersion
is surjective at the level of k-rational points and from the Nullstellensatz it follows that it is
surjective, thus an isomorphism. �

The following example shows that a morphism which gives a bijection at the level of k-
rational points need not be an homeomorphism.

Example 3.3. (1) Consider the varieties of Example 2.19, for which we have an open
immersion ψ and a finite morphism φ as follows :

π : Y × An ψ−→ X ′ × An φ−→ X × An .

Even if πk is still bijective, the morphism π is no longer an homeomorphism when n > 0.
To see it, it suffices to consider the case n = 1. Denote by O ∈ (X × A1)(k) the

origin, and by P = (0, 1, 0) and Q = (0,−1, 0) the two points in the fiber φ−1(O),
where the coordinates are (x, z, t1) in the notation of Example 2.19. Let C be the curve
in X ′ × A1 given by intersection with the plane x + z + 1 = 0 in A2×A1. Note that
C = ({Q} × A1) and P /∈ C, so that C \ {Q} is a closed subset of Y × A1. If π was
an homeomorphism, then πk(C(k) \ {Q}) should be Zariski closed in (X × A1)(k) by
Proposition 3.1. However O is in the closure of πk(C(k) \ {Q}).

(2) This example is also interesting to consider relatively to Grothendieck’s notion of uni-
versal homeomorphism [18, Defn. 3.8.1]. Recall that a morphism Y → X is a universal
homeomorphism if Y ×X Z → Z is an homeomorphism for any morphism Z → X.

The morphism Y → X of Example 2.18 is an homeomorphism but not a universal
homeomorphism. Indeed, let Z = X × A1 and consider the base change Z → X given
by the first projection. We have already checked that Y ×X Z = Y ×A1 → Z = X×A1

is not closed.

3.2. Complex varieties and the strong topology. We focus now on the particular case
of complex algebraic varieties, in order to measure the influence of the strong topology. For a
finite morphism π : Y → X between algebraic varieties over C, we know from Theorem 1.16
that the properties :
- πC is bijective,
- πC is an homeomorphism for the strong topology,
- π is an homeomorphism
are equivalent. This is no longer true without the finiteness hypothesis. Actually, an home-
omorphism with respect to Zariski topology need not be an homeomorphism with respect to
the strong topology, even for irreducible affine curves.

Example 3.4. The morphism Y (C)→ X(C) from Example 2.18 for k = C is not an homeo-
morphism with respect to the strong topology. Indeed, consider a small open ball B of Y (C)
containing the point that is sent to the singular point of X(C) by Y (C) → X(C). Then the
image of Y (C) \B is not closed.

Note that Y (C) × Cn → X(C) × Cn is not an homeomorphism with respect to the strong
topology either, following the same proof as in Example 3.3.

The following two results measure the rigidity of the strong topology.
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Proposition 3.5. Let π : Y → X be a morphism between algebraic varieties over C. If πC is
an homeomorphism with respect to the strong topology, then π is finite.
Proof. It is sufficient to assume that Y and X are irreducible. By Grothendieck’s form of
Zariski main Theorem, π factorizes into an open immersion g : Y → Z and a finite morphism
h : Z → X. We consider Y (C) embedded as an open Euclidean subset of Z(C). We also
assume Y to be Zariski dense in Z, and thus Y (C) is dense in Z(C) for the strong topology.

Since πC is bijective, the finite morphism h is birational by Proposition 3.2. Moreover hC
is surjective by Proposition 1.1. Let us prove that hC is also injective. If not, there exist
y ∈ Y (C) and z ∈ Z(C) \ Y (C) with hC(y) = hC(z). Denote this point by x ∈ X(C). Let
Vy be a closed Euclidean neighborhood of y in Y (C), and Vz a closed Euclidean neighborhood
of z in Z(C) disjoint from Vy. Then Vx = hC(Vy) is a closed Euclidean neighborhood of x in
X(C) by assumption on πC.

By the Curve Selection Lemma [8, Thm. 2.5.5], there is a continuous curve γ : [0, 1)→ Z(C)
with γ(0) = z and γ(0, 1) ⊂ Vz ∩ Y (C). Then hC ◦ γ : [0, 1) → X(C) is a continuous curve
with hC ◦ γ(0) = x, so it meets Vx \ {x} = hC(Vy \ {y}). As a consequence Vy and Vz cannot
be disjoint because πC is bijective.

Therefore hC is bijective and thus gC is also bijective. The Nullstellensatz forces g to be a
bijective open immersion, thus an isomorphism. As a consequence π is finite like h. �

Corollary 3.6. Let π : Y → X be a morphism between algebraic varieties over C. If πC is an
homeomorphism with respect to the strong topology, then π is an homeomorphism.
Proof. The finiteness follows from Proposition 3.5. Being a bijection on the complex points, it
is an homeomorphism by Theorem 1.16. �

Corollary 3.6 admits a converse, for varieties of dimension at least two.
Proposition 3.7. Let π : Y → X be a morphism between irreducible algebraic varieties over
C of dimension at least two. If π is an homeomorphism, then πC is an homeomorphism with
respect to the strong topology.
Proof. By [38, Theorem 2.2], the morphism π is finite (it is also birational by Proposition 3.2),
so we conclude using Theorem 1.16. �

Proposition 3.7 is however not true for curves as illustrated by Example 2.18.
As illustrated by Proposition 3.2, the normality of the target space plays a role to upgrade

a bijection into an isomorphism. In the context of complex varieties, next result shows that
seminormality is the correct notion to associate to an homeomorphism with respect to the
strong topology in order to obtain an isomorphism.
Theorem 3.8. Let π : Y → X be a morphism between algebraic varieties over C such that πC
is an homeomorphism with respect to the strong topology. Then π is an isomorphism if and
only if X is seminormal in Y .
Proof. To prove the non trivial implication, note that π is finite by Proposition 3.5. Since X
is seminormal in Y then the result follows from Proposition 1.17. �

Note that we cannot replace the topological assumption on πC by πC is bijective or even π
is an homeomorphism, as illustrated by Example 2.18. We are now able to give an alternative
version of [38, Thm. 2.4] in the case of complex varieties, where we replace Zariski topology
by the strong one. In particular our statement is valid without any restriction on dimension.
It is also a generalization of Proposition 1.17.
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Corollary 3.9. Let π : Y → X be a morphism between algebraic varieties over C. If πC
is an homeomorphism with respect to the strong topology and X is seminormal, then π is an
isomorphism.

Proof. If X is seminormal then X is seminormal in Y , so the result follows from Theorem
3.8. �

We end the section by a statement with a slightly different flavour. Forgetting about the
strong topology, we wonder what is the correct assumption to add to an homeomorphism in
order to obtain an isomorphism. It is also an extended version of Proposition 1.17.

Theorem 3.10. Let π : Y → X be a morphism between algebraic varieties over C such that π
is an homeomorphism. Then π is an isomorphism if and only if X is saturated in Y .

Proof. Assume X is saturated in Y , the converse implication being trivial. We may assume X
and Y irreducible, since the irreducible components of X and Y are homeomorphic one-by-one,
and each saturated in the other by definition of a radicial extension or sequence.

Assume first that the dimension of X and Y is at least two. Then πC is an Euclidean
homeomorphism by Proposition 3.7, so π is finite by Proposition 3.5. As a consequence X is
seminormal Y by Proposition 2.11, and so π is an isomorphism by Theorem 3.8.

AssumeX and Y are curves. ThenX and Y are birational by Proposition 3.2. The extension
OX → π∗OY is then radicial since πC is bijective. We conclude that π is an isomorphism using
Proposition 2.15. �

Note that, even though the statement of Theorem 3.10 does not mention the strong topology,
it plays a crucial role in our proof.

4. Generalizing the strong topology of C

The goal of this section is to generalize Theorems 3.8 and 3.10 from complex algebraic
geometry to algebraic geometry over any algebraically closed field of characteristic zero. Since
there is a priori no natural strong topology in this situation, we use the theory of real closed
fields to define such a topology as in [24, 21] (see also [6] for a recent cohomological use of this
approach).

Let k be an algebraically closed field of characteristic zero. From Artin Schreier theory [4],
we know the existence of (many) real closed subfields of k with algebraic closure k. Let R ⊂ k
denote one of these real closed fields. Then k = R[

√
−1] and R comes with a unique ordering.

The ordering on R gives rise to an order topology on the affine spaces Rn, in a similar way
than the Euclidean topology on Rn, even if the topological space R is not connected (except
in the case R = R) or the closed interval [0, 1] is in general not compact.

We use this choice of R to define a topology on the closed points of an algebraic variety
over k. First, for an algebraic variety X over R, choose an affine covering of X by Zariski
open subsets Ui, and endow each affine sets Ui(R) with the order topology. These open sets
glue together to define the order topology on X(R), and this topology does not depend on the
choice of the covering. This topological space can be endowed additionally with the structure
of a semialgebraic space by considering the sheaf of continuous semialgebraic functions [11, 12],
or even of a real algebraic variety with the sheaf of regular functions on the R-points [8, 22].

Consider now the case of a quasi-projective algebraic variety X over k. By Weil restriction
[40, 19], we associate to X an algebraic variety XR over R whose R-points are in bijection
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with the k-points of X. We endow X(k) with the topology induced by the order topology on
XR(R), and we call it the R-topology on X(k).

If X is no longer quasi-projective, then the Weil restriction does not necessarily exist. Any-
way choose an affine open covering (Ui)i∈I of X, endow the R-points of the Weil restrictions
(Ui)R with the order topology, and note that these open sets glue together to define a topology
on X(k). This topology does not depend on the choice of the covering by [33, Lemma 5.6.1],
and we call it the R-topology on X(k). Again one can consider X(k) as a semialgebraic space
in the sense of [12] or as a real algebraic variety in the sense of [8].

The R-topology on X(k) has many good properties, for instance X(k) is semialgebraically
connected and of pure dimension twice the dimension of X if X is irreducible [24]. For k = C
and R = R, the R-topology is nothing more than the strong topology. The choice of a different
real closed field R in k will lead to different topologies on X(k) (for instance the semialgebraic
fundamental group does depend on the choice of R [24]). Already with k = C, one can choose
a real closed field different from R, even for instance a non-Archimedean R ⊂ C. We will see
however that in our setting, the choice of the real closed field is transparent.

4.1. Basics on the R-topology of k-varieties. In this section we fix a real closed field R
with algebraic closure k.

Let X be a quasi-projective algebraic variety over k. Recall that by Weil restriction [19, 33] :
(1) The variety XR is nonsingular if X is nonsingular. More precisely, a k-point in X is

singular if and only if its corresponding R-point in XR is singular.
(2) A Zariski open subset U ⊂ X induces a Zariski open subset UR ⊂ XR.
(3) A proper morphism Y → X between quasi-projective algebraic varieties over k induces

a proper morphism YR → XR.
(4) A finite morphism Y → X between quasi-projective algebraic varieties over k induces

a finite morphism YR → XR.
LetX be an affine algebraic variety over k. A regular function onX gives rise to a continuous

mapping XR(R) → R2. Indeed the regular function is polynomial, and by Weil restriction a
polynomial function to k induced a polynomial mapping to R2 by taking the real and imaginary
parts. Finally a polynomial function is continuous with respect to the R-topology.

The topological properties of R-varieties coming from k-varieties are much more moderate
than for general R-varieties. For instance, if complex irreducible varieties are locally of equal
dimension, irreducible algebraic subsets of Rn may have isolated points. From [8], a real
algebraic variety is called central if its subset of nonsingular points is dense with respect to the
R-topology.

For a subset A ⊂ X(k), we denote by AR the closure of A with respect to the R-topology.
We denote by Reg(X(k)) the set of nonsingular points of X(k).

Proposition 4.1. Let X be an irreducible algebraic variety over k. Then X(k) is central :

Reg(X(k))
R

= X(k).

Proof. The question being local, it suffices to assume X is affine, and in particular the Weil
restriction of X exists.

If X is nonsingular, then so is XR by Weil restriction, and so XR(R) is central.
Otherwise, consider a resolution σ : X̃ → X of the singularities of X which exists by [20]

since k has characteristic zero. Then σk is surjective since k is algebraically closed, and one
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can assume that σk induces a bijection

Ũ = σ−1k (Reg(X(k))→ Reg(X(k)) = U.

Let x ∈ X(k), and choose a preimage x̃ ∈ σ−1k (x). The centrality of X̃(k) implies the existence
of a continuous semialgebraic curve γ̃ : [0, 1] → X̃(k) with γ̃(0) = x̃ and γ̃(t) ∈ Ũ for
t ∈ (0, 1] ⊂ R by the Curve Selection Lemma [8, Theorem 2.5.5]. Its composition γ = σk ◦ γ̃
is a continuous semialgebraic curve from [0, 1] to X(k) with γ(0) = x and γ(t) ∈ U for
t ∈ (0, 1] ⊂ R. As a consequence x belongs to the closure with respect to the R-topology of
Reg(X(k)) in X(k), and so X(k) is central. �

Remark 4.2. In particular, if the irreducible algebraic variety X over k has dimension d, then
the local semialgebraic dimension of X(k) at any point x ∈ X(k) is equal to 2d.

The following result is not valid in general for algebraic varieties over R, and even for R = R.

Lemma 4.3. Let X be an irreducible algebraic variety over k. A non-empty Zariski open
subset of X(k) is dense with respect to the R-topology.

Proof. The question being local, it suffices to assume X is affine, and in particular the Weil
restriction of X exists.

A Zariski open subset remains Zariski open by Weil restriction. Combined with Proposition
4.1, it suffices to check that a non-empty Zariski open set U in a central irreducible algebraic
variety over R is dense with respect to the R-topology. This last property is classical ; for
instance, the complement is an algebraic subset of strictly smaller dimension, and a semial-
gebraic triangulation of X(k) adapted to the complement shows that locally, a point in the
complement is in the boundary of a semialgebraic simplex in U(k). �

Over a general real closed field, the notion of compact sets is advantageously replaced by
closed and bounded semialgebraic sets. For instance, the image of a closed and bounded semial-
gebraic set by a continuous semialgebraic map is again closed and bounded (and semialgebraic)
[8, Theorem 2.5.8]. A semialgebraic map is said to be proper with respect to the R-topology
if the preimage of a closed and bounded semialgebraic set is closed and bounded.

Lemma 4.4. Let σ : X̃ → X be a proper morphism between irreducible varieties over k. Then
σk is proper with respect to the R-topology. If σ is moreover birational, then σk is surjective.

Proof. The notion of properness is local on the target, so that there is an affine covering of
X such that for any open affine subset U in the covering, the restriction σ′ = σ|σ−1(U) of σ
to σ−1(U) is proper. The properness of σ′ is kept by Weil restriction, so that σ′k is proper
with respect to the R-topology by [11, Theorem 9.6]. Finally σk is proper with respect to the
R-topology since that notion of properness is local on the target too by [12, Proposition 5.7].

If σ is birational, there are Zariski open sets Ũ ⊂ X̃ and U ⊂ X such that σ|Ũ is a bijection
onto U . Then

U(k) = σk(Ũ(k)) ⊂ σk(Ũ(k)
R

) = σk(X̃(k)),

the right hand side equality coming from Lemma 4.3. Finally σk(X̃(k)) is closed for the R-
topology by properness of σk, so that taking the closure with respect to the R-topology gives
the result by Lemma 4.3. �

Lemma 4.5. Let σ : X̃ → X be a finite morphism between algebraic varieties over k. Then
σk is closed with respect to the R-topology.
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Proof. By [11, Theorem 4.2], a finite morphism between algebraic varieties over R is closed
with respect to the R-topology. The result follows since finiteness is local and Weil restriction
preserves finite morphisms.

Alternatively when X is irreducible, a finite morphism is proper, and apply Lemma 4.4. �

4.2. Subintegrality and homeomorphisms. We are now in position to generalize the char-
acterization of subintegrality via homeomorphisms, as in Theorem 1.16, over any algebraically
closed field of characteristic zero.

Theorem 4.6. Let π : Y → X be a finite morphism between algebraic varieties over k. The
following properties are equivalent:

1) π is subintegral.
2) πk is bijective.
3) πk is an homeomorphism for the R-topology.
4) πk is an homeomorphism for the Zariski topology.
5) π is an homeomorphism.

Proof. The equivalence between 4) and 5) is given by Proposition 3.1. Using the Nullstellensatz,
by Proposition 1.1 and proceeding similarly to Bernard’s proof of [7, Thm. 3.1] then we get
the equivalence between 1), 2) and 5).

It is clear that 3) implies 2). The proof that one of 1), 2), 4), 5) implies 3) is a direct
consequence of Lemma 4.5. Indeed assuming 2) for instance, the map πk admits an inverse,
and this inverse is continuous with respect to the R-topology since πk is a closed map by
Lemma 4.5. �

Remark 4.7. The other equivalent statements of Theorem 1.16 make use of the notions of
regulous functions on a complex algebraic variety. We provide in the last section of the paper a
full treatment of this notion over k, and so we are able to provide with Theorem 5.3 a complete
generalization of Theorem 1.16.

Using the Curve Selection Lemma [8, Thm. 2.5.5] over a real closed field, and repeating
word by word the proof of Proposition 3.5, we get:

Proposition 4.8. Let π : Y → X be a morphism between algebraic varieties over k. Let R be a
real closed subfield of k such that R[

√
−1] = k. If πk is an homeomorphism for the R-topology,

then π is finite.

We have now developed all the material necessary to repeat the proof of Theorem 3.8 for
algebraic varieties over k.

Theorem 4.9. Let π : Y → X be a morphism between algebraic varieties over k. Let R be a
real closed subfield of k such that R[

√
−1] = k, and assume πk is an homeomorphism for the

R-topology. Then π is an isomorphism if and only if X is seminormal in Y .

Similarly, we obtain a generalization of Theorem 4.10.

Theorem 4.10. Let π : Y → X be a morphism between algebraic varieties over k such that π
is an homeomorphism. Then π is an isomorphism if and only if X is saturated in Y .

Note that there is no reference to any real closed field in the statement of Theorem 4.10,
but such a real closed subfield of k plays a major role in our proof.
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5. Continuous rational functions on the k-rational points

The aim of this section is to defined a notion of continuous rational function on an algebraic
variety defined over k. More precisely, for R a real closed field such that R[

√
−1] = k, we

prove that the continuity of a rational function with respect to the R-topology, is independent
of the choice of the real closed field R. This will enable to complete Theorem 4.6 in a full
generalization of Theorem 1.16.

5.1. Continuous rational functions. We fix a real closed field R such that R[
√
−1] = k.

A rational function that is continuous with respect to the R-topology can be characterized by
the fact that it becomes regular after applying a relevant proper birational map.

Proposition 5.1. Let X be an algebraic variety over k. Let f : X(k) → k be an everywhere
defined function, and assume that f coincides with a regular function on a Zariski open subset
of X(k).

Then, f is continuous with respect to the R-topology if and only if there is a proper birational
map σ : X̃ → X such that f ◦ σk : X̃(k)→ k is regular.

Proof. Arguing similarly to [7, Lem. 4.4], we may assume X is irreducible. Assume f to be
continuous, and denote by g the rational function on X that coincides with f on a Zariski open
subset of X(k). One can resolve the indeterminacy of the rational map g by a sequence of
blowings-up along nonsingular centers, giving rise to a proper birational morphism σ : X̃ → X
such that g ◦σk : X̃(k)→ P1(k) is regular. The functions f ◦σ and g ◦σ are equal on a Zariski
dense subset of X̃(k), so they are equal on a subset dense with respect to the R-topology by
Lemma 4.3. Therefore they coincide on X̃(k) by continuity. As a consequence the regular
function g ◦ σk takes its values in k rather than in P1(k).

Conversely, let C ⊂ k be a closed subset with respect to the R-topology. The set (f◦σk)−1(C)
is closed by continuity of f ◦ σk, and its image under σk is equal to f−1(C) by surjectivity of
σk via Lemma 4.4. As a consequence f−1(C) is closed by properness of σk with respect to the
R-topology, thanks to Lemma 4.4 again. �

Note that the characterization of continuity given above, via a resolution of indeterminacy,
does not refer to the choice of R. In particular, the continuity with respect to the R-topology
of a rational function is independent of the choice of the real closed field R.

Let X be an algebraic variety over k. Let U ⊂ X be an open subset of X. A continuous
rational function on U(k) is a rational function on X that admits a continuous extension on
U(k), when X(k) is endowed with the R-topology for some real closed field R ⊂ k whose
algebraic closure is k. The continuous rational function on the closed points of an algebraic
variety X over k forms a sheaf K0

X(k) on X(k) equipped with the Zariski topology, similarly to
the complex case. The notion of regulous function can be defined exactly as over C, as those
continuous rational functions that remains rational by restriction to any subvariety. If X is
affine, we denote by K0(X(k)) the ring of continuous rational functions on X(k).

The set of indeterminacy points of a continuous rational function is related to the normal
locus of the ambient variety.

Proposition 5.2. Let X be an algebraic variety over k. We have:
1) K0

X(k) ⊂ (π′k)∗OX′(k) where π′ : X ′ → X is the normalization map.
2) If x is a normal closed point of X(k) then K0

X(k),x = OX,x.
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Proof. The properties are local so we may assume X is affine. The original proof in [7, Propo-
sition 4.7] uses only one argument related to the complex setting. It is the density with respect
to the strong topology of a Zariski dense open set, that can be replaced by Lemma 4.3. Note
that Hartogs Lemma used in the proof is valid over k : if X is normal then the restriction map
O(X(k))→ O(Reg(X(k))) is surjective since

dim(X(k) \ Reg(X(k))) ≤ dim(X(k))− 2

by [23, p. 124]. �

We are now in position to state the generalization of Theorem 4.6. The rest of the paper
will be devoted to its proof.

Theorem 5.3. Let π : Y → X be a finite morphism between algebraic varieties over k. The
following properties are equivalent:

1) π is subintegral.
2) πk is bijective.
3) πk is biregulous.
4) The ringed spaces (Y (k),K0

Y (k)) and (X(k),K0
X(k)) are isomorphic.

5) πk is an homeomorphism for the R-topology.
6) πk is an homeomorphism for the Zariski topology.
7) π is an homeomorphism.

The proof will follow the same lines as the original proof over C as in [7]. We reproduce the
main steps, with the adequate modifications due to the modification of the topology, since it
leads to interesting auxiliary results.

5.2. Seminormalization and continuous rational functions. A first result is that the
ring of continuous rational functions is isomorphic to the ring of regular functions on the
seminormalization.

Theorem 5.4. Let X be an algebraic variety over k. The ring space (X+(k),OX+(k)) is
isomorphic to (X(k),K0

X(k)).

Proof. Arguing similarly to [7, Lem. 4.4], we may assumeX irreducible. Moreover the property
is local, so we can assume X to be affine, and what we have to prove is

K0(X(k)) = k[X]+ = k[X+].

Let π′ : X ′ → X be the normalization map. By Proposition 1.18, we get

k[X+] = {f ∈ k[X ′] | f is constant on the fibers of π′k}.

Let f ∈ K0(X(k)). Clearly the continuous rational function f ◦ π′k is constant on the fibers
of π′k. Using Proposition 5.2, we have that f ◦ π′k is regular on X ′(k) and thus f ◦ π′k ∈ k[X+].
We have proved

K0(X(k)) ⊂ k[X+].

Conversely let f ∈ k[X+]. Let π+ denote the map X+ → X. Since π+ is subintegral then
it follows from Theorem 4.6 that π+

k is an homeomorphism with respect to the R-topology.
Thus the function h = f ◦ (π+

k )−1 is continuous on X(k). Since π+ is birational, there exist a
non-empty Zariski open subset U ⊂ X(k) and g ∈ O(U) such that g ◦ (π+

k )|(π+
k )−1(U) = f on
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(π+
k )−1(U). Since h ◦ π+

k = f on X+(k) and π+
k is bijective then h is rational on X(k), and so

h ∈ K0(X(k)). It follows that the injective morphism

K0(X(k)) ⊂ k[X+], h 7→ h ◦ π+
k

is surjective and the proof is done. �

Remark 5.5. Since X+ doesn’t depend of the choice of the real closed field, Theorem 5.4 gives
another way to check that the continuity property of a rational function does not depend on
the chosen real closed field.

A morphism π : Y → X between algebraic varieties over k induces a morphism K0
X(k) →

(πk)∗K0
Y (k) since a regular morphism induces a continuous mapping. We can characterize the

subintegrality of a finite morphism π using π∗k, generalizing the complex version in Theorem
4.6.

Proposition 5.6. Let π : Y → X be a finite morphism between algebraic varieties over k.
The following properties are equivalent:

(1) π is subintegral.
(2) The ringed spaces (Y (k),K0

Y (k)) and (X(k),K0
X(k)) are isomorphic.

Proof. Assuming π to be subintegral, we know from Theorem 4.6 that it is equivalent to
the property that πk is bijective, and so π is birational. Then X and Y have the same
seminormalization, and so π∗k is an isomorphism by Theorem 5.4.

Conversely, if πk was not bijective, we may separate two different points y, y′ in the fibre
π−1k (x) of some x ∈ X(k) by a regular function f on Y (k). But such a function is continuous
with respect to the R-topology, so belongs to the image of π∗k and in particular should be
constant on the fibres of πk. �

As a consequence, we obtain that a continuous rational function is regulous (in the sense of
Remark 1.13).

Corollary 5.7. Let X be an algebraic variety over k and let f ∈ K0(X(k)). For any Zariski
closed subset V of X, the restriction f|V (k) belongs to K0(V (k)).

Proof. The proof of [7, Proposition 4.14] works verbatim using Theorem 5.4. �

Note that when working over a non-algebraically closed field, the class of regulous functions
is different from the class of continuous rational functions, cf. [26].

Proof of Theorem 5.3. We already have the equivalence of 1), 2), 5), 6), 7) by Theorem 4.6,
and these are equivalent with 4) by Proposition 5.6.

A biregulous map is bijective so 3) implies 2), and conversely by 4) we know that the inverse
of πk is continuous rational, so regulous by Corollary 5.7. �
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