A note on uncertainty relations of metric-adjusted skew information - Archive ouverte HAL
Article Dans Une Revue Quantum Information Processing Année : 2023

A note on uncertainty relations of metric-adjusted skew information

Jing-Feng Wu
  • Fonction : Auteur
Xiaoyu Ma
  • Fonction : Auteur
Shao-Ming Fei
  • Fonction : Auteur

Résumé

The uncertainty principle is one of the fundamental features of quantum mechanics and plays a vital role in quantum information processing. We study uncertainty relations based on metric-adjusted skew information for finite quantum observables. Motivated by the paper [Physical Review A 104, 052414 (2021)], we establish tighter uncertainty relations in terms of different norm inequalities. Naturally, we generalize the method to uncertainty relations of metric-adjusted skew information for quantum channels and unitary operators. As both the Wigner-Yanase-Dyson skew information and the quantum Fisher information are the special cases of the metric-adjusted skew information corresponding to different Morozova-Chentsov functions, our results generalize some existing uncertainty relations. Detailed examples are given to illustrate the advantages of our methods.

Dates et versions

hal-03613442 , version 1 (18-03-2022)

Identifiants

Citer

Qing-Hua Zhang, Jing-Feng Wu, Xiaoyu Ma, Shao-Ming Fei. A note on uncertainty relations of metric-adjusted skew information. Quantum Information Processing, 2023, 22 (2), pp.115. ⟨10.1007/s11128-023-03865-x⟩. ⟨hal-03613442⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More