A note on uncertainty relations of metric-adjusted skew information
Résumé
The uncertainty principle is one of the fundamental features of quantum mechanics and plays a vital role in quantum information processing. We study uncertainty relations based on metric-adjusted skew information for finite quantum observables. Motivated by the paper [Physical Review A 104, 052414 (2021)], we establish tighter uncertainty relations in terms of different norm inequalities. Naturally, we generalize the method to uncertainty relations of metric-adjusted skew information for quantum channels and unitary operators. As both the Wigner-Yanase-Dyson skew information and the quantum Fisher information are the special cases of the metric-adjusted skew information corresponding to different Morozova-Chentsov functions, our results generalize some existing uncertainty relations. Detailed examples are given to illustrate the advantages of our methods.