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Abstract—We propose a new method for improving the
bound tightness of the popular semidefinite programming (SDP)
relaxation for the ACOPF introduced in [1], [2]. First, we
reformulate the ACOPF Lagrangian dual as an unconstrained
concave maximization problem with a clique decomposition
induced sparse structure. We prove that this new formulation
has the same optimal value as the SDP relaxation. We then
use the solution of the SDP relaxation as a starting point for
a tailored structure-aware bundle method. This post-processing
technique significantly improves the tightness of the SDP bounds
computed by the state-of-the-art solver MOSEK, as shown by our
computational experiments on large-scale instances from PGLib-
OPF v21.07. For ten of the tested instances, our post-processing
decreases by more than 50% the optimality gap obtained with
MOSEK.

Index Terms—AC Optimal Power Flow, Complex semidefinite
programming, Nonsmooth optimization.

I. INTRODUCTION

The ACOPF problem is one of the most fundamental
optimization problems for the management of electric power
systems. This is a cost minimization problem in an AC net-
work, where the generators should supply electricity to loads
under generator and line constraints. Due to the nonconvexity
of power flow equations, the ACOPF is a difficult optimization
problem both in theory [3] and in practice [4]. Although
local optimization solvers are able to find good solutions,
obtaining a feasible point with a global optimality certificate
is still a challenge for national-scale instances. In this quest
for global optimization, convex relaxations are powerful tools
to efficiently compute lower bounds on the ACOPF’s value.
A review of various relaxation techniques for the ACOPF
problem is available in [2]. Among them, semidefinite pro-
gramming (SDP) is of strong interest for both theoretical and
practical reasons: indeed, the semidefinite relaxation (SDR) is
the ACOPF’s Lagrangian bidual [1] and provides tight lower
bounds [5]. The main drawback of the standard SDR is that it
involves a dense n×n complex matrix as a decision variable,
where n is the number of buses. This becomes intractable as
soon as n exceeds magnitudes of around 103.

To overcome this computational burden, state-of-the-art
approaches [6], [7] exploit the sparse structure of the power
grid by using a clique decomposition technique. Thanks to a
semidefinite completion theorem [8] for matrices with chordal
sparsity pattern, it is possible to find an equivalent formulation
for the SDR, with many small semidefinite blocks instead of a

single and large n×n matrix. Each of these blocks corresponds
to a maximal clique of the chordal sparsity pattern. This
clique-based SDR can be solved with a symmetric interior
point (IP) solver [9], [10], with a non-symmetric IP solver
[11] or with a first order method like the Alternating Direction
Method of Multipliers (ADMM) [12]–[14]. Eltved et al. [6]
report the solution of the clique-based ACOPF’s SDR for test
cases with up to 82, 000 buses, in a few hours.

Despite these advances, the clique-based SDR remains dif-
ficult to solve for large-scale instances: numerical instabilities
may arise when solving this convex optimization problem. In
[5] and [15], the authors report numerical instabilities with the
commercial IP solver MOSEK [9], which raises a warning for
many tested instances. In [6], the authors report that the well-
known academic IP solver SeDuMi fails to solve the clique-
based SDR in more than 50% of the test cases; and that the
ADMM-based solver CDCS often terminates with sizable dual
residuals.

Two categories of troubles may arise due to numerical
difficulties in solving the SDR. First, they may limit the
accuracy of the calculation of the SDR value. Second,
obtaining a solution with non-zero primal and/or dual
feasibility errors implies that the calculated relaxation value
is not certified [16]. In this case, one obtains an approximated
value of the relaxation without knowing if it is an exact lower
bound on the ACOPF’s value.

Main contributions This paper tackles both aforementioned
numerical issues with an original approach. For this purpose,
we introduce a new formulation for the Lagrangian dual of
the ACOPF, whose value equals the value of the SDR. Our
new formulation is a concave maximization problem with the
following interesting properties: (a) it is unconstrained (b)
the objective function is partially separable. Based on this
formulation, we present how to obtain a certified lower bound
from any dual vector, whether feasible or not in the classical
dual SDR. We solve our new formulation with a structure-
exploiting polyhedral bundle method. We use this algorithm
as a post-processing step, after solving the clique-based SDR
with the commercial IP solver MOSEK [9], which is the state-
of-the-art solver for ACOPF’s SDR according to [2], [6]. Our
numerical experiments on instances from PGLib-OPF v21.07
[17] show that this post-processing considerably improves the
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tightness of the dual bounds. For 13 cases, the post-processing
increases the certified dual bound by more than 0.1%. A more
accurate dual bound yields a lower optimality gap: for 10
cases, the gap is reduced by more than 50%; for 5 cases among
them, the gap is reduced by more than 90%.

Mathematical notations:
• x+, x− : positive and negative part of the real number x,
• Re(z), Im(z), z?, |z| : Real part, imaginary part, conju-

gate and magnitude of complex number z = Re(z) +
i Im(z),

• Hn ⊂ Cn×n : the set of Hermitian matrices of size
n, subset of Cn×n, the vector space of square complex
matrices of size n,

• Hn(S) ⊂ Hn, for S ⊂ {1, . . . , n} : the set of Hermitian
matrices of size n, whose non-zero coefficients all belong
to the principal submatrix associated with indices k ∈ S,

• MH : Hermitian transpose of the matrix M ∈ Cn×n,
• H(M) := 1

2 (M +MH) and Z(M) := 1
2 (M −MH),

• Tr(M) : Trace of the matrix M ,
• 〈M,N〉 = Tr(MHN) : Frobenius product between com-

plex matrices M,N ∈ Cn×n,
• λmin(H) ∈ R : Minimum eigenvalue of the Hermitian

matrix H ∈ Hn,
• H � 0 : the matrix H is positive semidefinite (PSD),
• Eba : the matrix of the canonical basis of Cn×n, associ-

ated with the pair of indices (b, a).

II. THE ACOPF, THE ACOPF’S SDR AND THEIR DUAL

This section presents the context of this work, i.e. the
ACOPF problem with current limits, its SDR, and the state-
of-the-art approach to solve it, based on clique decomposition.

A. Problem formulation

A power grid is as a network of buses interconnected by
lines. It is modelled [18] as an oriented multi-graph N =
(B,L) with sizes n = |B| and l = |L|. The orientation of
a line is an arbitrary but necessary convention to uniquely
define the admittance matrix (see below) modelling this line.
A line ` ∈ L is described by a triplet (b, a, h) s.t. b ∈ B is the
“‘from” bus (denoted by f), a ∈ B is the “to” bus (denoted by
t) and h ∈ N is an index, which is non-null in case there are
several parallel lines between b and a. Electricity generating
units are located in several buses in the network. We denote
by Gb the set of generators located at bus b ∈ B. The set of
all generators is G := ∪b∈B Gb, whose cardinality is denoted
by m = |G|. For any generator g ∈ G, we denote by b(g) ∈ B
the bus where the generator g is located. For each g ∈ G, the
generated power Sg ∈ C is a decision variable subject to

P g ≤ Re(Sg) ≤ P g, (1)

Q
g
≤ Im(Sg) ≤ Qg, (2)

for parameters P g, P g, Qg, Qg ∈ R. For brevity, we define
Sg = P g + i Q

g
, Sg = P g + i Qg and we write (1)-

(2) as Sg ∈
[
Sg, Sg

]
C. The generators’ cost functions are

traditionally assumed to depend only on the active power

and to be quadratic convex [18]. Consistently with this latter
assumption and for all g ∈ G, we define c0g ∈ R, c1g ∈ R
and c2g ∈ R+, s.t. the cost associated with active power p
is c0g + c1gp + c2gp

2. Since the offsets c0g play no role in
the optimization, we assume without loss of generality that
c0g = 0, for better readability. However, in the numerical
experiments, we take these offsets into account. We denote by
G1 the set of generators g with purely linear cost (c2g = 0),
and G2 := G \ G1, which should not be confused with the set
Gb of generators attached to bus b. For each bus b ∈ B, the
voltage Vb ∈ C is a decision variable subject to

V b ≤ |Vb| ≤ V b, (3)

for parameters V b, V b ∈ R+. The other parameters related to
bus b are a shunt admittance Y sb ∈ C and a load S load

b =
P load
b + iQload

b with P load
b , Qload

b ∈ R. So as to model the
power conservation at each bus, we also need to introduce
quantities describing the electrical characteristics of the lines.
For each line ` = (b, a, h) ∈ L, we know its (non-symmetric)
admittance matrix Y` ∈ C2×2, which follows from a Π-line
model of the line [18]. The coefficients of this matrix are
denoted by Y ff

` , Y
ft
` , Y

tf
` , Y

tt
` . With this notation, we define

Mb := Y sb Ebb +
∑
`∈L

`=(b,a,h)

Y ff
` Ebb + Y ft

` Eba

+
∑
`∈L

`=(a,b,h)

Y tt
` Ebb + Y tf

` Eba,

for each bus b ∈ B. Then, the equation modelling the power
conservation at b ∈ B is∑

g∈Gb

Sg = S load
b +

〈
Mb, V V

H
〉
. (4)

Finally, we consider current flow limits on lines. For any line
` = (b, a, h) ∈ L, given a limit I` ∈ R+, we have

|Y ff
` Vb + Y ft

` Va| ≤ I`, (5)

|Y tt
` Va + Y tf

` Vb| ≤ I`. (6)

We treat this type of branch flow limits because they are the
ones that Réseau de Transport d’Electricité, the French Trans-
mission System Operator, deals with in its daily operations.
Nevertheless, our approach could easily be transposed to other
types of constraints such as apparent power flow limits. In
summary, the ACOPF problem with current flow constraints
is the following non-convex optimization problem:

min
∑
g∈G

c1g Re(Sg) + c2g Re(Sg)
2

s.t. (1)− (6)
V ∈ Cn, S ∈ Cm.

(OPF)

For any line ` = (b, a, h) ∈ L, we also introduce the matrices
N`f := |Y ff

` |2Ebb+Y ff
` (Y

ft
` )

?Eab+(Y ff
` )

?Y ft
` Eba+ |Y ft

` |2Eaa and
N`t := |Y tt

` |2Eaa + Y tt
` (Y tf

` )?Eba + (Y tt
` )?Y tf

` Eab + |Y tf
` |2Ebb.

Hence, constraints (5) and (6) reads
〈
N`f , V V

H
〉
≤ I`

2
and〈

N`t, V V
H
〉
≤ I`

2
.
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B. The SDR and the clique-based SDR

The SDR, also known as “rank relaxation”, is classically
derived by replacing the rank-one matrix V V H in (OPF) by a
Hermitian and PSD matrix W of unspecified rank. Hence, the
SDR of (OPF) is the following convex optimization problem

min
∑
g∈G

c1g Re(Sg) + c2g Re(Sg)
2

s.t. V 2
b ≤ 〈Ebb,W 〉 ≤ Vb

2 ∀b ∈ B (SDR)∑
g∈Gb

Sg = S load
b + 〈Mb,W 〉 ∀b ∈ B

〈N`s,W 〉 ≤ I`
2 ∀(`, s) ∈ L × {f, t}

W � 0
W ∈ Hn, S ∈

∏
g∈G

[
Sg, Sg

]
C

This formulation becomes intractable for large-scale instances
[2]. A standard approach to avoid this computational burden
consists in introducing a chordal extension of the undirected
graph induced by N , and a clique tree T of this chordal
extension [19]. For any node k ∈ T , the set Bk ⊂ B
is the corresponding clique of the chordal extension, and
nk is its cardinality. Choosing an arbitrary root r ∈ T ,
we designate by p(k) ∈ T the parent node of any node
k ∈ T , with the convention p(r) = r. We define the set
Jk := {(b, a) ∈ (Bk ∩ Bp(k))

2 : b ≤ a}. For any b ∈ B, we
introduce some matrices Mbk ∈ Hn(Bk) for k ∈ T , so as
to write Mb =

∑
k∈T |b∈Bk

Mbk. We underline that the non-zero

coefficients in matrix Mbk all belong to the principal submatrix
associated with clique Bk. For any line ` = (b, a, h) ∈ L, we
define k(`) ∈ T s.t. {b, a} ⊂ Bk. With this notation the clique-
based SDR, denoted by (cSDR), reads

min
∑
g∈G

c1g Re(Sg) + c2g Re(Sg)
2

s.t. V 2
b ≤ 〈Ebb,Wk〉 ≤ Vb

2 ∀k ∈ T , ∀b ∈ Bk∑
g∈Gb

Sg = S load
b +

∑
k∈T |b∈Bk

〈Mbk,Wk〉 ∀b ∈ B〈
N`s,Wk(`)

〉
≤ I`

2 ∀(`, s) ∈ L × {f, t}
〈Eba,Wk〉 =

〈
Eba,Wp(k)

〉
∀k ∈ T , ∀(b, a) ∈ Jk

Wk � 0 ∀k ∈ T
Wk ∈ Hn(Bk) ∀k ∈ T
S ∈

∏
g∈G

[
Sg, Sg

]
C.

The advantage of formulation (cSDR) is that the total number
of non-zero coefficients in the matrices (Wk)k∈T is

∑
k∈T n

2
k,

whereas the matrix variable W in (SDR) involves n2 non-zero
coefficients. If the cliques are of limited size (nk � n), then
this decomposition is particularly relevant. This is often the
case in ACOPF instances, since power grids are known to
have low tree-width [2]. Since |T | ≤ n by property of chordal
graphs, we deduce that for graphs with bounded tree-width,∑
k∈T n

2
k scales in O(n) rather than O(n2).

Proposition 1. The SDP problems (SDR) and (cSDR) share
the same value.

Proof. This follows from the PSD completion theorem in [8],
for Hermitian matrices with chordal sparsity pattern.

In the following, we will use the integers K1 :=
∑
k∈T nk,

K2 :=
∑
k∈T |Jk| and N := K1 + 2(n+ l +K2).

C. The SDP dual of the clique-based SDR

The dual formulation of (cSDR) includes Linear Matrix
Inequalities (LMI) involving a family of R-linear matrix
operators Ak : RN → Hn(Bk) for k ∈ T . The operator Ak is
defined s.t. for all θ = (α, β, γ, η, ν, µ) ∈ RN ,

Ak(θ) :=
∑
b∈Bk

αbkEbb + βbH(Mbk) + iγbZ(Mbk)

+
∑

(`,s)∈L×{f,t}

η`sN`s +
∑

(b,a)∈Jk

νbakH(Eba) + iµbakZ(Eba)

−

 ∑
d∈C|p(d)=k

∑
(b,a)∈Jd

νbadH(Eba) + iµbadZ(Eba)

 .

We point out that the Hermitian part and anti-Hermitian part
operators H and Z , defined in Introduction, appear when
projecting the complex equalities of the primal problem on
their real and imaginary parts. Having introduced the operators
Ak for k ∈ T , the dual of (cSDR), which we denote by
(dualcSDR), then reads

max
∑

k∈T , b∈Bk
V 2
bαbk − Vb

2
αbk +

∑
b∈B

P load
b βb +Qload

b γb

+
∑
g∈G

P gyg − P gyg +Q
g
zg −Qgzg

−
∑
g∈G2

(c1g+yg−yg−βb(g))
2

4c2g
−
∑
`∈L

I`
2
(ηf` + ηt`)

s.t. Ak(α− α, β, γ, η, ν, µ) � 0 ∀k ∈ T
yg − yg = βb(g) − c1g ∀g ∈ G1

zg − zg = γb(g) ∀g ∈ G
(y, y, z, z) ∈ R4m

+

(α, α) ∈ R2K1
+

(β, γ, η, ν, µ) ∈ R2(n+l+K2).

III. NEW FORMULATION FOR THE DUAL ACOPF

This section introduces the central element of our approach,
i.e. a new formulation for the dual problem of the ACOPF.

A. Some concave functions of interest

In order to reformulate (dualcSDR) as an unconstrained
problem, we introduce some basic functions that are terms
in the objective function of (dualcSDR) or penalizations of
the constraints:
• for each generator g ∈ G1, we introduce the concave

functions pg, qg s.t. for all x ∈ R,

pg(x) := P g(x− c1g)− − P g(x− c1g)+,

qg(x) := Q
g
x− −Qg x+,

• for each generator g ∈ G2, we introduce the concave
functions pg, qg s.t. for all x ∈ R,

pg(x) :=


−P g(x− c1g − c2gP g) if x− c1g ≤ 2c2gP g,

− (x−c1g)2

4c2g
if x− c1g ∈ [ 2c2gP g, 2c2gP g ],

−P g(x− c1g − c2gP g) if x− c1g ≥2c2gP g,
qg(x) := Q

g
x− −Qg x

+,
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• for each bus b ∈ B, we define the concave functions
vb, pb, qb s.t. for all x ∈ R,

vb(x) := V 2
b x
− − Vb

2
x+,

pb(x) := P load
b x+

∑
g∈Gb

pg(x),

qb(x) := Qload
b x+

∑
g∈Gb

qg(x),

• for each line ` ∈ L, we define the function h` s.t. for all
x ∈ R, h`(x) := −I`

2
x+.

Finally, we introduce for each k ∈ T the concave multivariate
function fk, s.t. for all θ = (α, β, γ, η, ν, µ) ∈ RN ,

fk(θ) := min {ρk λmin(Ak(θ)) , 0} ,

where ρk :=
∑
b∈Bk

Vb
2
. We underline that the linear operator

Ak only depends on variables related to the clique index k;
hence, so does function fk (see Table I).

B. A sparse and unconstrained dual formulation

Our new formulation for the ACOPF’s dual reads
max

∑
k∈T

fk(α, β, γ, η, ν, µ) +
∑

k∈T, b∈Bk

vb(αbk)

+
∑
b∈B

pb(βb) +
∑
b∈B

qb(γb) +
∑

(`,s)∈L×{f,t}
h`(η`s)

(dualOPF)
s.t. (α, β, γ, η, ν, µ) ∈ RN

We denote the objective function of this unconstrained
concave maximization by F : RN → R. Since it is a sum
of functions, each involving just one or a limited number of
variables, problem (dualOPF) is said partially separable.

Theorem 1. The problem (dualOPF) has the same value as
problem (SDR).

Proof. We define X := {(Wk)k∈T | ∀k ∈ T , (Wk ∈
Hn(Bk)) ∧ (Wk � 0) ∧ (Tr(Wk) ≤ ρk)}. We underline that
the constraint Tr(Wk) ≤ ρk is redundant in (cSDR) since it
follows from the constraints ∀b ∈ Bk, 〈Ebb,Wk〉 ≤ Vb

2
, but

it plays a role in the derivation of the dual formulation. We
define the Lagrangian L s.t. for any primal vectors S ∈ Cm,
W ∈ X, u1 ∈ RK1 and u2 ∈ R2l and for any dual vector
θ = (α, β, γ, η, ν, µ) ∈ RN ,
L(S,W, u1, u2, θ) :=

∑
g∈G c1g Re(Sg) + c2g Re(Sg)

2

+
∑
k∈T ,b∈Bk

αbk
(
〈Ebb,Wk〉 − u1

bk

)
+∑

b∈B βb
(
P load
b + 〈H(Mbk),Wk〉 −

∑
g∈Gb Re(Sg)

)
+∑

b∈B γb
(
Qload
b + 〈iZ(Mbk),Wk〉 −

∑
g∈Gb Im(Sg)

)
+∑

(`,s)∈L×{f,t} η`s
( 〈
N`s,Wk(`)

〉
− u2

`s

)
+∑

k∈T ,(b,a)∈Jk
νbak

(
〈H(Eba),Wk〉 −

〈
H(Eba),Wp(k)

〉 )
+∑

k∈T ,(b,a)∈Jk
µbak

(
〈iZ(Eba),Wk〉 −

〈
iZ(Eba),Wp(k)

〉 )
.

We leave it to the reader to notice that problem (cSDR) can
be written as

min
S,W,u1,u2

max
θ
L(S,W, u1, u2, θ),

with constraints S ∈
∏
g

[
Sg, Sg

]
C, W ∈ X, u1 ∈∏

bk[V 2
b , Vb

2
] and u2 ∈

∏
`s[0, I`

2
] and with θ ∈ RN .

We also point out that (dualOPF) can be written as the
corresponding max-min problem. Since (i) the Lagrangian is
linear w.r.t. primal variables and also linear w.r.t dual variables
(ii) both minimization and maximization sets are convex (iii)
the minimization set is compact; we can apply Sion min-
max theorem [20] and deduce that the two values are equals,
hence val(cSDR) = val(dualOPF). Applying Proposition 1,
we conclude that val(SDR) = val(dualOPF).

This proof makes (dualOPF) appear as the dual of (cSDR).
Yet, it may also be seen as the dual problem of (OPF). Indeed,
adding the constraint ∀k ∈ T , rank(Wk) = 1 in the definition
of X, we obtain a max-min problem that also corresponds to
(dualOPF). However, we cannot apply the Sion theorem [20]
anymore in this case, due to the non-convexity of the rank
constraints: we only have val(OPF) ≥ val(dualOPF).

C. Lower-bound certification
We consider a realistic computational framework in rational

numbers. The parameters of problem (OPF) are thus supposed
to have rational real and imaginary parts. We consider the
question of computing a certified lower bound, that is, com-
puting a value v ∈ Q such that val(OPF) ≥ v. A disadvantage
of solving the primal-dual pair (cSDR), (dualcSDR) of SDP
problems is that obtaining a certified dual bound requires the
exact feasibility of the dual solution. In practice, one may
obtain a slightly infeasible solution of (dualcSDR) which
invalidates the certification.

Our new unconstrained formulation (dualOPF) helps ad-
dressing this issue. We take any vector θ ∈ QN , produced by
any algorithm maximizing F (θ). The inequality val(OPF) ≥
F (θ) holds. Nevertheless, we have to acknowledge that, be-
cause of the eigenvalue functions in fk(θ) terms, the value
of F (θ) can only be approximated. Despite this, we need to
compute an exact lower bound on fk(θ), so as to compute an
exact lower bound on F (θ). For any M ∈ Hn with rational co-
efficients, we define λLB(M) := min1≤i≤nMii−

∑
j 6=i |Mij |,

which is a lower bound on λmin(M) due to Gershgorin’s circle
theorem. We point out that computing the magnitude |Mij | =√
Re(Mij)2 + Im(Mij)2 involves computing a square root,

which is not necessarily rational. Yet, we can always round
up the output of the square root algorithm to an arbitrary
precision, to obtain s ∈ Q, and check that s2 ≥ Re(Mij)

2 +
Im(Mij)

2. Such square roots upper bounds will guarantee that
the computed value λLB(M) ∈ Q is lower than λLB(M) and
thus than λmin(M). By eigendecomposition, we compute a
matrix U ∈ Hn and a diagonal matrix D ∈ Rn×n, both with
rational coefficients and s.t. Ak(θ) ≈ UDUH. We define then
fk(θ|U,D) := ρk min{mini(Dii)+λLB(Ak(θ)−UDUH), 0},
which is computable through basic arithmetic operations in
rational numbers and

fk(θ) ≥ fk(θ|U,D). (7)

Replacing fk(θ) by fk(θ|U,D) in the expression of F (θ),
we can compute an exact lower bound on val(OPF). Indeed,
the functions pb, qb, vb, h` are computable in rational numbers
since they involve elementary arithmetic operations.
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Variable Corresponding component of A†k(UU
H)

αbk , for b ∈ Bk 〈Ebb, UUH〉
βb, γb, for b ∈ Bk 〈H(Mbk), UU

H〉, 〈iZ(Mbk), UU
H〉

η`s, for (`, s) ∈ L × {f, t} 〈N`s, UUH〉
s.t. k(`) = k

νbak , µbak for (b, a) ∈ Jk 〈H(Eba), UU
H〉,〈iZ(Eba), UUH〉

νbad, µbad for d ∈ T s.t. −〈H(Eba), UU
H〉,−〈iZ(Eba), UUH〉

p(d) = k and for (b, a) ∈ Jd
All other coordinates 0

TABLE I
COMPUTATION OF VECTOR A†k(UU

H), FOR GIVEN k ∈ T AND U ∈ Cn

IV. NONSMOOTH OPTIMIZATION ALGORITHM

The objective function of (dualOPF) being nonsmooth, we
solve this new formulation for the dual ACOPF with a tailored
nonsmooth optimization (NSO) algorithm belonging to the
family of proximal bundle methods (PBM) [21].

A. Computing supergradients

Generally speaking, NSO algorithms minimize (resp. max-
imize) convex (resp. concave) functions based on an oracle
capable of computing the value of this function and a sub-
gradient (resp. supergradient). In the present case, problem
(dualOPF) amounts to maximize a concave function, which
is itself a sum of concave functions. Note that vb, pb, qb, h`
are univariate functions with closed-form supergradients, not
detailed here for brevity. We focus now on the computation
of supergradients of the concave functions fk.

Proposition 2. For any R-linear operator φ : RN → Hn, the
superdifferential of the concave function λmin◦φ at θ ∈ RN is
conv

{
φ†(UUH) | U ∈ U, φ(θ)U = λmin(φ(θ))U

}
, where φ†

is the adjoint operator of φ and U the unit sphere of Cn.

Proof. As λmin(φ(θ)) = minU∈U
〈
φ(θ), UUH

〉
=

minU∈U θ
>φ†(UUH) for all θ ∈ RN , λmin ◦ φ is a

minimum of linear functions parametrized by a compact set.
Thus, we can apply [22, Th.VI.4.4.2], yielding the result.

Applying this with φ = Ak, we deduce that fk(θ) and a
supergradient can be computed simultaneously: first, we com-
pute the minimum eigenvalue λ of Ak(θ) and an associated
eigenvector U ; if λ > 0, fk(θ) = 0 and the null vector
is a supergradient of fk at θ; otherwise fk(θ) = ρkλ and
A†k(UUH) is a supergradient at θ. We emphasize that the
computational cost of this operation is limited since

• computing (λ,U) amounts to compute a minimum eigen-
pair of a nk × nk matrix, since Ak(θ) ∈ Hn(Bk),

• as shown in Table I, computing A†k(UUH) amounts to
compute Froebenius products involving matrices with
very few non-zero coefficients, all related to clique Bk.

B. Structured cutting-plane model

When designing a PBM, a key choice is the cutting-plane
(CP) models used to approximate the objective function. In
the present case, the objective function of (dualOPF) has
a partially separable structure. We exploit this property to

produce a rich and structured CP model, sometimes referred as
disaggregated CP model in the NSO literature. First, we notice
that the functions vb, qb and h` can be described exactly as
maxima of two affine functions. Second, for any k ∈ T and
given a set Sk of pairs (Θ,Λ) ∈ RN × RN s.t. vector Λ is a
supergradient of fk at Θ, we introduce the CP model

f̌k(θ) = min
(Θ,Λ)∈Sk

fk(Θ) + Λ>(θ −Θ),

for all θ ∈ RN . Similarly, for any b ∈ B, given a set Sb of
pairs (u, s) ∈ R × R s.t. s is a supergradient of pb at u, we
introduce the univariate CP model

p̌b(x) = min
(u,s)∈Sb

pb(u) + s(x− u),

for all x ∈ R. Based on the individual CP models f̌k and p̌b,
we obtain the following structured CP model of F :

F̌ (θ) =
∑
k∈T

f̌k(θ) +
∑

k∈T ,b∈Bk

vb(αbk) +
∑
b∈B

p̌b(βb)

+
∑
b∈B

qb(γb) +
∑

(`,s)∈L×{f,t}

h`(η`s),

for all θ = (α, β, γ, η, ν, µ) ∈ RN . During the iterations of the
PBM, the model F̌ evolves as we add or remove CP. Hence,
we denote by F̌t the CP model at iteration t.

C. The bundle algorithm

Algorithm 1 presents the PBM framework used to solve
(dualOPF). We point out that F̌t is a polyhedral function;
hence the subproblem solved at each iteration is a convex
Quadratic Programming (QP) problem. The framework pre-
sented in Algorithm 1 must be specified in different ways.
First, we stop the algorithm after a maximal number of
iterations Kmax or a maximal number of consecutive null steps
Knull

max, or whenever F (θt) is greater than a known upper bound
on val(OPF) (primal infeasibility). Second, we update the
proximal parameter κ ∈ [κmin, κmax], only when: (a) 2 serious
steps are consecutive or separated by at most 1 null step, then
κt+1 ← max{rdownκt, κmin} with rdown ∈]0, 1[; (b) every
batch of 10 consecutive null steps, κt+1 ← min{rupκt, κmax}
with rup > 1. Third, we keep bounded-size CP models by
(i) deleting inactive CP every 5 serious steps (ii) aggregating
each individual CP model based on the QP dual solution, as
explained in [21], every 10 serious steps.

V. NUMERICAL EXPERIMENTS

In this section we illustrate that the proposed formulation
and the PBM can be used to obtain accurate and certified
dual bounds on val(OPF). We do not use this algorithm as a
standalone solver but as a post-processing step after calling
the IP solver MOSEK [9]; Tables II and III show that this
post-processing enables substantial accuracy improvements for
several instances from the library PGLib-OPF v21.07 [17].
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Algorithm 1: Proximal bundle method.

Data: θ̂0 ∈ Rd; model F̌0; m ∈ [0, 1]; tol, κ0 ∈ R++.
t← 0, δ0 ←∞ ;
while δt > tol do

Let θt be a solution of

max
θ∈RN

F̌t(θ)−
1

2
κt‖θ − θ̂t‖2. (QPt)

Call the oracles to compute the value and the
supergradients of the functions fk and pb (?);

Compute F (θt) ;
δt ← Ft(θ̂

t)− F̌t(θt) + 1
2κt‖θ

t − θ̂t‖2 ;
if F (θt) ≤ F (θ̂t)−mδt then

// Serious step

θ̂t+1 ← θt ;
end
else

// Null step

θ̂t+1 ← θ̂t ;
end
Based on the oracle results (?), update the models
f̌k and p̌b by adding the corresponding cutting
planes ;
Update the model F̌t accordingly to build F̌t+1;
Update κt to build κt+1 ;
t← t+ 1;

end

A. Experimental setting

For all experiments, we used a 64-bit Ubuntu computer
with 32 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
and 32 GB RAM. Algorithm 1 was implemented in Python
3.6. We compute the clique decomposition thanks to the
chompack package. To manipulate sparse matrices and solve
eigenproblems, we use the scientific packages Scipy and
numpy. At each iteration, we solve the QP problem in its dual
form, using the open-source solver OSQP [23]. We execute
Algorithm 1 with an Armijo parameter m = 0.01 and a
relative tolerance parameter of 10−6. We also set Kmax = 500
and Knull

max = 50. Based on the isometry between n × n
complex PSD matrices and 2n×2n real PSD matrices [24], we
reformulate problem (cSDR) and solve it with the IP solver
MOSEK. We initialize the PBM with a dual solution given by
MOSEK; this is why we do not evaluate here the PBM as a
standalone solver, but as a post-processing for MOSEK. We
point out that (i) MOSEK is considered as the state-of-the-
art solver for the ACOPF SDR [2], [6] (ii) we call MOSEK
with primal and dual feasibility tolerances (10−10) smaller
than tolerance by default (10−8). Therefore, the examples of
MOSEK’s inaccuracy presented here cannot be attributed to
an early stop of MOSEK due to high-tolerance configuration.
The considered ACOPF instances are taken from the refer-
ence library PGLib-OPF v21.07 [17], with typical operating
conditions (TYP) and less than 7,000 buses. The code is

Instance Est. LB Cert. LB Cert. LB Progress Progress
(case ###) MOSEK MOSEK post-proc. est. LB cert. LB
3012wp k 2.56486 2.54175 2.57994 0.59% 1.5%
6495 rte 2.65137 2.61727 2.64956 -0.07% 1.2%
3120sp k 2.13237 2.09093 2.11465 -0.83% 1.1%
2736sp k 1.30380 1.29815 1.30739 0.28% 0.71%
2737sop k 7.75459 7.72214 7.77551 0.27% 0.69%
1354 pegase 1.23135 1.23066 1.23738 0.49% 0.55%
6515 rte 2.66299 2.65224 2.66667 0.14% 0.54%
2746wp k 1.62822 1.62361 1.63139 0.19% 0.48%
6468 rte 2.05831 2.05267 2.06084 0.12% 0.40%
2746wop k 1.20676 1.20469 1.20806 0.11% 0.28%
6470 rte 2.21458 2.21198 2.21576 0.053% 0.17%
1951 rte 2.08388 2.08152 2.08489 0.049% 0.16%
1888 rte 1.37253 1.37087 1.37296 0.03% 0.15%
2383wp k 1.86230 1.86129 1.8629 0.03% 0.09%
4917 goc 1.37226 1.37153 1.37239 0.01% 0.06%
2869 pegase 2.44727 2.44645 2.44793 0.03% 0.06%
3022 goc 5.95436 5.95183 5.95505 0.01% 0.05%
2848 rte 1.28496 1.28476 1.28507 0.01% 0.02%
2312 goc 4.35665 4.35582 4.35683 0.00% 0.02%
4601 goc 8.26171 8.26110 8.26216 0.01% 0.01%
2868 rte 2.00945 2.00933 2.00952 0.00% 0.01%
2000 goc 9.72929 9.72904 9.72956 0.00% 0.01%
2742 goc 2.75607 2.75598 2.75607 0.00% 0.00%
4837 goc 8.71895 8.71883 8.71891 -0.00% 0.00%
2853 sdet 2.03604 2.03604 2.03604 0.00% 0.00%
3970 goc 9.60853 9.60741 9.60741 -0.01% 0.00%
3375wp k 7.40602 7.39211 7.39211 -0.19% 0.00%

TABLE II
ESTIMATED AND CERTIFIED LOWER BOUNDS COMPUTED BY MOSEK

AND BY OUR POST-PROCESSING ALGORITHM (PBM)

available in the following GitHub repository under MIT li-
cense: github.com/aoustry/dualACOPFsolver. The
full results tables and logs are also available at this link.

B. Numerical results

For cases up to 1,000 buses, MOSEK is very accurate
and hence, no significant accuracy improvement is made by
the post-processing. We focus now on the instances with
more than 1,000 buses. For case4019 goc, case4020 goc
and case4661 sdet, we obtained an out-of-memory error
during MOSEK execution. The results for other instances are
presented in Table II. The estimated lower bound (ELBM) is
the value of the (potentially slightly infeasible) dual solution
ZM = (y, y, z, z, α, α, β, γ, η, ν, µ) computed by MOSEK.
The certified lower bound given by MOSEK (CLBM) is the
value F (θM) with θM := (α − α, β, γ, η, ν, µ). We point
out that if ZM is feasible and optimal in (dualcSDR), then
both values ELBM and CLBM are equal; case2853 sdet
gives an example of such a situation. On the contrary, the
spread between ELBM and CLBM, observed for most of
the instances in Table II, is due to the slight infeasibility
of ZM in (dualcSDR). The certified lower bound given by
the post-processing (CLBP) is the best value obtained by
running Algorithm 1 initialized with θ̂0 = θM. For brevity,
these absolute values are expressed in scientific notation
without mentioning the scale (e+5 or e+6). The progress
of the estimated (resp. certified) lower bound is CLBP−ELBM

ELBM

(resp. CLBP−CLBM

CLBM
), expressed in %. Table II shows that,

whether we talk about the progress w.r.t. ELBM or CLBM, the
post-processing step yields an improvement in most cases:
the best certified lower bound gets higher than both values
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Instance UB Estim. gap Certif. gap Time
(case ###) (IPOPT) decreased by decreased by overhead
2737sop k 7.77719 93% 97% 549%
2746wp k 1.63171 91% 96% 272%
2746wop k 1.20826 87% 94% 61%
2736sp k 1.30800 85% 94% 465%
4601 goc 8.26223 86% 93% 4%
3012wp k 2.59001 60% 79% 444%
2383wp k 1.86360 46% 70% 814%
2868 rte 2.00961 43% 66% 86%
1354 pegase 1.24250 54% 57% 2200%
2742 goc 2.75616 3.2% 51% 5%
3120sp k 2.14655 0.0% 43% 346%
2869 pegase 2.45053 20% 36% 444%
2000 goc 9.73324 6.8% 12% 978%
3022 goc 5.98838 2.0% 8.8% 805%
4917 goc 1.38152 1.4% 8.7% 529%
1888 rte 1.40530 1.3% 6.1% 3300%
4837 goc 8.72020 0.0% 6.1% 24%
2312 goc 4.38452 0.6% 3.5% 240%
2853 sdet 2.04037 0.0% 0.0% 36%
3375wp k 7.42469 0.0% 0.0% 65%
3970 goc 9.60985 0.0% 0.0% 2%

TABLE III
OPTIMALITY GAP REDUCTION THANKS TO THE POST-PROCESSING STEP

for all 27 cases (in Table II) but 5. We see that the progress
w.r.t. MOSEK’s output value is more than 0.1% in 8 cases;
it is more than 0.5% in one case. If we ask for certification,
then the progress made by the post-processing step are even
better: it is more than 0.1% for 13 cases and more than 0.5%
in 7 cases.

Unsurprisingly, these accuracy gains have a computational
cost: calling the PBM after calling MOSEK induces a time
overhead. Table III presents this time overhead, expressed as
a percentage of MOSEK’s computational time. We observe
that this relative overhead is very variable depending on the
instance, ranging from 2% to 3300%. To confirm that this
computational overhead is worth it, we measured how the
lower bound rise reduces the optimality gap. Thanks to the
solver IPOPT [25], we compute an upper-bound (UB) on
val(OPF) (see Table III). Note that for all the instances present
in Table II but not in Table III, IPOPT failed to converge,
hence we could not compute an optimality gap. Table III
displays then the relative reduction of the estimated gap
(UB−ELBM)−(UB−CLBP)

UB−ELBM
= CLBP−ELBM

UB−ELBM
and of the certified gap

CLBP−CLBM

UB−CLBM
. Table III shows that the accuracy gains allowed

by the post-processing are significant, since they are of the
order of magnitude of the optimality gap: the post-processing
reduces the certified optimality gap by more than 50% for 10
instances. For 5 instances of them, the certified optimality gap
is reduced by more than 90%.

VI. CONCLUSION

This paper shows that for many PGLib-OPF instances, the
dual bound computed by the state-of-the-art interior point
solver MOSEK can be improved with a nonsmooth opti-
mization algorithm used as a post-processing step, to such
extent that the ACOPF optimality gap is significantly reduced.
This illustrates, somehow, a form of complementarity between
these two algorithms: a first-order method may provide dual

progress in a situation where the employed interior point
solver stalls. This works also shows the difficulty of achieving
a given precision of the objective function value and thus,
the importance of manipulating certified lower bounds, which
the proposed approach allows. In the context of a global
optimization approach, the bounds exactness is critical to the
correctness of the master (e.g. branch-and-bound) algorithm.
Further steps concern the extension of this approach to the
complex sum-of-squares hierarchy and the acceleration of this
bundle algorithm by parallelizing the oracles and using a GPU
implementation of OSQP. Leveraging warm-starting, we will
also employ our approach to compute dual bounds for series
of ACOPF problems with small parameter changes.
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