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Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically-inspired model to4
leverage polarization of light information in Fourier phase retrieval problems. We provide a complete5
characterization of its uniqueness properties by unraveling equivalencies with two related problems,6
namely bivariate phase retrieval and a polynomial autocorrelation factorization problem. In partic-7
ular, we show that the problem admits a unique solution, which can be formulated as a greatest8
common divisor (GCD) of measurements polynomials. As a result, we propose algebraic solutions9
for PPR based on approximate GCD computations using the null-space properties Sylvester matri-10
ces. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation11
and Wirtinger-Flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical12
experiments permits a detailed assessment of the numerical behavior and relative performances of13
each proposed reconstruction strategy. They further demonstrate the fruitful combination of al-14
gebraic and iterative approaches towards a scalable, computationally efficient and robust to noise15
reconstruction strategy for PPR.16

Key words. Fourier phase retrieval, polarization, approximate greatest common divisor, semidefinite positive17
relaxation, Wirtinger Flow18

MSC codes. 49N30, 94A12, 12D0519

1. Introduction. The problem of Fourier phase retrieval, i.e., the recovery of a signal20

given the magnitude of its Fourier transform, has a long and rich history dating back from21

the 1950s [61]. It has been – and continues to be – of tremendous importance for many22

applications areas involving optics, such as crystallography [23, 24, 50], astronomy [28, 29],23

coherent diffraction imaging (also known as lensless imaging) [49, 47], among others. Such24

problem arises in optics since phase information of light cannot be measured directly due to25

the high oscillating frequency of the electromagnetic field: indeed there is no conventional26

detector that can sample at a rate of ∼ 1012 Hz (infrared) up to ∼ 1018 Hz (hard x-rays).27

In addition, many imaging applications rely on diffraction measurements in the far-field,28

where light propagation essentially acts as a Fourier transform operator of the field near29

the imaged object [33]. Examples include one-dimensional (1D) temporal Fourier transforms30

performed by spectrometers in ultra-short laser pulse characterization [76] or two-dimensional31

(2D) spatial Fourier transforms recorded on far-field pixelated detectors in X-ray coherent32

diffraction imaging [18]. These Fourier-domain detectors, together with the impossibility33

to measure phase information, yield phaseless Fourier intensity measurements. Therefore,34

reconstruction of the imaged object requires solving a Fourier phase retrieval problem. See35

[63] for a comprehensive overview of such problems in optical imaging.36

Just like color (wavelength), polarization is a fundamental property of light. It encodes37
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the geometry of oscillations of the electromagnetic field, which describes an ellipse in the 2D38

plane perpendicular to the propagation direction for vacuum-like media [20]. As polarized39

light propagates in media, its polarization can change, thus revealing key properties, such as40

medium anisotropy or structural properties that are inaccessible to conventional, non-polarized41

light [30]. As a result, polarized light imaging has found many applications such as material42

characterization [34], remote sensing [70] or bio-imaging [37]. Despite the important practi-43

cal interests of polarization, only a few authors have considered leveraging this fundamental44

attribute of light in phase retrieval problems. The authors in [64, 59] pioneered the use of45

polarization in Fourier phase retrieval for ultrashort attosecond (10−18 s) laser pulse charac-46

terization. The motivation for polarimetric measurements arises from a fundamental physical47

limitation, which prevents the direct use of standard pulse characterization strategies based48

on nonlinear light-matter interaction such as Frequency-Resolved Optical Gating (FROG) [69]49

and its variants. Another line of work regards the extension of a scanning coherent diffraction50

imaging technique, known as ptychography, to take into account the polarization of light. This51

novel imaging modality, called vectorial ptychography [26, 27] combines spatially redundant52

measurements with polarimetric measurements. This allows quantitative imaging of complex53

anisotropic media, such as biominerals [5, 6]. More generally, recent years have seen a growing54

interest in the experimental development of computational imaging systems exploiting vecto-55

rial and polarization properties of light, such as polarization-sensitive Fourier ptychography56

[22, 67], polarization-sensitive diffraction tomography [68, 60] or vectorial holography [66],57

among others.58

Related work. Fourier phase retrieval is a long standing problem and therefore has gen-59

erated a continuous interest from researchers of various horizons, leading to a vast literature60

ranging from theoretical results to practical imaging algorithms, see [12] for an overview. A re-61

cent survey of uniqueness and stability of Fourier phase retrieval can be found in [36]; see also62

[13] for a discussion of its algebraic properties. A comprehensive tour of existing algorithms63

is given in [25]; see also [4] for an extensive discussion of related geometric aspects.64

One-dimensional Fourier phase retrieval does not admit a unique solution in general [10].65

Therefore, many strategies to enforce uniqueness have been devised. These include additional66

information on the signal, such as knowledge of some entries [11], non-negativity [8], sparsity67

[42, 56] or minimum phase [38]. Another approach consists in generating additional measure-68

ments, e.g., using deterministic masks [39, 15], (randomly) coded diffraction patterns [16] or69

using redundant, overlapping measurements inspired by ptychography [14, 40].70

More closely related to the present work is the use of additional, interference-like mea-71

surements in Fourier phase retrieval. The main idea roots in a imaging technique known72

as holography, which involves the coherent interference of the object of interest x with some73

reference signal y. Pushing this idea further, authors have developed a strategy ensuring74

uniqueness in Fourier phase retrieval, called vectorial phase retrieval [57] or double-blind75

holography [45, 58, 54]. More precisely, they show (and exploit) that almost all signals x76

and y can be recovered from four Fourier magnitudes measurements, of x, y, x + ȷy (with77

ȷ2 = −1) and x + y, respectively. Similar ideas appear in [41], where the reconstruction78

problem is formulated using correlations functions instead of Fourier transforms.79

While these works share several features with the present paper, they also differ on a80

number of important points. First, they do not exploit a polarimetric acquisition scheme,81
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which limits their use in contexts where one in interested in reconstructing the polarized (or82

bivariate) electromagnetic field (such as in polarized coherent diffraction imaging techniques83

[65]). In particular, we will show that the proposed polarimetric Fourier phase retrieval84

model encompasses vectorial phase retrieval as a special case, for a specific choice of four85

polarimetric projections. In addition, while the connection between vectorial phase retrieval86

and greatest common divisor of polynomials was observed in [41], it was not investigated in87

detail as the authors focused on a semidefinite programming relaxation. In contrast, algebraic88

approaches based on greatest common divisor computations are a cornerstone of the proposed89

methodology for the polarimetric Fourier phase retrieval model.90

Contributions. This work introduces a novel Fourier phase retrieval model, called polari-91

metric Fourier phase retrieval (PPR), which takes advantage of the physical measurement92

of polarization properties in optics. In particular, measurements are readily interpreted in93

terms of polarimetric Fourier projections of the bivariate electromagnetic field. As such, the94

proposed model can be implemented using standard optical components, such as polarizers or95

waveplates. It is flexible: more polarimetric measurements can be performed if desired. We96

focus on the 1D Fourier case in this paper, as a first step to demonstrate the potential of polar-97

ization information in Fourier phase retrieval problems. First, we characterize its uniqueness98

properties by carefully establishing equivalences with two other problems, namely bivariate99

Fourier phase retrieval (BPR) and polynomial autocorrelation factorization (PAF). In par-100

ticular, we show that the PPR problem can be solved through algebraic methods based on101

approximate greatest common divisor computations. We compare in detail these approaches102

with tailored adaptations of standard iterative algorithms for Fourier phase retrieval, namely103

semidefinite positive relaxation and Wirtinger-Flow, to the case of PPR. Finally, numerical104

experiments demonstrate that combining algebraic and iterative approaches yields a scalable,105

computationally efficient and robust to noise reconstruction strategy for PPR.106

Organization of the paper. A crucial feature of the present paper is the extensive use of107

equivalences between the polarimetric Fourier phase retrieval (PPR) problem and two other108

problems, namely bivariate Fourier phase retrieval (BPR) and polynomial autocorrelation fac-109

torization (PAF). For reference, these equivalences are stated in Figure 1, with pointers to110

relevant definitions and equations. Section 2 introduces the PPRmodel and discusses its physi-111

cal interpretations in terms of polarimetric measurement. Under some very general conditions,112

the equivalence with BPR is then established, which permits the study of trivial ambiguities.113

The relation of PPR with a standard 1D Fourier phase retrieval problem is also discussed.114

Section 3 starts by reformulating the BPR problem using a polynomial representation, leading115

to PAF. Then, we leverage uniqueness results on multivariate spectral representations [71]116

to establish a necessary and sufficient characterization of uniqueness in PAF (Theorem 3.5).117

Corollary 3.6 states that PAF is almost everywhere unique, and as a result, an algebraic118

solution can be found using greatest common divisors of measurement polynomials (Propo-119

sition 3.7). Section 4 goes back to PPR and exploits uniqueness results to propose a fully120

algebraic reconstruction method for PPR (Algorithm 1) based on two variations of approxi-121

mate greatest common divisor computations. Section 5 focus instead on iteratives algorithms122

for PPR, by tailoring semidefinite relaxation (Algorithm 4) and Wirtinger Flow (Algorithm123

5). Section 6 presents several numerical experiments to illustrate and assess the practical124

performances of the proposed reconstruction strategies. Section 7 collects concluding remarks125
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Fourier polarimetric measurements

ym,p =
∣∣aHmXbp

∣∣2
m = 0, 1, . . .M − 1
p = 0, 1, . . . P − 1

bivariate signal
X = [x1 x2] ∈ CN×2

spectral matrix measurements (2.3)

{F[m]}M−1
m=0 ∈ (C2×2)M

polynomials
X1(z), X2(z) ∈ C≤N−1[z]

measurement polynomials (3.3)

Γ(z) ∈ C2×2
≤2N−2[z]

one-to-one

one-to-one
if M ≥ 2N − 1

one-to-one under
assumption (H)

polarimetric
phase retrieval

(PPR)

bivariate
phase retrieval

(BPR)

polynomial autocorrelation
factorization (PAF)

Figure 1. Equivalences of data and solutions in problems PPR, BPR and PAF.

and Appendices gather technical details and proofs.126

Notations. In this paper, we denote by R the set of real numbers and by C the set of127

complex numbers with imaginary unit ȷ such that ȷ2 = −1. Vectors and matrices are denoted128

in bold lowercase letters and bold capital letters, respectively. Dependence of quantities in129

terms of a discrete index are indicated by brackets, i.e., x[n] denotes the n-th entry of the set130

of vectors {x[n]}N−1
n=0 . Notation a∗,A∗ indicate the complex conjugate of vector a and matrix131

A, respectively. The transpose of a matrix A is A⊤ and its conjugate transpose is given132

by AH. Fourier domain quantities are denoted using capital gothic letters, i.e., the vector133

X[m] ∈ C2 denotes the m-th entry of the (one-dimensional) discrete Fourier transform of the134

vector signal {x[n] ∈ C2}N−1
n=0 , evaluated at a frequency indexed by integer m.135

2. Polarimetric Fourier phase retrieval model. For conciseness, we use from now on the136

term phase retrieval as a synonym for Fourier phase retrieval.137

2.1. General formulation. Consider a discrete bivariate signal x[n] = (x1[n], x2[n])
⊤ ∈ C2138

defined for n = 0, 1, . . . N − 1. Let X ∈ CN×2 be the matrix representation of {x[n]}N−1
n=0139

obtained by stacking samples row-wise such that140

(2.1) X =




x1[0] x2[0]
x1[1] x2[1]
...

...
x1[N − 1] x2[N − 1]


 =

[
x1 x2

]
,141
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x1

x2

Polarizer

Fourier detector

arbitrary

polarized light X

P polarimetric projections

•

b1 =

[
0
1

]

•

b2 = 1√
2

[
1
1

]

•

b3 = 1√
2

[
1
ȷ

]

ampolarized light

along b0 =

[
1
0

]

ym,p = |aHmXbp|2

bp

Figure 2. Physical interpretation of the polarimetric phase retrieval model (PPR) in terms of polarization
optics. The four polarimetric projections shown correspond to the standard measurement scheme described by
(2.4) and (2.5), see Example 1.

where x1,x2 ∈ CN collect the two vector components of the signal. We define the polarimetric142

(Fourier) phase retrieval (PPR) problem as the recovery of X given MP Fourier polarimetric143

projections. Formally,144

find X ∈ CN×2 given measurements ym,p =
∣∣∣aHmXbp

∣∣∣
2

m = 0, 1, . . .M − 1, p = 0, 1, . . . P − 1
,(PPR)145

where am ∈ CN is the discrete Fourier vector corresponding to frequency fm = (2πm)/M ,146

such that am[n] = exp[ȷnfm] for n = 0, 1, . . . N −1. The vector bp ∈ C2, normalized such that147

∥bp∥22 = 1, denotes an arbitrary projection acting on the two vector components of X.148

Figure 2 permits to attach precise physical interpretations of PPR measurements in terms149

of polarization optics. The matrix X represents the one-dimensional bivariate electromagnetic150

field, where each row is a vector of C2 describing an arbitrary polarization state (the so-called151

Jones vector [30]). This states passes through a polarizer defined by bp ∈ C2, evaluating the152

projection of polarization states of X onto bp. Finally, light impinges on a Fourier detector153

described by am ∈ CN , leading to squared magnitude PPR measurements ym,p.154

The measurement model PPR can be easily implemented experimentally. Indeed, Fourier155

vectors {am}M−1
m=0 correspond to far-field measurements in optics, as encountered in coherent156

diffraction imaging techniques (for the case of 2D/3D images) or in spectrometry (for the157

1D case of ultra-short pulses). On the other hand, the set {bp}P−1
p=0 describes the different158

polarizers (or polarization analysers) required to measure polarization of light. Any arbitrary159

polarizer (in mathematical terms, any unit-norm vector bp ∈ C2) can be constructed as as160

combination of standard optical components, such as linear polarizers or waveplates [30].161
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Therefore, polarimetric measurements are very flexible: their number, as well as the reference162

polarization states {bp}P−1
p=0 can be tailored at will depending on the context.163

2.2. Relation with Fourier matrix measurements. A closely related problem to PPR is164

the bivariate phase retrieval (BPR) problem. Let us introduce the discrete Fourier transform165

of the bivariate signal {x[n]}N−1
n=0 as166

(2.2) X[m] =
N−1∑

n=0

x[n] exp
(
−2πȷmn

M

)
=

[
X1[m]
X2[m]

]
= (aHmX)⊤ ∈ C2

167

for m = 0, 1, . . .M − 1. Then let F[m] denote the rank-1 complex spectral matrix such that168

(2.3) F[m] = X[m]X[m]H =

[
|X1[m]|2 X1[m]X2[m]∗

X2[m]X1[m]∗ |X2[m]|2
]
∈ C2×2.169

At a given frequency indexed by m, the spectral matrix F[m] collects the squared Fourier170

amplitudes of the two components x1 and x2 of the bivariate signal as well as their relative171

Fourier phase. The recovery of the original bivariate signal {x[n]}N−1
n=0 (or equivalently its172

matrix representation X) from its spectral matrices defines the BPR problem:173

find X ∈ CN×2 given spectral matrix measurements {F[m]}M−1
m=0 .(BPR)174

The following proposition shows that BPR and PPR are equivalent in the noiseless setting175

under very general assumptions on the projection vectors {bp}P−1
p=0 .176

Proposition 2.1 (Equivalence between BPR and PPR). Suppose that the collection of pro-177

jection vectors b0,b1, . . .bP−1 ∈ C2 satisfies the condition178

(H) spanR

{
bpb

H
p

}P−1

p=0
=
{
M ∈ C2×2 |MH = M

}
,179

i.e., , the set of P rank-1 matrices bpb
H
p is a generating family (over R) of the space of 2-by-2180

Hermitian matrices. Then, under assumption (H), the problem PPR is equivalent to BPR in181

the sense that X is a solution of the problem PPR if and only if X is solution of BPR.182

Proof. It is sufficient to show that, under assumption (H), there is a one-to-one corre-183

spondence between the data of BPR (spectral matrices {F[m]}M−1
m=0 ) and that of PPR (Fourier184

polarimetric measurements {ym,p}M−1,P−1
m,p=0 ). In particular, we prove that for m fixed, the185

spectral matrix F[m] can be obtained from {ym,p}P−1
p=0 and vice-versa. First, remark that186

ym,p = |aHmXbp|2 = X[m]⊤bpb
H
pX

∗[m] = Trb∗
pb

⊤
p F[m],187

i.e., measurements ym,p are linear measurements of F[m] through sensing matrices {b∗
pb

⊤
p }P−1

p=0 .188

Conversely, since
{
bpb

H
p

}P−1

p=0
(and equivalently, {b∗

pb
⊤
p }P−1

p=0 ) is a generating family of the189

space of 2-by-2 Hermitian by matrices by assumption (H), the spectral matrix F[m] can be190

uniquely determined from {ym,p}P−1
p=0 by linear combinations. This concludes the proof.191
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It is worth noting that the assumption (H) is not restrictive at all. In fact, for P ≥ 4, the set192

{bp}P−1
p=0 where vectors are i.i.d. Gaussian distributed on C2 almost surely satisfies (H). The193

following example gives an explicit choice of projection vectors bp for P = 4, which has a nice194

physical interpretation in terms of polarization optics.195

Example 1. Let P = 4 and consider the following projection vectors196

(2.4) b0 =

[
1
0

]
, b1 =

[
0
1

]
, b2 =

1√
2

[
1
1

]
, b3 =

1√
2

[
1
ȷ

]
.197

The projection vectors b0,b1,b2 and b3 correspond to Jones vectors of standard polarizers used198

in optics [20], which are, respectively: horizontal linear polarizer, vertical linear polarizer, 45◦199

linear polarizer and left circular polarizer. See Figure 2 for an illustration. A direct check200

shows that rank-one matrices b0b
H
0 , b1b

H
1 , b2b

H
2 , b3b

H
3 form a basis over the real vector space201

of 2-by-2 Hermitian matrices, and as a result, they are a generating family of such matrices.202

PPR measurements read explicitly203

ym,0 = |X1[m]|2 , ym,1 = |X2[m]|2 ,

ym,2 =
1

2
|X1[m] + X2[m]|2 , ym,3 =

1

2
|X1[m] + ȷX2[m]|2 .

(2.5)204

These expressions directly give the diagonal terms of F[m] as ym,0 and ym,1. The off-diagonals205

terms can be recovered easily using polarization identities in the complex case, such that206

real (X1[m]X2[m]∗) =
1

2

(
|X1[m] + X2[m]|2 − |X1[m]|2 − |X2[m]|2

)
207

= ym,2 −
1

2
(ym,0 + ym,1) ,208

imag (X1[m]X2[m]∗) =
1

2

(
|X1[m] + ȷX2[m]|2 − |X1[m]|2 − |X2[m]|2

)
209

= ym,3 −
1

2
(ym,0 + ym,1) .210

211

Remark that the measurement scheme (2.4) yields the same quadratic measurements (2.5)212

as proposed by several authors [57, 41, 45, 58, 54]. Because of that, BPR is equivalent to213

the vectorial phase retrieval problem originally introduced in [57]. This shows that PPR214

encompasses existing measurements strategies as a special case, while bringing extra flexibility215

in the experimental design of measurements. One of the key benefits of the PPR model is216

that additional polarimetric measurements can be generated at will using simple off-the-shelf217

optical components such as linear polarizers or waveplates.218

2.3. Trivial ambiguities. Thanks to Proposition 2.1, we can now give a characterization219

of trivial ambiguities of PPR model by leveraging the equivalent BPR problem. Indeed, one220

can investigate in a rather simple way the trivial ambiguities that characterize BPR. Formally,221

these trivial ambiguities correspond to elementary transformations {x[n]}N−1
n=0 → {x′[n]}N−1

n=0222

that leave BPR measurements (spectral matrices {F[m]}M−1
m=0 defined in (2.3)) unchanged.223

Global phase ambiguity. Let α ∈ R and consider the bivariate signal {x′[n]}N−1
n=0 such that224

x′[n] = exp(ȷα)x[n] for every n. Then for anym, F′[m] = X′[m]X′[m]H = X[m]X[m]H = F[m]225

since X′[m] = exp(ȷα)X[m] by linearity properties of the Fourier transform.226
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Shifts. This trivial ambiguity only appears when the bivariate signal {x[n]}N−1
n=0 has not full227

support, i.e., when there exist na, nb with 0 ≤ na ≤ nb ≤ N − 1 such that x[n] = 0 for n ≤ na228

and n ≥ nb. Assuming this is the case, define the shifted signal {x′[n]}N−1
n=0 as x′[n] = x[n+n0]229

where n0 is a relative integer between (nb−N) and (na+1) as to ensure proper support. Then,230

using standard Fourier transform properties one gets that X′[m] = exp(j2πn0m/M)X[m], so231

that in turn F′[m] = F[m] for every m.232

Conjugate reflection. Consider now {x′[n]}N−1
n=0 such that x′[n] = x∗[N − 1− n]. Then for233

every m, X′[m] = exp[−ȷ2π(N − 1)m/M ]X∗[m]. As a result234

(2.6) F′[m] =

[
|X1[m]|2 X2[m]X∗

1[m]
X1[m]X∗

2[m] |X2[m]|2
]
= F[m]⊤.235

This shows that conjugate reflection is not, in general, a trivial ambiguity for BPR. This236

contrasts with standard univariate Fourier phase retrieval, see [10, 12].237

Conjugate reflection can still be a trivial ambiguity provided that the spectral matrix is238

symmetric for every m, that is F[m] = F[m]⊤. Equivalently, F[m] is symmetric if and only if239

X1[m]X∗
2[m] = X2[m]X∗

1[m]. This means that imag (X1[m]X∗
2[m]) = 0, i.e., components X1[m],240

X2[m] are in phase at every frequency (they have the same complex argument). Interestingly,241

this condition is interpreted in physical terms as: conjugate reflection is a trivial ambiguity242

for bivariate phase retrieval if and only if the bivariate signal {x[n]}N−1
n=0 is linearly polarized243

at all frequencies.244

2.4. 1D equivalent model for PPR. Back to the original PPR problem, we see that it245

defines a new measurement model that performs quadratic scalar projections of the matrix246

representation X ∈ CN×2 of the bivariate signal of interest. This matrix representation of247

the underlying signal {x[n]}N−1
n=0 can be confusing at first: indeed, the bivariate signal is248

intrinsically one-dimensional, in the sense that it is a function of a single index n – which249

can represent time or 1D spatial coordinates, for instance. Thus, a natural question is the250

following: can PPR be equivalently rewritten as a one-dimensional phase retrieval problem?251

If so, what is the physical interpretation of such problem?252

Let us denote by ξ = vecX ∈ C2N the long vector obtained by stacking the two col-253

umns of X. Using standard vectorization properties of matrix products, one can rewrite PPR254

measurements as255

(2.7) ym,p = |aHmXbp|2 = |(b⊤
p ⊗ aHm)ξ|2 = |(b∗

p ⊗ am)Hξ|2256

for m = 0, 1, . . .M − 1, p = 0, 1, . . . P − 1 and where a⊗ b stands for the Kronecker product257

of vectors a and b. Letting cm,p = b∗
p ⊗ am ∈ C2N , the PPR problem is equivalent to258

find ξ ∈ C2N given measurements ym,p =
∣∣∣cHm,pξ

∣∣∣
2

m = 0, 1, . . .M − 1, p = 0, 1, . . . P − 1
.(PPR-1D)259

This shows that PPR can be rewritten as a specific instance of 1D phase retrieval with struc-260

tured measurements vectors cm,p ∈ C2N . While being mathematically sound, the equivalent261

PPR-1D problem brings almost no insights about the bivariate nature of the signal to be262
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recovered. Moreover, PPR-1D cannot be interpreted as a Fourier phase retrieval problem263

with masks [3, 39], since measurements vectors cm,p intertwine Fourier measurements am264

and polarimetric projections bp using Kronecker products. Thus, the study of the theoretical265

properties of PPR cannot be inferred from standard phase retrieval properties applied to PPR-266

1D. This requires a dedicated study, which is described in detail in Section 3 and exploited267

in Section 4 to formulate algebraic solutions to the PPR problem. Nonetheless, as we shall268

see in Section 5, the equivalent formulation PPR-1D remains particularly useful for designing269

(iterative) algorithms to solve the original PPR problem.270

3. Uniqueness and polynomial formulation. This section studies the uniqueness prop-271

erties of noiseless PPR under the set of assumptions (H) defined in Section 2.2. Thanks to272

Proposition 2.1, we see that any solution of the problem PPR is a solution of the problem BPR,273

and vice-versa. This formal equivalence permits to study uniqueness properties of the original274

PPR through BPR. Following standard practice in Fourier phase retrieval problems, Section275

3.1 reformulates BPR using a polynomial formalism. Theorem 3.2 shows that under the usual276

oversampling condition M ≥ 2N − 1, BPR is equivalent to a polynomial autocorrelation fac-277

torization (PAF) problem. Section 3.2 then provides general uniqueness results for PAF and278

demonstrates that it can be solved using simple greatest common divisor computations.279

3.1. Bivariate phase retrieval as a polynomial factorization problem. This section fol-280

lows standard practice in Fourier phase retrieval problems [10, 12, 8, 11, 9] and adopts the281

polynomial representation of Fourier transforms to study the uniqueness properties of the BPR282

problem. Formally, let C≤N−1[z] be the space of polynomials of degree at most N − 1. First,283

let us define the polynomials X1, X2 ∈ C≤N−1[z] as generating polynomials of the components284

of the bivariate signal x[n] = (x1[n], x2[n])
⊤ ∈ C2, n = 0, 1, . . . N − 1285

(3.1) X1(z) =
N−1∑

n=0

x1[n]z
n, X2(z) =

N−1∑

n=0

x2[n]z
n.286

Similarly, define their conjugate reflections X̃1, X̃2 ∈ C≤N−1[z], obtained by reversing the287

order and conjugating the coefficients of X1(z) and X2(z):288

(3.2) X̃1(z) =
N−1∑

n=0

x∗1[N − n− 1]zn, X̃1(z) =
N−1∑

n=0

x∗2[N − n− 1]zn.289

Then we define the following matrix polynomial Γ ∈ C2×2
≤2N−2[z]290

(3.3) Γ(z) =

[
Γ11(z) Γ12(z)
Γ21(z) Γ22(z)

]
=

[
X1(z)X̃1(z) X1(z)X̃2(z)

X2(z)X̃1(z) X2(z)X̃2(z)

]
=

[
X1(z)
X2(z)

] [
X̃1(z) X̃2(z)

]
,291

where each element of the matrix is a polynomial Γij ∈ C≤2N−2[z]. The coefficients of these292

polynomials are simply the covariance functions (auto-covariances and cross-covariances) of293

the vector components x1,x2 ∈ CN that define the bivariate signal {x[n]}N−1
n=0 . Moreover, the294

spectral matrices {F[m]}M−1
m=0 of BPR are linked to the evaluations of the polynomial Γ(z).295
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Lemma 3.1. The coefficients Γij of the matrix polynomial Γ ∈ C2×2
≤2N−2[z] are given by296

(3.4) Γij(z) =
2N−2∑

n=0

γij [n−N + 1]zn with γij [n] =
∑

k∈Z
xi[k + n]x∗j [k],297

where xi[n] = 0 for n < 0 and n ≥ N by convention, and the covariance functions γij [n] are298

defined for n = −N + 1, . . . , N − 1. Moreover, the spectral matrices {F[m]}M−1
m=0 of BPR can299

be expressed for m = 0, 1, . . .M − 1 as300

(3.5) F[m] = eȷ2π
m(N−1)

M Γ(e−ȷ2π m
M ).301

Lemma 3.1 extends to the bivariate case the well-known correspondence between autocovari-302

ance polynomials and Fourier amplitude in univariate Fourier phase retrieval (see for instance303

[10, 12]). For completeness, we give a formal proof in Appendix A.304

We will refer to Γ(z) and its entries Γij(z) as measurement polynomials. Eq. (3.5) shows305

that the coefficients of Γij ∈ C≤2N−2[z] can be uniquely identified from the spectral matrix306

measurements {F[m]}M−1
m=0 of BPR provided that the number of Fourier measurements M307

exceeds the degree of these polynomials by at least one, i.e.,308

M ≥ 2N − 1.(3.6)309310

This is the well-known oversampling condition in standard univariate Fourier phase retrieval,311

see e.g. [12]. As a result, one can establish the equivalence between BPR and a polynomial312

recovery problem called Polynomial Autocorrelation Factorization (PAF).313

Theorem 3.2. For M ≥ 2N − 1, BPR is equivalent to the following problem314

find X1, X2 ∈ C≤N−1[z] given measurement polynomial Γ(z) defined as (3.3) .(PAF)315

In other terms, there is a one-to-one correspondence between the data (Γ(z) and {F[m]}M−1
m=0 )316

as well as the sets of solutions of the problems (polynomials X1(z), X2(z) and bivariate signal317

components x1,x2).318

Appendix A provides a proof of this result for completeness. Figure 1 summarizes this equiva-319

lence between BPR and PAF problems, and recall how data and solutions of respective problems320

connect to the initial PPR problem.321

3.2. General uniqueness result. The PAF formulation is very helpful for establishing the322

uniqueness conditions of BPR and, in turn, that of PPR under the nonrestrictive assumption323

(H). Notably, PAF enables a complete characterization of uniqueness properties in terms324

of algebraic properties of complex polynomials. To simplify the presentation in the follow-325

ing, uniqueness properties refer jointly to PPR, BPR and PAF problems. In this section, we326

reproduce several important results from [71] regarding the uniqueness of polynomial autocor-327

relation factorizations problems. The notion of greatest common divisor (GCD) of complex328

polynomials plays a pivotal role in establishing and interpreting these statements. In what329

follows, we use the following definition of the GCD of polynomials taken from [71, 72].330
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Definition 3.3. Consider two polynomials A1, A2 ∈ C≤D[z], where at least one of them is331

nonzero. The GCD of A1(z) and A2(z) is a polynomial Q(z) ∈ C≤K [z], with highest possible332

K, such that there exists two polynomials R1, R2 ∈ C≤D−K [z] satisfying333

(3.7) A1(z) = Q(z)R1(z) and A2(z) = Q(z)R2(z),334

and Q(z) and has exactly min(L1, L2) zero leading coefficients (where L1 and L2 is the number335

of zero leading coefficients in A1 and A2 respectively).336

Remark 3.4. The GCD exists and is unique up to a multiplication by a scalar in C\{0}.337

Therefore by writing Q(z) = gcd(A1, A2) we mean that Q(z) is a GCD up to this ambiguity.338

All the usual properties of the GCD apply, despite the special treatment of zero leading coef-339

ficients, see [71]. In particular, the polynomials R1(z) and R2(z), called quotient polynomials,340

satisfy gcd(R1, R2) = 1 and are said to be co-prime. Extension of the notion of GCD to341

multiple polynomials is straightforward.342

Theorem 3.5 ([71]). The following equivalences are true:343

1. PAF admits a unique solution (up to trival ambiguities);344

2. H(z) = gcd(Γ11,Γ12,Γ21,Γ22) has no roots outside the unit circle;345

3. X1(z) and X2(z) have no common roots outside the unit circle and the leading coeffi-346

cient of gcd(X1, X2) is nonzero.347

The proof of this result can be found in [71], where the generalization of PAF to the case of R348

polynomials is considered. Note that the uniqueness condition given in Theorem 3.5 clarifies349

previous statements made in the literature [57, 41]. In particular, in [57, Theorem 1] it was350

claimed that coprimeness of the polynomials X1(z) and X2(z) was a necessary and sufficient351

for uniqueness of the solution. Theorem 3.5 shows that it was just a sufficient condition,352

because unimodular roots do not affect uniqueness. This agrees with a similar behavior353

observed for univariate one-dimensional Fourier phase retrieval [10], where unimodular roots354

do not contribute to the number of non-trivial solutions. However, unlike univariate one-355

dimensional Fourier phase retrieval, the bivariate case is almost everywhere unique, as shown356

in the following corollary.357

Corollary 3.6 ([71]). The PAF problem admits a unique solution for almost every polyno-358

mials X1, X2 ∈ C≤N−1[z].359

The proof essentially comes down to observing that the set of polynomials X1, X2 ∈ C≤N−1[z]360

with at least one common root is an algebraic variety of dimension at most 2N −1; hence it is361

of measure zero. Put it differently, this shows that PAF has the appealing property that almost362

all polynomials X1, X2 ∈ C≤N−1[z] can be uniquely recovered from measurement polynomials363

Γ11(z),Γ12(z),Γ21(z) and Γ22(z).364

In practice, if one picks polynomials X1(z) and X2(z) at random from some continuous365

probability distribution, then they can be almost surely uniquely recovered through PAF.366

Moreover, they are almost surely co-prime, i.e., gcd(X1, X2) = 1. In this very general case,367

the following proposition shows that recovery is possible through simple GCD computations.368

Proposition 3.7 (GCD-based recovery). Let X1, X2 ∈ C≤N−1[z] such that gcd(X1, X2) = 1.369

Then X1(z) and X2(z) can be uniquely recovered as370

(3.8) X1(z) = c1 gcd(Γ11,Γ12) and X2(z) = c2 gcd(Γ21,Γ22).371
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where c1, c2 ∈ C can be determined explicitely (up to one global phase) from measurement372

polynomials.373

Proof. Suppose that X1, X2 ∈ C≤N−1[z] such that gcd(X1, X2) = 1. This implies that374

gcd(X̃1, X̃2) = 1. Therefore, gcd(Γ11,Γ12) = gcd(X1X̃1, X1X̃2) = c1X1(z) since X̃1(z) and375

X̃2(z) are co-prime. The same argument yields gcd(Γ21,Γ22) = c2X2(z). Constants c1 and376

c2 can be determined from the knowledge of correlation functions γij [n], or equivalently,377

measurement polynomials Γij(z); see Section 4.3 for explicit expressions.378

Proposition 3.7 is a central result. It indicates that the PAF problem, and by extension, BPR379

and PPR can be solved using polynomial algebraic techniques. This distinctive feature arises380

as a direct consequence of accounting for polarization in Fourier phase retrieval problems.381

This original direction is further explored in Section 4, where we devise algebraic approaches382

to solve the noisy PPR problem using approximate GCD computations.383

4. Solving PPR with algebraic methods. A central result of the previous section is384

Proposition 3.7, which states that polynomials X1(z) and X2(z) can be uniquely recovered (up385

to trivial ambiguities) as GCDs of measurements polynomials Γ11(z),Γ12(z),Γ21(z) and Γ22(z).386

The set of equivalencies summarized in Figure 1 further demonstrates that, in absence of noise,387

such algebraic approaches can be readily used to solve the initial PPR problem. In the context388

of noisy PPR measurements, this section shows how to leverage the notion of approximate389

GCD [72] for solving the polarimetric phase retrieval problem thanks to computational linear390

algebra methods. In the sequel, we assume that PPR measurements are corrupted by additive391

i.i.d. Gaussian noise such that for m = 0, 1, . . .M − 1 and p = 0, 1, . . . P − 1,392

(4.1) ym,p = |aHmXbp|2 + nm,p, nm,p ∼ N (0, σ2),393

where σ2 is the Gaussian noise variance. The signal-to-noise ratio (SNR) is then defined as394

(4.2) SNR =

∑M−1
m=0

∑P−1
p=0 |aHmXbp|4

MPσ2
.395

Algorithm 1 summarizes the use of algebraic approaches to solve noisy PPR. They operate in396

two steps. First, one first needs to obtain an estimate Γ̂(z) of the measurement polynomial397

matrix Γ(z) given noisy scalar PPRmeasurements ym,p,m = 0, 1, . . . ,M−1, p = 0, 1, . . . , P−1.398

Section 4.1 addresses this question. The second step exploits approximate GCDs computations399

of measurement polynomials to recover estimates x̂1 and x̂2 of the coefficients of polynomials400

X1(z) and X2(z) (or equivalently, the two components of the bivariate signal {x[n]}N−1
n=0 ).401

Section 4.2 introduces the main theoretical tools for this task, namely the notion of Sylvester402

matrices and their (left or right) kernel properties, in a general context. Section 4.3 then gives403

two practical algebraic algorithms to recover estimates of the bivariate signal of interest.404

4.1. Reconstruction of measurement polynomials. Recall that by Lemma 3.1 mea-405

surement polynomials Γij(z) can be readily expressed in terms of auto-covariance functions406

{γ11[n]}, {γ22[n]} and cross-covariance functions {γ12[n]}, {γ21[n]}. Thus, recovery of polyno-407

mials Γij(z) is identical to the recovery of {γij [n]}n∈Z for i, j = 1, 2. Equivalently, by discrete408

Fourier transformation, one must retrieve the spectral matrix F[m] for m = 0, 1, . . . ,M − 1409

from PPR measurements.410
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Algorithm 1: Algebraic approaches for noisy PPR

Input: polarimetric measurements ym,p, m = 0, 1, . . .M − 1, p = 0, 1, . . . P − 1
Step 1: reconstruction of measurements polynomials (Section 4.1);
for m = 0,. . . , M-1 do

use P polarimetric measurements to obtain an estimate F̂[m] as (4.7);
end

Obtain estimates {γ̂ij [n]}N−1
n=1−N of covariance functions for i, j = 1, 2 by inverse FFT

of entries of {F̂[m]}M−1
m=0 (possibly resampled to 2N − 1 points if M > 2N − 1);

Define measurement polynomials Γ̂ij(z) with coefficients {γ̂ij [n−N + 1]}2N−2
n=0 , see

(3.4);

Step 2: approximate GCD computations (Section 4.2 and Section 4.3);

Construct the estimated matrix polynomial Γ̂(z) using step 1;
Obtain x̂1 and x̂2 as outputs of one the following methods: right-kernel Sylvester
(Algorithm 2) or left-kernel Sylvester (Algorithm 3);

Result: estimates x̂1 and x̂2

Consider noisy measurements given by (4.1). Since |aHmXbp|2 = Trb∗
pb

⊤
p F[m], an estimate411

F̂[m] of F[m] is found for every m by minimizing the following quadratic-loss412

(4.3) F̂[m] = argmin
F̃[m]=F̃[m]H

rank F̃[m]=1

P−1∑

p=0

(
ym,p − Trb∗

pb
⊤
p F̃[m]

)2
,413

where the Hermitian and rank-one constraint ensures the estimated spectral matrix F̂[m] has414

the right structure for future polynomial GCD computations.415

To solve (4.3), we adopt a heuristic but simple strategy similar to practical polarimetric416

reconstruction techniques used in optics [62, 31]. First, we exploit the Stokes parameters417

representation of 2-by-2 Hermitian matrices, which read for an arbitrary Hermitian matrix418

M ∈ C2×2419

(4.4) M =
1

2

[
S0 + S1 S2 + ȷS3

S2 − ȷS3 S0 − S1

]
S0, S1, S2, S3 ∈ R.420

This set of four real-valued parameters are widely used in optics to describe the different421

polarization states of light. Formally, Stokes parameters define a bijective map S : {M ∈422

C2×2|M = MH} → R4 such that S(M) = (S0, S1, S2, S3)
⊤. This allows to express the423

noiseless measurements as a simple scalar product between Stokes vectors, i.e.,424

(4.5) Trb∗
pb

⊤
p F̃[m] =

1

2

[
S
(
b∗
pb

⊤
p

)]⊤
S
(
F̃[m]

)
.425

Therefore, for m fixed, we can set ym,: = (ym,0, ym,1, . . . , ym,P−1)
⊤ ∈ RP

+ as the vector collect-426

ing the P polarimetric measurements. Then one defines the polarization measurement matrix427
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D ∈ RP×4 such that its p-th row reads Dp = 1
2

[
S
(
b∗
pb

⊤
p

)]⊤
. Note that the matrix D does428

not depend on Fourier frequency index m. This leads to rewriting problem (4.3) as429

(4.6) F̂[m] = argmin
F̃[m]=F̃[m]H

rank F̃[m]=1

∥∥∥ym,: −DS
(
F̃[m]

)∥∥∥
2

2
.430

A possibly sub-optimal yet very simple solution to (4.6) consists in finding the best rank-one431

approximation of the classical least square estimator of Stokes parameters, i.e.,432

(4.7) F̂[m] = rank1
{
S−1

(
D†ym,:

)}
,433

where D† denotes the Moore-Penrose pseudo-inverse of D and S−1 is the inverse Stokes434

mapping defined by (4.4). The operator rank1{M} finds the best rank-one approximation435

of a given matrix M with respect to the Frobenius norm. For the present 2-by-2 Hermitian436

matrix case, the solution is given by keeping the first singular vector of M, that is rank1(M) =437

σ0u0u
H
0 , where σ0 and u0 are respectively the largest singular value and its corresponding438

singular vector. Then, estimates {γ̂ij [n]}N−1
n=1−N of covariance functions for i, j = 1, 2 are439

directly obtained by inverse discrete Fourier transformation of entries of the spectral matrices440

{F̂[m]}M−1
m=0 (possibly resampled to 2N − 1 points if M > 2N − 1). Finally, Eq. (3.4) permits441

to define estimated polynomials Γ̂ij(z) as polynomials in C≤2N−2[z] with vector of coefficients442 [
γ̂ij [1−N ] γ̂ij [2−N ] . . . γ̂ij [N − 1]

]
.443

4.2. Sylvester matrices and GCD. Proposition 3.7 shows that, in the noiseless case, poly-444

nomials X1(z) and X2(z) can be uniquely recovered as GCDs of the measurement polynomial445

matrix Γ(z). In the noisy PPR measurement case, it further suggests that polynomials X1(z)446

and X2(z) can be estimated, or approximately recovered from the estimated matrix polynomial447

Γ̂(z) computed in Section 4.1. Importantly, the term approximate refers here to the practi-448

cal infeasibility of computing exact GCDs due to numerical instabilities related to machine449

precision, so that approximate GCD computations must be used instead. There are many450

possible approaches for approximate GCD, see e.g., [52] for a recent review. In this work, we451

follow [72] and carry approximate GCD computations by taking advantage of the kernel (or452

null-space) properties of Sylvester matrices.453

The following section reviews the relevant theory. Practical use of these results in the454

context of PPR is given in Section 4.3.455

For simplicity, we assume polynomials A,B ∈ C≤L[z] of same degree L. Then we define456

the Sylvester-like matrices, parameterized by an integer D ≤ L (possibly negative) as457

(4.8) SD(A,B) =




a0 b0
...

. . .
...

. . .

aL a0 bL b0
. . .

...
. . .

...
aL bL



∈ C(2L−D+1)×2(L−D+1).458

The Sylvester-like matrices are tightly linked with multiplication matrices of polynomials, see459

Appendix B for more details. When D = 1 (i.e., the matrix is square 2L× 2L), the matrix is460
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the well-known Sylvester matrix. There are, however, two important extensions of the classic461

case:462

• When 1 ≤ D ≤ L, the matrix is tall (the number of columns does not exceed the463

number of rows), and it is called the Sylvester subresultant matrix.464

• If D ≤ 1 (in general, chosen to be negative), the matrix is fat (the number of rows465

does not exceed the number of columns), and such a matrix is called extended Sylvester466

matrix.467

For an overview of such matrices and the corresponding literature, we refer to [72] (note that468

unlike [72] we use the same notation for subresultant and extended Sylvester matrices). The469

following theorem is classic.470

Theorem 4.1 (Sylvester). Two polynomials A,B ∈ C≤L[z] have a non-trivial common471

divisor if and only if S1(A,B) is rank deficient. Moreover the degree K of gcd(A,B) is equal472

to the rank defect of S1(A,B), i.e.,473

K = 2L− rankS1(A,B)474

and gcd(A,B) ∈ C≤K [z].475

Unfortunately, Theorem 4.1 does not give an explicit way to compute gcd(A,B). In fact,476

explicit determination of the GCD requires the use of Sylvester matrices SD(A,B) in the477

general case D ̸= 1. More precisely, Proposition 4.2 and Proposition 4.4 below show that the478

GCD can be retrieved from the left or right kernel of carefully constructed Sylvester matrices.479

In what follows, we assume that the GCD has degree K and note Q(z) = gcd(A,B) ∈ C≤K [z].480

Moreover, we define481

F (z) =
A(z)

Q(z)
, G(z) =

B(z)

Q(z)
482

the corresponding quotient polynomials. We begin with the result on the right kernel of483

Sylvester subresultant matrices.484

Proposition 4.2 (Right kernel, see e.g. [72, Lemma 4.6]). The rank of the Sylvester sub-485

resultant matrix SK(A,B) is equal to 2(L −K + 1) − 1 (i.e., it has rank defect equal to 1).486

Moreover, for the (unique up to scalar factor) nonzero vector in the right kernel487

(4.9) SK(A,B)

[
u
v

]
= 0;488

with u,v ∈ CL−K+1, the corresponding polynomials are multiples of the quotient polynomials:489

(4.10) U(z) = −cG(z), V (z) = cF (z),490

where c ∈ C is some constant.491

Remark 4.3. In view of the connection between Sylvester and multiplication matrices (see492

Appendix B), Proposition 4.2 implies that the polynomials U, V ∈ C≤L−K [z] defined in (4.10)493

are the only ones (up to multiplication by a nonzero scalar) that satisfy A(z)U(z)+B(z)V (z) =494

0 (see (4.9)).495
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For the case of extended Sylvester matrices (D ≤ 1), the result on the left kernel matrices496

is less known in the form that we are using here. This is the reason why we also provide a497

short proof of the following proposition in Appendix B.498

Proposition 4.4 (Left kernel). Let D ≤ 1 (i.e., SD(A,B) is fat with 2L − D + 1 rows).499

Then the rank of SD(A,B) is equal to500

(4.11) rankSD(A,B) = 2L−D + 1−K;501

therefore the dimension of the left kernel (i.e., the rank defect) is equal to K (the degree of502

the GCD). Moreover, let u−1, . . . ,u−K ∈ C2L−D+1 be a basis of the left kernel of SD(A,B)503

(for example, its last K left singular vectors) and define the following matrix504

(4.12) H =
[
HK+1(u−1) · · · HK+1(u−K)

]
∈ C(K+1)×K(2L−D+1−K),505

where each block is a Hankel matrix, i.e.,HK+1(u) denotes the Hankel matrix with K+1 rows506

built from a vector u ∈ C2L−D+1 such that507

HK+1(u) =




u[0] u[1] · · · u[2L−D −K]
u[1] u[2] · · · u[2L−D −K + 1]
...

...
...

u[K] u[K + 1] · · · u[2L−D]


 ∈ C(K+1)×(2L−D+1−K).508

Then we have rankH = K and the left kernel of H is spanned by the the vector of coefficients509

q ∈ CK+1 of the GCD Q(z).510

The next section exploits these properties of the kernel of Sylvester matrices to formulate511

algebraic algorithms for the PPR problem.512

4.3. Algebraic algorithms. In this section, we propose two algorithms for estimating coef-513

ficients of polynomials X1(z) and X2(z) from the estimated matrix polynomial Γ̂(z) computed514

in Section 4.1. Both algorithms rely on the use of the singular value decomposition (SVD) to515

find the left or right kernels of Sylvester matrices constructed from Γ̂(z). Thus the proposed516

reconstuction methods may appear as suboptimal since the Sylvester structure is not taken517

into account when computing the (low-rank) kernels. This limitation could be overcome with518

structured low-rank approximations [48], to be specifically tailored for the PPR problem. Such519

a study would fall outside the scope of the present work. Still, as demonstrated by the numer-520

ical experiments presented in Section 6, the SVD already provides excellent reconstruction521

performance in many scenarios, while maintaining a reasonable computational burden.522

4.3.1. Right kernel Sylvester. The first algorithm is based on the properties of the right523

kernel of Sylvester matrices described in Proposition 4.2. It uses the fact that X1(z) and524

X2(z) are (without noise) quotient polynomials of525

Γ11(z) = X1(z)X̃1(z) and Γ21(z) = X2(z)X̃1(z).526

One can remark that X1(z) and X2(z) are also quotient polynomials of Γ12(z) = X1(z)X̃2(z)527

and Γ22(z) = X1(z)X̃2(z), which adds some freedom in the choice of measurement polynomi-528

als. For the sake of simplicity, we will work with estimated polynomials Γ̂11(z) and Γ̂21(z) in529

the following.530
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Algorithm 2: Right kernel Sylvester

Input: estimated matrix polynomial Γ̂(z) ∈ C2×2
≤2N−2.

Build the matrix S = SN−1(Γ̂11, Γ̂21) ∈ C(3N−2)×2N ;
Take v = v2N ∈ C2N to be the 2N -th right singular vector of S (corresponding to the
last nontrivial singular value);

Partition v as v = (−v2,v1), where v1 = cx̂1 and v2 = cx̂2 with c ∈ C;
Determine |c| by proper norm scaling as

|c| =
(∥v1∥22 + ∥v2∥22
γ̂11[0] + γ̂22[0]

) 1
2

Set x̂1 = v1/|c| and x̂2 = v2/|c|;
Result: estimates x̂1 and x̂2

Algorithm 3: Left kernel Sylvester

Input: estimated matrix polynomial Γ̂(z) ∈ C2×2
≤2N−2.

for j = 1,2 do

Build the matrix S = S1(Γ̂j1, Γ̂j2) ∈ C(4N−4)×(4N−4);
Take the last N − 1 left singular vectors of S, i.e., u3N−2, . . . ,u4N−4;
Construct the Hankel matrix H as (4.12);
Retrieve wj = cjx̂j , cj ∈ C as the last left singular vector of H.

end
Determine constants c1, c2 as

c1 =
∥w1∥2√
γ̂11[0]

and c2 =
∥w2∥2√
γ̂22[0]

exp
[
ȷ(arg γ̂12[0]− argwH

2 w1)
]

Set x̂1 = w1/c1 and x̂2 = w2/c2;
Result: estimates x̂1 and x̂2

The complete right kernel Sylvester approach is summarized in Algorithm 2. It exploits the531

fact that gcd(Γ11,Γ21) = X1(z), i.e., it is a polynomial of degree N − 1. Therefore according532

to Proposition 4.2, the last nontrivial singular vector of the Sylvester matrix SN−1(Γ̂11, Γ̂21)533

provides an estimate of the (one-dimensional) right kernel, which in turn gives, up to one534

complex multiplicative constant, an estimation x̂1 and x̂2 of the vectors of coefficients defining535

polynomials X1(z) and X2(z). This constant is then computed (up to one unit-modulus factor536

due to the trivial rotation ambiguity) by scaling the 2-norm of x̂1 and x̂2 thanks to the value537

at the origin (n = 0) of estimated auto-covariance functions γ̂11[n] and γ̂22[n].538

One of the key advantages of this algorithm lies in its simplicity. Indeed, it only requires a539

single SVD of a (3N −2)×2N matrix and thus has overall computational complexity O(N3).540
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4.3.2. Left kernel Sylvester. The second algorithm exploits the properties of the left541

kernel of extended (fat) Sylvester matrices (i.e., SD for D ≤ 1) detailed in Proposition 4.4.542

For simplicity and to reduce the size of the involved matrices we set D = 1 in what follows.543

Nonetheless, the proposed approach can be adapted to any value of D ≤ 1 if needed.544

Algorithm 3 summarizes the complete procedure. In essence, it follows the theoretical545

result of Proposition 3.7. In particular, compared to the right kernel Sylvester approach,546

estimated coefficients x̂1 and x̂2 are obtained by two separate GCD computations: the vector547

of coefficients x̂1 is obtained by computing the GCD of estimated measurement polynomials548

Γ̂11(z) and Γ̂12(z), whereas x̂2 is obtained by computing the GCD of Γ̂21(z) and Γ̂22(z).549

Importantly, the two GCDs are determined up to a multiplicative complex constant, say c1550

and c2, which can be determined jointly using PPR measurements.551

The computation of each GCD requires three steps [72]: a first SVD to determine the N−1552

last left singular vectors of the Sylvester matrix S1; the construction of a fat, horizontally553

stacked Hankel matrix H with N rows from these N − 1 singular vectors; a second SVD to554

obtain the N coefficients of the GCD as the last left singular vector of H. Once GCDs have555

been obtained, determination of constants c1 and c2 (up to a common global phase factor) is556

carried out by properly scaling the norms of estimated coefficients x̂1 and x̂2 (using γ̂11[0] and557

γ̂22[0]) and adjusting the phase factor arg c1c
∗
2 thanks to the value at n = 0 of the estimated558

cross-covariance function γ̂12[n].559

The complexity of the left kernel Sylvester method described in Algorithm 3 is higher for560

two main reasons. First, as explained above, it requires the computations of two SVDs for561

each one of the two GCDs determinations. Moreover, while the first SVD has a cost of O(N3),562

the second SVD is performed on a large fat stacked Hankel matrix H, with complexity O(N4),563

which dominates the overall computational burden of Algorithm 3.564

5. Solving PPR with iterative algorithms. We now address the design of iterative al-565

gorithms to solve the noisy PPR problem. Section 5.1 and Section 5.2 exploit the PPR-1D566

representation of the original problem to provide a semidefinite programming (SDP) relaxation567

and Wirtinger flow algorithm, respectively.568

5.1. SDP relaxation. Semidefinite programming (SDP) approaches for phase retrieval569

have been increasingly popular for over a decade [15, 16, 75]. In the classical 1D phase retrieval570

case, SDP approaches exploit that even though measurements are quadratic in the unknown571

signal x ∈ CN , they are linear in the rank-one matrix xxH. For PPR, the 1D equivalent572

representation PPR-1D enables to formulate a SDP relaxation of the original problem, by573

observing that574

(5.1) |cHm,pξ|2 = Tr cm,pc
H
m,pξξ

H = TrCm,pΞ,575

i.e., noiseless measurements can be rewritten as a linear function of the lifted positive semi-576

definite rank-one matrix Ξ = ξξH ∈ C2N×2N . Following the classical PhaseLift methodology577

[16, 15], the original nonconvex PPR problem can be relaxed into a SDP convex program as578

minimize
1

2

M−1∑

m=0

P−1∑

p=0

(ym,p − TrCm,pΞ)2 + λ∥Ξ∥⋆

subject to Ξ ⪰ 0

,(5.2)579
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Algorithm 4: SDP relaxation for PPR

Input: measurements y ∈ RMP , lifted measurement matrices Cm,p ∈ C2N×2N ,
regularization parameter λ ≥ 0.

set arbitrary Ξ(0);

Ψ(0) ← Ξ(0);
k ← 0;
while stopping criterion is not satisfied do

Ξ(k+1) = proxtkg

(
Ψ(k) − tk∇f(Ψ(k))

)
where the proximal operator is given by

(5.8);

ηk+1 =
1+
√

1+4η2k
2 ;

Ψ(k+1) = Ξ(k+1) +
(
ηk−1
ηk+1

)(
Ξ(k+1) −Ξ(k)

)
;

k ← k + 1;

end

ξ̂ ← rank1
(
Ξ(k)

)
;

Result: estimate ξ̂

where λ ≥ 0 is an hyperparameter that allows to control the trade-off between the likelihood580

of observations and the nuclear norm regularization ∥ · ∥⋆. Note that since Ξ is constrained581

to be positive semidefinite, the nuclear norm regularization is equivalent to the trace-norm582

regularization used in [15] since ∥Ξ∥⋆ = TrΞ in this case. The SDP program (5.2) takes a583

standard form: therefore it can be solved in many ways, including interior point methods [74],584

first-order methods [51] or using disciplined convex programming solvers such as CVXPY1. For585

completeness, we provide below an explicit algorithm to solve (5.2) using a proximal gradient586

approach [7, Chapter 10]. It closely follows the approach described in [15, 32].587

The objective function in (5.2) can be rewritten as the sum f(Ξ) + g(Ξ) with588

(5.3) f(Ξ) =
1

2

M−1∑

m=0

P−1∑

p=0

(ym,p − TrCm,pΞ)2 , g(Ξ) = λ∥Ξ∥⋆ + ι⪰0(Ξ),589

where ι⪰0(·) denotes the indicator function on the positive semidefinite cone. This ensures590

the formal equivalence between (5.2) and the unconstrained minimization problem591

(5.4) min
Ξ∈C2N×2N

f(Ξ) + g(Ξ) .592

The convex optimization problem (5.4) can be efficiently solved by proximal gradient methods,593

which take advantage of the splitting between f and g of the objective function. More precisely,594

1https://www.cvxpy.org/
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we use the fast proximal gradient method which consist, at iteration k:595

Ξ(k+1) = prox
tkg

(
Ψ(k) − tk∇f(Ψ(k))

)
,(5.5)596

ηk+1 =
1 +

√
1 + 4η2k

2
,(5.6)597

Ψ(k+1) = Ξ(k+1) +

(
ηk − 1

ηk+1

)(
Ξ(k+1) −Ξ(k)

)
,(5.7)598

599

where tk is a step-size which is chosen such that the proximal gradient step (5.5) obey some600

sufficient decrease condition; see e.g. [7, p. 271] for details. Our choice for the function g in601

(5.4) enables a simple expression for the associated proximal operator (see [32]):602

prox
τg

(X) = min
Z⪰0

τλ∥Z∥⋆ + ∥Z−X∥22

= Ushrink(Σ, τλ)UH,
(5.8)603

where in the last equation, UΣUH is the eigenvalue decomposition of X and the shrink604

operator is defined entry-wise by shrink(σi, τλ) = max{real(σi)− τλ, 0}605

Choice of regularization parameter λ. In this work, we fix the value of the regularization606

parameter to λ = 1/SNR: we found empirically that this choice provides good results in607

most scenarios, as it provides a reasonable tradeoff between likelihood of observations and the608

nuclear norm regularization in the objective function of (5.2).609

Convergence. Obviously, as (5.2) is a convex program, the precision towards the optimal610

cost value can become arbitrarily good as one increases the number of iterations. In practice,611

one needs to stop the algorithm when a prescribed tolerance ε is reached. To this aim we612

implemented stopping criteria that carefully monitor a normalized residual, see [32] for details.613

Moreover, it may happen that the estimated lifted matrix Ξ̂ generated by the sequence of Ξ(k)614

is not rank one: in this case, one first computes the rank-one approximation of Ξ̂ (e.g. using615

SVD) to obtain the estimated signal ξ̂.616

Complexity. The computational cost of the proposed algorithm concentrates on the proxi-617

mal gradient step (5.5), where the evaluation of the proximal operator and the computation of618

the gradient ∇f share the computational burden. More precisely, the eigenvalue decomposi-619

tion of a 2N ×2N matrix together with the shrink operator leads to O(N3) calculations. The620

computation of the gradient leads to MP trace evaluations of order O(N2) flops, meaning621

that the number of flops per iteration is of order O(MPN2 +N3).622

The full procedure is summarized in Algorithm 4.623

5.2. Wirtinger flow for PPR. Exploiting further the 1D equivalent representation PPR-624

1D of the PPR problem, another approach consists in minimizing directly the following non-625

convex quadratic objective626

(5.9) min
ξ∈C2N

F (ξ) =
1

2
∥y − |Cξ|2∥22,627
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Algorithm 5: Wirtinger Flow for PPR: PPR-WF

Input: measurements y ∈ RMP , measurment matrix C ∈ CMP×2N , tolerance ε
set ξ(0) using the desired initialization method;

ξ(1) ← ξ(0);
k ← 1;

while ∥ξ(i+1) − ξ(i)∥2 > ε∥ξ(i)∥2 do

βk ← k+1
k+3 ;

ψ(k) ← ξ(k) + βk

(
ξ(k) − ξ(k−1)

)
;

compute optimal step-size µk (5.14);

ξ(k+1) ← ψ(k) − µk∇F
(
ψ(k)

)
;

k ← k + 1;

end

ξ̂ ← ξ(k);

Result: estimate ξ̂

where y ∈ RMP gathers PPR measurements and where the rows of C ∈ CMP×2N are given628

by cHm,p, see Section 2.4. Provided that one can find a initial point ξ(0) close enough from629

the global minimizer of (5.9), a simple strategy based on gradient descent can be used to630

solve PPR. However, such an approach requires special care since the optimization variable631

ξ is complex-valued. In fact, the objective function in (5.9) is real-valued, and thus it is not632

differentiable with respect to complex analysis. Instead, one needs to resort to the so-called633

CR or Wirtinger -calculus [44] to provide a meaningful extension of gradient-descent-type634

algorithms to the complex case. This is precisely the approach proposed in [17] to solve635

standard phase retrieval, where the complex gradient descent is called Wirtinger flow (WF).636

Leveraging the original WF approach, we propose below a complex-gradient descent al-637

gorithm which solves the nonconvex problem (5.9). Compared to the original paper [17], we638

incorporate optimal step size selection [43] together with a proposed acceleration scheme [77].639

We further propose an efficient strategy for initialization based on the algebraic methods for640

PPR described in Section 4. The superiority of these initializations over standard ones (e.g.641

spectral initialization as proposed in [17]) will be demonstrated in Section 6.2.642

The proposed PPR-WF algorithm is as follows. Starting from two initial points ξ(0), ξ(1),643

the k-th iteration reads644

βk =
k + 1

k + 3
,(5.10)645

ψ(k) = ξ(k) + βk

(
ξ(k) − ξ(k−1)

)
,(5.11)646

ξ(k+1) = ψ(k) − µk∇F
(
ψ(k)

)
,(5.12)647

648

where βk is a sequence of accelerated parameters and µk is a carefully chosen stepsize, see649

further below. Compared to the standard WF algorithm, PPR-WF takes advantage of the650
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acceleration procedure first proposed in [77] in the context of ptychographic phase retrieval651

(but using a magnitude loss function instead of a square magnitude loss function as used here).652

Note that the complex gradient of F can be computed explicitly as653

(5.13) ∇F (ψ) = CH
[(
|Cψ|2 − y

)
⊙Cψ

]
,654

where the symbol ⊙ denotes entry-wise product between vectors.655

Optimal step-size selection. We combine acceleration for WF with the optimal step-size656

selection proposed in [43] for the standard WF algorithm. For completeness, we reproduce657

here the main ingredients underpinning optimal step size selection in (5.12) and refer the658

reader to [43] for further details. At iteration k, the optimal stepsize µk is defined by line659

search, i.e.,660

(5.14) µk = argmin
µ

F
(
ξ(k+1)

)
= F

(
ψ(k) − µ∇F

(
ψ(k)

))
.661

The authors in [43] showed that the 1D optimization problem (5.14) boils down to finding662

the roots of a univariate cubic polynomial with real coefficients, the latter being completely663

determined by the knowledge of ψ(k), ∇F
(
ψ(k)

)
and y, see [43, Eq. (17)]. Roots can be664

determined in closed-form, and two cases can occur: (a) there is only one real root, and thus665

it gives the optimal step-size µk; (b) there are three real roots, and in this case µk is set to666

the real root associated to the minimum objective value. Note that optimal selection for WF667

is somewhat inexpensive, with computational cost dominated by the calculation of the cubic668

polynomial coefficients scaling as O(MP ).669

Initialization. Since PPR-WF attempts at minimizing a nonconvex quadratic objective670

(5.9), the choice of initial points ξ(0), ξ(1) is crucial to hope that PPR-WF will be able to671

recover a global minimizer of the objective function. For simplicity, we set ξ(1) = ξ(0), so that672

we only discuss the selection of ξ(0). Five different initialization strategies for PPR-WF are673

considered:674

• spectral initialization [17]: this standard approach consists in computing the eigenvec-675

tor v corresponding to the largest eigenvalue of the matrix676

(5.15) Y =
1

MP

MP−1∑

r=0

yrcrc
H
r677

and to rescale it properly to set678

(5.16) ξ(0) =
v

λ
, λ =

(
N

∑MP−1
r=0 yr∑MP−1

r=0 ∥cr∥2

)1/2

.679

• random phase initialization: we first generate a random measurement phase vector680

ϕ ∈ RMP with i.i.d. entries ϕr ∼ U([0, 2π]). Then, we set681

(5.17) ξ(0) = C†ỹ, ỹ = y ⊙ exp(ȷϕ),682

where C† is the pseudo-inverse of C.683
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• right kernel Sylvester initialization: we set ξ(0) as the result of Algorithm 1 where ap-684

proximate GCDs computations are performed using the right kernel Sylvester method685

(Algorithm 2).686

• left kernel Sylvester initialization: we set ξ(0) as the result of Algorithm 1 where687

approximate GCDs computations are performed using the left kernel Sylvester method688

(Algorithm 3).689

• SDP initialization: we set ξ(0) as the output the SDP approach described in Section690

5.1 and summarized in Algorithm 4.691

Convergence monitoring. We monitor convergence of PPR-WF by computing at each it-692

eration k, the normed residual ∥ξ(k+1) − ξ(k)∥2/∥ξ(k)∥2 and stop the algorithm when it goes693

below a prescribed tolerance ε≪ 1.694

Complexity. The computational cost per iteration of PPR-WF is dominated by the eval-695

uation of the complex gradient (5.13), which scales as O(MPN). Note that the optimal696

step-size selection procedure scales as O(MP ), meaning that the whole cost of PPR-WF697

remains O(MPN) per iteration. Algorithm 5 summarizes the proposed PPR-WF algorithm.698

6. Numerical experiments. We provide in this section several numerical experiments that699

address how PPR can be solved in practice using both algebraic and algorithmic approaches700

described in Section 4 and Section 5, respectively. Importantly, we demonstrate that the701

use of the Wirtinger Flow algorithm together with a right-Sylvester initialization provides702

an excellent trade-off between mean squared error (MSE) and computational burden. This703

combination of algorithmic and algebraic reconstruction methods provides a scalable, asymp-704

totically MSE optimal, and parameter free inversion procedure for PPR.705

Just like in standard phase retrieval, the global phase ambiguity in PPR requires to prop-706

erly realign any estimated signal X̂′ with the ground truth X in order to provide a meaningful707

squared reconstruction error value. We define the realigned estimated signal X̂ as708

(6.1) X̂ = eȷΦ0X̂′ with Φ0 = argmin
ϕ∈[0,2π)

∥eȷϕX̂′ −X∥2F .709

The squared reconstruction error is then defined in terms of the Frobenius norm as ∥X̂−X∥2F .710

Note that in practice, the minimization involved in the realignment procedure can simply be711

performed by evaluating the complex phase of the standard inner product between the vectors712

ξ̂
′
and ξ obtained from matrices X̂′ and X, respectively.713

This section is organized as follows. Section 6.1 presents the reconstruction of a realistic714

bivariate pulse from noiseless PPR measurements using the different approaches presented in715

the paper. Section 6.2 then discusses the choice of initialization in PPR-WF. Section 6.3716

benchmarks the robustness to noise of the proposed reconstructions methods. Finally, Section717

6.4 provides a first study of the impact of the number of PPR measurements on reconstruction718

performances.719

6.1. Reconstruction of bivariate pulse. As a first experiment, we consider the reconstruc-720

tion of a bivariate pulse from noiseless PPR measurements. The signal to be recovered defines721

a typical complex-valued bivariate analytic signal associated to the bivariate electromagnetic722

field to be estimated in ultra-short electromagnetic pulses experiments, see e.g. [64, 76]. It723

is defined for N = 64 points and we consider the simple noise-free measurement scheme (2.5)724
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with M = 2N−1 and K = 4. The bivariate pulse exhibits slow variations of the instantaneous725

polarization state, ensuring uniqueness of the PPR solution. We investigate the capacity of726

the methods introduced in Section 4 and Section 5 to properly recover the bivariate signal727

of interest. Note that for Wirtinger Flow, we only consider spectral initialization—remaining728

strategies will be extensively benchmarked in Section 6.2 below.729

Figure 3 depicts the different reconstructed bivariate signals obtained by each method730

along with the associated squared error (x̂[n] − x[n])2 for every time index n, where the731

estimated signal x̂ is realigned with the ground truth x using (6.1). Except Wirtinger Flow732

with spectral initialization, all methods successfully recover the original bivariate signal, where733

successful recovery in the noiseless context is decided whenever ∥X̂−X∥2F < 10−20. Left and734

right kernel Sylvester provide similar reconstruction quality, with a slight advantage to left735

kernel Sylvester. The SDP approach performs also well, yet three or four order of magnitude736

of squared error above the previous approaches. Due to the very low error levels involved here,737

this has little consequence; however, compared to the aforementioned methods SDP exhibits738

both larger memory usage and overall computational cost, which makes it a less attractive739

option to solve this PPR problem in the noiseless scenario. Strikingly, one can observe that the740

Wirtinger Flow approach relying on spectral initialization is not able to recover the ground741

truth signal. Intuitively, it may be explained by the fact that spectral initialization provides742

an initial point too far from the global optimum, resulting in Wirtinger Flow to get stuck743

in a local minima instead. This first experiment suggests that the performance of WF-based744

methods for PPR is tightly related to the quality of initial points, which we will investigate in745

detail in the next section.746

6.2. Comparison of initialization strategies for PPR-WF. Choice of initial points in747

nonconvex problems is usually a difficult but crucial task, as it directly impacts whether or748

not the considered algorithm will be able to recover the global optimum of the problem. The749

proposed PPR-WF algorithm does not avoid this key bottleneck, as already illustrated by750

the bivariate pulse recovery experiment depicted in Figure 3. To assess the role played by751

initial points in PPR-WF, we carefully benchmark the five initialization methods described752

in Section 5.2, that is spectral initialization, random phase initialization, SDP, left and right753

kernel Sylvester. We generated a random Gaussian complex-valued signal X ∈ CN×2 with754

i.i.d. entries of length N = 32 such that ∥X∥F = 1 which was fixed for all experiments.755

PPR noisy measurements (4.1) were considered for the simple measurement scheme (2.5) with756

M = 2N − 1, P = 4. We investigated three values of SNR, of 10, 40 and 60 dB respectively.757

For each SNR value, we generated 100 independent noisy measurements and run the proposed758

PPR-WF algorithm using the five aforementioned initialization procedures.759

Figure 4 depicts obtained reconstruction results for the three SNR scenarios, where we760

compare initialization methods in terms of cost function evolution F (ξ(k)) and normed residual761

∥ξ(k+1)−ξ(k)∥2/∥ξ(k)∥2 decrease. Note that we imposed a identical number of 2500 iterations762

of PPR-WF for each approach to ensure fair comparisons. We also plot the empirical distribu-763

tion of squared error values for each initialization for further comparison of the quality of the764

reconstructed signal (recall that squared error values are calculated after proper realignment765

of the estimated signal with the ground truth). For SNR = 10 dB (which is a very challenging766

scenario for PPR), there are no noticeable difference between initialization strategies: they767
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Figure 3. Reconstruction of a bivariate pulse (N = 64) from noiseless PPR measurements (M = 2N −
1, P = 4) using the different methods described in this paper. The reconstructed signal trace and squared error
per index n are shown for each approach. Dashed lines show the corresponding MSE value.

provide similar results in terms of cost value decrease, residual evolution and error distribu-768

tion. For SNR = 40 dB, two categories of initializations with distinctive behaviors start to769

appear: SDP and Sylvester-based approaches on one side, and on the other side, spectral and770

random phase initializations. On average, SDP and Sylvester-based initial points provides771

smaller optimal values, faster decrease of the residual and better reconstruction results in772

terms of squared error. This behavior is accentuated for SNR = 60 dB, where spectral and773

random phase initialization are unable to ensure convergence of PPR-WF to the global opti-774

mum. This agrees with the observations made in Figure 3 in the noiseless case for spectral775

initialization. Note that the poor performance of spectral initialization is not that surprising776

since it was originally designed for random phase retrieval measurements [17], and not for the777

case of deterministic Fourier measurements as in the present PPR setting.778

These results demonstrate the importance of the choice of the initial point in PPR-WF779

towards good convergence properties and recovery performance. Overall, spectral and ran-780

dom phase strategies are systematically outperformed by SDP and left/right kernel Sylvester781

initializations. The latter initialization strategies provide similar performances in terms of782

the three figures-of-merit used here; however they exhibit very different computational costs783

(see Figure 6 and next section). We shall see that the very limited cost of the right kernel784

Sylvester approach (only requiring O(N3) operations, i.e., that of a single iteration of the785

SDP Algorithm 4) makes it an excellent initialization for PPR-WF in many scenarios.786

6.3. Recovery performance with noisy measurements. We now investigate the recovery787

performances (in terms of MSE and computation time) of the different proposed algorithms788
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Figure 4. Comparison of initialization strategies for PPR-WF for the recovery of an arbitrary random
bivariate signal of length N = 32 with M = 2N − 1 and P = 4 noisy measurements. We benchmark spectral
initialization, random phase initialization, left and right-kernel Sylvester initialization, and SDP initialization
strategies in terms of cost function evolution, normed residual decrease and squared error distribution. Rows
corresponds to values of SNR of 10, 40 and 60 dB, respectively. For each SNR value, left and middle panels
present the evolution of the cost function and residual value with iterations, respectively. For each initialization
method, thin colored lines indicate trajectories for each one of the 100 independent trials, and thick colored
lines display their average respective average. The right panel provides violin plots representing a kernel density
estimate of squared error distribution associated to each initialization strategy. White dots indicate MSE values
and horizontal bars give extreme values for each squared error distribution.
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Figure 5. Evolution of the MSE with the SNR for the different PPR reconstruction methods proposed
in this paper. For Wirtinger Flow (PPR-WF), two initialization strategies (SDP and right kernel Sylvester)
are considered. The ground truth signal is a randomly generated bivariate signal with N = 32. The simple
measurement scheme for M = 2N − 1 and P = 4 was used. The thick black line indicates the corresponding
Cramèr-Rao lower bound analytically derived in Appendix C.

for PPR when dealing with noisy measurements. We consider an additive white Gaussian789

noise model (4.1) for which the SNR is defined in (4.2). We generated a ground truth signal790

X ∈ CN×2 with i.i.d. Gaussian entries of length N = 32 such that ∥X∥F = 1 and selected791

the simple, M = 2N − 1, P = 4 measurement scheme (2.5). For a given SNR value, the MSE792

associated with each one of the proposed methods to solve PPR was obtained by averaging of793

100 independent reconstructions. Following our analysis of initialization strategies in Section794

6.2, we considered two initializations for PPR-WF (Algorithm 5): an algebraic one using right795

kernel Sylvester, and a second one exploiting the output of the SDP approach (Algorithm 4).796

Figure 5 displays the evolution of MSE for values of SNR ranging from 0 dB to 80 dB.797

As expected, the MSE decreases as the SNR increases, independently from the considered798

method. Overall, algorithmic methods (SDP and PPR-WF, independently from the initial-799

ization method) outperform algebraic ones (left and right kernel Sylvester) in terms of MSE800

values. More precisely, algebraic methods are not informative in the “low-SNR” regime (SNR801

≤ 30 dB) as they provide (relative) MSE values above 0 dB, meaning that they do not pro-802

vide a better reconstruction than a simple i.i.d. random guess scaled to the ground truth803

norm. Furthermore we observe that SDP is more robust to noise than PPR-WF, even when804

PPR-WF is initialized with the SDP output. This agrees with the fact that SDP methods805

are known to be robust to noise in general. In terms of initialization strategies of PPR-WF,806
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Figure 6. Comparison of performances of the different reconstruction strategies in the MSE - computation
time plane. Results corresponds to the same data plotted in Figure 5, for SNR = 40 dB (left panel) and
SNR = 80 dB (right panel). For each reconstruction strategy, points represent one of the 100 independent
trials; the boxed markers depicts the median error - median computation time of each method.

SDP provides a small advantage over the right kernel Sylvester initialization for SNR values807

ranging from 30 to 60dB; in the low-SNR or high-SNR regime, both initialization strategies808

are equivalent in terms of MSE performance. The high-SNR regime (≥ 60 dB) highlights809

several other distinctive behaviors. First, we observe that beyond SNR = 40 dB, PPR-WF810

outperforms all other methods, including SDP, by a few dB up to about 10 dB of relative MSE811

in the asymptotic regime. Second, left-kernel Sylvester and SDP provide similar performance,812

only improving the right-kernel Sylvester method by a small margin.813

For completeness, we also provide the Cramèr-Rao lower bound (CRLB) for the noisy814

PPR measurement model (4.1) to characterize a lower bound on the MSE of any unbiased815

estimator of the ground truth signal. An analytical derivation of the resulting CRLB is816

given in Appendix C. Figure 5 displays the CRLB on top of MSE values obtained for each817

reconstruction method. We observe that the CRLB is not informative below SNR ≤ 20 dB818

as all methods provide smaller MSE values—it simply means that the CRLB is particularly819

pessimistic in this regime. On the contrary, the CRLB provides a meaningful lower bound820

in the high-SNR regime. Importantly, it demonstrates that PPR-WF is an asymptotically821

optimal reconstruction method for PPR—independently from the initialization strategy—since822

it attains the CRLB for SNR ≥ 60 dB.823

Figure 6 depicts the performances of the different reconstruction strategies in the MSE -824

computation time plane. Two SNR values of SNR = 40 dB (“mid” SNR regime) and SNR = 80825

dB (high-SNR regime) are considered. For each reconstruction method, a single point corre-826

spond to one of the 100 independent trials. Execution runtimes have been obtained on a 2021827
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Apple M1 Max MacBookPro with 32Gb RAM, using Python 3.11.1 and NumPy 1.24.1.828

PPR-WF runtimes include the computation of the initialization (right kernel Sylvester or829

SDP). In terms of computation burden, the right kernel Sylvester approach outperforms all830

other methods by at least 2 orders of magnitude. SDP is the slowest method tested, with a831

computational cost greater than 4 orders of magnitude for right kernel Sylvester and 2 orders832

of magnitude for left kernel Sylvester and PPR-WF with the right kernel Sylvester initializa-833

tion. In addition, when using the SDP initialization, the cost of PRR-WF is almost entirely834

dominated by the cost of SDP, which prevents one from benefiting of the low-complexity of835

the PRR-WF algorithm. Finally, Figure 6 shows that the best trade-off between MSE perfor-836

mance and computation time is attained by combining PPR-WF with the inexpensive right837

kernel Sylvester initialization.838

6.4. Influence of number of measurements. One of the key advantages of the polarimet-839

ric measurement model in PPR is that one can easily increase the number of measurements840

MP by performing more polarimetric projections, i.e., by increasing P . In fact, in practical841

experiments it may be oftentimes easier to set up a new polarizer state bp than changing842

the actual detector, which would be required if one desires to increase the number of Fourier843

measurements M . Therefore, a natural question is the following: if one seeks to increase844

the total number of measurements MP , is it better—in terms of MSE—to increase the num-845

ber of Fourier measurements M or to increase the number of polarimetric projections P?846

Alternatively, can performance be simply improved by averaging over repeated independent847

measurements? This is a vast topic related to the question of experimental design, which848

requires a specific treatment which is outside the scope of the present paper. Nonetheless, we849

provide in the sequel a first study of the influence of the number of measurements in PPR for850

completeness.851

Following the MSE performance analysis in Section 6.3, we use the same randomly gener-852

ated ground truth signal N = 32 and investigate the performances for three cases leading to853

the same total number of measurements MP :854

• M = 2N − 1, P = 12 case: we use the correspondence between the 2-sphere and unit855

vectors of C2 to take advantage of optimal spherical tesselations such as HEALPix856

[35]. In physical terms, it can be interpreted as finding one of the many possible Jones857

vector bp corresponding to the Stokes parameters defining the rank-one matrix bpb
H
p .858

Formally, given Cartesian coordinates (sxp , s
y
p, szp) ∈ R3 of a point on the unit 2-sphere,859

we define the projection vector bp as:860

(6.2) bp =
1√

2
√

1 + szp

[
ȷsxp

syp + (1 + szp)ȷ

]
if szp ̸= −1, bp =

[
ȷ
0

]
if szp = −1 .861

Note that our choice of P = 12 corresponds to the first level of HEALPix sphere862

discretization.863

• M = 3(2N − 1), P = 4 case: we keep the simple polarimetric measurement scheme864

(2.4) and increase the number M of Fourier domain measurements.865

• M = 2N − 1, P = 4 [×3] case: we keep the simple minimal measurement scheme for866

PPR—which was used in Section 6.3—and repeat independently each measurement867

sample three times, therefore leading to the same total number of measurements as868
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Figure 7. Comparison of the evolution of the MSE with respect to SNR for the four measurements schemes
M = 2N − 1, P = 4 (top left), M = 2N − 1, P = 12 (top right), M = 3(2N − 1), P = 4 (bottom left) and
M = 2N − 1, P = 4 [×3] (i.e., the first scheme where each measurement sample is repeated independently three
times). Experiments all use N = 32 and follow the same protocol as described in Section 6.3.

the two strategies above.869

Figure 7 depicts the MSE as a function of SNR for the three measurement setups described870

above, where results from the experiment in Section 6.3 have been reproduced for better871

comparison. As expected, increasing the total number of measurements MP improves overall872

This manuscript is for review purposes only.



POLARIMETRIC FOURIER PHASE RETRIEVAL 31

60

50

40

30

20

10

0

10

M
SE

 (d
B)

Right Sylvester

M = 2N 1, P = 4
M = 2N 1, P = 12
M = 3(2N 1), P = 4
M = 2N 1, P = 4 [×3]

Left Sylvester

M = 2N 1, P = 4
M = 2N 1, P = 12
M = 3(2N 1), P = 4
M = 2N 1, P = 4 [×3]

0 10 20 30 40 50 60 70 80
SNR (dB)

60

50

40

30

20

10

0

10

M
SE

 (d
B)

SDP

M = 2N 1, P = 4
M = 2N 1, P = 12
M = 3(2N 1), P = 4
M = 2N 1, P = 4 [×3]

0 10 20 30 40 50 60 70 80
SNR (dB)

Wirtinger Flow (Right Sylvester)

M = 2N 1, P = 4
M = 2N 1, P = 12
M = 3(2N 1), P = 4
M = 2N 1, P = 4 [×3]

Figure 8. Side-by-side comparison of each proposed reconstruction method for the four measurements
schemes M = 2N − 1, P = 4, M = 2N − 1, P = 12, M = 3(2N − 1), P = 4 and M = 2N − 1, P = 4[×3].

performance: this can be directly checked by remarking that the CRLB corresponding to873

M = 2N − 1, P = 12, M = 3(2N − 1), P = 4 and M = 2N − 1, P = 4 [×3] cases is lower874

that of the M = 2N − 1, P = 4 setup presented in Figure 5. Moreover, the different proposed875

reconstructions methods for PPR behave similarly with one another as in our description made876

in Section 6.3. In particular, we note that PPR-WF—for both initialization strategies—also877

attains the CRLB in these three new setups, proving again that it establishes a convenient878
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approach to solve PPR.879

Figure 8 provides a side-by-side comparison of these three measurement schemes for each880

reconstruction method along with the minimal M = 2N − 1, P = 4 scheme for comparisons.881

For PPR-WF, only the right kernel Sylvester initialization is depicted to simplify the pre-882

sentation, without affecting conclusions. First, on the PPR-WF panel, we can remark that883

all three measurement schemes lead to similar asymptotic performance (i.e., similar CRLB),884

with a slight disadvantage to the M = 2N − 1, P = 12 case. Second, we note that for algo-885

rithmic approaches (SDP and PPR-WF), the difference concentrates in the mid-SNR regime,886

i.e., between 30 dB and 50 dB, where oversampling in the Fourier domain offers slight MSE887

improvement over increasing the number of polarimetric projections or repeating measure-888

ments. On the other hand, for algebraic approaches we observe two slight different behaviors889

for SNR ≥ 20 dB: while oversampling in the Fourier domain gives the best MSE results for890

the left kernel Sylvester approach, the strategy with increased polarimetric measurements pro-891

vides the best asymptotic MSE results for the right kernel Sylvester approach. Nonetheless,892

differences between measurement strategies remain tenuous, so that—in first approximation—893

they can be considered all equivalent for this signal example. The choice of one strategy over894

the other ones may be decided from experimental constraints or by exploiting some known895

properties of the solution, e.g., narrow-band or average polarization properties.896

7. Conclusion. This paper introduces a new model for Fourier phase retrieval called po-897

larimetric phase retrieval (PPR), which takes advantage of polarization measurements in ap-898

plications involving polarized light. The theoretical study of PPR relies on drawing careful899

equivalences with two other problems, namely bivariate phase retrieval (BPR) and polynomial900

autocorrelation factorization (PAF). In the noiseless case, these problems are found to be901

equivalent under very general conditions, which are summarized in Figure 1. A crucial result902

is Theorem 3.5: it shows that PAF admits a unique solution under very general conditions.903

Therefore, the original PPR problem admits a unique solution for almost every signals. More-904

over, the PAF representation enables the use of algebraic reconstruction strategies for PPR905

based on GCD computations (Proposition 3.7). This original research direction is explored906

in detail in Section 4, where we propose two fully algebraic (i.e., non-iterative) algorithms for907

PPR relying on SVDs of Sylvester-like matrices. For completeness, Section 5 carefully adapts908

classical phase retrieval algorithms (SDP relaxation and Wirtinger-Flow) to solve the PPR909

problem. Section 6 provides extensive numerical experiments to benchmark the performances910

of each approach. These results demonstrate that, if one is interested in a scalable, computa-911

tionally efficient and robust to noise reconstruction strategy, then both algebraic and iterative912

approaches should be combined. In practice, the best trade-off between reconstruction per-913

formance and computational burden for PPR combines Wirtinger Flow (PPR-WF, Algorithm914

5) with a carefully designed initialization based on right kernel Sylvester (Algorithm 1 with915

GCDs computations performed using Algorithm 2).916

We believe that PPR opens promising new avenues for the exploitation of light polarization917

in Fourier phase retrieval problems. It enables the use of algebraic methods based on GCDs918

computations to solve the Fourier phase retrieval problem. While this research direction is919

particularly exciting, it also raises important challenges. For instance, an important issue to920

be addressed lies in improving the performance of algebraic methods at low SNR, e.g. with921
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more robust estimation of the measurement polynomials or adding some prior information922

about the signal to be recovered (e.g., smoothness). A second challenge lies in extending923

the presented approaches to the case of polarized images, which is not straightforward at all924

since properties of polynomials with multiple variables (and their GCDs) differ considerably925

from their single variable counterpart. Combined with recent advances in non-convex gra-926

dient descent optimization (e.g., using partial normalizations of the gradient [19]), algebraic927

approaches pave the way for computationally efficient reconstruction strategies in polarimetric928

Fourier phase retrieval problems.929

Appendix A. Relation between Fourier measurements and measurements polynomials.930

931

Proof of Lemma 3.1. Recall that the discrete Fourier transform of {x[n]}N−1
n=0 is denoted932

by X[m] = [X1[m],X2[m]]⊤ ∈ C2 for m = 0, 1, . . . ,M − 1, see (2.2). Then the Fourier entries933

can be related to polynomials X1(z) and X2(z) by comparing (2.2) with (3.1):934

X1[m] = X1

(
e−ȷ2π m

M

)
, X2[m] = X2

(
e−ȷ2π m

M

)
,935

for any m = 0, 1, . . . ,M − 1. Similarly, comparing (2.2) with (3.2), their conjugates can be936

expressed through the conjugate reflection polynomials X̃1(z) and X̃2(z)937

X∗
1[m] = X∗

1

(
e−ȷ2π m

M

)
=

N−1∑

n=0

x1[n]
∗e2πȷ

nm
M = eȷ2π

m(N−1)
M X̃1

(
e−ȷ2π m

M

)
,938

X∗
2[m] = X∗

2

(
e−ȷ2π m

M

)
=

N−1∑

n=0

x2[n]
∗e2πȷ

nm
M = eȷ2π

m(N−1)
M X̃2

(
e−ȷ2π m

M

)
.939

940

As a result, thanks to (2.3), BPR measurements can be expressed in terms of measurement941

polynomials Γij(z) as follows:942

F[m] =

[
|X1[m]|2 X1[m]X2[m]∗

X2[m]X1[m]∗ |X2[m]|2
]

943

= eȷ2π
m(N−1)

M


X1

(
e−ȷ2π m

M

)
X̃1

(
e−ȷ2π m

M

)
X1

(
e−ȷ2π m

M

)
X̃2

(
e−ȷ2π m

M

)

X2

(
e−ȷ2π m

M

)
X̃1

(
e−ȷ2π m

M

)
X2

(
e−ȷ2π m

M

)
X̃2

(
e−ȷ2π m

M

)

944

= eȷ2π
m(N−1)

M Γ(e−ȷ2π m
M ),945946

which completes the proof.947

Proof of Theorem 3.2. The proof essentially comes down to showing the one-to-one corre-948

spondences summarized in Figure 1. More precisely, we show the one-to-one correspondence949

between the data (measurement matrix polynomial Γ(z) in PAF, spectral matrices {F[m]}M−1
m=0950

in BPR) as well as the one-to-one correspondence between sets of solutions (polynomials X1(z)951

and X2(z) in PAF, vectors components x1 and x2 in BPR). First note that the mapping be-952

tween CN and C≤N−1[z] is a linear one-to-one map (and is an isomorphism):953

a =
[
a[0] a[1] · · · a[N − 1]

]⊤ 7→ A(z) = a[0] + za[1] + · · ·+ zN−1a[N − 1].954
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Hence, the signals x1,x2 ∈ CN can be uniquely recovered from the polynomials X1, X2 ∈955

C≤N−1[z] and vice versa. Similarly, thanks to (3.5), the Fourier covariance measurements956

{F[m]}M−1
m=0 are a linear transformation of the sequence957

{
Γ
(
e−ȷ2π m

M

)}M−1

m=0
958

of evaluations of the matrix polynomial Γ(z) at a set of M distinct points {e−ȷ2π m
M }M−1

m=0 on959

the complex plane. If M ≥ 2N − 1 (the degree of the polynomials plus one), then it is known960

that the coefficients of the polynomials can be uniquely recovered from the evaluations at M961

distinct points, and therefore the following map is an injection962

C2×2
≤2N−2 → (C2×2)M963

Γ(z) 7→ {F[m]}M−1
m=0 ,964965

which completes the proof.966

Appendix B. Multiplication matrices, Sylvester matrices and greatest common divisors.967

For q ∈ CD+1 and an integer T , we define the following (D + T + 1)× (T + 1) matrix968

MT (q) =




q0
...

. . .

qK q0
. . .

...
qK




︸ ︷︷ ︸
T+1 columns

.969

This matrix is called the multiplication matrix, as it is represents multiplication by the970

polynomial Q ∈ C≤D[z], whose coefficients are in q. Indeed, for any F ∈ C≤T [z] and971

A(z) = F (z)Q(z), the coefficient vectors f ∈ CT+1 and a ∈ CT+D+1 are linked with972

a = MT (q)f ,973

see also [21] for more details on multiplication matrices.974

Remark B.1. Note that for A,B ∈ C≤L[z] the Sylvester matrix (4.8) is nothing but a975

horizontal stack of multiplication matrices976

SD(A,B) =
[
ML−D(a) ML−D(b)

]
.977

Hence for the vectors u ∈ CL−D+1 and v ∈ CL−D+1, the product978

w = SD(A,B)

[
u
v

]
,979

corresponds to the coefficients of the polynomial980

W (z) = A(z)U(z) +B(z)V (z).981
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Proof of Proposition 4.4. We first note that (4.11) is known (see, for example, [72, The-982

orem 4.7]). Thus, we are left prove the second part, which is somewhat related to [72, Re-983

mark 4.8]. We write A(z) = F (z)Q(z), B(z) = G(z)Q(z), so that gcd(A,B) = Q(z) and984

F,G ∈ C≤L−K [z]. Consider the multiplication matrix985

M2L−D−K(q) ∈ C(2L−K+1)×(2L−D−K+1).986

Note that M2L−D−K(q) is full column rank (equal to 2L−D−K+1) and therefore, by (4.11)987

(see also [72, Theorem 4.7]), we have988

(B.1) rankSD(A,B) = rankM2L−D−K(q)989

We will show that not only the ranks, but also the ranges of SD(A,B) and M2L−D−K(q)990

coincide. Note that, by Remark B.1, the range of SD(A,B) corresponds to all polynomials991

R ∈ C≤2L−D[z] that can be represented as992

(B.2) R(z) = U(z)A(z) + V (z)B(z) = Q(z)(U(z)F (z) + V (z)G(z)),993

and therefore any element in the range of SD(A,B) belongs to the range of M2L−D−K(q).994

Hence, by (B.1), the ranges of the two matrices coincide, which implies that their left kernels995

coincide as well. In particular, the following equivalence holds true996

u⊤SD(A,B) = 0 ⇐⇒ u⊤M2L−D−K(q) = 0.997

Finally, easy algebraic calculations (see also, for instance, [72, Eq. (33)]) show that998

u⊤M2L−D−K(q) = q⊤HK+1(u).999

Therefore, q is in the left kernel of H (4.12). Conversely, assume that there is a polynomial1000

q′ such that q′⊤H = 0. Then the image of M2L−D−K(q′) must be a subspace of the image of1001

M2L−D−K(q), which is only possible if q is a divisor of q′ (which implies that q′ is proportional1002

to q). This shows that the left kernel of H has dimension 1, hence rankH = K+1−1 = K.1003

Appendix C. Cramèr-Rao bound for PPR. Several authors have considered Cramèr-Rao1004

bounds for the classical phase retrieval problem with additive white gaussian noise [1, 2, 55].1005

These results directly apply to the additive Gaussian noise PPR model (4.1) since it can1006

be equivalently rewritten as a particular one-dimensional noise model (the PPR-1D model1007

introduced in Section 2.4). For completeness, we provide below an alternative derivation of1008

the Cramèr-rao bound described in [55], where we use a full complex-domain approach instead1009

of considering separate Cramèr-Rao bounds on amplitude and phase. Since measurement noise1010

nm,p in (4.1) is i.i.d. Gaussian distributed with variance σ2, the probability density function1011

of the vector of observations y is given by1012

p(y|ξ) =
M−1∏

m=0

P−1∏

p=0

p(ym,p|ξ)(C.1)1013

=

M−1∏

m=0

P−1∏

p=0

1√
2πσ

exp

[
−
(
ym,p − ξHCm,pξ

)2

2σ2

]
,(C.2)1014

1015
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where we recall that Cm,p = cm,pc
H
m,p with cm,p = b∗

p ⊗ am by definition. The log-likelihood1016

of observations reads1017

(C.3) log p(y|xvec) = −
MP

2
log(2πσ2)− 1

2σ2

M−1∑

m=0

P−1∑

p=0

(
ym,p − ξHCm,pξ

)2
.1018

Since one wants to estimate the complex parameter vector ξ, it is necessary to use the complex1019

Fisher Information Matrix (FIM) [73, 46, 53], which reads1020

(C.4) Jξ =

[Iξ Pξ
P∗
ξ I∗ξ

]
∈ C4N×4N ,1021

where entries are defined using Wirtinger derivatives [44] since ξ is a complex vector:1022

Iξ = E
[(
∇ξ∗ log p(y|ξ)

) (
∇ξ∗ log p(y|ξ)

)H]
,(C.5)1023

Pξ = E
[(
∇ξ∗ log p(y|ξ)

) (
∇ξ∗ log p(y|ξ)

)⊤]
.(C.6)1024

1025

Note that the FIM Jξ defined in (C.4) is isomorphic to the real FIM which would have been1026

obtained by stacking the real and imaginary parts of ξ in a single long vector [46]. This1027

explains why Jξ has dimensions 4N × 4N . Using properties of Wirtinger derivatives, we get1028

(C.7) ∇ξ∗ log p(y|ξ) = −
1

σ2

M−1∑

m=0

P−1∑

p=0

(ym,p − ξHCm,pξ)Cm,pξ .1029

This allows to compute explicitly the block terms Iξ and Pξ that define Jξ. Using noise1030

independence, one gets1031

Iξ =
1

σ4
E



(∑

m,p

(ym,p − ξHCm,pξ)Cm,pξ

)
∑

m′,p′

(ym′,p′ − ξHCm′,p′ξ)ξ
HCm′,p′




(C.8)1032

=
1

σ4

∑

m,p,m′,p′

E
[
nm,pnm′,p′

]
Cm,pξξ

HCm′,p′(C.9)1033

=
1

σ2

∑

m,p

Cm,pξξ
HCm,p(C.10)1034

=
1

σ2

∑

m,p

|cHm,pξ|2cm,pc
H
m,p.(C.11)1035

1036

Similar calculations leads to:1037

(C.12) Pξ =
1

σ2

∑

ij

Cm,pξ(ξ)
⊤C⊤

m,p =
1

σ2

∑

m,p

(
cHm,pξ

)2
cm,pc

⊤
m,p.1038

A key result [53] is that the inverse of the complex FIM (C.4) provides a lower bound on the1039

covariance and pseudo-covariance of any unbiased estimator ξ̂ of the complex parameter ξ:1040

(C.13)

[
cov ξ̂ pcov ξ̂

pcov ξ̂
∗

cov ξ̂
∗

]
⪰ J −1

ξ .1041
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When the complex FIM is singular—as in phase retrieval [1, 2]—,one can show its pseudo-1042

inverse remains a valid lower bound for the MSE; following the discussion in [55], we still refer1043

to the resultant bound as the CRB with little abuse. In particular, we obtain the following1044

bound on the MSE on any unbiased PPR estimator X̂ for the model (4.1):1045

(C.14) MSE(X̂) = E∥X̂−X∥2F = E∥ξ̂ − ξ∥22 = Tr covξ̂ ≥ Tr

([
J †
ξ

]
[:2N,:2N ]

)
1046

where the subscript [:2N,:2N ] denotes the restriction to the upper-left block of J †
ξ .1047
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