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A dog model for centronuclear myopathy carrying the most

common DNMZ2 mutation

Johann B&hm'*, Inés Barthélémy?34* Charléne Landwerlin, Nicolas Blanchard-Gutton?34,
Frédéric Relaix?34, Stéphane Blot>34, Jocelyn Laporte’* and Laurent Tiret?34#

ABSTRACT

Mutations in DNMZ2 cause autosomal dominant centronuclear
myopathy (ADCNM), a rare disease characterized by skeletal
muscle weakness and structural anomalies of the myofibres,
including nuclear centralization and mitochondrial mispositioning.
Following the clinical report of a Border Collie male with exercise
intolerance and histopathological hallmarks of CNM on the muscle
biopsy, we identified the ¢.1393C>T (R465W) mutation in DNM2,
corresponding to the most common ADCNM mutation in humans. In
order to establish a large animal model for longitudinal and preclinical
studies on the muscle disorder, we collected sperm samples from the
Border Collie male and generated a dog cohort for subsequent
clinical, genetic and histological investigations. Four of the five
offspring carried the DNM2 mutation and showed muscle atrophy and
a mildly impaired gait. Morphological examinations of transverse
muscle sections revealed CNM-typical fibres with centralized nuclei
and remodelling of the mitochondrial network. Overall, the DNM2-
CNM dog represents a faithful animal model for the human disorder,
allows the investigation of ADCNM disease progression, and
constitutes a valuable complementary tool to validate innovative
therapies established in mice.

KEY WORDS: Neuromuscular disorder, Congenital myopathy,
Dynamin, Large animal model, T-tubules, MTM1

INTRODUCTION

Cellular membranes undergo constant shape remodelling through
curvature, tubulation, constriction and fission to enable fundamental
biological processes, such as cytokinesis, migration, endocytosis,
phagocytosis, signalling, intracellular trafficking, recycling or
compartmentalization (McMahon and Gallop, 2005). These
dynamic events rely on the concerted interplay of lipids, proteins
and the cytoskeleton, and one of the key factors of membrane
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remodelling is dynamin 2 (DNM2) (Ferguson and De Camilli,
2012). This ubiquitously expressed mechanochemical enzyme is
able to reorganize microtubule and actin networks, and self-
assembles into helical structures at the neck of nascent vesicles to
induce vesicle release under GTP hydrolysis (Antonny et al., 2016;
Chappie et al., 2009; Gu et al., 2010; Warnock et al., 1997).
Dynamin 2 is composed of an N-terminal GTPase domain, a
middle domain (MID), a phospholipid-binding pleckstrin homology
domain (PH), a GTPase effector domain (GED) and a C-terminal
proline-arginine-rich domain (PRD) implicated in protein-protein
interactions (Faelber et al., 2011; Ferguson and De Camilli, 2012).
Mutations in the DNM?2 gene are associated with three distinct
autosomal dominant neuromuscular disorders: Charcot—Marie—
Tooth neuropathy (CMTI1B, MIM# 606482), spastic paraplegia
(Sambuughin et al., 2015) and centronuclear myopathy (ADCNM,
MIM# 160150), the predominant centronuclear myopathy (CNM)
form in adult patients (Bitoun et al., 2005; Zuchner et al., 2005).
ADCNM is characterized by generalized muscle weakness,
ptosis and ophthalmoplegia, and muscle biopsies from affected
individuals typically show fibre size heterogeneity, abnormal nuclear
centralization, mitochondrial mispositioning, and radial arrangement
of sarcoplasmic strands (Bitoun et al., 2005). The age of onset
and disease severity ranges from severe neonatal hypotonia and
respiratory distress to mild adult-onset muscle weakness, and
correlates with the position of the mutation. To date, more than 100
families and about 20 different ADCNM-related DNM2 mutations
have been reported, essentially clustering in hotspot regions in exons
8, 11, 14, 15 and 16 (Abath Neto et al., 2015; Bohm et al., 2012;
Werlauff et al., 2015). The most common mutation ¢.1393C>T
resides in exon 11, affects approximately 25% of the cases, leads to
the amino acid substitution p.ArgR465Trp (R465W) in the MID
domain, and most often results in a moderate clinical presentation
involving childhood onset and slowly progressive distal muscle
weakness (Bohm et al., 2012). In accordance with the clinical and
histological presentation of the patients, the Dnm2%#65"/* knock-in
mouse model manifests reduced force associated with abnormal
muscle structure and function (Durieux et al., 2010). Here, we
describe a spontaneous canine model harbouring the DNM2 R465W
mutation and the generation of a dog cohort with clinical and
histopathological characteristics paralleling the human disorder.

RESULTS

Identification of the DNM2 c.1393C>T (R465W) mutation

in a Border Collie

A 2-year-old Border Collie male presented with a 1-year history
of exercise-induced pelvic limb collapse and a short-strided and stiff
gait, and morphological analysis of a muscle biopsy uncovered
histopathological anomalies suggestive of CNM (Eminaga et al.,
2012). We therefore Sanger sequenced the known canine CNM
genes HACDI (previously named PTPLA), MTM1 and BINI. An
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insertion of the SINE retrotransposon in HACDI exon 2 is
associated with CNM in Labrador Retrievers (Pele et al., 2005),
and missense and splice site mutations in MTM1 and BINI were
respectively shown to cause CNM in Labrador Retrievers,
Rottweilers, Boykin Spaniels, and Great Danes (Beggs et al.,
2010; Bohm et al., 2013; Olby et al., 2020; Shelton et al., 2015).
However, no pathogenic DNA variant was found in these genes.
Finally, Sanger sequencing of the autosomal gene DNM2 on
chromosome 20 disclosed the heterozygous c.1393C>T (R465W)
transition in exon 11, corresponding to the most common ADCNM
mutation in humans (Fig. 1A).

Generation of a dog cohort: clinical and histopathological
characterization

To confirm the pathogenicity of the identified DNM2 mutation in
dogs and to establish a large and relevant animal model for long-term
studies on disease development and the evaluation of innovative
therapeutic approaches, sperm was collected from the Border Collie
male to inseminate a Beagle female. The resulting litter of two female
and three male pups were genotyped and underwent thorough clinical
follow-up over 12 months. Biopsies from the tibialis anterior and
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biceps femoris muscles, both easily accessible and extensively
studied in CNMs, were taken at one year of age and used for protein
extraction and histological investigations.

From the five offspring, four were found to carry the c.1393C>T
(R465W) missense mutation in DNM?2 (Fig. 1A). In accordance
with human patients harbouring the same R465W substitution
(Bitoun et al., 2005), a western blot on muscle extracts detected the
dynamin 2 protein in the dogs. Despite variable signal intensities
among the samples, quantification revealed comparable dynamin 2
protein levels in affected and control dogs (Fig. 1B), confirming that
the identified missense mutation does not impair mRNA or protein
stability.

At 12 months of age, all DNM2%#>%* dogs showed general
muscle atrophy particularly affecting the masticatory and paraspinal
muscles (Fig. 1C). Transcutaneous ultrasound confirmed atrophy of
the biceps femoris and sartorius cranialis muscles, and revealed
enhanced echo intensities, suggesting an alteration of the muscle
texture (Fig. 1D,E). The affected dogs had increasing difficulties
with jumping and standing on the pelvic limbs (Movie 1), and gait
analysis evidenced subtle anomalies and, notably, a reduced
craniocaudal power pointing to a decreased forward propulsion

Fig. 1. Molecular, morphological and functional features of
canine DNM2-CNM. (A) Pedigree, segregation and

(p-Arg465Trp) anterior i electropherogram showing the DNM2 mutation. Arrow indicates the
2rcatchece DNM2 ‘ Border Collie proband. (B) Western blot of tibialis anterior muscle
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£é il | \/ E§ 2 &—0 Representative pictures of an affected dog and healthy littermate at

&
g
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12 months of age. Note the marked atrophy of the masticatory and
paraspinal muscles (arrowheads). (D) Ultrasound imaging providing
a longitudinal view of the biceps femoris muscle and revealing
reduced muscle thickness and an increased echo intensity in an
affected dog. Asterisks mark the skin. (E) Graphs illustrating the
reduced thickness and higher echo intensity values of the biceps
femoris and sartorius muscles of the affected dogs. (F) Gait analysis
by accelerometry at 12 months uncovered a lower relative
craniocaudal power in all four affected dogs compared with the
healthy littermate. Black squares represent affected males, black
circle the affected female, white circle the healthy female littermate.
The horizontal lines in E represent mean values of the four affected
dogs. Error bars represent s.d.
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(Fig. 1F). Complete blood counts and routine biochemistry profiles
were within the reference ranges, and serum creatine kinase (CK)
levels were normal (85+18 U.I/l compared with 87 U.L/l in the
healthy littermate).

Histological and histochemical examinations of transverse
sections of tibialis anterior and biceps femoris muscles disclosed
fibre size variability, endomysial enlargement, and fibres with
centralized nuclei in the DNM2%#%"/* dogs (Fig. 2A). We also
observed major cytoplasmic rearrangements, such as central and
subsarcolemmal accumulations on Haematoxylin and Eosin (H&E),
oxidative staining and COX assay, indicating a remodelled
mitochondrial network in 19-57% of the myofibres (Fig. 2A-C).
In addition, the fibre diameter was significantly reduced in the
DNM2%4%W+ dogs compared with the control littermate (Fig. 2D).
Overall, and based on the cumulative anomalies on the muscle
sections, the histopathology index was increased by a factor of three
to five in DNM2R40>"/* dogs (Fig. 2B).

Taken together, the clinical and histopathological features of the
DNM2R465W/* dogs were highly consistent and conformed to the

disease signs of the Border Collie male (Eminaga et al., 2012). Our
data confirmed dominant disease transmission and the causality and
full penetrance of the R465W mutation in the development of a mild
and slowly progressive myopathy in dogs.

DISCUSSION

The present study describes the first canine model for ADCNM,
and the affected dogs carrying the DNM2 ¢.1393C>T (R465W)
mutation showed muscle weakness and ADCNM-typical
morphological anomalies on muscle sections. Hence, we propose
that DNM2R#0>"* dogs can be alternatively named DNM2-CNM
dogs.

R465W in humans, mice and dogs

In humans, DNM2 mutations are the primary cause of ADCNM
(Bitoun et al., 2005; Bohm et al., 2012), and investigations in cell
and animal models suggest that the mutations involve a gain-of-
function mechanism. Indeed, ADCNM-related DNM2 mutants
have been shown to form oligomers with increased stability

Fig. 2. Histological features of canine DNM2-CNM.

A

| (A) Histological and histochemical analyses on transverse tibialis

anterior sections at 12 months of age uncovered fibre atrophy and
centralized nuclei (arrowhead) on H&E-stained sections,
endomysial fibrosis on Sirius Red-stained sections, and
prominent central or subsarcolemmal accumulations of
mitochondria (arrowheads) on Gomori trichrome-,

NADH-TR- and COX-stained sections in the affected dogs.
Muscle samples from the healthy littermate served as control
(Ctrl). Scale bars: 50 um. (B) Histopathology index calculated on
transverse sections of the biceps femoris and tibialis anterior
muscles. (C) Percentage of fibres with cytoplasmic
rearrangements calculated on transverse sections of the biceps
femoris and tibialis anterior muscles. (D) Minimum Feret diameter
of fibres calculated on transverse sections of the biceps femoris
and tibialis anterior muscles. Black squares represent affected
males, black circles the affected female, and white circles the
healthy female littermate. The mean is represented by a dotted
line in B,C and symbol position in D. Error bars represent s.d.
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(Wang et al., 2010), and their exogenous expression in mice
compromised skeletal muscle force and structure.

R465W is the most common dynamin 2 mutation. It has been
reported in more than 30 families to date and is associated with inter-
and intrafamilial variability (Bohm et al., 2012). Although the first
signs of muscle weakness usually appear during childhood, patients
with neonatal and adult disease onset and a varying degree of
muscle weakness, facial weakness and eye movement defects have
been described (Bohm et al., 2012). A Dnm2%465"/* mouse model
also exists and exhibits a mildly progressive muscle weakness and
atrophy from 3 weeks of age, and histological anomalies of the
sarcoplasmic reticulum and mitochondrial distribution from 2
months of age (Durieux et al., 2010). Increased nuclear
centralization is, however, not detectable in murine Dnm2R#63"/*
muscles, in contrast to the morphological muscle aberrations
observed in DNM2-CNM dogs and patients. This may be related
to the dissimilar muscle size and associated mechanical tension in
the species, or might reflect physiological differences in muscle
fibre development, maturation or maintenance, and highlights the
importance of the DNM2-CNM dogs for further investigations on
disease development and the underlying pathomechanisms.

CNM is a genetically heterogenous disease with X-linked,
autosomal-dominant and autosomal-recessive forms essentially and
respectively caused by mutations in MTMI, DNM?2 and BINI
(Bitoun et al., 2005; Bohm et al., 2014; Laporte et al., 1996; Nicot
et al., 2007). Spontaneous canine MTMI and BINI models
have previously been reported, and all recapitulated the human
disorders at the clinical and histopathological level with severe
muscle atrophy, swallowing difficulties and a rapidly progressive
tetraparesis. These major functional deficits required daily
veterinary support and most often necessitated compassionate
euthanasia between 3 and 6 months of age, preventing longitudinal
studies (Beggs et al., 2010; Bohm et al., 2013; Olby et al., 2020;
Shelton et al., 2015). Of note, none of the affected Labrador
Retrievers, Rottweilers and Boykin Spaniels carried mutations
found in patients. By contrast, the dogs described in the present
study harbour the most common ADCNM mutation diagnosed in
25% of the patients, and the slowly progressive disease course
enables a large panel of molecular investigations at different time
points to decipher the aetiopathology and implicated pathways, and
to identify relevant therapeutic targets for the prevention or reversal
of the muscle phenotype.

The importance of dogs for preclinical trials

Dogs represent valuable tools to complement the continuum of
preclinical animal models dedicated to the establishment and
evaluation of innovative therapeutic approaches in neuromuscular
disorders (Barthelemy et al., 2019; Story et al., 2020). The
downregulation of dynamin 2 through antisense oligonucleotides
was shown to rescue the DNM2-related CNM phenotype in mice
(Buono et al., 2018), and the application of this and other therapeutic
strategies to a larger mammalian model with longer lifespan, such as
the DNM2-CNM dogs, would provide important information on drug
delivery options, pharmacokinetics, bioavailability, efficacy,
durability and tolerability after sustained administration. In analogy,
an AAV-mediated gene therapy for X-linked CNM (XLCNM) was
first proven to be efficient on Mtm1 knockout mice (Buj-Bello et al.,
2008) and validated on a spontaneous canine XLCNM model
(Childers et al., 2014) prior to its usage in clinical trials
(NCT03199469). Moreover, dog models have served to establish
exon skipping, genome editing and minigene expression strategies for
Duchenne muscular dystrophy (Amoasii et al., 2018; Koo etal., 2011,

Vulin et al., 2012), and have also been used for preclinical proof-of-
concept studies of disorders affecting other tissues and organs.

In conclusion, the DNM2-CNM dog is a faithful model for the
human disorder, allows longitudinal investigations to decipher the
sequence of events leading to the muscle dysfunction, and
represents an optimal complementary system to assess the safety
and efficacy of therapeutic approaches before translation to humans.

MATERIALS AND METHODS

DNA analysis

Genomic DNA from a Border Collie male was prepared from peripheral
blood by routine procedures, and Sanger sequenced for HACD1 exon 2 and
all coding exons and the adjacent splice elements of MTMI, BINI and
DNM?2. The five offspring were Sanger sequenced for DNM?2 exon 11 for
genotyping using forward (TGCTTGTCTCCCAGCTGCAG) and reverse
(TGGTACCTTGACTGAGGTG) primers. The identified DNM2 mutation
was numbered according to GenBank XM_005632882.3 and
XP_005632939.1.

Ethics, animals and establishment of a colony

The establishment of the dog colony and animal experimentation were in
accordance with European Community Standards and were performed
following the acceptance of the project by the local EnvA-UPEC-ANSES
ethical committee (approval number 13/02/18-1). The Ministere de
I’enseignement supérieur, de la recherche et de I’innovation authorized
the project (APAFIS #2018010910531134).

Sperm samples from the Border Collie male were collected in the UK
with consent from the owner, and used to inseminate a Beagle female at
EnvA, France. The resulting litter of two female and three male pups
underwent regular clinical examinations and blood sampling. Muscle
biopsies (biceps femoris and tibialis anterior muscles) were performed
under a propofol-induced, isoflurane/morphine-maintained anaesthesia/
analgesia.

Muscle ultrasonography

The biceps femoris and sartorius cranialis muscles were longitudinally
imaged using a linear 12.5-5 MHz transducer. Imaging depth was set at
4 c¢m, and muscle thickness was assessed with the internal measurement tool
of an ultrasound Philips HD7 scanner (Philips, Amsterdam, The
Netherlands). Echo intensity was determined in ImageJ as the mean grey
level on the histogram of the muscle after drawing a region of interest. Three
images were acquired per muscle and per dog, and the mean values were
used for analysis.

Accelerometry

Gait analysis was performed using 3D accelerometry as previously
described (Barthelemy et al., 2009). Briefly, a device containing
three orthogonally positioned accelerometers (Locometrix, Centaure
Metrix, Evry, France) was inserted into a belt tightened around the
thorax of the dogs. All dogs were evaluated at a trot. Accelerometric curves
were acquired at 50 Hz along the cranio-caudal, dorso-ventral and medio-
lateral gait axes, and data were analysed using Equimetrix® software
(Centaure Metrix) to calculate following parameters: stride length, stride
frequency, speed, regularity, generated power for each axis, and total power.
Generated power of each axis was expressed as percentage of the total
power.

Protein studies

For western blot, protein extracts from muscle samples were loaded on a
10% SDS PAGE, and membranes were incubated with rabbit anti-dynamin
2 (R2865; 1:700; Massana Munoz et al., 2019) and rabbit anti-calnexin
(C-4731; Sigma-Aldrich; 1:1000), as well as with peroxidase-coupled goat
anti-rabbit antibodies (111-035-144; Jackson ImmunoResearch; 1:10,000).
The immunoblots were revealed with the SuperSignal West Pico kit
(Thermo Fisher Scientific), and monitored on an Amersham Imager 600
(GE Healthcare Life Sciences). Quantification of band intensity was
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performed using the Measurement Log plugin of Adobe Photoshop 2022,
version 23.1.0. The DNM2/calnexin ratio of the integrated grey level density
was calculated for each sample and expressed as the percentage of the
average ratio in control dogs. The individual ratio values were plotted using
Prism 9 for MacOS, version 9.3.1.

Muscle morphology

Biceps femoris and tibialis anterior muscle biopsies were taken at 12 months
of age. Transverse sections (10 um) were stained with H&E, Sirius Red,
modified Gomori trichrome, NADH tetrazolium reductase (NADH-TR) and
cytochrome c¢ oxidase (COX), and assessed for fibre morphology,
accumulation/infiltrations, and oxidative activity. The myofibre diameter
was determined using an ImageJ-developed macro script (Reyes-Fernandez
etal.,2019) and is defined as the minimum Feret on sections immunostained
with a rabbit anti-caveolin antibody (ab173575; Abcam). Quantitative
analyses were performed on H&E staining. Entire muscle sections were
analysed using Visilog 7.0 software (Noesis). A grid was superimposed onto
the image, and muscle morphology was assessed at each of the intercepts
and manually annotated (1000 annotations per section) as previously
described (Spencer et al., 2001). The histopathology index corresponds to
the percentage of pathological features not corresponding to normal
myofibres.
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Movie 1. Movement features of canine DNM2-CNM.

Video captures of two dogs at 12 months of age. The first dog is the healthy female littermate,
alert, fast in her U-turns, and able to jump easily upon stimulation. The second dog is an
affected male, also alert but with a slightly stiff gait, less ease in the U-turns, and with a

greater difficulty standing on his pelvic limbs.
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