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Simple and Efficient LoRa Receiver Scheme for
Multi-Path Channel

Clément Demeslay, Student Member, IEEE, Philippe Rostaing, Member, IEEE, and Roland Gautier, Member, IEEE

Abstract—This paper presents a novel LoRa (Long Range)
receiver operating in frequency selective Multi-Path Channel
(MPC). The dechirped received LoRa wave-forms under MPC
allows us to derive a simple and efficient LoRa receiver scheme
by using a MF (Matched Filter) approach that aims to maximize
the SNR (Signal-to-Noise Ratio) at the symbol index frequency
of the DFT output. We show that the MF receiver can be seen
as RAKE structure where interference peaks related to multi-
path, exhibited at DFT output, are recombined in a constructive
way. Detection performance is driven by channel energy and the
benefit of this novel MF/RAKE receiver over original coherent
and non-coherent receiver appears only for MPC that exhibits
significant paths energy. These two MF and RAKE receivers
have however different implementation complexities that are
studied in details. We provide in that sense recommendations on
which receiver variant to use for real operations, depending on
complexity constraints. Finally, the proposed MF/RAKE receiver
outperforms previous results on TDEL (Time Delay Estimation
LoRa) receiver over MPC, especially at low SNR and higher
LoRa Spreading Factor (SF) parameter, at the cost of higher but
reasonable complexity.

Index Terms—LoRa, chirp modulation, multi-path channel
(MPC), matched-filtering (MF), RAKE receiver.

I. INTRODUCTION

The Internet of Things (IoT) is experiencing striking growth
enabling many more devices to communicate with each other
and allowing many futuristic scenarios to be a reality such
as smart cities or Industry 4.0. [1] affirms that the expected
number of active IoT devices will rapidly grow to reach
almost 31 billion until 2025 [1]. Since the past few years,
many IoT technologies were developed relying on existing
infrastructures such as Narrow-Band IoT (NB-IoT) or LTE-
Machine (LTE-M), or more dedicated networks leveraging
unlicensed bands such as SigFox, Ingenu, Weightless-P or
Long Range (LoRa) [2]. LoRa is nowadays a front runner
of Low-Power Wide Area Networks (LP-WAN) solution and
holds a lot of attention by the scientific research community.
We will focus on LoRa in this paper. Due to its patented nature,
initial research was mainly based on retro-engineering of
existing LoRa transceivers [3]. One of the first paper to provide
a rigorous mathematical representation of LoRa signals and
its demodulation scheme was achieved in [4]. Since then,
further researches were conducted focusing on specific issues
such as network capacity enhancements [5], channel coding
improvements [6], [7], temporal/frequency synchronization
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schemes [8], LoRa demodulation with LoRa interference [9],
[10] or LoRa implementation on real world equipment such
as Universal Software Radio Equipment (USRP) [11].

More specifically, recent researches addressed LoRa multi-
path channel (MPC) impact and equalization issues [12]–[14].
The authors in [12] investigated the impact of a rapidly-
varying channel on LoRa Frame Error Rate (FER). They
came to the conclusion that the FER performance depends
on a Spreading Factor (SF) parameter-frame length trade-off.
In their analytical study, the authors in [13] highlighted that
although LoRa wave-forms experience small Inter Symbol
Interference (ISI) most of the time in practice, the basic LoRa
demodulator is very sensitive to one or several significant
echoes. In other words, uncoded SER performance degradation
is neglected only for attenuation of echoes, relative to the peak-
value of the direct path, that are greater than 14 dB. To over-
come the issue of higher significant echoes, the authors in [14]
proposed an enhanced non-coherent LoRa receiver, exhibiting
good performance. However, due to the non-coherent nature of
this receiver, the LoRa Symbol Error Rate (SER) performance
may be further improved by considering a coherent approach.
This was stated in [15] for LoRa interference scenario only, but
the authors in [13] also highlighted that MPC effect on LoRa
signals is very similar to the LoRa interference impact with
the same SF. That is, the advantages of the coherent approach
may also be valid for MPC. Then, we propose in this article a
custom coherent LoRa receiver based on Matched Filtering
(MF) or RAKE that leverages energy of MPC to improve
the SER performance. To the best of our knowledge, a such
coherent approach for MPC has not been addressed yet in the
literature.

As a first approximation, the discrete-time channel model
is considered where channel path delays are supposed to be
multiple of the sampling rate.

The key contributions of the paper are as follows:

• A novel MF or equivalent RAKE detector is derived and
outperforms in terms of SER i) the original coherent
and non-coherent LoRa detectors, and ii) the designed
detector for MPC [14] that is based on cross-correlation
between averaged pilot symbols and data symbols DFT’s.

• Theoretical findings are provided to quantify the gain
of the proposed detector by using a simple performance
indicator based on the ratio of parasitic peaks amplitude
(due to multi-paths) over amplitude of the peak of interest
at the DFT output of the receiver.

• A complexity analysis is used to select an appropriate
algorithm (MF vs. RAKE) by evaluating the total required
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complex addition/multiplication operations, and by ana-
lyzing the execution time of the compiled algorithms.

• A variant of our detector (”candidate” approach) is de-
rived for practical usage including channel parameters
estimation and SER performance-complexity trade-offs.

The remainder of the paper is organized as follows. In
Section II, we present the basics of LoRa modulation and
continue with the derived mathematical expressions of LoRa
signals impacted by the MPC in Section III. In Section IV, we
introduce the MF receiver and prove that the latter is equivalent
to the RAKE receiver. We also present a variation of this
receiver to be implemented in practice and study in detail
complexity in terms of total number of complex operations
and execution time. This receiver requires channel knowledge
and we propose in Section V a simple scheme to estimate
the channel impulse response. Simulation results are provided
in Section VII to assess our receiver and a comparison with
previous research work [14] is performed. Finally, we conclude
the article in Section VIII by providing recommendations
on which receiver variant to use for real world operations.
Throughout the paper, the notations reported in Table I are
used.

Notation and symbols meaning
T symbol period n frequency index
Fs sampling frequency i multi-path index
Ts sampling period p pilot symbol index
B LoRa bandwidth k time index
SF spreading factor u candidate symbol index
M number of possible chirp waveforms per symbol: 2SF

a current transmitted symbol Nd number of payload symbols
a− previous symbol from a Np number of pilot symbols

b candidate symbol Nf
number of symbols in the frame:
Nf = Np + Nd

bu u-th candidate symbol λc threshold for candidate selection
A candidate symbols set λp threshold for multi-path detection

Nc
number of candidate symbols:
#A (cardinality) λTDEL

threshold for multi-path selection
in TDEL receiver [14]

xa[k] transmitted a-symbol waveform ra[k] received a-symbol waveform
r̃a[k] received a-symbol down-chirp (DC) waveform: ra[k]x∗

0 [k]

R̃a[n]
legacy LoRa demodulator:
M -size DFT of r̃a[k]

K number of paths of MPC

α(i) channel gain of i-th path ki channel delay of the i-th path
α̃b(i) α̃b(i) = α(i)xb[−ki] α̃(i) α̃(i) = α̃0(i)

Cb[k]
channel frequency response associated with α̃b(i) at frequency k/M :
M -size DFT of α̃b(i)

z̃ab[k] MF received waveform: C∗
b [k]r̃a[k]

Z̃ab[b]
RAKE or MF statistic for transmitted a-symbol and candidate b-symbol:
M -size DFT of z̃ab[k], and frequency index b is selected

w[k] AWGN w̃[k] DC AWGN: w[k]x∗
0 [k]

w̃b[k] MF DC AWGN: C∗
b [k]w̃[k] W̃b[k] M -size DFT of w̃b[k]

Γ α̃
a,b[l] cross-correlation function of α̃a(m) and α̃b(m)

TABLE I
LIST OF PRINCIPAL NOTATIONS USED IN THE PAPER.

II. LORA MODULATION OVERVIEW

A. LoRa wave-forms

In the literature, LoRa wave-forms are of the type of Chirp
Spread Spectrum (CSS) signals. These signals rely on complex
sine waves with Instantaneous Frequency (IF) that varies
linearly with time over frequency range f ∈ [−B/2, B/2]
and time range t ∈ [0, T ] (T the symbol period). This basic
signal is called an up-chirp (UC) or down-chirp (DC) when

IF respectively increases or decreases over time. A LoRa
waveform is a M -ary digital modulation, constituted of M
possible chirp modulations where the IF of the UC is shifted
by the M possible values. The modulo operation is applied
to ensure that frequency remains in the interval [−B/2, B/2].
The LoRa parameters are chosen such that BT = M with
M = 2SF and SF ∈ {7, 8, . . . , 12} is called the spreading
factor, which also corresponds to the number of bits for a
LoRa symbol.

In the discrete-time signal model, the chip rate (Rc =
1/Tc = M/T ) is usually used to sample the received signal,
i.e., the sample period is Ts = Tc = T/M = 1/B. The
signal has then M samples over one symbol period T . Each
symbol a ∈ {0, 1, . . . ,M − 1} is mapped to an UC that is
temporally shifted by τa = aTc period. We may notice that a
temporal shift conducts to a change of initial IF. This behavior
is the heart of the M -ary chirp modulation. A mathematical
expression of LoRa wave-form sampled at t = kTs (Ts = Tc)
has been derived in [16]:

x(kTs; a) ≜ xa[k] = e2jπk(
a
M − 1

2+
k

2M ) k = 0, 1, . . . ,M −1.
(1)

We may see that an UC is actually a LoRa wave-form with
symbol index a = 0, written x0[k]. Its conjugate x∗

0[k] is then
a DC.

By using the forward finite phase differences ϕ[k+1]−ϕ[k]
of (1), the discrete-time IF for a given a-symbol is: fa[k] =
1
2π (ϕ[k + 1] − ϕ[k]) = a+k

M − 1
2 + 1

2M . In order to illustrate
the M -ary chirp modulation, Fig. 1 plots the discrete-time IF
for each transmitted symbol a ∈ {0, . . . , 7} for only SF = 3
(M = 8). Note that the modulo B operation is intrinsic in the
discrete-time model.

n
o
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Fig. 1. Normalized discrete-time IF for M = 8, (a) unwrap IF and (b) wrap
IF in [−1/2, 1/2[.

In LoRa transmissions, the SNR (defined as the ratio of
signal power to noise power) in the signal bandwidth is given
by: SNR = Ps/(N0B) = (Ps/N0) × (T/M) = Es/(N0M)
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with N0 = E[|w[k]|2] = σ2 and Es = E[[xa[k]|2] = 1. The
SNR per bit Eb/N0 can be expressed as:

Eb/N0 = SNR× M

SF
. (2)

B. LoRa demodulation scheme

Reference [4] derived a simple and efficient solution to
demodulate LoRa signals. In Additive White Gaussian Noise
(AWGN) flat-fading channel, the demodulation process is
based on the Maximum Likelihood (ML) detection scheme.

The received signal is:

r[k] = αxa[k] + w[k] (3)

with α the complex gain of the flat fading channel and w[k] an
independent and identical distributed (i.i.d.) complex AWGN
with zero-mean and variance σ2 = E[|w[k]|2]. ML detector
aims to select index n that maximizes the scalar product
⟨r, xn⟩ for n ∈ {0, 1, . . . ,M − 1} defined as:

⟨r, xn⟩ =
M−1∑
k=0

r[k]x∗
n[k]

=

M−1∑
k=0

r[k]x∗
0[k]︸ ︷︷ ︸

r̃[k]

e−j2π n
M k = R̃[n].

(4)

The demodulation stage proceeds with two simple opera-
tions:

• multiply received wave-form by a DC x∗
0[k], also called

dechirping,
• compute R̃[n], the Discrete Fourier Transform (DFT)

of r̃[k] and select the discrete frequency index â that
maximizes R̃[n].

This way, the dechirp process merges all the signal energy
in a unique frequency bin a and can be easily retrieved by
taking the magnitude (non-coherent detection) of R̃[n]. The
symbol detection is then:

â = argmax
n

|R̃[n]|. (5)

An improvement about 1 dB [7] can be obtained with the
coherent detection scheme:

â = argmax
n

ℜ{R̃[n]}. (6)

However, a channel phase estimation and compensation
must be performed before using the coherent scheme to obtain:
r′[k] = e−jϕr[k] = |α|xa[k] + w′[k] with w′[k] = e−jϕw[k]
and ϕ = arg(α).

III. MULTI-PATH CHANNEL ON LORA SIGNAL

A. Multi-path channel model

We study in this section the effect of MPC on LoRa signals.
By considering the chip rate Rc to sample the received signal,
the equivalent discrete-time channel model is:

c[k] =

K−1∑
i=0

α(i)δ[k − ki] (7)

with K the number of paths and α(i) = |α(i)|ejϕ(i) the
complex gain at path delay τi = kiTc (ki tap).

A sufficient condition to consider a channel as frequency
selective is ki ≥ 1 (τi ≥ Tc). e.g. B = 500 kHz, Tc =
1/B = 2 µs. This value is a typical path delay seen in outdoor
environments (few µs usually) [17]. As a symbol duration is
M × Tc, we suppose that the largest echo kmax ≪ M . We
expect therefore to have a channel effect that introduces ISI
only between the current and previous symbol over a reduced
number of samples. The basic symbol detector presented
herein is very sensitive to significant paths although ISI depth
is very small. In this section, we evaluate the impact of MPC
on LoRa wave-forms. We consider a set of transmitted symbols
as (s = 0, 1, . . . , S − 1) as:

s[k′] =

S−1∑
s=0

xas
[k′ mod M ] (8)

for k′ = k + sM and k = 0, . . . ,M − 1. The received signal
is then:

r[k′] = c[k′] ∗ s[k′]︸ ︷︷ ︸
m[k′]

+w[k′] (9)

where the operator ∗ denotes the discrete convolution. We note
σ2
ℜ = σ2

ℑ = σ2/2, the variance of real and imaginary part of
w[k′]. The signal m[k′] is the received waveform after channel
effect.

B. Channel effect on LoRa wave-forms

Let us denote ra[k] the received signal for detecting the
current symbol a into its symbol interval for k = 0, . . . ,M−1.
We suppose that the receiver is synchronized on the first path
(i.e. k0 = 0).

Proposition 1. Performing the DC operation x∗
0[k] to ra[k]

yields:

r̃a[k] = x∗
0[k]ra[k]

= α(0)e2jπk
a
M +

K−1∑
i=1

α̃ā(i)e
2jπk

a−ki
M + x∗

0[k]w[k]︸ ︷︷ ︸
w̃[k]

(10)where:

α̃ā(i) = α(i)xā[−ki]

= α(i)e−2jπki(− 1
2−

ki
2M )e−2jπki

ā
M

= α̃(i)e−2jπki
ā
M (11)

with:

α̃(i) = α(i)e−2jπki(− 1
2−

ki
2M )

= α(i)x0[−ki] (12)

and:

ā ≜

{
a− for k = 0, . . . , ki − 1 (previous symbol)
a for k = ki, . . . ,M − 1 (current symbol)

(13)

Note that dechirping process does not change noise statistic.

Proof. For the sake of simplicity, we first consider the two-
path channel. The received signal is then r[k] = α(0)s[k] +
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a− a

k1
detection of the
current symbol a

0 M−1
α(0)s[k]
α(1)s[k − k1]

Fig. 2. Illustration of ISI for detecting of the current symbol a in case on
two-path channel at delays k0 = 0 (synchronized on the first path) and k1.

α(1)s[k − k1] + w[k]. By focusing in the detection interval
k = 0, . . . ,M − 1 of the current symbol a (Fig. 2), the signal
on the synchronized path is equal to s[k] = xa[k] and the
signal on the delayed path can be expressed as:

s[k − k1] =

{
xa− [M − k1 + k] for k = 0, . . . , k1 − 1
xa[k − k1] for k = k1, . . . ,M − 1.

(14)
From (1) one can verify the property xa[M − n] = xa[−n]

for n = 0, 1, . . . ,M − 1, then the received signal for the
detection of the current symbol a could be expressed as:

ra[k] = α(0)xa[k] + α(1)xā[k − k1] + w[k] (15)

where ā is defined in (13). By multiplying the DC to ra[k] we
obtain after some basic manipulations:

r̃a[k] = x∗
0[k]ra[k] = α(0)ej2πk

a
M + α̃ā(1)e

j2πn
ā−k1

M + w̃[k]
(16)

with α̃ā(1) = α(1)xā[−k1] = α(1)xā[M − k1].
By applying the same development for K > 2 paths, the

general expression is straightforward and given in (10).

As channel delay spread is small in comparison with symbol
duration, we may omit interference coming from previous
symbol a−. Equation (10) can be then simplified as:

r̃a[k] ≈ α(0)e2jπk
a
M +

K−1∑
i=1

α̃a(i)e
2jπk

a−ki
M + w̃[k] (17)

or identically:

r̃a[k] ≈ Ca[k]e
2jπk a

M + w̃[k] (18)

where Ca[k] can be seen as a channel coefficient, but depend-
ing on the transmit LoRa symbol a, and given by:

Ca[k] =

K−1∑
i=0

α̃a(i)e
−2jπk

ki
M . (19)

From (11), the channel-like path gain α̃a(i) in (17) or (19)
is given by:

α̃a(i) = α̃0(i)e
−2jπki

a
M (20)

with α̃0(i) = α̃(i) for i = 0, . . . ,K − 1. Note that for the
synchronized path k0 = 0 (i = 0), we have α̃a(0) = α̃(0) =
α(0).

C. DFT of the received down-chirp LoRa signal

The second operation in the demodulation stage is to
compute the DFT of r̃a[k] and select the discrete frequency
index that maximizes the DFT magnitude. The M -point DFT
of {r̃a[k]}M−1

k=0 in (17) is given by:

R̃a[n] = Mα(0)δ[n− a] +M

K−1∑
i=1

α̃a(i)δ[n− a+ ki]

+W̃ [n]

(21)

for n = 0, . . . ,M − 1, where W̃ [n] is the M -point DFT of
{w̃[k]}M−1

k=0 with W̃ [n] ∼ CN (0, σ2
w = Mσ2). The Kronecker

function is defined as: δ[n] = 1 for n = 0 mod M , and 0
otherwise.

From (21), we note that channel effect after demodulation
stages (i.e. dechirp and DFT) consists in multiple peaks of
complex amplitude α̃a(i) shifted by ki from the transmitted
symbol index a, for i = 0, . . . ,K − 1. When taking the
DFT magnitude, the peak magnitudes are only driven by the
magnitude of the path gains |α̃a(i)| = |α(i)|. Fig. 3 illustrates
the approximated DFT magnitude of a received DC LoRa
symbol with value a = 64 and passed through the following
example channel (denoted C1-channel):

C1[k] = δ[k] + 0.8δ[k − 2] + 0.5δ[k − 3]. (22)

Note that in the case of a non-aligned MPC i.e. ki real
valued, the DFT bin energy of each channel path is spread
over neighbor bins. See Fig. 3 in [13] for illustration.

Fig. 3. An illustration of the DFT magnitude of the noise-free received DC
LoRa symbol with value a = 64 passed through C1-channel, SF = 7

IV. MATCHED FILTER OR RAKE RECEIVERS

In this section, we present Matched Filter (MF) receiver
which can be seen as RAKE receiver for LoRa transmission.
We suppose for now that channel path gains α̃0(i) = α̃(i)
are perfectly estimated (or known) by the receiver for i =
0, . . . ,K − 1. We will propose in the next section a method
to estimate the number of paths K and the associated channel
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path gains α̃(i) (at the corresponding tap ki). In Section VII,
performance in terms of SER is compared for both the terms
α̃(i) known or estimated by using a preamble.

A. Ideal-MF receiver

A Matched-Filter approach is proposed to derive a new
detection scheme only by multiplying the received DC signal
r̃a[k] in (18) by the MF coefficient C∗

a [k] to obtain:

z̃a,a[k] = C∗
a [k]r̃a[k]. (23)

This MF approach is denoted “ideal-MF” because the
transmitted symbol a is necessary to compute the channel
coefficient Ca[k], but a is of course not available in practice.
The ideal-MF will lead to the best SER performance in com-
parison with other more practical MF approaches proposed in
the following subsections, where the symbol a is not supposed
to be known.

By separating signal and noise terms, (23) yields:

z̃a,a[k] = |Ca[k]|2ej2π
a
M k + w̃a[k] (24)

where the resulting noise w̃a[k] = C∗
a [k]w̃[k] is zero-mean

i.i.d. complex Gaussian process with time-varying noise power
E[w̃a[k]|2] = σ2|Ca[k]|2.

The square magnitude of the channel coefficient |Ca[k]|2 in
(24) can be expressed as:

|Ca[k]|2 =

K−1∑
m,n=0

α̃a(m)α̃∗
a(n)e

−j2π k
M (km−kn) (25)

=

lmax∑
l=−lmax

Γ α̃
a,a[l]e

−j2π k
M l (26)

where lmax = kK−1 the tap of the last echo, and Γ α̃
a,a[l] is the

discrete auto-correlation function of α̃a(m) defined by:

Γ α̃
a,a[l] =

lmax∑
m=0

˜̃αa[m] ˜̃αa[m− l]∗ (27)

= e−j2π a
M l ×

lmax∑
m=0

˜̃α[m] ˜̃α[m− l]∗ (28)

with ˜̃αa[m] = ˜̃α[m]e−j2π a
M m and:

˜̃α[m] =

{
α̃(i) for m = ki, i = 0, . . . ,K − 1

0 otherwise.
(29)

Note that Γ α̃
a,a[l] is equal to zero for the lag l not in the set

{km − kn},∀(m,n) with m,n ∈ {0, . . .K − 1}.

Example 1. Let’s consider the following couples of channel
parameters (ki, α̃(i)) equal to (0, 1.0), (2, 0.8) and (3, 0.5)
for i = 0, 1 and 2, respectively. Γ α̃

a,a[l] can be evaluated in
MATLAB/GNU Octave code for the example channel as:
> alp_tt=[1.0 0.0 0.8 0.5];

> alpa_tt=alp_tt.*exp(-2i*pi*a/M*(0:3));

> raa_alp=conv(alpa_tt,conj(fliplr(alpa_tt));

In this example, Γ α̃
a,a[l] is non-zero for l = −3, . . . , 3 because

for each lag l, at least one product ˜̃α[m] ˜̃α[m− l]∗ is non-zero.

By using (26) in (24) the DFT output of z̃a,a[k] leads to:

Z̃a,a[n] = MΓ α̃
a,a[0]δ[n− a] +M

∑
l ̸=0

Γ α̃
a,a[l]δ[n− a+ l]

+ W̃a[n] for n = 0, . . . ,M − 1 (30)

where Γ α̃
a,a[0] corresponds to the channel energy:

Γ α̃
a,a[0] =

K−1∑
m=0

|α(m)|2 (31)

and the noise W̃a[n] at the DFT output is a complex circular
Gaussian discrete stochastic process with the auto-correlation
function given by: E[W̃a[n]W̃

∗
a [n− l]] = σ2

wΓ
α̃
a,a[l].

Note that, thanks to the channel energy term in n = a, it
allows us to consider naturally the coherent detection scheme
via the real part of the DFT output in (30) for detecting
the LoRa symbol which provides SER performance gain in
comparison with the non-coherent detection because the noise
variance for the coherent detection (real part) is half of the
noise variance for the non-coherent detection (magnitude).

The symbol detection of the ideal-MF detector is then:

â = argmax
n

ℜ{Z̃a,a[n]}. (32)

From (30) we observe that the main peak Γ α̃
a,a[0] (peak of

interest) is at index frequency n = a, and the parasitic peaks
Γ α̃
a,a[l] are symmetric from n = a at the distances l = km−kn

for all m ̸= n.
The ideal-MF approach aims to maximize the SNR at the

symbol index frequency n = a of the DFT output (30). The
SNR output of ℜ{Z̃a,a[n]} at the frequency index n = a is
then given by:

SNRa =
2M

σ2

K−1∑
m=0

|α(m)|2. (33)

Hence, only by adding the MF step (i.e. multiplication by
the channel coefficient C∗

a [k] in (23)) allows us to 1) use the
coherent detection scheme and 2) improve the SNR output at
n = a from 2M

σ2 |α(0)|2 (with the original system (21)) to (33)
by exploiting the channel energy.

Performance of the ideal-MF is also strongly dependent
on the biggest amplitude of the parasitic peaks. The higher
parasitic peaks at the DFT output could be selected in pres-
ence of noise and lead to an erroneous detected symbol. By
considering the performance indicator ∆a as the ratio between
the higher parasitic peak over the peak of interest (i.e. n = a),
we obtain for the original coherent and non-coherent systems
in (21):

∆coh
a = max

l ̸=0
ℜ{α̃a(l)}/α(0) (34a)

∆non-coh
a = max

l ̸=0
|α̃a(l)|/α(0) (34b)

and for the ideal-MF system in (30):

∆ideal-mf
a = max

l ̸=0
ℜ{Γ α̃

a,a[l]}/Γ α̃
a,a[0]. (35)
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Fig. 4. Comparison of ∆coh
a and ∆non-coh

a (original coherent and non-
coherent systems, respectively) with ∆ideal-mf

a (ideal-MF) and ∆mf
a (MF),

SF = 7.

The smaller the ratio, the better the SER performance will
be, because the peak of interest at n = a will be more
discriminated in presence of noise. For the coherent cases
(legends: “original-coh.”, “ideal-MF” and “MF” in Fig. 4), we
observe ∆a should also depend on the value of the transmitted
symbol a, and so symbol error detection should also depends
on a. We considered the C1-channel in (22) as example. Note
that the plot “MF” on the figure is about the MF receiver that
will be detailed in the following subsec. IV-B.

For the non-coherent detection scheme of the original sys-
tem (legend “original non-coh.”), the ratio ∆non-coh

a is constant
and equals to 0.8. It is the worst case because it is the largest
value which is achieved whatever the transmitted symbol a.
For the original coherent detection scheme (legend “original
coh.”) the ratio is depending on a to reach the maximum at
0.8 for some particular values of a. The resulting symbol error
detection for a given transmitted symbol a is a-dependent
and we can clearly deduce better results for the original
coh. over original non-coh. as SER performance is averaged
over all symbols. In the same way, we clearly observe that
∆ideal-mf

a (legend “ideal-MF”) is lower than ∆coh
a at the higher

values that dominate the detection error of the symbol. The
performance indicator ∆a shows that better SER performance
is expected with the ideal-ML.

The ratio between the maximum values of original-coh. and
ideal-ML, which is indicated by the double arrow in Fig. 4, is
equal to

∑
m |α(m)|2 = 1.89. We conclude that the channel

energy will drive the gain in terms of detection performance
of the MF detector in comparison with the original coh. In
other words, if additional channel paths of MPC do not carry
significant energy, the interest of MF becomes very limited
because the original coh. will bring close performance to the
flat-fading AWGN channel.

B. MF or RAKE receiver

We may see in Section IV-A that the ideal-MF receiver
depends on the transmitted symbol a via C∗

a [k] which is not

available in practice. A way to circumvent this problem is to
perform an exhaustive search with all the possible symbols
b ∈ {0, . . . ,M − 1} as follows:

z̃a,b[k] = C∗
b [k]r̃a[k]. (36)

Note that subscript b used in z̃a,b[k] is to remind that the
MF coefficient is C∗

b [k], whereas the subscript a is to remind
that the current transmitted symbol is a, which is used in the
received DC signal r̃a[k].

The estimated symbol is the candidate that maximizes the
DFT output of z̃a,b[k] at the index frequency b:

â = argmax
b

ℜ{Z̃a,b[b]} (37)

where:

Z̃a,b[b] =

M−1∑
k=0

z̃a,b[k]e
−j2πbk/M . (38)

The detector (37) is only denoted MF because the knowl-
edge of Ca[k] is not necessary as for the ideal-MF. By
following the same development used for the ideal-MF in
Section IV-A, the DFT output of the MF is:

Z̃a,b[b] = MΓ α̃
a,b[0]δ[b− a] +

∑
l ̸=0

MΓ α̃
a,b[l]δ[b− a+ l]

+W̃b[b] (39)

where Γ α̃
a,b[l] is the cross-correlation function of α̃a(m) and

α̃b(m) defined by:

Γ α̃
a,b[l] =

∑
m

˜̃αa[m] ˜̃αb[m− l]∗. (40)

The MF receiver is not equivalent to the ideal-MF receiver
(see (32) and (37) for comparison). The difference between
Z̃a,a[b] for the ideal-MF and Z̃a,b[b] for the MF appears only
for Γ α̃

a,a[l] in (30) which is replaced by Γ α̃
a,b[l] in (39). The

main peak at b = a is the same but amplitude of parasitic
peaks at b = a − l (l ̸= 0) are different (Γ α̃

a,a[l] vs. Γ α̃
a,b[l]).

Otherwise, the noise statistic of W̃a[b] or W̃b[b] is equivalent
with the same power σ2

w

∑
m |α(m)|2. Even if the two tests

Z̃a,a[b] and Z̃a,b[b] are not identical, SER performance will be
very close because the difference between Γ α̃

a,a[l] and Γ α̃
a,b[l]

involves only a shifting of the peak values as shown in Fig. 5.
We considered the C1-channel in (22). Fig. 5 compares Γ α̃

a,a[l]
with Γ α̃

a,b[l] for each symbol a. Γ α̃
a,b[l] needs to be evaluated at

the peak locations b = a− l mod M for l = 0, ±1, ±2, ±3.
We observe for l = 0, 2 and 3, Γ α̃

a,a[l] = Γ α̃
a,b[l] and

for l = −3, −2, −1 and 1, Γ α̃
a,b[l] is a shifted version of

Γ α̃
a,a[l]. By considering the average performance over all the

possible transmitted symbols a, SER performance will be very
close because peak values are the same (only shifted). We
conclude that ideal-MF (known symbol a) and MF (unknown
a) approaches lead to similar performances. The performance
indicator for the MF receiver is given by:

∆mf
a = max

l ̸=0
and: b=a−l mod M

ℜ{Γ α̃
a,b[l]}/Γ α̃

a,b=a[0]. (41)

In Fig. 4 we reported also ∆mf
a to compare with ∆ideal-mf

a .
We clearly observe very slight differences that will produce
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similar performance in term of SER, which is confirmed by
simulations.
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Fig. 5. Comparison of peak amplitudes between ideal-MF (i.e. auto-
correlation ℜ{Γ α̃

a,a[l]}) and MF (i.e. cross-correlation ℜ{Γ α̃
a,b[l]}) for C1-

channel as a function of symbol a (x-axis). ℜ{Γ α̃
a,b[l]} is evaluated at the

peak locations b = (a− l) mod M for l = 0,±1,±2,±3.

From (39) an equivalent system model for MF receiver can
be summarized in Fig. 6. It corresponds to computing the
cross-correlation function (40) via M -size FFT/IFFT, the M -
size IFFT output is then (right) circular shifted by a, and the
index n = b (candidate symbol) is selected. It is interesting to
note that this equivalent system model can be used to perform
simulations in a very fast way. The processing in the dash box
on Fig. 6 can be done off-line where the noise-free values
of Z̃a,b[b] can be stored in a matrix of size M × M for
each transmitted symbol a (row index) and for each candidate
symbol b (column index). In on-line simulations, for each
transmitted symbol a we just have to select the corresponding
row into the stored matrix and to add the correlated noise
realization W̃b[b] for b = 0, . . . ,M − 1 to obtain (39).

+

correlation:
cross

(.)*
FFT

FFT

channel
path gains

0

0

M−size

M−size

conj.

elmt−wise
mult.

a : transmitted symbol

b : cand. symbol

size vector

IFFT
M−size

AWGN
correlated

circ.
a−shift select

∑
l Γ

α̃
a,b[l]δ[n− l][

ej2π
b
M

m
]lmax

m=0

[
ej2π

a
M

m
]lmax

m=0

lmax + 1 Z̃a,b[b]

[
˜̃αm

]lmax

m=0

W̃b[b]

δ[n−a] n=b

Fig. 6. Equivalent system model (39) for the MF receiver and by considering
the received signal approximation given in (18).

By using (36) and (19) (with a replaced by b in (19)) into
(38), the statistic Z̃a,b[b] can be also expressed like a RAKE

receiver structure as follows:

Z̃a,b[b] =

K−1∑
i=0

α̃∗
b(i)

M−1∑
k=0

r̃a[k]e
−j2π k

M (b−ki) (42)

=

K−1∑
i=0

α̃∗
b(i)R̃a[b− ki]. (43)

Note that for b = a, by using (21) in (43) we retrieve
the channel energy: Z̃a,a[a] =

∑K−1
i=0 |α̃a(i)|2 + Wa[a] =∑K−1

i=0 |α(i)|2 + Wa[a], that is the principle of the RAKE
receiver. The MF approach can be seen also as a RAKE
receiver.

The ideal-MF can be also retrieved from the RAKE receiver
structure as follows:

Z̃a,a[b] =

K−1∑
i=0

α̃∗
a(i)R̃a[b− ki]. (44)

C. Candidate MF (cand-MF) or candidate RAKE (cand-
RAKE) receiver

The main problem of the MF or RAKE receiver is the
computational complexity due to the exhaustive search in the
set of possible symbols of M = 2SF elements. To address this
issue, we propose to estimate a, chosen from a list of most
probable candidate symbols. The set of candidate symbols
can be created with two different approaches.

1) Fixed candidate number: The first approach
consists in selecting the Nc frequency bins having the
highest magnitude in |R̃a[n]|, forming the candidate set
â ∈ A = {b0, b1, . . . , bNc−1}. Indeed, from (21) the highest
peak magnitudes |α(i)| are at the location bins n = a − ki,
the biggest corresponding to the correct symbol a (k0 = 0). In
presence of AWGN noise, a sufficient large set of candidates
allows to catch the symbol of interest. Moreover, this method
enables the control of the number of candidates to use driven
by Nc parameter and is more suited to evaluate Nc impact
on SER performance. However, this approach significantly
increases the complexity of the receiver as it requires to use
a sorting algorithm.

MF vs.
cand-MF cmult cadd

α̃b(i) (20) KM vs. KNc -
Cb[k] (19) KM2 vs. KMNc (K − 1)M2 vs.(K − 1)MNc

z̃a,b[k] (36) M2 vs. MNc -
Z̃a,b[b] (38) M2 vs. MNc (M − 1)M vs. (M − 1)Nc

tot. MF
tot. cand-MF

M(2M +KM +K)
Nc(2M +KM +K)

M(MK − 1)
Nc(MK − 1)

TABLE II
MF AND CANDIDATE MF (CAND-MF) COMPLEXITY IN TERMS OF
NUMBER OF COMPLEX MULTIPLICATIONS (CMULT) AND COMPLEX

ADDITIONS (CADD).

2) Variable candidate number: The second approach ad-
dresses the complexity issue of method 1 by using a threshold
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RAKE vs.
cand-RAKE cmult cadd

R̃a[n]
(e.g. FFT radix-2)

M
2

log2 M M log2 M

α̃b(i) (20) KM vs. KNc -
Z̃a,b[b] (43) KM vs. KNc (K − 1)M vs. (K − 1)Nc

tot. RAKE
tot. cand-RAKE

M
2

log2 M + 2KM
M
2

log2 M + 2KNc

M log2 M + (K − 1)M
M log2 M + (K − 1)Nc

TABLE III
RAKE AND CANDIDATE RAKE (CAND-RAKE) COMPLEXITY IN TERMS

OF NUMBER OF COMPLEX MULTIPLICATIONS (CMULT) AND COMPLEX
ADDITIONS (CADD).

to select the candidates. This threshold can be designed as a
fraction of the maximum value in |R̃a[n]|:

λc = ρc ×max
n

∣∣∣R̃a[n]
∣∣∣ (45)

where ρc ∈ [0, 1[ is the arbitrary fractional magnitude. The
candidates are then the DFT magnitude bins that are above λc:

A =
{
n :

∣∣∣R̃a[n]
∣∣∣ > λc

}
. (46)

The value of ρc drives the SER and computation complexity
trade-off. The lower ρc, the larger is the set A. This allows
to catch the symbol of interest with high probability, which
improves SER performance but at the expense of higher
complexity. A high ρc value will have the opposite effect.

Once the set of candidate symbols is obtained, the symbol
detection is:

â = argmax
bu∈A

ℜ{Z̃a,bu [bu]}, (47)

where the test Z̃a,bu [bu] can be evaluated via the MF approach
by using (36) and (38) or via the RAKE approach in (43).

Fig. 7 presents a visual comparison between MF and RAKE.
The MF specific operations are denoted with magenta color
while RAKE ones are in blue color. In the figure, we suppose
that the channel parameters estimation α̃(i), ki and K have
been already derived (see Section V). The branches for each
candidate symbol b = 0, 1, . . . ,M − 1 are highlighted with
gray boxes. We may also see that the RAKE receiver performs
exclusively in the frequency domain, the latter is indeed a
modified version of the LoRa legacy coherent receiver, while
MF executes the first part of its front-end in the time domain
(i.e., C∗

b [k]r̃a[k]), see the operations on the left of each DFT
boxes in the figure.

D. Complexity evaluation

We assess in the section the computational complexity of
MF and RAKE receivers in terms of complex additions and
multiplications (denoted cadd and cmult, respectively) and
execution time.

1) Complexity evaluation in terms of complex operations:
Tab. II and Tab. III show the number of cadd and cmult re-
quired for MF and RAKE receivers, respectively. We may see
that RAKE approach presents less computational complexity
than MF. The gain in complexity of RAKE comes from the

fact that Cb[k] and z̃a,b[k] are not necessary to be evaluated
and an FFT algorithm can be used to compute R̃a[n] in (43).

Fig. 8 presents graphically the complexity ratios
O(MF/RAKE) and O(cand-MF/cand-RAKE) as a function
of SF, Nc and for K = 3. The complexity ratio O(A/B) is
defined by the sum of total number of cadd and cmult of A
receiver over the sum of total number of cadd and cmult of
B receiver:

O(A/B) =
(tot. cadd + tot. cmult)A
(tot. cadd + tot. cmult)B

. (48)

We consider that a complex multiplication has the same
complexity as a complex addition, thanks to dedicated
instructions set in hardware. The following results can be
drawn from Fig. 8. First, RAKE receiver outperforms MF in
terms of complexity, with a log-ratio that grows linearly with
SF. This represents a huge complexity gain, especially for high
SF values (> 103 at SF = 12). And secondly, by focusing
on “candidate” approach (i.e. cand-MF vs. cand-RAKE), the
behavior looks different because the determining parameter is
Nc whereas the complexity gain is almost constant over SF.
We conclude that the RAKE implementation requires much
less computational complexity in terms of complex operations
(cadd and cmult) than the MF implementation.

Algorithm 1: cand-MF symbol estimation
inputs: α̃(i) and ki for i = 0, . . . ,K − 1 (channel

parameters assumed known), r = {r̃a[k]}M−1
k=0

the received DC signal vector, and ρc the
threshold for candidates selection.

1 R := FFT(r)
2 Rmax := max(abs(R))
3 A := find(abs(R) > ρcRmax) %find indexes
4 c := 0M %init M -size vector
5 foreach candidate bu ∈ A do
6 for i = 0 to K − 1 do
7 c [ki] := α̃(i) exp(−j2πkibu/M)

8 C := FFT(c) %Cbu [k] in (19)
9 for k = 0 to M − 1 do

10 z[k] := r[k]C∗[k] %z̃a,bu [k] = C∗
bu
[k]r̃a[k]

11 Z := FFT(z)

12 store vu := ℜ{Z[bu]} %Z̃a,bu [bu] in (38)

13 return â = argmax
u→bu

vu

2) Complexity in terms of execution time: Algorithms with
candidate approach for both MF and RAKE are provided
in Algorithms 1 and 2, respectively. The full RAKE and
MF correspond also to Algorithms 1 and 2 with the set
A = {0, 1, . . . ,M−1} and the corresponding code in lines 1-3
(Alg. 1) and line 2 (Alg. 2) must be omitted.

Unlike the complexity study in terms of complex operations
(cadd and cmult), complexity in terms of execution time takes
into account the determination of A and the argmax operation
(Alg. 1, line 13 or Alg. 2, line 11) in order to perform fair
comparisons between MF vs. RAKE and, more particularly,
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Fig. 7. Block diagram of the MF (magenta) and RAKE (blue) detectors. The green color is used for both detectors. The cand-MF or cand-RAKE consists
in computing only the branches corresponding to A.

Fig. 8. Complexity ratios O(MF/RAKE) and O(cand-MF/cand-RAKE) as a
function of SF and Nc, K = 3.

between RAKE vs. cand-RAKE. Indeed, in the latter case,
cand-RAKE adds computational burden to determine A in
comparison with RAKE where A = {0, . . .M−1}, and so the
execution time is globally measured on the entire algorithms.

Note that, for MF, (19) and (38) can be actually im-
plemented with FFT algorithm (Alg. 1, lines 8 and 11) to
enable more computation efficiency. We may see from Alg. 1
and Alg. 2 that cand-RAKE (Alg. 2) has a less complex
demodulation scheme than cand-MF (Alg. 1). In fact, the loop

Algorithm 2: cand-RAKE symbol estimation
inputs: same as Algorithm 1

1 R := FFT(r)
2 Determine A (same as Alg. 1, lines 2-3)
3 foreach candidate bu ∈ A do
4 s := 0
5 for i = 0 to K − 1 do
6 m := mod (bu − ki,M) %modulo operation
7 y := R[m];
8 x := α̃(i) exp(−j2πkibu/M)
9 s := s+ yx∗

10 store vu := ℜ{s} %s = Z̃a,bu [bu] in (43)

11 return â = argmax
u→bu

vu

over M elements in Alg. 1 line 9 (and absent in Alg. 2)
considerably slows down the execution. Moreover, cand-MF
requires two M -size FFT algorithm calls (lines 8 and 11) that
further put a burden on complexity.

Fig. 9 presents execution time comparison between RAKE
and cand-RAKE as the execution time ratio of C compiled
RAKE and cand-RAKE algorithms (Alg. 2), as a function
of SNR per bit, Eb/N0 defined in (2), and for each SF. The
execution time is averaged over numerous trials to derive
an average execution time. Indeed, the number of selected
candidates (line 3, Alg. 1) fluctuates over different trials, due
to AWGN realization. That is, the loops in Alg. 1 line 5 and
Alg. 2 line 3 are iterated over a different number of elements
and thus impact the execution time. We choose ρc = 0.3 that
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gives almost same SER performance between RAKE and
cand-RAKE (see Figs. 15 and 16 in the simulation part). MF
and cand-MF algorithms are slower so they are not presented
in the figure. We may see that increasing Eb/N0 improves
the execution time gain of cand-RAKE as it actually reduces
the size of A candidates set. This is also true when increasing
SF with a maximum gain of about 3.6. In conclusion,
we clearly observe a gap between SF = 7 and SF > 7
that shows significant execution time gain for cand-RAKE
over RAKE at SF > 7 and, in particular at higher SNR values.

Fig. 9. Execution time ratio of RAKE over cand-RAKE compiled C-code
(generated by MATLAB) as a function of Eb/N0 for each SF. The variable
number of candidate selection method is used with ρc = 0.3 that leads to the
same cand-RAKE SER performance as full RAKE.

We have seen that both MF and RAKE detectors are equiv-
alent (i.e. Eqs. (38) and (43) are equivalent) but complexity is
in favor of RAKE. From now on, we consider RAKE detector
for the rest of the paper.

V. CHANNEL PARAMETERS ESTIMATION

For a proper demodulation, the receiver must estimate
channel parameters: the tap delays ki and their associated path
gains α̃(i). Note that α̃(i) is not equal to the channel path gain
α(i) as shown in (11), but only the terms α̃(i) are needed to
compute the MF or RAKE tests. We assume that the receiver is
synchronized on the arrival time of the first path (i.e. k0 = 0).
To estimate ki and α̃(i), we use pilot symbols located at the
beginning of each frame and known by both the transmitter
and the receiver. Using pilot symbols implies that the channel
coherence time is at least equal to the frame duration i.e.
Tcoh ≥ Nf × T with Nf the total number of symbols in a
frame. In the literature, a = 0 is considered for pilot symbols
to simplify equations. The detailed LoRa frame structure can
be found in [18] for example but we use here without loss
of generality the simplest frame structure: Np pilot symbols
(a = 0) followed by data symbols, i.e Nf = Np+Nd. Np = 8
is a typical value used in LoRa.

From (21) with a = 0, we propose to use the averaged DFT
over the Np pilot symbols to improve path gains estimation
of α̃0(i) = α̃(i). The averaged DFT over Np realizations is
given by:〈

R̃0[n]
〉
=

1

Np

Np−1∑
p=0

R̃p
0[n] for n = 0, . . . ,M − 1 (49)

where R̃p
0[n] is the p-th realization of R̃0[n] (see (21) with

a = 0). This way, the noise power is reduced by Np

factor. As we assume to be synchronized on the first path,
i.e. k̂0 = 0, and echoes arriving in interval lower than
kmax ≥ 1 sample periods, the receiver then detects the DFT
bins having magnitudes above a certain threshold, in the range
nkmax = {(M − kmax), . . . ,M − 1}:

n′ =
{
nkmax :

∣∣∣〈R̃0[nkmax ]
〉∣∣∣ > λp

}
(50)

with:

λp = ρp ×
∣∣∣⟨R̃0[0]⟩

∣∣∣ (51)

where ρp ∈ ]0, 1[ is the arbitrary fractional magnitude. The
estimated path gains ̂̃α(i) are then:̂̃α(i) = 〈

R̃0[n
′]
〉
, (52)

with the relation between the raw DFT index n′ and the
estimated path delay k̂i given by:

n′ = M − k̂i. (53)

Once the couples (ki, α̃(i)) are estimated, α̃bu(i) can be
computed with α̃bu(i) = α̃(i)e−2jπki

bu
M .

VI. COMPARISON OF RAKE AND TDEL [14] DETECTORS

A. TDEL detector overview

The authors in [14] derived a simple detection scheme
based on cyclic frequency correlation between the averaged
preamble and each data symbols. We denote this enhanced
receiver as Time Delay Estimation LoRa (TDEL). The main
steps of TDEL are briefly described in what follows. First,
it averages the DFT over pilot symbols identically to our
scheme for channel estimation. It computes next the cyclic
cross-correlation between averaged pilot and symbol DFT’s
as:

ΓR̃′
0,R̃a

[d] =

M−1∑
n=0

∣∣∣⟨R̃′
0[n]⟩

∣∣∣ ∣∣∣R̃a[n+ d mod M ]
∣∣∣ (54)

with R̃′
0[n] having R̃0[n] outputs ignored if below a certain

threshold λTDEL, i.e. R̃′
0[n] = 0 if |R̃0[n]| < λTDEL. λTDEL

is defined as:

λTDEL = ρTDEL ×max
n

∣∣∣R̃0[n]
∣∣∣ . (55)

Finally, TDEL chooses the frequency index that maximizes
ΓR̃′

0,R̃a
[d] in (54) as the estimated symbol:

â = argmax
d

ΓR̃′
0,R̃a

[d]. (56)
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B. RAKE and TDEL comparison

In Fig. 10 the RAKE receiver is presented in a similar way
to the TDEL receiver (Fig. 1 in [14]) in order to highlight the
similarities and differences of these two schemes.

First, preamble waveform (Np symbols with a = 0) is
received. The channel parameter estimation method presented
in Section V is equivalent to average R̃0[n] and select the
significant peaks over the threshold λp (all the other frequency
bins are forced to zero as it is illustrated in the figure). Once
the couples (ki, α̃(i)) of the channel parameters are estimated,
the preamble phase correction is performed thanks to the
candidate b-symbol to obtain α̃b(i). Note that element-wise
multiplication of the averaged preamble by [ej2πnb/M ]M−1

n=0

in the figure is equal to α̃b(i) = α̃(i)e−j2πkib/M , which is
required for the RAKE.

Second, the current a-symbol waveform is received in the
payload. R̃a[n] exhibit peaks of interest with phases depending
on the current symbol a, and noise peaks (not illustrated in
the figure). Note that if b = a (candidate symbol is correct),
phases of α̃b(i) match with those in R̃a[n] at the corresponding
frequency bins. Here comes the main difference with TDEL
because in the TDEL scheme the magnitude of R̃a[n] is first
performed (see (54) or Fig.1 in [14]), which leads to a non-
coherent receiver where the phase information is not relevant.
The cyclic cross-correlation between payload and averaged
preamble (with phase correction) exhibits an energy peak at the
frequency bin of the transmitted symbol a (as illustrated in the
figure for b = a). The RAKE statistic corresponds to the real
part of the peak at the selected bin n = b (i.e. ℜ{Z̃ab[b]}). Note
that the cyclic cross-correlation followed by the bin selection
n = b in the figure is equivalent to the dot-product of α̃∗

b(i)
with the payload left pre-shifted by b as stated in (43), or as
shown in Fig. 7.

The other main difference with TDEL is that in the TDEL
scheme the argmax operation is just performed after the
cyclic correlation to estimate the transmitted symbol whereas
for the RAKE, all the candidate symbols need to be tested
and the argmax operation of ℜ{Z̃ab[b]} is performed over
each candidate b, which increases the computing complexity.
We can conclude that the RAKE detector can be seen as a
coherent version of TDEL.

VII. SIMULATION RESULTS

We present in this section several simulation results to
evaluate SER performance of our designed receivers. We
consider C1-channel in (22) plus the following two-path C2-
channel:

C2[k] = δ[k] + 0.8δ[k − 5]. (57)

We note that simulations are performed with the exact
received LoRa signal expression of r̃a[k] because (18) is
an approximation. However, theoretical findings are obtained
from (18) to derive the new MF and RAKE receivers.

Simulations are performed with the Monte Carlo approach.
A sufficiently high number of trials Ntrials is considered. At
each trial, a frame with Nd = 1000 data symbols is passed
through the channel, the receiver estimates channel parameters
when needed and detects these transmitted symbols. This way,

channel parameters are estimated Ntrials times and an averaged
estimation of the SER performance is then derived. This
prevents statistics bias that may be present when considering a
unique channel parameters estimation with higher Nd. Further-
more, simulation figures with “perfect CSIR” legend (Channel
State Information at the Receiver (CSIR)) implies that α̃(i) and
ki are perfectly known by the receiver. Otherwise, the receiver
uses the channel parameters scheme presented in Section V
with kmax = 10 if need be.

A. Channel parameters estimation scheme evaluation

In the next three following figures, we evaluate the channel
parameters estimation scheme in terms of 1) the number of
required pilot symbols, 2) the ki estimation behavior (over-,
under- and miss-estimation) and 3) the empirical ρp threshold
value impact on the SER performance.

1) number of required pilot symbols: Fig. 11 highlights
the benefit of increasing the number of pilot symbols Np ∈
{1, 2, 3, 4, 6, 8} required for the channel estimation. SER per-
formance of RAKE is provided with respect to Np parameter,
and compared to RAKE assuming perfect CSIR. We assume
that the number of paths K is known. That is, the receiver
searches the K − 1 highest magnitudes in the range nkmax

in
(50) as k̂i (for i = 1, . . .K − 1) and estimate the associated
α̃(i). We consider here C2-channel. From the figure, we may
note that a minimum number of Np = 4 pilot symbols is
sufficient to be very close to the optimal SER performance
with perfect CSIR. LoRa usually uses Np = 8 pilot symbols,
a value giving almost the same SER performance as perfect
CSIR, as seen in the figure. To reduce the complexity and keep
very good SER performance, we choose Np = 6 value for the
rest of simulation results.

2) ki estimation behavior: In Fig. 12, we consider C1-
channel having three taps. We select different sets of ki values
for the main four situations that can occur: perfect-, under-,
over- and miss- estimation of ki. Note that |k̂| < K and
|k̂| > K will be in favor of under and over estimation,
respectively. We assume to be time-synchronized at the first
path k0 = k̂0 = 0. As seen in the figure, overestimation (i.e.
k̂ = [0 2 3 5] and k̂ = [0 2 3 5 9]) does not impact so
much SER performance. In fact, RAKE captures all channel
paths energies plus “ghost paths” pointing to DFT bins having
only AWGN. This is also valid for miss-detection as SER
performance between k̂ = [0 2] and k̂ = [0 2 4] are almost
identical. On the contrary, missing channel paths is very
harmful and the benefit of the RAKE receiver is progressively
lost as missed paths number grows. In the figure, the extreme
case is for k̂ = [0]. RAKE leverages then only the first path
leading to the same SER performance as the original coherent
receiver (see (43) with K = 1 and α̃(0) = α(0)). To prevent
this situation, the receiver must then select ρp (see (51)) that
reduces channel paths non detection, i.e. ρp sufficiently low
to lead |k̂| sufficiently high.

3) ρp threshold impact on SER performance: The C2-
channel is taken as example here. We set several ρp =
{0.2, 0.4, 0.6, 0.8}, activate the channel parameters estimation
with Np = 6, kmax = 10 and compute the SER in Fig. 13.
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Fig. 10. Block diagram of the RAKE statistic Z̃ab[b] illustrated for two paths channel (with path delay k1) and for the correct candidate symbol b = a.
This diagram is presented like a coherent version of the TDEL (see Fig.1 in [14]). The RAKE (resp. cand-RAKE) detector consist in computing Z̃ab[b] for
each b in {0, . . . ,M − 1} (resp. b ∈ A). The argmax operator is then computed on ℜ{Z̃ab[b]} over all the candidate symbols b to detect the transmitted
a-symbol.

Fig. 11. Impact of pilot symbols number Np ∈ {1, 2, 3, 4, 6, 8} on RAKE
SER performance with C2-channel, SF = 7.

We also plot the SER performance assuming the number of
paths known (legend: “K known”). This is the optimal case
preventing under- or over-estimation. From the figure, we
see that the best solution of ρp is SNR-dependent. Overall,
ρp = {0.2, 0.4, 0.6} perform very well with close SER
performance to the K known case, with a small disadvantage
for ρp = 0.6 as the SNR increases. ρp = {0.2, 0.4} have very
similar behavior with a little advantage for ρp = 0.4 at low
SNRs. ρp = 0.8 appears to be too high, with too much under-
estimation leading to very poor SER performance. Finally,
ρp = 0.4 seems to be a balanced value for the C2-channel and
we keep it for channel parameters estimation with preamble
of Np = 6 symbols in the rest of the simulations.

B. RAKE and cand-RAKE SER performance comparison

Fig. 14 compares SER performance of RAKE and cand-
RAKE as a function of normalized Nc, i.e. Nnorm

c = Nc/M ,

Fig. 12. Impact on RAKE SER performance with path delays (k over-, under-
and miss-estimation), C1-channel and SF = 7.

for SF = {7, 10} and Eb/N0 = {−1, 1} dB. As we control
Nc in the simulations, the first candidate selection method in
IV-C1 is used. We consider the C2-channel and assume perfect
CSIR. We may see that progressively increasing the number
of candidates improves SER performance until converging to
the RAKE SER performances with Nc = M . We see that
same performances are achieved for much lower Nc values
than M that are Nnorm

c ≈ 0.4 for SF = 7 and Nnorm
c ≈ 0.2

for SF = 10, with no significant changes depending on the
SNR.

RAKE and cand-RAKE SER performances are presented
in Figs. 15 and 16 for SF = 7 and SF = 10, respec-
tively. The variable candidate number method in IV-C2 with
ρc = {0.3, 0.5} is now considered. The corresponding average
number of candidates is denoted as Navg

c and is reported
in Tables IV and V, for SF = 7 and SF = 10, and for
the SNR ranges used in SER plots. We can clearly deduce
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Fig. 13. Impact on RAKE SER performance with ρp threshold for C2-channel
and SF = 7.

Fig. 14. SER performance comparison between RAKE and cand-RAKE as
a function of the normalized number of candidate symbols Nnorm

c ∈ ]0, 1],
for SF = {7, 10}, Eb/N0 = {−1, 1} dB, perfect CSIR and C2-channel.

a higher computational burden with the lowest threshold
ρc = 0.3 in comparison to ρc = 0.5 as the average number
of candidates has significantly increased. Note that we expect
close performance to the RAKE receiver with ρc = 0.3 as
Nnorm

c > 0.2 for SF = 10 (whatever the SNR), and for
SF = 7, Nnorm

c > 0.4 (except at the higher SNR values).
We highlight that although the number of selected candidates
for SF = 7 and high SNRs is not very high (Nnorm

c < 0.4),
there are fewer “false” candidates due to AWGN, the SER
performance of RAKE is then recovered.

In Figs. 15 and 16 we have added the original coherent (6)
(labeled “original coh.”) and original non-coherent (5) (labeled
“original non-coh.”) receivers for comparisons. We can see
that LoRa legacy demodulation scheme has very poor SER
performance bringing to light the need of adapted detection
scheme.

Eb/N0 [dB] -4 -3 -2 -1 0 1 2 3 4
ρc = 0.3
Navg

c 76 74 71 66 61 53 45 36 28
Navg

c /M 0.59 0.58 0.55 0.52 0.48 0.41 0.35 0.28 0.22
ρc = 0.5
Navg

c 31 30 27 23 19 15 10 7 5
Navg

c /M 0.24 0.23 0.21 0.18 0.15 0.12 0.08 0.05 0.04

TABLE IV
AVERAGE NUMBER AND NORMALIZED NUMBER OF SELECTED

CANDIDATES Navg
c (SECOND CANDIDATE SELECTION METHOD) AS A

FUNCTION OF ρc AND Eb/N0 FOR SF = 7.

Eb/N0 [dB] -6 -5 -4 -3 -2 -1 0 1 2
ρc = 0.3
Navg

c 517 510 500 483 456 419 364 299 232
Navg

c /M 0.50 0.49 0.49 0.47 0.45 0.41 0.36 0.29 0.23
ρc = 0.5
Navg

c 159 155 147 136 121 98 72 46 26
Navg

c /M 0.16 0.115 0.14 0.13 0.12 0.10 0.07 0.04 0.03

TABLE V
AVERAGE NUMBER AND NORMALIZED NUMBER OF SELECTED

CANDIDATES Navg
c (SECOND CANDIDATE SELECTION METHOD) AS A

FUNCTION OF ρc AND Eb/N0 FOR SF = 10.

We also compare our receiver with the TDEL receiver in
[14] (see Section VI-A). For our simulations, we set ρTDEL =
0.2. As seen in the figures, our scheme outperforms TDEL,
especially for SF = 10 where TDEL SER performance is very
low at low Eb/N0. However, at high SNR, TDEL detection
scheme presents competitive advantage as SER performance is
close to cand-RAKE but with less computational complexity
because no search of candidates is necessary and no channel
parameters estimation is required.

The cand-RAKE receiver with ρc = 0.3 has almost identical
SER performance as RAKE, for both SF = 7 and SF = 10
and, moreover, a reduced complexity in terms of execution
time, as seen in Section IV-D2. The ρc = 0.5 value progres-
sively reduces the SER performance as the SNR grows.

Finally, SER performance over the flat-fading AWGN chan-
nel (labeled “original coh. AWGN”) of the coherent receiver
is presented. The same channel energy as C2-channel is con-
sidered for the flat-fading channel to perform fair comparison.
We conclude that for SF = 10, RAKE receiver tends to the
optimal original coh. receiver in AWGN.

VIII. CONCLUSION

In this paper, we introduced an enhanced LoRa receiver to
combat frequency-selective fading MPC. This receiver coupled
with robust channel parameter estimation scheme relies on the
simple and elegant MF or equivalent RAKE approaches. We
also developed a candidate variant of these two receivers to
reduce complexity. We came to the conclusion that RAKE
is by far preferred to MF in practice as its complexity
outperforms MF in all cases. We point out that we decided
to use a simple candidate selection method, although further
complexity reduction may be possible by using a threshold that
adapts dynamically to the noise level. The latter needs then
to be known by the receiver. This is an interesting research
extension to our work.
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Fig. 15. SER performance comparison for C2-channel and SF = 7 between
RAKE, cand-RAKE, TDEL [14], original coherent and non-coherent receivers
and the coherent receiver in the AWGN flat-fading channel.

Fig. 16. SER performance comparison for C2-channel and SF = 10 between
RAKE, cand-RAKE, TDEL [14], original coherent and non-coherent receivers
and the coherent receiver in the AWGN flat-fading channel.

When using cand-RAKE, a SER performance-complexity
trade-off needs to be taken into consideration. Table VI sum-
marizes the relative complexity of the studied LoRa receivers
for MPC. We propose then the following recommendations
regarding receivers usage depending on computing capacity
of the LoRa system. RAKE achieves the best performance
at the price of high computational complexity due to the
exhausting search over candidate symbols. However, it can
be implemented on systems that have sufficient computing
capacity, typically on the gateway side. The cand-RAKE with
ρc = 0.3 is able to achieve performance close to RAKE
with a significant complexity reduction. It is well suited for
higher-end LoRa transceivers, as for example, USRP devices
based on Software Defined Radio (SDR). The cand-RAKE
with ρc = 0.5 may be dedicated to mid-end LoRa transceivers

with lower computation capabilities. Finally, we recommend
TDEL for low cost LoRa transceivers widely available on
the market, with very low computation abilities. However, to
ensure good performance, TDEL requires the SNR value to
be large enough.

complexity LoRa receiver
high RAKE (Nc = M )
medium cand-RAKE (ρc = 0.3)
low cand-RAKE (ρc = 0.5)
ultra-low TDEL [14] (high SNR)

TABLE VI
RELATIVE COMPLEXITY BETWEEN THE LORA RECEIVERS FOR MPC.

We also compared our work to the previous research
study on LoRa MPC demodulation scheme TDEL in [14]
and MF/RAKE outperforms TDEL, especially at low Eb/N0

and for high SF. We recall that MF/RAKE receivers are
coherent, that is, channel phase offset and transmitter/receiver
desynchronizations must be tackled. Furthermore, in practice,
the channel is non aligned i.e. ki real valued and the DFT
bin energies of channel paths are spread over neighbor bins,
making the channel parameters estimation scheme much more
difficult to use. This research may be extended in that sense
with this opened challenge.
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