

Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model

Cristoforo Incorvaia, Mona Al-ahmad, Ignacio Ansotegui, Stefania Arasi, Claus Bachert, Catherine Bos, Jean Bousquet, Andrzéj Bozek, Davide Caimmi, Moises Calderón, et al.

▶ To cite this version:

Cristoforo Incorvaia, Mona Al-ahmad, Ignacio Ansotegui, Stefania Arasi, Claus Bachert, et al.. Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model. Allergy, 2021, 76 (4), pp.1041-1052. 10.1111/all.14575 . hal-03613250

HAL Id: hal-03613250 https://hal.science/hal-03613250

Submitted on 23 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Personalized Medicine for allergy treatment: allergen immunotherapy still a unique and unmatched model

Journal:	Allergy
Manuscript ID	ALL-2020-00739.R2
Wiley - Manuscript type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Incorvaia, Cristoforo; ICP Hospital, Allergy/Pulmonary rehabilitation Al-Ahmad , Mona; Kuwait University, Microbiology Department Ansotegui, Ignacio J; Hospital Quironsalud Bizkaia, Allergy & Immunology Arasi, Stefania; Bambino Gesu Pediatric Hospital, Department of Allergy Bachert, Claus; Upper Airway Research Laboratory (URL),, Department of Oto-Rhino-Laryngology, University Hospital Ghent,; Division of ENT diseases, CLINTEC, Karolinska Institute,, Bos, Catherine; Stallergenes Greer, Medical Affairs Department Bousquet, Jean; Université Versailles, St-Quentin-en-Yvelines, 9. MACVIA-LR, Contre les Maladies Chroniques pour un Vieillissement Actifen Languedoc Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, and INSERM, VIMA: Ageing and Chronic Diseases, Epidemiological and Public Health Approaches, U1168, Paris, and UVSQ, UMR-S 1168 Bozek, Andrzej; Silesian Medical University, Katowice, Dept. of Internal Medicine, Dermatology and Allergology; Caimmi, Davide; Department of respiratory medicine and allergy, Hôpital Arnaud de Villeneuve, CHU Montpellier, Univ Montpellier, Allergy Unit; Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Calderon, Moises; Royal Brompton Hospital, Upper Respiratory Medicine Casale, Thomas; University of South Florida, Division of Allergy/Immunology Custovic, A; The University of Manchester, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair De Blay, Frédéric; University Hospital Strasbourg, 2Department of Chest Diseases Demoly, Pascal; University Hospital Strasbourg, 2Department of Chest Diseases Demoly, Pascal; Honiversity Otopartment of Airway diseases Didier, Alain; CHU Toulouse, Respiratory disease Fiocchi, Alessandro; Bambino Gesu Pediatric Hospital, Allergy Fox, Adam; King\'s College London, Division of Asthma Allergy and Lung Biology Gomez, Maximiliano; Hospital San Bernardo Salta, Allergy & Asthma Unit

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\7\\8\\9\\10\\12\\23\\24\\25\\26\\7\\8\\9\\0\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\4\\4\\5\\6\\7\\8\\9\\0\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\4\\4\\5\\6\\7\\8\\9\\0\\1\\2\\3\\3\\4\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	
50 51 52 53	

	Irani, Carla; Hotel Dieu de France hospital, Internal Medicine/Allergy and Immunology Section; Jutel, Marek; Wroclaw Medical University, Department of Clinical Immunology; ALL-MED Medical Research Institute,, Clinical Immunology Karagiannis, Efstrathios; Stallergenes GmbH, Medical Director Klimek, Ludger; Zentrum für Rhinologie und Allergologie, Studienzentrum Kuna, Piotr; University Clinical Hospital No 1 N Barlicki in Lodz, Division of Internal Medicine, Asthma and Allergy O'Hehir, Robyn; The Alfred Hospital, Department of Allergy, Immunology and Respiratory Medicine Kurbacheva, Oxana: Institute of Immunology FMBA, Department of Allergy and Immunotherapy Matricardi, Paolo; Charité University Medical Center, Paediatric Pneumology and Immunology Mosges, Ralph; Universitat zu Koln, Institute of Medical Statistics, Informatics and Epidemiology (IMSIE Novak, Natalija; University of Bonn, Department of Dermatology and Allergy Okamoto, Yoshitaka; Chiba University, Graduate School of Medicine, Otolaryngology Panzner, Petr; Medical School in Plzen, Immunology and Allergology Papadopoulos, Nikolaos; Second Pediatric Clinic, Allergy Bopartment; The University of Manchester, Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital Park, Hae-Sim; Ajou University School of Medicine, Allergy & Clinical Immunology; Pasalacqua, Giovanni; Allergy & Respiratory Diseases - University of Genoa, Dept of Internal Medicine Paavankar, Ruby; Nippon Medical School, Div of Allergy, Dept of Pediatrics Pfaar, Oliver; University Hospital Marburg, Philipps-Universität Marburg Marburg, Germany., Department of Otorhinolaryngology, Head and Necl Surgery, Section of Rhinology and Allergy Schmid-Greendelmeier, Peter; University of Zurich Hospital, Dept. of Dermatology and Allergy Unit, Department of Poatitrics Vidal, Carmen; Complejo Hospitalario Universitario Santiago, Allergy Virchow, Christian; University of Rostock, Department of Pneumology/Intensive Care Medicine Wahn, Urich; Charité Virchow-Klinikum, , D
Keywords:	Department of Biomedical Sciences allergy treament, immunotherapy clinical, rhinitis

SCHOLARONE[™] Manuscripts

Allergy

Dea	r Editor,
thar	nk you very much for your provisional acceptance of our manuscript.
We	here respond point-by-point to your comments:
Edit	or's comments:
1.Ple	ease communicate with our graphics editor to change the graphics to our journal's style.
RESI	PONSE: We will contact Anna Głobińska just after having completed this submission
2. C	onvert the below part to a text box.
The	clinician should then evaluate:
🛛 Th	e route of administration: presently SCIT and SLIT for aeroallergens, considering
evid	lences and patient's needs/preference
🛛 Th	e AIT product to be chosen as recommended by WAO83 and EAACI84 among the
proc	ducts supported by evidences.
₽ SC	CIT: different schedules upon the products (i.e. depot or aqueous)
🤉 Sl	IT: preference for drops or tablet, both considering evidences and patient's
nee	eds/preference
2 D	osages and schedules: continuous or pre-seasonal; long or short term.
2 M	lost of the above can be influenced by costs and/or reimbursements.
RESI	PONSE: We followed your suggestion and converted the text into a text-box
3. N	lake an algorithm graph for molecular diagnosis.
RESI	PONSE: We thank the Editor for this suggestion, but we do believe that this is out of scope of our a

SPONSE: We thank the Editor for this suggestion, but we do believe that this is out of scope of our article and moreover almost impossible to produce a new graph and get the approval of it from all the Authors in

the due time (72 hours as requested). Therefore, we did not added such graph into this new version of the manuscript, hoping that you will anyway considering the article suitable for publication.

COMMENTS FOR THE AUTHOR(S)

In this revision authors made significant changes and improvements in the manuscript and they included some missing and most recent data to increase the quality of the paper. Im satisfied with the answers and replies to my questions.

Rep Periez

RESPONSE: We thank the Reviewer for his/her appreciation.

Best regards,

Enrico Heffler (on behalf of all my co-Authors)

1 2 3

4

Allergy

-
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45

Personalized Medicine for allergy treatment: allergen immunotherapy still a unique and unmatched model.

4 Incorvaia Cristoforo¹, Al-Ahmad Mona^{2,3}, Ansotegui Ignacio⁴, Arasi Stefania⁵, Bachert Claus^{6,7}, Bos Catherine⁸, Bousquet Jean⁹, Bozek Andrzéj¹⁰, Caimmi Davide¹¹, Calderón 5 6 Moises¹², Casale Thomas¹³, Custovic Adnan¹⁴, De Blay Frédéric¹⁵, Demoly Pascal^{11,16}, Devillier Philippe¹⁷, Didier Alain¹⁸, Fiocchi Alessandro⁵, Fox Adam¹⁹, Gevaert Philippe⁶, 7 Gomez Maximiliano²⁰, Heffler Enrico^{21,22}, Ilina Natalia²³, Irani Carla²⁴, Jutel Marek²⁵, 8 Karagiannis Efstrathios⁸, Klimek Ludger²⁶, Kuna Piotr²⁷, O'Hehir Robin²⁸, Kurbacheva 9 Oxana²⁹, Matricardi Paolo Maria³⁰, Morais de Almeida Mario^{31,32}, Mosges Ralph^{33,34}, 10 Novak Natalija³⁵,Okamoto Yoshitaka³⁶, Panzner Petr³⁷, Papadopoulos Nikolaos^{38,39}, Park 11 Hae-Sim⁴⁰, Passalacqua Giovanni⁴¹, Pawankar Ruby⁴², Pfaar Oliver⁴³, Schmid-12 Grendelmeier Peter⁴⁴, Scurati Silvia⁸, Tortajada-Girbés Miguel^{45,46}, Vidal Carmen⁴⁷, 13 Virchow Christian⁴⁸, Wahn Ulrich³⁰, Worm Margitta³⁰, Zieglmayer Petra⁴⁹, Canonica 14 Giorgio Walter^{21,22.} 15 16 17 Affiliations

- 18 1. Cardiac/Pulmonary Rehabilitation, ASST Pini/CTO, Milan, Italy
- 19 2. Microbiology Department, Faculty of Medicine, Kuwait University, Kuwait
- 20 3. Drug Allergy Unit, Department of Allergy, Al-Rashed Allergy Center, Kuwait
- 21 4. Hospital Quirónsalud Bizkaia, Bilbao, Spain
- 5. Department of Allergy, Bambino Gesu' Childrens' Hospital IRCCS, Rome, Italy
- 2 23
 6. Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent,
 3 24
 Belgium.
- 45 25 7. Karolinska Institutet, Stockholm; Department of ENT Diseases, Karolinska University
 47 26 Hospital, Stockholm.
- ⁴⁸₄₉ 27 8. Stallergenes Greer Medical Affairs Department, Antony, France
- ⁵⁰ 28 9. University Hospital Montpellier, France MACVIA-France, Montpellier, France
- ⁵² 29 10. Clinical Department of Internal Disease, Dermatology and Allergology, Medical
 ⁵³ 30 University of Silesia, Katowice , Poland
- ⁵⁵₅₆ 31 11. Department of Pulmonology and Addictology, Arnaud de Villeneuve Hospital,
 ⁵⁷₅₈ 32 Montpellier University, Montpellier, France
- ⁵⁹ 33 12. Imperial College London National Heart and Lung Institute, Royal Brompton Hospital
 ⁶⁰ 34 NHS, London, United-Kingdom

1 2		
3	35	13. Division of Allergy/Immunology, University of South Florida, Tampa, FL United-States
4 5	36	14. Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair,
6 7	37	University of Manchester and University Hospital of South Manchester, Manchester,
8 9	38	United-Kingdom
10	39	15. Allergy Division, Chest Diseases Department, Strasbourg University Hospital,
11 12	40	Strasbourg, France
13 14	41	16. Sorbonne Université, UMR-S 1136 INSERM, IPLESP, EPAR Team, Paris, France
	42	17. Laboratoire de Recherche en Pharmacologie Respiratoire, Pôle des Maladies des
17	43	Voies Respiratoires, Hôpital Foch, Université Paris-Saclay, Suresnes, France
18 19	44	18. Respiratory Disease Dept, Larrey Hospital, University Hospital of Toulouse, Paul
20 21	45	Sabatier University, Toulouse, France
22	46	19. Department of Paediatric Allergy, Guy's & St Thomas' Hospitals NHS Foundation Trust,
23 24	47	London, United Kingdom
25 26	48	20. Allergy & Asthma Unit, Hospital San Bernardo Salta, Salta, Argentina
27 28	49	21. Personalized Medicine, Asthma & Allergy - Humanitas Clinical and Research Center
29	50	IRCCS, Rozzano (MI), Italy
30 31	51	22. Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy.
32 33	52	23. Federal Institute of Immunology of Russia, Russia
34 35	53	24. Department of Internal Medicine and Clinical Immunology, Hotel Dieu de France
36	54	hospital. Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
37 38	55	25. Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.
39 40	56	26. Center for Rhinology and Allergology, Wiesbaden, Germany
41 42	57	27. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical
43	58	University of Lodz, Lodz, Poland
44 45	59	28. Alfred Hospital and Monash University, Melbourne, Australia
46 47	60	29. National Research Center - Institute of Immunology Federal Medical-Biological Agency
48 49	61	of Russia, Moscow, Russia
50	62	30. Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine,
51 52	63	Charité - University Medicine Berlin, Berlin, Germany
53 54	64	31. Immunoallergy Department of CUF-Descobertas Hospital, Lisbon Portugal
55	65	32.CUF-Infante Santo Hospital, Lisbon, Portugal
56 57	66	33. Faculty of Medicine, Institute of Medical Statistics and Computational Biology,
58 59	67	University of Cologne, Cologne, Germany
60	68	34. CRI - Clinical Research International Ltd., Cologne, Germany

Page 7 of 68

1 2			
3	69	35. Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany	
4 5 7 8 9	70	36. Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan.	
	71	37. Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles	
	72	University in Prague, Pilsen, Czech Republic	
10	73	38. Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's	
11 12 13 14 15 16	74	Hospital, University of Manchester, Manchester, United-Kingdom	
	75	39. Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A	
	76	Kyriakou", University of Athens, Athens, Greece	
17	77	40. Department of Allergy and Clinical Immunology, Ajou University School of Medicine,	
18 19	78	Suwon, South Korea	
20 21	79	41. Allergy and Respiratory Diseases, Ospedale Policlino San Martino -University of	
22 23	80	Genoa, Genoa, Italy.	
24	81	42. Department of Pediatrics, Nippon Medical School, Tokyo, Japan	
25 26	82	43. Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and	
27 28	83	Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany	
29 30	84	44. Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland	
31	85	45. Pediatric Pulmonology and Allergy Unit, Department of Pediatrics, Dr. Peset University	
32 33	86	Hospital, Valencia, Spain,	
34 35	87	46. Department of Pediatrics, Obstetrics and Gynecology. University of Valencia, Valencia,	
36	88	Spain., IVI Foundation, Valencia, Spain	
37 38	89	47. Allergy Service, Complejo Hospitalario Universitario de Santiago, Santiago de	
39 40	90	Compostela	
41 42	91	48. Department of Pneumology/Intensive Care Medicine, University of Rostock, Germany	
43	92	49. Vienna Challenge Chamber, Vienna, Austria	
44 45	93		
46 47	94	Corresponding author	
48 49	05	Environ Haffler, Developed Medicine, Acthemeter and Allermy, Humanitae Haiversity, and	
50	95 06	Enrico Heffler, Personalized Medicine, Asthma and Allergy, Humanitas University and	
51 52	96 07	Research, Hospital ICH, Via Alessandro Manzoni 56, Rozzano, Milan 20089, Italy,	
53 54	97	heffler.enrico@gmail.com	
55 56	98		
57			
58 59			
60			

99 Abstract

1 2 3

4

The introduction of personalized medicine (PM) has been a milestone in the history of 100 5 6 101 medical therapy, because it has revolutionized the previous approach of treating the 7 8 102 disease with that of treating the patient. It is known today that diseases can occur in 9 10 103 different genetic variants, making specific treatments of proven efficacy necessary for a 11 given endotype. Allergic diseases are particularly suitable for PM, because they meet the 12 104 13 14 105 therapeutic success requirements, including a known molecular mechanism of the ¹⁵ 106 disease, a diagnostic tool for such disease, and a treatment blocking the mechanism. The 16 17 107 stakes of PM in allergic patients are molecular diagnostics, to detect specific IgE to single 18 allergen molecules and to distinguish the causative molecules from those merely cross-19 108 ²⁰ reactive, pursuit of patient's treatable traits addressing genetic, phenotypic and 21 ²² 110 psychosocial features, and omics, such as proteomics, epi-genomics, metabolomics and 23 breathomics, to forecast patient's responsiveness to therapies, to detect biomarker and 24 111 25 ₂₆ 112 mediators, and verify the disease control. This new approach has already improved the ²⁷ 113 precision of allergy diagnosis and is likely to significantly increase, through the higher 29 1 1 4 performance achieved with the personalized treatment, the effectiveness of allergen 30 immunotherapy by enhancing its already known and unique characteristics of treatment 31 115 32 33²116 that acts on the causes.

Key words: allergen immunotherapy, personalized medicine, molecular diagnosis,

Short title: Allergen immunotherapy: a model of personalized medicine.

treatable traits, omics.

37

44 45 123 46

4

124 Introduction

In its millennial history, medicine has had the primary aim of treating diseases. The 125 5 6 development in the 1800s of pharmaceutical therapy with synthetic drugs was a 126 7 8 breakthrough¹, but the concept that a given drug was suitable for treating a given disease. 127 9 10 128 regardless of the characteristics of the individual patient, have survived for a long time. 11 The conceptual framework of genotypes, endotypes and phenotypes² has provided crucial 12 129 13 13 14 130 tools to understand that the characteristics of the individual also affect the response to ¹⁵ 131 drugs and paved the way to the new era of personalized (otherwise defined precision) 16 17 132 medicine. The new approach was first applied on oncology, concerning both diagnosis and 18 treatment³, but soon, with a significant boost from President Obama's announcement on 19 133 ²⁰ 134 the great potential of personalized medicine⁴, many other fields of medicine gained its ²² 135 benefits. As far as allergic and immune-mediated diseases are concerned, the introduction 23 of biologics to treat severe asthma provided a significant advance in personalized 24 1 36 25 treatment, through their ability to work on asthma according on molecular phenotypes ²⁷ 138 28 defined as high type 2 immunity asthma and low type 2 immunity asthma⁵. However, 29 139 allergen immunotherapy (AIT), a treatment for respiratory allergy first proposed in 1911 30 31 140 which in its long road has gone from empiricism to full scientific evidence⁶ can actually be 32 33 141 32 proposed as "a medical model aiming to deliver customized healthcare, with medical ³⁴ 142 decisions, practices, and/or products tailored to the individual patient"⁷. The primary 35 therapeutic goal of AIT include reducing the frequency and intensity of symptoms, the use 36 1 4 3 37 ₃₈ 144 of rescue medications, and improving the allergy-related quality of life. There is very strong ³⁹ 145 40 evidence to show that AIT achieves these goals in patients with allergic rhinitis⁸. ⁴¹ 146 Furthermore, in mite-induced asthma AIT is likely to enable a successful step-down in the 42 inhaled corticosteroid dose in patients graded as step 3 or 4 of GINA scale⁹. Here we will 43 147 44 45¹⁴⁸ analyze the factors underlying the characteristics of AIT as an optimal model for ⁴⁶ -- 149 personalized medicine. 47

⁴⁸150 **The birth of AIT and its embryonic properties as a personalized treatment.**

49 50 151 As hinted above, AIT was introduced more than one hundred years ago, when the ⁵¹ 52 152 knowledge on allergic disease was very limited⁶. Still, the different role of AIT compared ⁵³ 153 with the drug therapy available at the time was apparent, because drugs were aimed at 54 treating the symptoms of allergic rhinitis, while AIT was aimed at treating the specific 55 154 56 ₅₇ 155 allergy of single patients, thus introducing a concept now acknowledged as personalized ⁵⁸ 156 59 medicine. The first studies addressed "hay fever" induced by grass pollen. It is obvious 60 157 that the quality of the products in that time, which consisted of extracts obtained from the

3 allergenic source directly from the doctor, was hugely lower than the allergen extracts 158 4 used today, but the positive results obtained paved the way to an evolution finally resulting 159 5 6 in high quality products. Another definition that underlines how the AIT was yet, but 160 7 8 improperly, proposed as personalized for the patient is "Named Patient Product" (NPP), 161 9 10 162 i.e. specifically prepared for a given patient according to the results of allergy testing. 11 Nevertheless, NPPs were not a guarantee of clinical efficacy, because alongside products 12 163 13 13 14 164 with evidence of efficacy proven by placebo-controlled trials, others without such evidence ¹⁵ 165 were equally admitted to the prescription. Moreover, extracts containing several allergens, 16 namely all the allergens giving positive results to allergy testing, were frequently used, 17 166 18 especially in the U.S.A, but they were found to be ineffective in a pivotal double-blind, 19 167 ²⁰ 21 168 placebo-controlled trial in 1997¹⁰. Nowadays, registered products, whose effectiveness ²² 169 has been plainly demonstrated by controlled trials on large patient populations, are 23 considered ideal for AIT¹¹. However, good guality NPPs with demonstration of efficacy by 24 170 25 26⁻³171 placebo-controlled trials, are still available to treat respiratory allergy with expectancy of ²⁷ 172 28 clinical success¹².

29 1 7 3 Modern AIT as a prototype of personalized medicine. 30

31 174 The traditional diagnosis by skin tests relay on extracts, whose composition in minor and 32 32 33 175 major allergens can play a crucial role in defining sensitizations, as in the AIT products for ³⁴ 176 inducing clinical efficacy. Another critical factor is the extract potency, concerning both skin 35 testing and AIT. As to the latter, Larenas-Linneman et al. found a substantial variability in 36 177 37 ₃₈ 178 allergen extract potency as measured and reported worldwide^{13,14}. In particular, in Europe ³⁹ 179 40 the potency of extracts for sublingual immunotherapy (SLIT) is based on comparison with ⁴¹ 180 in-house references, making it difficult to translate the dose to US extracts¹³. Moreover, 42 comparing SLIT maintenance solutions of grass pollen and Dermatophagoides 43 181 44 45¹⁸² pteronyssinus from 4 leading European manufacturers to standardized concentrate 46 47 183 extracts of 3 US manufacturers measure in bioequivalent allergen units (BAU), the relative ⁴⁸ 184 potency was around 10 times higher for US standardized extracts (to be diluted for SLIT) 49 than for European SLIT maintenance dosage. The authors argued that, based on the 50 185 ⁵¹ 52 186 efficacy demonstrations from controlled trials, SLIT efficacy is likely to depend on ⁵³ 187 additional factors apart from the extract dose¹⁴. Today, the pillars of AIT as a personalized 54 therapy are represented by molecular diagnostics for achieving the highest possible 55 188 56 ₅₇ 189 precision, by the use of treatable traits, and by "omics".

⁵⁸ 190

- 60 191

Page 11 of 68

1 2 3

4

Allergy

192 1) Molecular diagnostics and other in vitro tests

The diagnosis of allergy has been long based on skin prick test (SPT) with allergen 193 5 6 extracts and in vitro test measuring specific IgE antibodies to the suspected allergens, but 194 7 8 with both techniques the positive results indicated sensitization but not necessarily clinical 195 9 10 196 allergy. A great advance in diagnostic precision was achieved by molecular diagnosis, 11 which allows to detect specific IgEs (sIgEs) to each single molecule, distinguishing those 12 197 13 .5 14 198 really causative (genuine) from those simply cross-reactive. Such diagnostic approach was ¹⁵ 199 variously named, including "Component resolved diagnosis"¹⁵, molecular-based allergy 16 diagnostics¹⁶, and molecular allergy diagnostics¹⁷. The updated WAO-ARIA- GA²LEN 17 200 18 19 201 consensus document on molecular-based allergy proposed the unifying definition of ²⁰ 202 "precision allergy molecular diagnostic applications" (PAMD@)¹⁸. This allergy diagnostics 22 203 approach is aimed at mapping the allergen sensitization of a patient at a molecular level, 23 24 204 using purified natural or recombinant allergenic molecules instead of allergen extracts. 25 205 205 Each allergen molecule is identified, classified according to the family to which it belongs, ²⁷ 206 and scientifically named according to the species to which it belongs. For example, the 29 207 major allergen from cockroach is a lipocalin named Bla g 4 (after Blatella germanica¹⁹. 30 31 208 Since its introduction, PAMD@ has been gradually used as a laboratory tool, and ^{3∠} 33 209 32 presently more than 130 allergenic molecules commercially are accessible for in vitro ³⁴ 210 slgE) testing²⁰. Two platform to perform PAMD@ are available, which include a singleplex 35 (i.e. a single assay per sample) or a multiplex (i.e. multiple assays per sample) 36 211 37 ₃₈ 212 measurement. With the former, the allergenic molecules thought to be responsible are ³⁹ 213 selected by the physician²¹, while with the multiplex technique a large array of preselected ⁴¹ 214 allergens are tested. The commercially offered multiplex allergen arrays include the 42 Immuno-CAP Immuno-solid-phase Allergen Chip (ISAC) from Thermo Fisher, containing 43 215 44 44 45 216 103 molecules from 51 allergen sources²², and the new ImmunoCAP ISAC 112i, including ⁴⁶ 217 112 components from 48 allergen sources, where some molecules from Hymenoptera 47 ⁴⁸ 218 venom and from walnut and plain tree have been eliminated, while others from cashew, 49 50 219 hazelnut, dog, dust mites, and alpha-gal were added²³. The EUROLINE Southern 51 5₂ 220 European Pollen Profile [ESEP) was introduced to test pollen molecules of clinical ⁵³ 221 54 relevance in Southern Europe²⁴, while the Microarray Diagnostics (MADx) Allergen ⁵⁵ 222 Explorer (ALEX) include 126 molecules from different allergen sources²⁵. It is apparent 56 57 223 that in order to properly interpret positive results for a high number of molecules, a 58 great experience of the examining physician is necessary. To facilitate the matter, 59 **22**4 ⁶⁰ 225 expert systems were developed to support the data analysis by dedicated decision-making

3 information systems. For instance, the expert system named Allergenius ® is based on the 226 4 ImmunoCAP ISAC implemented with an advanced knowledge specification language 227 5 6 using more than 700 different rules to mimic the experts' opinions on a complex ISAC 228 7 8 result²⁶. In a study comparing sera from patients assayed with ImmunoCAP ISAC and 229 9 10 2 3 0 ALEX a good correlation between the results from the two methods was found²⁷.

1 2

11

By focusing on applications for personalized medicine, numerous studies have assessed 12 231 13 14³232 the benefits of attaining with PAMD@ a more appropriate prescription for AIT. Table 1 ¹⁵ 233 summarizes the observations from these studies ²⁸⁻³⁷. A vast literature is available, as 16 recently reviewed³⁸⁻³⁹, also for the advantages of PAMD@ in the diagnosis of food allergy 17 234 18 ₁₉ 235 compared to the conventional diagnosis, but this will not be treated here since the purpose ²⁰ 236 of our analysis is to examine the progress achieved by PAMD@ in the appropriate 22 237 prescription of AIT. In fact, despite the numerous controlled AIT trials for food allergy⁴⁰, 23 this therapy has not yet been approved. 24 2 38

25 25 26 239 As far as the identification of the really causative allergen in polysensitized patients is ²⁷ 240 concerned, the first in vitro test was the RAST inhibition⁴¹, which then evolved into CAP 29 241 inhibition assay. The latter has been shown to be comparable to PAMD@ in the ability to 30 31 **242** identify the causative allergen^{35,42} and to have a lower cost ⁴³ in patients with multiple ³² 33 243 sensitization to Hymenoptera venom, in which a limited number of allergenic molecules ³⁴ 244 are responsible, while such outcomes was not reported for multi-sensitization to 35 respiratory allergens, involving a much higher number of molecules. 36 2 4 5

37 ₃₈246 The basophil activation test (BAT), which measures basophil degranulation by flow ³⁹ 247 40 cytometry, has the unique characteristic to detect in vitro the reactivity of basophils to ⁴¹ 248 allergens. Since these cells play a crucial role in allergic reactions, their in vitro detection 42 has a similar meaning to the in vivo provocation test with specific allergens, without 43 249 44 44 45 250 however the limit of false positive results from non-specific reactions, which represented a ⁴⁶ 251 limit of in vivo tests. BAT was found to be very useful in the personalized diagnosis of 47 ⁴⁸ 252 patients with allergic conditions including respiratory, food and Hymenoptera venom 49 50 253 allergy who show multiple allergen reactivity, distinguishing the allergens as causative or ⁵¹ 52 **2**54 not based on the response of the basophils⁴⁴. As mentioned above, our review is focused ⁵³ 255 on the effects of personalized diagnosis on the outcomes of AIT. As for CAP inhibition, the 54 concerned Hymenoptera venom allergy, demonstrating that BAT 55 256 first studies 56 ₅₇ 257 accomplished with the recombinant allergens from Vespula spp Ves v 1, Ves v 2, Ves v 3 ⁵⁸ 258 59 and Ves v 5 achieved a clear improvement in the specificity of diagnosis in patients with 60 2 5 9 anaphylactic reactions to wasp stings over IgE detection by Enzyme-Linked

Page 13 of 68

1 2

Allergy

ImmunoSorbent Test (ELISA) or ImmunoCAP⁴⁵ and that in patients with severe reactions 3 260 4 to stings, some of them with negative response to slgE test and intradermal tests, BAT 5 261 6 was positive in 81% of patients compared with to a rate 57% with intradermal testing, 262 7 8 14% with IgE test, 19% of patients being negative to either test except BAT⁴⁶. A study 263 9 ¹⁰ 264 analyzed the correlation between the BAT changes during venom immunotherapy and 11 ¹² 265 the treatment outcome. BAT was unchanged after one year, but in subsequent years a 13 fourfold reduction was detected in all patients who developed tolerance to stings, while 14266 15 ₁₆ 267 no change in BAT occurred in patients with a persistently positive sting challenge⁴⁷. 17 18 268 Such important outcome was found also in patients treated with subcutaneous ¹⁹ 269 immunotherapy (SCIT) for grass pollen allergy. In fact, basophil sensitivity showed a 20 21 270 447-fold decrease in the first year of treatment, remaining 100-fold lower than baseline 22 in the 3 year-treatment period and 10-fold lower in the follow-up year. Notably, a 23 271 24 basophil sensitivity after three weeks of SCIT predicted long-₂₅ 272 decline in ²⁶ 27 **27**3 term improvement in symptom and medication scores during the three years of ²⁸ 274 treatment⁴⁸. Further studies are needed to clarify the role of BAT as a biomarker or a 29 30 275 predictive marker of AIT efficacy. 31

³³₃₄277 **2** *In vivo* tests

32 **27**6

⁴⁷ 285

³⁵ 278 Theoretically, inducing allergic symptoms by a challenge with the suspected allergen in the 36 37 279 target organs can be a valuable in vivo test. However, as stated in the International 38 Consensus Statement on allergic rhinitis, the contrasting findings from different studies 39 280 40 41 281 and the absence thus far of a standardized technique limit the diagnostic utility of nasal ⁴² 282 challenge, a pivotal role being currently acknowledged only in diagnosis of occupational 43 44 283 rhinitis and local allergic rhinitis⁴⁹. If future studies will achieve standardization of the 45 ₄₆ 284 method, the nasal challenge could be used, alike BAT, as a test toward precision medicine.

49 286 **3.Treatable traits** 50

The term "Treatable traits" was suggested by Agusti and coworkers to indicate a precision medicine methodology of diagnosis and treatment of chronic disorders of the airways based on finding genetic, phenotypic and psychosocial features which are associated with therapies able to improve respiratory health⁵⁰. The field of application considered as most appropriate for the use of treatable traits is represented by chronic respiratory diseases and in particular by asthma and chronic obstructive pulmonary disease (COPD), which share various clinical aspects but whose drug therapy has significantly differentiated in

1 2

3 recent years⁵¹. For example, using treatable traits in a patient with COPD but symptoms 294 4 compatible also with asthma and positivity of tests for respiratory allergy due to 295 5 6 asymptomatic sensitization would prevent the incorrect prescription of AIT. The role of 296 7 8 treatable traits in the management of chronic respiratory diseases has been outlined by 297 9 10 298 some important studies. The first investigated the role of extra-pulmonary comorbidities as 11 treatable traits in patients with difficult-to-control asthma. The proposed comorbidities were 12 299 13 13 14 300 allergic and nonallergic rhinitis, chronic rhinosinusitis, vocal cord dysfunction, dysfunctional ¹⁵ 301 breathing, gastroesophageal reflux, obesity, obstructive sleep apnoea, and anxiety/ 16 17 302 depression, of which the prevalence, impact and outcome of treatment were assessed, 18 ₁₉ 303 also appraising the associations of single comorbidities and the potential of comorbidity ²⁰ 304 clusters on asthma control. The authors concluded that extra-pulmonary comorbidities are 22 305 important treatable traits be evaluated in all asthmatic patients and especially in those with 23 24 306 difficult asthma. Such comorbidities may have a significant influence on asthma control, ²⁵ 26 307 thus their presence deserves treatment regardless of original asthma status and asthma ²⁷ 308 28 control⁵². The number of treatable traits involved in acute exacerbation differed according 29 309 to the respiratory disease, with a major role for C reacting protein in COPD, eosinophils 30 31 310 count and fractioned exhaled nitric oxide (FeNO) measurement in asthma, and bacterial ³² 33 311 infections for bronchiectasis⁵³.

³⁴ 312 An important observation obtained through the review of the literature by Pavord and 35 Agusti concerned the identification of eosinophilic airway inflammation, as assessed by the 36 3 1 3 37 ₃₈ 314 blood eosinophil count, as a treatable trait of particular importance in patients with airway ³⁹ 315 40 disease (including asthma and COPD, being significantly associated with long-term ⁴¹ 316 outcomes⁵⁴. The recent European Unbiased Biomarkers for the Prediction of Respiratory 42 Disease Outcomes (U-BIOPRED) project was aimed at identifying and quantifying, based 43 317 44 45 318 on the hypothesis that treatable traits are more common in severe asthma and may 46 47</sub>319 significantly differ according to asthma phenotypes, the treatable traits recognized in the ⁴⁸ 320 severe and mild/moderate adult asthma cohorts and across previously identified 49 phenotypes⁵⁵. 50 321

All studies available thus far support a chief role of treatable traits in evaluating patients with respiratory diseases, however the preferable method of application and the costeffectiveness of such a multidimensional intervention is still uncertain, making it necessary to conduct randomized controlled trials involving large populations of patients⁵⁶. Concerning AIT, treatable traits of clinical interest may consist of the treatment outcome, beyond the disease to be treated, on comorbidities⁵⁷. Another trait may concern the Page 15 of 68

1 2

6

7

9

Allergy

3 possible synergistic effect of biologics and AIT. Precision medicine of allergic diseases is 328 4 nowadays highlighted by the consistent data of efficacy of biologics targeting cytokines ((IL 329 5 330 5) or their receptors (IL 5 rec. or IL4/IL13 rec.). Nonetheless, we should consider that the 8 331 eligibility of allergic patients to biologics or AIT is only partially overlapping, being the first 10 3 3 2 limited to severe asthma or CRSwNP whereas AIT has indication for allergic rhinitis and 11 mild/moderate asthma while severe asthma is a contraindication. Based on the 12333 13 14 334 characteristics of the two treatments, a synergistic effect in allergic asthma is conceivable, ¹⁵ 335 with biological achieving control of severe asthma but not changing its natural history while 16 17 3 36 AIT, once ceased the contraindication, can induce the long-term immunological changes. 18 ₁₉ 337 Studies to investigate whether such synergy is achievable are warranted.

22 339 4.Omics 23

²⁰ 338

Following the definition of genomics in the 1960s as the complete nucleotide sequence of 24 3 4 0 25 26 341 an organism⁵⁸, a large number of other "omics" were recently proposed, such as ²⁷ 342 proteomics (the complete proteins of a cell in any organism), epi-genomics (the 29343 modification of nucleotides in an organism), metabolomics (the changes in gene activity in 30 31 344 response to metabolites⁵⁹, breathomics (the multidimensional molecular analysis of 32 33 345 32 enxhaled breath⁶⁰, but the list is very large and still expanding. In the field of allergy ³⁴ 346 diseases, asthma is the most investigated disease. In 2011, the detection of protein 35 36 347 changes by proteomics in different asthma stages was supported to improve the 37 ₃₈ 348 understanding of the molecular mechanisms of the disease and to find novel mediators ³⁹ 349 40 and biomarkers⁶¹. Another omic of potential interest for personalized medicine is the ⁴¹ 350 exposome, definable as a systematic approach to obtain large data sets on to 42 43 351 environmental exposures of an individual during the whole life⁶².

44 44 45</sub>352 However, the available data on the state of omics technology in the management of ⁴⁶ 353 asthma and allergic diseases were recently analyzed by Donovan et al. After pointing out 47 48 354 that omics-based investigation are used increasingly to distinguish subtypes of 49 allergic diseases and asthma subtypes, forecast patient responsiveness to specific 50 355 ⁵¹ 52 356 therapies, detect biomarkers and mediators, and verify the disease control, the authors ⁵³ 357 concluded that omics testing in this field for are not yet a standard of care, and that key 54 factors need to be recognized before such technologies can be used successfully in 55 358 56 57 359 common clinical practice⁶³. On the other hand, according to Fitzgerald et al., the promise ⁵⁸ 360 of new technology must leave room to an humanomics perspective, i.e. the 60 361 acknowledgement of patient's behavioral aspects⁶⁴.

1

5

363 Impact of personalized medicine on AIT

6 The great advance provided by the introduction of personalized medicine in diagnosis of 364 7 8 allergy is likely to enable solving the long-standing problem of AIT related to the great 365 9 10 366 qualitative variability of AIT products and the consequent heterogeneity of the clinical 11 results. Actually, an updated way to correctly evaluate the effectiveness of AIT products 12 367 13 13 14 368 must avoid the mistakes of the past, when the results of a valid tool such as meta-analysis, ¹⁵ 369 despite the clear differences between different products, tended in the conclusions to 16 extend the positive outcome to AIT in general⁶⁵. The latest generation of registered 17 370 18 19371 products for SLIT, which were based on trials including large number of patients with ²⁰ 372 respiratory allergy to grass pollen and dust mites, meet the modern quality needs⁶⁶⁻⁷⁰. Still, 22 373 as mentioned above, the previous generation products include allergen extracts of efficacy 23 24 374 demonstrated by controlled trials, but also products missing such evidence. This implies ²⁵ 26 375 new properly designed clinical trials to demonstrate efficacy. Nonetheless, in order to ²⁷ 376 28 facilitate AIT product development it is advisable that the same product composition, 29377 possibly using different formulation (i.e. drops/tablets) should have a mutual program and 30 31 378 recognition and possibly a full development program. Also, the relevance of testing all ³² 33 379 allergens and the final cost of the studies for a limited effect size due to the huge placebo ³⁴ 380 effect in AIT trial is worthy of attention. These facets could provide a flexibility of treatment 35 otherwise difficult to reach in clinical practice, when batch to batch reproducibility is 36 381 37 ₃₈ 382 ensured in terms of quality product and standardization.

³⁹ 383 40 Today, to achieve the highest quality any manufacturer of allergen products must follow ⁴¹ 384 stringent scientific rules. The first is to ensure the presence in the allergen extracts of all 42 relevant allergens. As discussed above, PAMD@ provides the detections of all allergen 43 385 44 44 45 386 molecules, distinguishing those simply cross-reactive from genuine causative ones. ⁴⁶ 387 Similarly, the development of an AIT product requires during the manufacturing process 47 48 388 the identification of all component through mass-spectrometry based analysis, followed by 49 50 389 allergen extraction, purification and formulation, as well as yield cost, robustness and ⁵¹ 52 390 scaling up. The subsequent step is the product characterization, which results in ⁵³ 391 development and implementation of analytical methods for identity, purity, consistency and 54 stability, which makes clinical development possible in its various phases. These phases 55 392 56 ₅₇ 393 (I, II, III) are aimed at establishing safety, dosing and efficacy. For optimal quality level, ⁵⁸ 394 59 well-controlled source materials are also essential, which consist, for example for grass 60 3 9 5 pollen, in the harvesting and processing of pollens from cultured grasses, while for house

dust mites the development of a synthetic cultured medium free from proteins of animal origin is needed⁷¹. As mentioned above, the use of omics is of marked importance in the comprehensive characterization of allergen extracts, including transcriptome for *de novo* sequencing, proteome for MS analysis, and allergome for IgE reactivity⁷².

10 400 In this context, the evaluation of the Real-World Evidences (RWE), should be properly 11 12 401 reappraised, since patients in clinical practice often do not meet the same criteria of the 13 14 402 subjects enrolled in the double-blind placebo-controlled trials (DBPCRT) leading to ¹⁵ 403 registration by Regulatory Authorities⁷³. In fact, distinction is made between the final 16 17 404 outcome of DBPCT efficacy and the one in RWE. Nonetheless, a correct evaluation of 18 ₁₉ 405 these RWE has to be methodologically performed. To this purpose an ongoing European ²⁰ 21</sub>406 Academy of Allergy and Clinical Immunology (EAACI) initiative is designed to ascertain the 22 407 validity of the existing RWE concerning AIT, applying the recent tools proposed by 23 24 408 Respiratory Effectiveness Group (REG)/EAACI from one side (Relevant) and Grading of 25 26 409 Recommendations, Assessment, Development and Evaluation (GRADE) on the other side ²⁷ 410 ⁷⁴. Through this initiative we will be able define the real validity of the existing AIT RWEs. 29 4 1 1 This action has been also stated and promoted by the recent Real-Life Research 30 31 412 Manifesto, where it is pointed out the need to consider RWE in the complex scenario of ³² 33</sub>413 scientific clinical research⁷⁵. This document supported the use of tools, such as the ones ³⁴ 414 mentioned previously, to analyze RWE properly. Finally, the Manifesto also underlined the 35 major differences existing between retrospective and prospective RWE: where prospective 36 4 1 5 37 ₃₈ 416 approach, whose typical example is a Disease or intervention's Registry, is the most ³⁹ 417 40 credible, as also stated by Sherman et al⁷⁶. In fact, it should be underlined that several AIT ⁴¹ 418 RWE reports were retrospectively collected, combining different methodologies, thus 42 decreasing the validity of the final outcomes/conclusions. However, recent, well conducted 43 4 19 44 45 420 real-life studies, derived from a well-designed and set up database and including very ⁴⁶ 421 large patient populations, were of relevant importance, because they contributed to 47 48 422 increase the knowledge on the effectiveness of AIT in patients seen in daily clinical 49 50 423 practice, possibly not meeting the strict criteria to be included in a trial^{77,78}.

⁵¹ 52 **42**4

53 425 Final message: AIT as personalized treatment

All the above is in line with the current view that collecting Big Data can lead to precision medicine^{79,80}. We previously pointed out AIT as a prototype of precision medicine⁷ and now we would propose AIT as one of the best example of Personalized and Participatory Medicine, aimed to satisfy the needs and preferences of patients and to strengthen the

1

430 cooperation patient/doctor in jointly choosing the best therapeutic option. AIT is the only medical treatment that has the capacity to change the natural history of allergic diseases ⁸¹ 431 and responds perfectly to the three major needs to be met in personalized medicine, which 432 433 are the identification of the molecular mechanism of the disease, the availability of 10 4 3 4 diagnostic tools to recognize this mechanism and the availability of a treatment capable of blocking the mechanism⁸². In Figure 1 we summarized all the possible aspects of the 12 4 3 5 14 14 14 updated journey to reach the best prescription of AIT, through a detailed and modern ¹⁵ 437 diagnosis (including PAMD@) and definition of patient's eligibility to AIT. As to diagnosis, it must be kept in mind that the medical history collected by a skilled doctor is the basis for 17 4 38 ₁₉ 439 deciding the subsequent investigations in accordance with the individual characteristics. ²⁰ 21</sub>440 The current and future tools to reach a AIT personalized prescription are summarized in 22 441 Figure 2 . Their variable characteristics suggest that personalized care is valuable in this 23 24 4 4 2 setting and may be also be preventive (by focusing on quality of life), predictive (by 25 26²443 allowing treatment to be adjusted as a function of the individual's response) and ²⁷ 444 28 participative (empowering the patient). In particular, SLIT can be considered a precision 29 4 4 5 medicine treatment (especially with high quality NPP) that enable the physician to identify 30 31 446 the optimal treatment for each patient. This tailor-made approach to diagnosis, decision-32 33 447 32 making, product choice and treatment schedules may enhance effectiveness, minimize ³⁴ 448 adverse events, improve patient's quality of live and reduce the socio-economic impact. A 35 number of SLIT drops updosing regimens and maintenance treatment were shown to be 36 4 4 9 37 ₃₈ 450 safe and effective. This means that SLIT liquid allergen extract formulations are extremely ³⁹ 451 40 flexible in terms of frequency of dosing and number of allergen doses delivered. Such ⁴¹ 452 parameters can be fine-tuned to suit the patient's day-to-day treatment response and 42 intercurrent events. Depending on the sensitization profile and the clinical signs, the 43 453 44 45⁴⁵⁴ specialist can develop a specific, tailor-made SLIT liquid-based approach that, due to its ⁴⁶ 455 ductility in clinical practice, may be an added value. In addition, SLIT liquid formulation 47 48 4 5 6 makes it possible to adapt the dose and regimen during the updosing and/or the 49 50 457 maintenance phase to target optimal effectiveness. 51

- 52
- 53 54
- 55
- 56 57
- 58
- 59 60

The clinician should then evaluate:

- The route of administration: presently SCIT and SLIT for aeroallergens, considering evidences and patient's needs/preference
- The AIT product to be chosen as recommended by WAO⁸³ and EAACI⁸⁴ among the products supported by evidences.
- SCIT: different schedules upon the products (i.e. depot or aqueous)
- SLIT: preference for drops or tablet, both considering evidences and patient's needs/preference
- Dosages and schedules: continuous or pre-seasonal; long or short term.
- Most of the above can be influenced by costs and/or reimbursements.

Personalized medicine in AIT has the potential to improve various outcomes which have so far produced limited results. This is true for preventive ability, which until now has been shown only for the development of asthma in patients with allergic rhinitis⁸⁵, the identification of biomarkers predictive of treatment efficacy (still not known)⁵⁷ and costeffectiveness compared to drug therapy, clearly demonstrated on the basis of the persistence over time of the control of symptoms after AIT withdrawal⁸⁶, but further improvable by greater diagnostic precision. Further issues could concern the expansion of e-health systems⁷ and the implementation of telemedicine⁸⁷.

This journey is leading to the most appropriate choice of the AIT treatment thanks to the multifaceted variety of AIT products empowering the professionality of the clinician in choosing, through a shared decision that considers the patient's needs, a proper AIT product for each patient according to eligibility and acceptability.

44 471 It is so conceivable to conclude that AIT is still a unique and unmatched model of Personalized Medicine for allergy treatment, able to encompass the prediction of a ₄₆ 472 47 48</sub>473 successful treatment and the potential prevention or progression of an allergic disease, ⁴⁹ 474 and possibly to face the challenge of providing such advances to at affordable costs. As well, the characteristics of Personalized Medicine for allergy are likely to enable to face 51 475 52 53²476 challenges such as increasing prevalence, growing complexity and heterogeneity, impact ⁵⁴477 on patients, problem of access to care, therapeutic wandering, and successful 55 56 478 management of uncontrolled patients⁸⁸. 57

₅₈ 479

⁵⁹₆₀480 **Disclosure of Interests**

481 M. Al-Ahamad has nothing to disclose.

- ³ 482 I. Ansotegui declares he has received fees from Abbott, Astra Zeneca, Faes Farma,
 ⁴ 483 Hikma, Menarini, MSD, Mundipharma, Roxall, Sanofi, Stallergenes Greer, UCB.
- ⁶₇ 484 S. Arasi has nothing to disclose.

42

48

56

- ⁸ 485 C. Bachert declares he has received personal fees from Sanofi, personal fees from GSK,
 ¹⁰ 486 personal fees from Novartis, personal fees from Astra-Zeneca.
- J. Bousquet declares he has received lecture fees and/or participation at expert board meetings from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach (Advisory Board, consultant, meeting lectures fees), Kyomed (shares).
- ¹⁸ 19 491 A. Bozek has nothing to disclose.
- ²⁰₂₁492 D. Caimmi has nothing to disclose.
- ²² 493 M. Calderon has nothing to disclose.
- 24 494 T. Casale has nothing to disclose.
- $^{25}_{26}$ 495 A. Custovic has nothing to disclose.
- ²⁷ 496 GW. Canonica declares he has received lecture fees and/or participation at expert board
 ²⁹ 497 meetings BI, ALK, Stallergenes Greer (Grant/ research support), (Menarini, GSK, Sanofi,
 ³⁰ Teva, Hal, AZ, Novartis (honoraria or consultation fees).
- ³²₃₃ 499 F. De Blay declares he has receaved grants from Stallergenes Greer, Chiesi, ALK,
 ³⁴₃₅ 500 Mundipharma, Novartis.
- P. Demoly declares he had received personal fees for grants/lecture from Astra Zeneca,
 Mylan, Sanofi, ASIT Biotech, ALK, Stallergènes Greer, Thermofisher Scientific, Menarini,
 Chiesi, Bausch&Lomb, Yslab.
- P. Devillier declares he has received has received consultancy fees, honoraria for
 lectures, and/or research funding from ALKAbelló, Stallergenes Greer, AstraZeneca,
 Chiesi, Boehringer-Ingelheim, GlaxoSmithKline.
- ⁴⁹₅₀ 507 A. Didier declares he has received personal fees for consultancy services for ALK and
 ⁵¹₅₀ 508 grants for participation in clinical research projects with ALK.
- 53 509 A. Fiocchi has nothing to disclose.
- ⁵⁴₅₅ 510 A. Fox has nothing to disclose.

⁵⁷₅₈511 P. Gevaert declares he has received lecture fees and/or participation at expert board
 ⁵⁹512 meetings from Ablynx, ALK, Argenx, Astra-Zeneca, Genentech, HAL-Allergy, Novartis,
 ⁶⁰513 Roche, Regeneron, Sanofi, and Stallergenes Greer.

2 ³ 514 4	M. Gomez has nothing to disclose.
5 6 515	E. Heffler declares he has received lecture fees and/or participation at expert board
7	
8 516 9 517	meetings from AstraZeneca, GSK, Sanofi, Novartis, Boehringer Ingelheim, Valeas,
10 517	Circassia, Nestlè Purina.
¹¹ 518 12	N. Ilina has nothing to disclose.
13 519 14	C. Irani has nothing to disclose.
₁₅ 520	L. Klimek has nothing to disclose.
¹⁶ 17521	P. Kuna declares he has received honorarium as speaker from Allergopharma, ALK.
¹⁸ 522 19	Bencard and Stallergenes Greer.
20 523	R. O'Hehir C. has nothing to disclose.
²¹ 22 524	Incorvaia declares he has received fees for consultancies from Bayer and Stallergenes
²³ 525 24	Greer.
²⁵ 526	M. Jutel declares he has received personal fees from ALK-Abello, Allergopharma,
26 27 527	Stallergenes Greer, Anergis, Allergy Therapeutics , Circassia, Leti, Biomay, HAL.
²⁸ 29 528	O. Kurbacheva has nothing to disclose.
³⁰ 529 31	P. Matricardi declares he has received fees from Thermo Fisher Scientific, Hycor, Omron,
32 530	TPS, Stallergenes Greer, Euroimmun.
³³ 34 531	M. Morais de Almeida has nothing to disclose.
³⁵ 532 36	R. Mosges declares he has received fees from Allergopharma, ALK-Abelló, Glaxo, HAL
37 533 38	Allergy, Leti, Lofarma, Novartis, Parexel International, Stallergenes Greer.
39 534	N. Novak has nothing to disclose.
⁴⁰ 41 535	Y. Okamoto has nothing to disclose.
⁴² 536 43	P. Panzner has nothing to disclose.
44 537	N. Papadopoulos declares he has received fees from Novartis, NUTRICIA, HAL, Menarini,
45 46 538	SANOFI, MEDA, AstraZeneca, GSK, MSD, ASIT BIOTECH, Boehringer Ingelheim.
⁴⁷ 48539	H. Park has nothing to disclose.
⁴⁹ 540 50	G. Passalacqua has nothing to disclose.
51 541	R. Pawankar has nothing to disclose.
⁵² 53 542	O.Pfaar declares he has received grants and personal fees from ALK-Abelló,
⁵⁴ 543 55	Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, from
56 544	Bencard Allergie GmbH/Allergy Therapeutics, Lofarma.
57 58 545	P. Schmid-Grendelmeier has nothing to disclose.
⁵⁹ 60 546	H. Tortajada has nothing to disclose.
547	C. Vidal has nothing to disclose.

1 2	
³ 548	C Virchow declares he has received fees from Allergopharma, ALK, LETI, Stallergenes
4 5 549	Greer.
6 7 550	U. Wahn declares he has received honoraria for consultancy as well as lecture fees from
8 9 551	Allergopharma, Stallergenes Greer, ALK, Roxall, Sanofi-Aventis, Novartis, Berlin-Chemie
10 552	M. Worm declares she as received of honoraria or consultation fees by ALK-Abelló
11 12 553	Arzneimittel GmbH, Mylan Germany GmbH, Leo Pharma GmbH, Sanofi-Aventis
¹³ 14 554	Deutschland GmbH, Regeneron Pharmaceuticals, DBV Technologies S.A, Stallergenes
¹⁵ 555 16	Greer, HAL Allergie, Allergopharma, Bencard Allergie, Aimmune Therapeutics UK Limited,
17 556	Actelion Pharmaceuticals Deutschland G, Novartis AG, Biotest AG, AbbVie Deutschland &
18 19 557	Co. KG, Lilly Deutschland
²⁰ 558 21	P. ZiegImayer has nothing to disclose.
22 559	C. Bos, E. Karagiannis and S. Scurati are employee of Stallergenes Greer
23 24 560	
²⁵ 561 ²⁶ 562	
²⁷ 563	Acknowledgments
²⁹ 564	This is an initiative supported by Stallergenes Greer with an unrestricted grant
30 31	
32 33	
34	
35 36	
37 38	
39	
40 41	
42 43	
44	
45 46	
47	
48 49	25
50 51	
52	
53 54	
55	
56 57	
58	
59 60	

$\frac{3}{4}$ 565 Table 1 Studies that have assessed the benefits of attaining with PAMD a more

5 566 appropriate prescription for AIT

 Author, year (ref)	Allergens tested	Population	Results
Mitterman, 2010 (28)	Bee and wasp venom.	43 patients (pts)	Recombinant
			nonglycosylated allergen
			molecules (Api m 1, rApi
			m 2, rVes v 5) allowed to
			define the sensitizing
			venom in the 14 patients
			with positive test both
			bee and wasp venom
			extracts.
Castra 2012 (20)	Dellana	111 ptp	
Sastre, 2012 (29)	Pollens	141 pts	Agreement in AIT
			indication before and
			after ISAC(®) results in
	C		62 (46%) patients;
			(kappa = 0.1057 ±
		\mathcal{O}^{\vee}	0.0413).
Moreno, 2014 (30)	Pollens	1263 pts	Based on history and
			SPT, 73% of patients
		\mathbf{O}	would have been
	, N	4.	prescribed AIT with a mix
			of grass and olive
			pollens, while only in
		2	56.8% of patients the
0			double positivity was
			confirmed by molecular
			allergy diagnosis (MAD)
			alleruv diadhosis (IVIAD)
Ň			
28			with Ole e 1 and Phl p
RAY			with Ole e 1 and Phl p molecules.
Popescu, 2014 (31)	Grass pollen	Not defined (review	with Ole e 1 and Phl p
Popescu, 2014 (31)	Grass pollen	Not defined (review of published data)	with Ole e 1 and Phl p molecules.
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and PhI p molecules. MAD biomarkers (including tolerogenic
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers (including tolerogenic dendtitic, regulatory T
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers (including tolerogenic dendtitic, regulatory T cells, IgE, IgA and IgG

			information for allergists
Vidal, 2014 (32)	Pollens, dust mites,	62 Spanish	SPTs are insufficient to
	moulds, animal epithelia	allergists	establish the clinical
			relevance of each
			allergen. Serum specific
			IgE adds value to SPT
			but MAD is strongly
			recommended,
			particularly in pollen-
			allergic patients.
Saltabayeva, 2017 (33)	Pollens	95 pts (real-life	A lower number of A
, , , , , ,		study)	treatments (n = 119) wa
			needed according
		ר	MAD compared to 27
		202	AIT treatments based o
			conventional diagnosi
			with large reduction
			the total costs for a
			year AIT treatment
Del-Rio Camacho, 2018	Pollens	70 children	MAD modified A
(34)			prescription in 54.3%
(),		Ζ.	cases, and increasir
			the indication of single
			allergen therapy fro
		2	18% to 51% reversir
			the decision to prescrib
			AIT in 9.3% of cases
Savi, 2016 (35)	Hymenoptera venoms	40 pts.	By MAD data VIT wou
			have been prescribed
0.5			7 pts for Polistes spp,
\mathbf{O}			6 for Vespula spp, and
			41 for both venoms. Wi
			the data from CA
			inhibition, it would have
			been a prescription to 1
			patients for Polistes,
			28 for Vespula, and to 1
			20 101 vespula, allu lu

1				
2 3				for both venoms. A good
4 5				concordance between
6				the results of MAD and
7 8				CAP-inhibition was found
9 10				only when the value in
11				kU/I of Ves v 5 were
12 13				about twice those of Pol
14				d 5, and vice versa.
15 16	Martinez-Canavate	Pollens	281 children	MAD results changed the
17 18	Burgos, 2018 (36)			specialist's composition
19				of the prescribed AIT in
20 21				52.87% of cases.
22 23	Peveri, 2019 (37).	Various aeroallergens	272 pts.	In 50% of cases a
24				change in the AIT
25 26			X	prescription for
27				respiratory allergy was
28 29				found, resulting in a
30 31			$\mathbf{G}^{\mathbf{v}}$	saving of financial
32			Ň	resources.
³³ 56 34	7	6		
35 56 8 36	8			
37		'A		
38 39				
40				
41 42				
43 44	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
45				
46 47	X.			
48 49				
50				
51 52				
53				
54 55				
56				
57 58				
59 60				

² ³ 569 **References**

- 4
 5 570 1) Jones AW. Early drug discovery and the rise of pharmaceutical chemistry. Drug Test
 6
 7 571 Anal. 2011;3 (6)337-44.
- ⁸ 572 2) Mahner, M. & Kary, M. (1997). "What exactly are genomes, genotypes and
 ¹⁰ 573 phenotypes? And what about phenomes?". J Theoretical Biology 186: 55–63.
- 3) Febbo PG, Ginsburg GS. Personalized diagnostic and therapeutic strategies
 in oncology. Per Med. 2005;2(2):97-110.
- ¹⁵ 576 4) Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015 Feb
 ¹⁷ 577 26;372(9):793-5
- ¹⁸
 ₁₉578 5) Busse WW. Biological treatments for severe asthma: A major advance in asthma care.
 ²⁰
 ₂₁579 Allergol Int. 2019;68(2):158-66.
- ²² 580 6) Frew AJ. Hundred years of allergen immunotherapy. Clin Exp Allergy. 2011;41(9):
 24 581 1221-225.
- ²⁵₂₆582
 ²⁷583
 ²⁷583
 ²⁷583
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁰584
 ²⁰584
- ³⁰
 ³¹ 585
 8) Roberts G, Pfaar O, Akdis CA, Ansotegui IJ, Durham SR, Gerth van Wijk R, Halken S,
 ³² Larenas-Linnemann D, Pawankar R, Pitsios C, Sheikh A, Worm M, Arasi S, Calderon
 ³⁴ 587
 MA, Cingi C, Dhami S, Fauquert JL, Hamelmann E, Hellings P, Jacobsen L, Knol EF,
- Lin SY, Maggina P, Mösges R, Oude Elberink JNG, Pajno GB, Pastorello EA,
- Penagos M, Rotiroti G, Schmidt-Weber CB, Timmermans F, Tsilochristou O, Varga
- ³⁹₄₀590 EM, Wilkinson JN, Williams A, Zhang L, Agache I, Angier E, Fernandez-Rivas M, Jutel
- ⁴¹ 591 M, Lau S, van Ree R, Ryan D, Sturm GJ, Muraro A. EAACI Guidelines on Allergen
 ⁴² Immunotherapy: Allergic rhinoconjunctivitis. Allergy. 2018;73(4):765-798.
- 9) Demoly P, Makatsori M, Casale TB, Calderon MA. The Potential Role of Allergen
 Immunotherapy in Stepping Down Asthma Treatment. J Allergy Clin Immunol Pract.
 2017 May Jun;5(3):640-648.
- ⁴⁹
 ⁵⁰ 596 10)Adkinson NF Jr, Eggleston PA, Eney D, Goldstein EO, Schuberth KC, Bacon JR, Hamilton RG, Weiss ME, Arshad H, Meinert CL, Tonascia J, Wheeler B. A controlled trial of immunotherapy for asthma in allergic children. N Engl J Med. 1997;
 ⁵³ 598 336(5):324-31.
- ⁵⁶₅₇600 11)Kaul S, May S, Lüttkopf D, Vieths S. Regulatory environment for allergen-⁵⁸₅₉601 specific immunotherapy. Allergy. 2011;66(6):753-64.
- 60

Page 27 of 68

1 2	
3 602 4	12)Devillier P, Dreyfus JF, Demoly P, Calderón MA. A meta-analysis of sublingual allergen
⁴ 5 603	immunotherapy and pharmacotherapy in pollen-induced seasonal allergic
6 7 604	rhinoconjunctivitis. BMC Med. 2014;12:71
8 ₉ 605	13)Larenas-Linnemann D, Cox LS; Immunotherapy and allergy diagnostics Committee of
¹⁰ 606	the American Academy of Allergy, Asthma and Immunology European allergen extract
11 12 607	units and potency: review of available information. Ann Allergy Asthma Immunol.
¹³ 14 608	2008;100(2):137-45.
¹⁵ 609 16	14)Larenas-Linnemann D, Esch R, Plunkett G, Brown S, Maddox D, Barnes C, Constable
17 610	D. Maintenance dosing for sublingual immunotherapy by prominent European allergen
18 19 611	manufacturers expressed in bioequivalent allergy units. Ann Allergy Asthma Immunol.
²⁰ 21 612	2011;107(5):448-458.
²² 613 23	15)Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant
24 614	allergen-based concept of component-resolved diagnostics and immunotherapy (CRD
²⁵ 26 615	and CRIT). Clin Exp Allergy. 1999 Jul;29(7):896-904
²⁷ 616 28	16)Melioli G, Savi E, Crivellaro MA, Passalacqua G. Potential of molecular based
29 617 30	diagnostics and its impact on allergen immunotherapy. Asthma Res Pract. 2016 2;2:9.
31 618	17)Kespohl S, Raulf M. Mould allergens: Where do we stand with molecular allergy
³² 33 619	diagnostics?: Part 13 of the series Molecular Allergology. Allergo J Int. 2014;23(4):120-
³⁴ 620 35	125.
36 621	18)A WAO - ARIA - GA ² LEN consensus document on molecular-based allergy diagnosis
³⁷ 38 622	(PAMD@): Update 2020. World Allergy Organ J. 2020 Mar 7;13(2):100091. Steering
³⁹ 623 40	Committee Authors; Review Panel Members. Collaborators (48) World Allergy Organ J.
⁴¹ 624 ₄₂	2020;13(2):10009.
43 625	19)Pomes A, Davies JM, Gadermaier G, et al. WHO/IUIS allergen nomenclature: providing
⁴⁴ 45 626	a common language. Mol Immunol. 2018;100:3–13.
⁴⁶ 627 47	20)van Hage M, Hamsten C, Valenta R. ImmunoCAP assays: pros and cons in allergology.
48 628 49	J Allergy Clin Immunol. 2017;140: 974–977.
50 629	21)Garib V, Rigler E, Gastager F, et al. Determination of IgE and IgG reactivity to more
⁵¹ 52 630	than 170 allergen molecules in paper dried blood spots. J Allergy Clin Immunol.
⁵³ 631 ⁵⁴	2019;143:437-440.
55 632	22)Jakob T, Forstenlechner P, Matricardi P, Kleine-Tebbe J. Molecular allergy diagnostics
⁵⁶ 57 633	using multiplex assays:methodological and practical considerations for use inresearch
⁵⁸ 634 59	and clinical routine: Part 21 of the Series Molecular Allergology. Allergo J Int.
⁶⁰ 635	2015;24:320-332.

³ 636 23)van Hage M, Schmid-Grendelmeier P, Skevaki C, Plebani M, Canonica W, Kleine ⁵ 637 Tebbe J, Nystrand M, Jafari-Mamaghani M, Jakob T. Performance evaluation
 ⁶ 638 of ImmunoCAP® ISAC 112: a multi-site study. Clin Chem Lab Med. 2017 Mar
 ⁸ 639 1;55(4):571-577

- ¹⁰ 640
 ¹⁰ 640
 ¹¹ 24)Di Fraia M, Arasi S, Castelli S, et al. A new molecular multiplex IgE assay for the
 ¹¹ diagnosis of pollen allergy in Mediterranean countries: a validation study. Clin Exp
 ¹³ 642
 Allergy. 2019;49:341-349.
- ¹⁵ 643 25) Buzzulini F, Da Re M, Scala E, et al. Evaluation of a new multiplex IgE assay for
 ¹⁷ 644 allergy diagnosis. Clin Chim Acta. 2019;493:73-78.
- 26)Melioli G, Spenser C, Reggiardo G, Passalacqua G, Compalati E, Rogkakou A, Riccio
 AM, Di Leo E, Nettis E, Canonica GW. Allergenius, an expert system for the
 interpretation of allergen microarray results. World Allergy Organ J. 2014 Jun
 25;7(1):15.
- 27)Heffler E, Puggioni F, Peveri S, Montagni M, Canonica GW, Melioli G. Extended IgE
 profile based on an allergen macroarray: a novel tool for precision medicine in allergy
 diagnosis. World Allergy Organ J. 2018 Apr 26;11(1):7.
- 28)Mittermann I, Zidarn M, Silar M, Markovic-Housley Z, Aberer W, Korosec P, Kosnik M,
 Valenta R. Recombinant allergen-based IgE testing to distinguish bee and wasp
 allergy. J Allergy Clin Immunol. 2010 Jun;125(6):1300-1307.
- ³⁶ 655 29) Sastre J, Landivar ME, Ruiz-García M, Andregnette-Rosigno MV, Mahillo I.
 ³⁷ How molecular diagnosis can change allergen-specific immunotherapy prescription in a
 ³⁹ 657 complex pollen area. Allergy. 2012 May;67(5):709-11.
- 41 658 30)Moreno C, Justicia JL, Quiralte J, Moreno-Ancillo A, Iglesias-Cadarso A, Torrecillas M,
 43 659 Labarta N, García MA, Dávila I. Olive, grass or both? Molecular diagnosis for
 44 45 660 the allergen immunotherapy selection in polysensitized pollinic patients. Allergy. 2014
 46 661 Oct;69(10):1357-63.
- 48 662 31)Popescu FD. Molecular biomarkers for grass pollen immunotherapy. World J Methodol.
 2014 Mar 26;4(1):26-45.
- ⁵¹₅₂664 32) Vidal C, Enrique E, Gonzalo A, Moreno C, Tabar AI; Expert Clinical Participants.
 ⁵³₅₄665 Diagnosis and allergen immunotherapy treatment of polysensitised patients with
 ⁵⁵₅₄666 respiratory allergy in Spain: an Allergists' Consensus. Clin Transl Allergy. 2014 Nov
 ⁵⁶₅₇667 7;4:36.
- ⁵⁸₅₉668 33)Saltabayeva U, Garib V, Morenko M, Rosenson R, Ispayeva Z, Gatauova M, Zulus L,
 ⁶⁰669 Karaulov A, Gastager F, Valenta R. Greater Real-Life Diagnostic Efficacy

Page 29 of 68

1 2

³ 670	of Allergen Molecule Based Diagnosis for Prescription of Immunotherapy in an Area
4 5 671	with Multiple Pollen Exposure. Int Arch Allergy Immunol. 2017;173(2):93-98.
6 7 672	34) Del-Río Camacho G, Montes Arjona AM, Fernández-Cantalejo Padial J, Rodríguez
8 ₉ 673	Catalán J. How molecular diagnosis may modify immunotherapy prescription in multi-
¹⁰ 674	sensitized pollen-allergic children. Allergol Immunopathol (Madr). 2018 Nov -
11 12 675	Dec;46(6):552-556.
¹³ 14676	35)Savi E, Peveri S, Makri E, Pravettoni V, Incorvaia C. Comparing the ability of molecular
¹⁵ 677 16	diagnosis and CAP-inhibition in identifying the really causative venom in patients with
17 678	positive tests to Vespula and Polistes species. Clin Mol Allergy. 2016 Feb 8;14:3.
18 19 679	36) Martínez-Cañavate Burgos A, Torres-Borrego J, Molina Terán AB, Corzo JL, García
²⁰ 21 680	BE, Rodríguez Pacheco R, Moreno Aguilar C, Dávila I. Molecular sensitization patterns
²² 681 23	and influence of molecular diagnosis in immunotherapy prescription in children
24 682	sensitized to both grass and olive pollen. Pediatr Allergy Immunol. 2018 Jun;29(4):369-
²⁵ 26 683	374.
²⁷ 684 28	37)Peveri S, Pattini S, Costantino MT, Incorvaia C, Montagni M, Roncallo C, Villalta D,
29 685 30	Savi E. Molecular diagnostics improves diagnosis and treatment of respiratory allergy
31 686	and food allergy with economic optimization and cost saving. Allergol Immunopathol
³² 33687	(Madr). 2019 Jan - Feb;47(1):64-72.
³⁴ 688 35	38)Gupta M, Cox A, Nowak-Węgrzyn A, Wang J. Diagnosis of food allergy.
36 689 37	Immunol Allergy Clin North Am. 2018 Feb;38(1):39-52. Doi
₃₈ 690	39)Volpicella M, Leoni C, Dileo MCG, Ceci LR. Progress in the analysis of food allergens
³⁹ 40691	through molecular biology approaches. Cells. 2019 Sep 12;8(9).
⁴¹ 692 42	40)Wai CYY, Leung NYH, Leung PSC, Chu KH. Immunotherapy of Food Allergy: a
43 693	Comprehensive Review. Clin Rev Allergy Immunol. 2019 Aug;57(1):55-73.
⁴⁴ 45 694	41)Schröder H, Yman L. Standardization of the RAST inhibition assay. Allergy. 1980
⁴⁶ 695 47	Apr;35(3):234-6.
48 696 49	42)Quercia O, Cova V, Martini M, Cortellini G, Murzilli F, Bignardi D, Cilia M, Scarpa A,
50 697	Bilò MB. CAP-Inhibition, molecular diagnostics, and total IgE in the evaluation of
⁵¹ 52698	Polistes and Vespula double sensitization. Int Arch Allergy Immunol. 2018;177(4):365-
⁵³ 699 54	369.
55 700	43)Caruso B, Bonadonna P, Bovo C, Melloni N, Lombardo C, Senna G, Lippi G. Wasp
⁵⁶ 57 701	venom allergy screening with recombinant allergen testing. Diagnostic performance of
⁵⁸ 702 59	rPol d 5 and rVes v 5 for differentiating sensitization to Vespula and Polistes
60 703	subspecies. Clin Chim Acta. 2016 Jan 30;453:170-3.

- ³ 704 44)Hemmings O, Kwok M, McKendry R, Santos AF. Basophil activation test: old and new applications in allergy. Curr Allergy Asthma Rep. 2018 Nov 15;18(12):77.
- 45)Balzer L, Pennino D, Blank S, Seismann H, Darsow U, Schnedler M, McIntyre M, Ollert
 707 MW, Durham SR, Spillner E, Ring J, Cifuentes L. Basophil activation test using
 recombinant allergens: highly specific diagnostic method complementing routine tests
 in wasp venom allergy. PLoS One. 2014 Oct 17;9(10)
- ¹³/₁₄710 46)Korošec P, Šilar M, Eržen R, Čelesnik N, Bajrović N, Zidarn M, Košnik M. Clinical
 routine utility of basophil activation testing for diagnosis of hymenoptera-allergic
 patients with emphasis on individuals with negative venom-specific IgE antibodies. Int
 Arch Allergy Immunol. 2013;161(4):363.
- ²⁰₂₁714 47)Eržen R, Košnik M, Silar M, Korošec P. Basophil response and the induction of a tolerance in venom immunotherapy: a long-term sting challenge study. Allergy. 2012 Jun;67(6):822-30.
- 48)Schmid JM, Würtzen PA, Siddhuraj P, Jogdand P, Petersen CG, Dahl R, Erjefält JS,
 Hoffmann HJ. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy. 2020 Mar 7. [Epub ahead of print].
- 32 32 33 721 49)Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, ³⁴722 Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos 35 PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan 36723 37 ₃₈ 724 CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, ³⁹ 725 40 Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, ⁴¹ 726 Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, 42 Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson 43 727 44 45 45 728 HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, 46 729 Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, 47 48 730 Tantilipikorn P, Tversky JR, Veling MC, Wang Y, Westman M, Wickman M, Zacharek 49 M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int 50 731 ⁵¹ 52 732 Forum Allergy Rhinol. 2018;8(2):108-352
- ⁵³ 733 50)Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, Humbert M, Jones
 ⁵⁴ P, Gibson PG, Vestbo J, Beasley R, Pavord ID. Treatable traits: toward precision
 ⁵⁶ 735 medicine of chronic airway diseases. Eur Respir J. 2016 Feb;47(2):410-9
- 58

- 59
- 60

Page 31 of 68

1

Allergy

1	
2 3 736 4	51)Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts
5 737	in targeting chronic obstructive pulmonary disease pharmacotherapy: making
6 7 738	progress towards personalised management. Lancet. 2015;385(9979):1789-1798.
8 9 739	52)Tay TR, Hew M. Comorbid, "treatable traits" in difficult asthma: current evidence and
10 740	clinical evaluation. Allergy. 2017;101:130.
11 12 7 41	53)McDonald VM, Osadnik CR, Gibson PG. Treatable traits in acute exacerbations of
¹³ 14 742	chronic airway diseases. Chron Respir Dis. 2019;16:1479973119867954.
¹⁵ 743 16	54)Pavord ID, Agusti A. Blood eosinophil count: a biomarker of an important treatable trait
17 744	in patients with airway disease. Eur Respir J. 2016;47(5):1299-303.
18 19 7 45	55)Simpson AJ, Hekking PP, Shaw DE, Fleming LJ, Roberts G, Riley JH, Bates S, Sousa
²⁰ 746 21	AR, Bansal AT, Pandis I, Sun K, Bakke PS, Caruso M, Dahlén B, Dahlén SE, Horvath
²² 747 23	I, Krug N, Montuschi P, Sandstrom T, Singer F, Adcock IM, Wagers SS, Djukanovic
24 748	R, Chung KF, Sterk PJ, Fowler SJ; U-BIOPRED Study Group. Treatable traits in
²⁵ 26 749	the European U-BIOPRED adult asthma cohorts. Allergy. 2019 Feb;74(2):406-411.
²⁷ 750 28	56)Fingleton J, Hardy J, Beasley R. Treatable traits of chronic airways disease. Curr Opin
29 751 30	Pulm Med. 2018;24(1):24-31.
₃₁ 752	57)Bousquet J, Pfaar O, Togias A, Schünemann HJ, Ansotegui I, Papadopoulos NG,
³² 33753	Tsiligianni I, Agache I, Anto JM, Bachert C, Bedbrook A, Bergmann KC, Bosnic-
³⁴ 754 35	Anticevich S, Bosse I, Brozek J, Calderon MA, Canonica GW, Caraballo L, Cardona V,
36 755	Casale T, Cecchi L, Chu D, Costa E, Cruz AA, Czarlewski W, Durham SR, Du Toit G,
³⁷ 38 756	Dykewicz M, Ebisawa M, Fauquert JL, Fernandez-Rivas M, Fokkens WJ, Fonseca J,
³⁹ 757 40	Fontaine JF, Gerth van Wijk R, Haahtela T, Halken S, Hellings PW, Ierodiakonou D,
⁴¹ 758 42	linuma T, Ivancevich JC, Jacobsen L, Jutel M, Kaidashev I, Khaitov M, Kalayci O,
43 759	Kleine Tebbe J, Klimek L, Kowalski ML, Kuna P, Kvedariene V, La Grutta S, Larenas-
44 45 760	Linemann D, Lau S, Laune D, Le L, Lodrup Carlsen K, Lourenço O, Malling HJ, Marien
⁴⁶ 761 47	G, Menditto E, Mercier G, Mullol J, Muraro A, O'Hehir R, Okamoto Y, Pajno GB, Park
48 762 49	HS, Panzner P, Passalacqua G, Pham-Thi N, Roberts G, Pawankar R, Rolland C,
₅₀ 763	Rosario N, Ryan D, Samolinski B, Sanchez-Borges M, Scadding G, Shamji MH, Sheikh
⁵¹ 52764	A, Sturm GJ, Todo Bom A, Toppila-Salmi S, Valentin-Rostan M, Valiulis A, Valovirta E,
⁵³ 765 54	Ventura MT, Wahn U, Walker S, Wallace D, Waserman S, Yorgancioglu A, Zuberbier
55 766	T; ARIA Working Group. 2019 ARIA Care pathways for allergen immunotherapy.
⁵⁶ 57 767	Allergy. 2019;74(11):2087-2102.
⁵⁸ 768 ₅₉ 768	58)Mushra R. Science of omics: Perspectives and prospects for human health care. Integr
60 760	Mol. Mod. 2016: MM 1000258

⁶⁰769 Mol. Med. 2016;IMM.1000258.

- ³ 770 59)Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH.
 ⁵ 771 Omics for the future in asthma. Semin Immunopathol. 2020;42(1):111-126.
- ⁶₇ 772 60)Devillier P, Salvator H, Naline E, Couderc LJ, Gtassin-Delyle S. Metabolomics in the diagnosis and pharmacotherapeutic management of respiratory diseases. Curr Pharm
 ¹⁰ 774 Des. 2917;23(14):2050-2059.
- ¹¹ ¹²775 61)Park CS, Rhim T. Application of proteomics in asthma research. Expert Rev ¹³/₁₄776 Proteomics. 2011;8(2):221-30
- ¹⁵ 777 62)Martin-Sanchez F, Bellazzi R, Casella V, Dixon W, Lopez-Campos G, Peek N.
 ¹⁷ 778 Progress in Characterizing the Human Exposome: a Key Step for Precision Medicine.
 ¹⁸ 19 779 Yearb Med Inform. 2020 [Epub ahead of print]
- ²⁰ 21 780
 ²⁰ 21 780
 ²⁰ 21 780
 ²⁰ 21 781
 ²² 781
 ²³ of omics technologies in the clinical management of asthma and allergic diseases. Ann
 ²⁴ 782
 ²⁴ Allergy Asthma Immunol. 2019;123(6):550-557.
- ²⁵₂₆783 64)FitzGerald JM, Poureslami I. The need for humanomics in the era of genomics and the
 ²⁷₂₈784 challenge of chronic disease management. Chest. 2014 Jul;146(1):10-12.
- ²⁹ 785 65)Canonica GW, Bagnasco D, Ferrantino G, Ferrando M, Passalacqua G. Update on
 ³⁰ immunotherapy for the treatment of asthma. Curr Opin Pulm Med. 2016;22(1):18-2
- ³²₃₃787
 ³²₃₃787
 ³⁴788
 ³⁴788 grass allergen tablet: a randomized controlled trial in seasonal allergic
 ³⁶789
 rhinoconjunctivitis. J. Allergy Clin. Immunol. 2006;117:802-809.
- ³⁷₃₈790
 ³⁷₃₈790
 ³⁹₄₀791
 ³⁹₄₀791
 ⁴¹792
 ⁴¹792
 ⁴¹Regy Clin. Immunol. 2007; 120:1338-1345.
- 43 793 68)Wahn U, Tabar A, Kuna P, et al. SLIT Study Group. Efficacy and safety of 5-grass
 44 45 794 pollen sublingual immunotherapy tablets in pediatric allergic rhinoconjunctivitis. J.
 46 795 Allergy Clin. Immunol. 2009;123:160-166.
- ⁴⁸ 796 69)Mosbech H, Deckelmann R, de Blay F, et al. Standardized quality (SQ) house dust
 ⁴⁹ mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while
 ⁵¹ 798 maintaining asthma control: a randomized, double-blind, placebo-controlled trial. J
 ⁵³ 799 Allergy Clin Immunol. 2014;134(3):568-75.
- ⁵⁵ 800 70)Bergmann KC, Demoly P, Worm M, et al. Efficacy and safety of sublingual tablets of house dust mite allergen extracts in adults with allergic rhinitis. J Allergy Clin Immunol 2014;133(6):1608-14.
- 60

Page 33 of 68

1

2	
³ 803 4	71)Batard T, Hrabina A, Bi XZ, Chabre H, Lemoine P, Couret MN, Faccenda D, Villet
5 804	B, Harzic P, André F, Goh SY, André C, Chew FT, Moingeon P. Production and
6 7 805	proteomic characterization of pharmaceutical-grade Dermatophagoides pteronyssinus
8 9 806	and Dermatophagoides farinae extracts for allergy vaccines. Int Arch Allergy
10 807	Immunol. 2006;140(4):295-305)
11 12 808	72)Bordas-Le Floch V, Le Mignon M, Bussières L, Jain K, Martelet A, Baron-Bodo V, Nony
¹³ 14809	E, Mascarell L, Moingeon P. A combined transcriptome and proteome analysis extends
¹⁵ 810	the allergome of house dust mite Dermatophagoides species. PLoS One. 2017 Oct
16 17 811	5;12(10):e0185830
18 19 812	73)Herland K, Akselsen JP, Skjønsberg OH, Bjermer LHow representative are clinical
²⁰ 21813	study patients with asthma or COPD for a larger "real life" population of patients with
²² 814	obstructive lung disease? Respir Med. 2005;99(1):11-9.
23 24 815	74)Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, Morgan
²⁵ 26 816	RL, Gartlehner G, Kunz R, Katikireddi SV, Sterne J, Higgins JP, Guyatt
²⁷ 817 28	G; GRADE Working Group_GRADE guidelines: 18. How ROBINS-I and other tools to
29 818	assess risk of bias in nonrandomized studies should be used to rate the certainty of a
30 31 819	body of evidence. J Clin Epidemiol. 2019 Jul;111:105-114.
³² 33820	75)Roche N, Anzueto A, Bosnic Anticevich S, Kaplan A, Miravitlles M, Ryan D, Soriano JB,
³⁴ 821	Usmani O, Papadopoulos NG, Canonica GW; Respiratory Effectiveness Group
35 36 822	Collaborators. The importance of real-life research in respiratory medicine: manifesto of
³⁷ 38 823	the Respiratory Effectiveness Group: Endorsed by the International Primary Care
³⁹ 40824	Respiratory Group and the World Allergy Organization. Eur Respir J. 2019 19;54(3)
⁴¹ 825	76)Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, LaVange
42 43 82 6	L, Marinac-Dabic D, Marks PW, Robb MA, Shuren J, Temple R, Woodcock J, Yue
⁴⁴ 45 827	LQ, Califf RM . Real-World Evidence - What Is It and What Can It Tell Us? N Engl J
⁴⁶ 828 47	Med. 2016;375(23):2293-2297
47 48 82 9	77)Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefit of allergen

- ⁴⁸ 829 77)Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefit of allergen immunotherapy for birch pollen-associated allergic rhinitis and asthma. Allergy. 2018;
 ⁵¹ 52 831 74(3):594-604.
- ⁵³ 832 78)Zielen S, Devillier P, Heinrich J, Richter H, Wahn U. Sublingual immunotherapy
 provides long-term relief in allergic rhinitis and reduces the risk of asthma: a
 retrospective, real-world database analysis. Allergy. 2018;165-177.
- ⁵⁸ 835 59
- 60

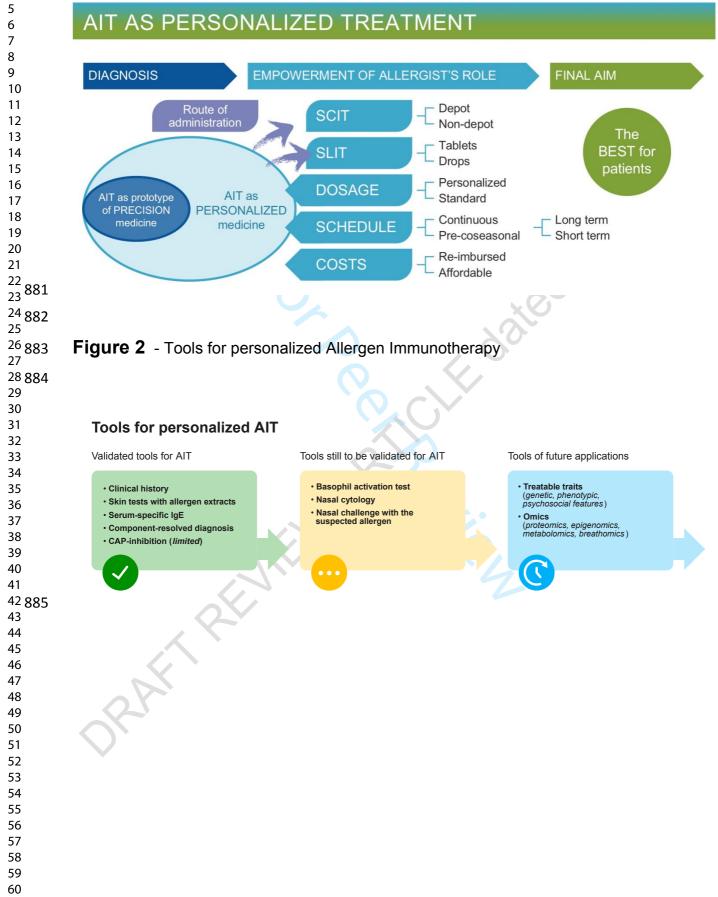
- 3 79)Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S, Spreafico 836 4 R, Hafler DA, McKinney EF. From Big Data to Precision Medicine. Front Med 837 5 6 838 (Lausanne). 2019;6:34. 2019. 7 8 839 9 -10⁸⁴⁰ 80)Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010: 22; ¹¹ 841 363(4):301-4. 12
 - 843 81)Calderon M, Demoly P, Gert van Wijk R, Bousquez J, Sheikh A, Frew A, Scadding G,
 Bachert c, et al. EAACI: a European declaration on immunotherapy. Designing the
 future of allergen specific immunotherapy. Clin Transl Allergy 2012 30;2(1):20.
 - ²¹ 847 82)Passalacqua G, Canonica GW. AIT (allergen immunotherapy): a model for the
 ²² 23 848 "precision medicine". Clin Mol Allergy. 2015: 8;13:24
 - ²⁶ 850 83)Bachert C, Larché M, Bonini S, Canonica GW, Kündig T, Larenas-Linnemann D, Ledford D, Neffen H, Pawankar R, Passalacqua G. Allergen immunotherapy on the way to product-based evaluation-a WAO statement. World Allergy Organ J. 2015;8(1):29.
 - ³⁴
 ³⁵
 84)Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klysner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Zieglmayer P, Zuberbier T, Wahn U; FASIT group.
 Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73 Suppl 104:5-23.
 - ⁴³/₄₄ 860
 ⁴³/₄₅ 861
 ⁴⁶/₄₅ 861
 ⁴⁶/₄₇ 862
 ⁴⁶/₄₇ 862
 ⁴⁶/₄₇ 863
 ⁴⁶/₄₇ 863
 ⁴⁸/₄₇ 863
 ⁴⁸/₄₇ 863
 ⁴⁹/₄₉ of immunotherapy can be categorised by level of benefit -the centenary
 ⁴⁹/₅₀ 864
 ⁵¹/₅₂ 865
 ⁵¹/₅₂ 865
 - ⁵⁴ 867 86)Cox LS, Murphey A, Hankin C.The Cost effectiveness of allergen
 ⁵⁶ 868 immunotherapy compared with pharmacotherapy for treatment of allergic rhinitis and
 ⁵⁷ asthma. Immunol Allergy Clin North Am. 2020;40(1):69-85.
 - ⁵⁹ 60 870

⁵³866

1 2

13842

20846


²⁴ 25 849

2 3 871 5 872 6 873 8 874	87)Krishna MT, Knibb RC, Huissoon AP. Is there a role for telemedicine in adult allergy services?.Clin Exp Allergy. 2016;46(5):668-77.
¹⁰ 875	88) Gómez RM, Ansotegui I, Canonica GW. Will precision medicine be available for all
11 12 876	patients in the near future? Curr Opin Allergy Clin Immunol. 2019;19(1):75-80.
13 14 877	
¹⁵ 878	
16 ¹⁷ 879	
18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59	
60	

4

Figure 1 - Allergen Immunotherapy as personalized treatment

1		
2 3	4	Derecalized Medicine for ellergy treatments ellergen immunethereny
4 5	1	Personalized Medicine for allergy treatment: allergen immunotherapy
6	2	still a unique and unmatched model.
7 8	3	
9 10	4	Incorvaia Cristoforo ¹ , Al-Ahmad Mona ^{2,3} , Ansotegui Ignacio ⁴ , Arasi Stefania ⁵ , Bachert
11	5	Claus ^{6,7} , Bos Catherine ⁸ , Bousquet Jean ⁹ , Bozek Andrzéj ¹⁰ , Caimmi Davide ¹¹ , Calderón
12 13	6	Moises ¹² , Casale Thomas ¹³ , Custovic Adnan ¹⁴ , De Blay Frédéric ¹⁵ , Demoly Pascal ^{11,16} ,
14 15	7	Devillier Philippe ¹⁷ , Didier Alain ¹⁸ , Fiocchi Alessandro ⁵ , Fox Adam ¹⁹ , Gevaert Philippe ⁶ ,
16	8	Gomez Maximiliano ²⁰ , Heffler Enrico ^{21,22} , Ilina Natalia ²³ ,Irani Carla ²⁴ , Jutel Marek ²⁵ ,
17 18	9	Karagiannis Efstrathios ⁸ , Klimek Ludger ²⁶ , Kuna Piotr ²⁷ , O'Hehir Robin ²⁸ , Kurbacheva
19 20	10	Oxana ²⁹ , Matricardi Paolo Maria ³⁰ , Morais de Almeida Mario ^{31,32} , Mosges Ralph ^{33,34} ,
21 22	11	Novak Natalija ³⁵ ,Okamoto Yoshitaka ³⁶ , Panzner Petr ³⁷ , Papadopoulos Nikolaos ^{38,39} , Park
23	12	Hae-Sim ⁴⁰ , Passalacqua Giovanni ⁴¹ , Pawankar Ruby ⁴² , Pfaar Oliver ⁴³ , Schmid-
24 25	13	Grendelmeier Peter ⁴⁴ , Scurati Silvia ⁸ , Tortajada-Girbés Miguel ^{45,46} , Vidal Carmen ⁴⁷ ,
26 27	14	Virchow Christian ⁴⁸ , Wahn Ulrich ³⁰ , Worm Margitta ³⁰ , Zieglmayer Petra ⁴⁹ , Canonica
28	15	Giorgio Walter ^{21,22.}
29 30	16	
31 32	17	Affiliations
33 34	18	1. Cardiac/Pulmonary Rehabilitation, ASST Pini/CTO, Milan, Italy
35	19	2. Microbiology Department, Faculty of Medicine, Kuwait University, Kuwait
36 37	20	3. Drug Allergy Unit, Department of Allergy, Al-Rashed Allergy Center, Kuwait
38 39	21	4. Hospital Quirónsalud Bizkaia, Bilbao, Spain
40	22	5. Department of Allergy, Bambino Gesu' Childrens' Hospital IRCCS, Rome, Italy
41 42	23	6. Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent,
43 44	24	Belgium.
45 46	25	7. Karolinska Institutet, Stockholm; Department of ENT Diseases, Karolinska University
47	26	Hospital, Stockholm.
48 49	27	8. Stallergenes Greer Medical Affairs Department, Antony, France
50 51	28	9. University Hospital Montpellier, France - MACVIA-France, Montpellier, France
52	29	10. Clinical Department of Internal Disease, Dermatology and Allergology, Medical
53 54	30	University of Silesia, Katowice , Poland
55 56	31	11. Department of Pulmonology and Addictology, Arnaud de Villeneuve Hospital,
57	32	Montpellier University, Montpellier, France
58	22	10 Imperial Callege London - National Llaget and Lung Institute - David Promoton Llagettal

12. Imperial College London - National Heart and Lung Institute, Royal Brompton Hospital 59 33 60 NHS, London, United-Kingdom 34

1 2		
3	35	13. Division of Allergy/Immunology, University of South Florida, Tampa, FL United-States
4 5	36	14. Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair,
6 7	37	University of Manchester and University Hospital of South Manchester, Manchester,
8 9	38	United-Kingdom
10	39	15. Allergy Division, Chest Diseases Department, Strasbourg University Hospital,
11 12	40	Strasbourg, France
13 14	41	16. Sorbonne Université, UMR-S 1136 INSERM, IPLESP, EPAR Team, Paris, France
15 16	42	17. Laboratoire de Recherche en Pharmacologie Respiratoire, Pôle des Maladies des
17	43	Voies Respiratoires, Hôpital Foch, Université Paris-Saclay, Suresnes, France
18 19	44	18. Respiratory Disease Dept, Larrey Hospital, University Hospital of Toulouse, Paul
20 21	45	Sabatier University, Toulouse, France
22 23	46	19. Department of Paediatric Allergy, Guy's & St Thomas' Hospitals NHS Foundation Trust,
24	47	London, United Kingdom
25 26	48	20. Allergy & Asthma Unit, Hospital San Bernardo Salta, Salta, Argentina
27 28	49	21. Personalized Medicine, Asthma & Allergy - Humanitas Clinical and Research Center
29	50	IRCCS, Rozzano (MI), Italy
30 31 32 33	51	22. Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy.
	52	23. Federal Institute of Immunology of Russia, Russia
34 35	53	24. Department of Internal Medicine and Clinical Immunology, Hotel Dieu de France
36	54	hospital. Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
37 38	55	25. Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.
39 40	56	26. Center for Rhinology and Allergology, Wiesbaden, Germany
41 42	57	27. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical
43	58	University of Lodz, Lodz, Poland
44 45	59	28. Alfred Hospital and Monash University, Melbourne, Australia
46 47	60	29. National Research Center - Institute of Immunology Federal Medical-Biological Agency
48 49	61	of Russia, Moscow, Russia
50	62	30. Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine,
51 52	63	Charité - University Medicine Berlin, Berlin, Germany
53 54	64	31. Immunoallergy Department of CUF-Descobertas Hospital, Lisbon Portugal
55	65	32.CUF-Infante Santo Hospital, Lisbon, Portugal
56 57	66	33. Faculty of Medicine, Institute of Medical Statistics and Computational Biology,
58 59	67	University of Cologne, Cologne, Germany
60	68	34. CRI - Clinical Research International Ltd., Cologne, Germany

Page 39 of 68

1 2		
3	69	35. Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
4 5	70	36. Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan.
6 7	71	37. Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles
8 9	72	University in Prague, Pilsen, Czech Republic
10	73	38. Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's
11 12	74	Hospital, University of Manchester, Manchester, United-Kingdom
13 14	75	39. Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A
15 16 17 18 19 20 21 22 23	76	Kyriakou", University of Athens, Athens, Greece
	77	40. Department of Allergy and Clinical Immunology, Ajou University School of Medicine,
	78	Suwon, South Korea
	79	41. Allergy and Respiratory Diseases, Ospedale Policlino San Martino -University of
	80	Genoa, Genoa, Italy.
24	81	42. Department of Pediatrics, Nippon Medical School, Tokyo, Japan
25 26	82	43. Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and
27 28	83	Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
29 30	84	44. Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
30 31 32 33 34 35 36	85	45. Pediatric Pulmonology and Allergy Unit, Department of Pediatrics, Dr. Peset University
	86	Hospital, Valencia, Spain,
	87	46. Department of Pediatrics, Obstetrics and Gynecology. University of Valencia, Valencia,
	88	Spain., IVI Foundation, Valencia, Spain
	89	47. Allergy Service, Complejo Hospitalario Universitario de Santiago, Santiago de
39 40	90	Compostela
41 42	91	48. Department of Pneumology/Intensive Care Medicine, University of Rostock, Germany
43	92	49. Vienna Challenge Chamber, Vienna, Austria
44 45	93	
46 47	94	Corresponding author
48 49	05	Enrice Hoffler, Derecabilized Medicine, Acthms and Allergy, Humanitas University and
50	95 06	Enrico Heffler, Personalized Medicine, Asthma and Allergy, Humanitas University and
51 52	96 07	Research, Hospital ICH, Via Alessandro Manzoni 56, Rozzano, Milan 20089, Italy,
53 54	97	heffler.enrico@gmail.com
55 56	98	
57		
58 59		
60		

99 Abstract

1 2 3

4

The introduction of personalized medicine (PM) has been a milestone in the history of 100 5 6 101 medical therapy, because it has revolutionized the previous approach of treating the 7 8 102 disease with that of treating the patient. It is known today that diseases can occur in 9 10 103 different genetic variants, making specific treatments of proven efficacy necessary for a 11 given endotype. Allergic diseases are particularly suitable for PM, because they meet the 12 104 13 14 105 therapeutic success requirements, including a known molecular mechanism of the ¹⁵ 106 disease, a diagnostic tool for such disease, and a treatment blocking the mechanism. The 16 17 107 stakes of PM in allergic patients are molecular diagnostics, to detect specific IgE to single 18 allergen molecules and to distinguish the causative molecules from those merely cross-₁₉ 108 ²⁰ reactive, pursuit of patient's treatable traits addressing genetic, phenotypic and 21 ²² 110 psychosocial features, and omics, such as proteomics, epi-genomics, metabolomics and 23 breathomics, to forecast patient's responsiveness to therapies, to detect biomarker and 24 111 25 26⁻³112 mediators, and verify the disease control. This new approach has already improved the ²⁷ 113 precision of allergy diagnosis and is likely to significantly increase, through the higher 29 1 1 4 performance achieved with the personalized treatment, the effectiveness of allergen 30 immunotherapy by enhancing its already known and unique characteristics of treatment 31 115 32 33²116 that acts on the causes.

Key words: allergen immunotherapy, personalized medicine, molecular diagnosis,

Short title: Allergen immunotherapy: a model of personalized medicine.

37

treatable traits, omics.

4

124 Introduction

In its millennial history, medicine has had the primary aim of treating diseases. The 125 5 6 development in the 1800s of pharmaceutical therapy with synthetic drugs was a 126 7 8 breakthrough¹, but the concept that a given drug was suitable for treating a given disease. 127 9 10 128 regardless of the characteristics of the individual patient, have survived for a long time. 11 The conceptual framework of genotypes, endotypes and phenotypes² has provided crucial 12 129 13 13 14 130 tools to understand that the characteristics of the individual also affect the response to ¹⁵ 131 drugs and paved the way to the new era of personalized (otherwise defined precision) 16 17 132 medicine. The new approach was first applied on oncology, concerning both diagnosis and 18 treatment³, but soon, with a significant boost from President Obama's announcement on 19 133 ²⁰ 134 the great potential of personalized medicine⁴, many other fields of medicine gained its ²² 135 benefits. As far as allergic and immune-mediated diseases are concerned, the introduction 23 of biologics to treat severe asthma provided a significant advance in personalized 24 1 3 6 25 treatment, through their ability to work on asthma according on molecular phenotypes ²⁷ 138 28 defined as high type 2 immunity asthma and low type 2 immunity asthma⁵. However, 29 139 allergen immunotherapy (AIT), a treatment for respiratory allergy first proposed in 1911 30 31 140 which in its long road has gone from empiricism to full scientific evidence⁶ can actually be 32 33 141 32 proposed as "a medical model aiming to deliver customized healthcare, with medical ³⁴ 142 decisions, practices, and/or products tailored to the individual patient"⁷. The primary 35 therapeutic goal of AIT include reducing the frequency and intensity of symptoms, the use 36 1 4 3 37 ₃₈ 144 of rescue medications, and improving the allergy-related quality of life. There is very strong ³⁹ 145 40 evidence to show that AIT achieves these goals in patients with allergic rhinitis⁸. ⁴¹ 146 Furthermore, in mite-induced asthma AIT is likely to enable a successful step-down in the 42 inhaled corticosteroid dose in patients graded as step 3 or 4 of GINA scale⁹. Here we will 43 147 44 45¹⁴⁸ analyze the factors underlying the characteristics of AIT as an optimal model for ⁴⁶ personalized medicine. 47

⁴⁸150 **The birth of AIT and its embryonic properties as a personalized treatment.**

49 50 151 As hinted above, AIT was introduced more than one hundred years ago, when the ⁵¹ 52 152 knowledge on allergic disease was very limited⁶. Still, the different role of AIT compared ⁵³ 153 with the drug therapy available at the time was apparent, because drugs were aimed at 54 treating the symptoms of allergic rhinitis, while AIT was aimed at treating the specific 55 154 56 ₅₇ 155 allergy of single patients, thus introducing a concept now acknowledged as personalized ⁵⁸ 156 59 medicine. The first studies addressed "hay fever" induced by grass pollen. It is obvious 60 157 that the quality of the products in that time, which consisted of extracts obtained from the

3 allergenic source directly from the doctor, was hugely lower than the allergen extracts 158 4 used today, but the positive results obtained paved the way to an evolution finally resulting 159 5 6 in high quality products. Another definition that underlines how the AIT was yet, but 160 7 8 improperly, proposed as personalized for the patient is "Named Patient Product" (NPP), 161 9 10 162 i.e. specifically prepared for a given patient according to the results of allergy testing. 11 Nevertheless, NPPs were not a guarantee of clinical efficacy, because alongside products 12 163 13 13 14 164 with evidence of efficacy proven by placebo-controlled trials, others without such evidence ¹⁵ 165 were equally admitted to the prescription. Moreover, extracts containing several allergens, 16 namely all the allergens giving positive results to allergy testing, were frequently used, 17 166 18 especially in the U.S.A, but they were found to be ineffective in a pivotal double-blind, ₁₉ 167 ²⁰ 21 168 placebo-controlled trial in 1997¹⁰. Nowadays, registered products, whose effectiveness ²² 169 has been plainly demonstrated by controlled trials on large patient populations, are 23 considered ideal for AIT¹¹. However, good guality NPPs with demonstration of efficacy by 24 170 25 26⁻³171 placebo-controlled trials, are still available to treat respiratory allergy with expectancy of ²⁷ 172 28 clinical success¹².

29 1 7 3 Modern AIT as a prototype of personalized medicine. 30

31 174 The traditional diagnosis by skin tests relay on extracts, whose composition in minor and 32 32 33 175 major allergens can play a crucial role in defining sensitizations, as in the AIT products for ³⁴ 176 inducing clinical efficacy. Another critical factor is the extract potency, concerning both skin 35 testing and AIT. As to the latter, Larenas-Linneman et al. found a substantial variability in 36 177 37 ₃₈ 178 allergen extract potency as measured and reported worldwide^{13,14}. In particular, in Europe ³⁹ 179 40 the potency of extracts for sublingual immunotherapy (SLIT) is based on comparison with ⁴¹ 180 in-house references, making it difficult to translate the dose to US extracts¹³. Moreover, 42 comparing SLIT maintenance solutions of grass pollen and Dermatophagoides 43 181 44 45¹⁸² pteronyssinus from 4 leading European manufacturers to standardized concentrate 46 47 183 extracts of 3 US manufacturers measure in bioequivalent allergen units (BAU), the relative ⁴⁸ 184 potency was around 10 times higher for US standardized extracts (to be diluted for SLIT) 49 than for European SLIT maintenance dosage. The authors argued that, based on the 50 185 ⁵¹ 52 186 efficacy demonstrations from controlled trials, SLIT efficacy is likely to depend on ⁵³ 187 additional factors apart from the extract dose¹⁴. Today, the pillars of AIT as a personalized 54 therapy are represented by molecular diagnostics for achieving the highest possible 55 188 56 ₅₇ 189 precision, by the use of treatable traits, and by "omics".

⁵⁸ 190

- 60 191

Page 43 of 68

1 2 3

4

Allergy

192 1) Molecular diagnostics and other in vitro tests

The diagnosis of allergy has been long based on skin prick test (SPT) with allergen 193 5 6 extracts and in vitro test measuring specific IgE antibodies to the suspected allergens, but 194 7 8 with both techniques the positive results indicated sensitization but not necessarily clinical 195 9 10 196 allergy. A great advance in diagnostic precision was achieved by molecular diagnosis, 11 which allows to detect specific IgEs (sIgEs) to each single molecule, distinguishing those 12 197 13 .5 14 198 really causative (genuine) from those simply cross-reactive. Such diagnostic approach was ¹⁵ 199 variously named, including "Component resolved diagnosis"¹⁵, molecular-based allergy 16 diagnostics¹⁶, and molecular allergy diagnostics¹⁷. The updated WAO-ARIA- GA²LEN 17 200 18 19 201 consensus document on molecular-based allergy proposed the unifying definition of ²⁰ 202 "precision allergy molecular diagnostic applications" (PAMD@)¹⁸. This allergy diagnostics 22 203 approach is aimed at mapping the allergen sensitization of a patient at a molecular level, 23 24 204 using purified natural or recombinant allergenic molecules instead of allergen extracts. 25 205 205 Each allergen molecule is identified, classified according to the family to which it belongs, ²⁷ 206 and scientifically named according to the species to which it belongs. For example, the 29 207 major allergen from cockroach is a lipocalin named Bla g 4 (after Blatella germanica¹⁹. 30 31 208 Since its introduction, PAMD@ has been gradually used as a laboratory tool, and ^{3∠} 33 209 32 presently more than 130 allergenic molecules commercially are accessible for in vitro ³⁴ 210 slgE) testing²⁰. Two platform to perform PAMD@ are available, which include a singleplex 35 (i.e. a single assay per sample) or a multiplex (i.e. multiple assays per sample) 36 211 37 ₃₈ 212 measurement. With the former, the allergenic molecules thought to be responsible are ³⁹ 213 selected by the physician²¹, while with the multiplex technique a large array of preselected ⁴¹ 214 allergens are tested. The commercially offered multiplex allergen arrays include the 42 Immuno-CAP Immuno-solid-phase Allergen Chip (ISAC) from Thermo Fisher, containing 43 215 44 44 45 216 103 molecules from 51 allergen sources²², and the new ImmunoCAP ISAC 112i, including ⁴⁶ 217 112 components from 48 allergen sources, where some molecules from Hymenoptera 47 ⁴⁸ 218 venom and from walnut and plain tree have been eliminated, while others from cashew, 49 50 219 hazelnut, dog, dust mites, and alpha-gal were added²³. The EUROLINE Southern 51 5₂ 220 European Pollen Profile [ESEP) was introduced to test pollen molecules of clinical ⁵³ 221 54 relevance in Southern Europe²⁴, while the Microarray Diagnostics (MADx) Allergen ⁵⁵ 222 Explorer (ALEX) include 126 molecules from different allergen sources²⁵. It is apparent 56 57 223 that in order to properly interpret positive results for a high number of molecules, a 58 great experience of the examining physician is necessary. To facilitate the matter, 59 **22**4 ⁶⁰ 225 expert systems were developed to support the data analysis by dedicated decision-making

3 information systems. For instance, the expert system named Allergenius ® is based on the 226 4 ImmunoCAP ISAC implemented with an advanced knowledge specification language 227 5 6 using more than 700 different rules to mimic the experts' opinions on a complex ISAC 228 7 8 result²⁶. In a study comparing sera from patients assayed with ImmunoCAP ISAC and 229 9 10 2 3 0 ALEX a good correlation between the results from the two methods was found²⁷.

1 2

11

By focusing on applications for personalized medicine, numerous studies have assessed 12 231 13 14³232 the benefits of attaining with PAMD@ a more appropriate prescription for AIT. Table 1 ¹⁵ 233 summarizes the observations from these studies ²⁸⁻³⁷. A vast literature is available, as 16 recently reviewed³⁸⁻³⁹, also for the advantages of PAMD@ in the diagnosis of food allergy 17 234 18 ₁₉ 235 compared to the conventional diagnosis, but this will not be treated here since the purpose ²⁰ 236 of our analysis is to examine the progress achieved by PAMD@ in the appropriate 22 237 prescription of AIT. In fact, despite the numerous controlled AIT trials for food allergy⁴⁰, 23 this therapy has not yet been approved. 24 2 38

25 25 26 239 As far as the identification of the really causative allergen in polysensitized patients is ²⁷ 240 concerned, the first in vitro test was the RAST inhibition⁴¹, which then evolved into CAP 29 241 inhibition assay. The latter has been shown to be comparable to PAMD@ in the ability to 30 31 **242** identify the causative allergen^{35,42} and to have a lower cost ⁴³ in patients with multiple ³² 33 243 sensitization to Hymenoptera venom, in which a limited number of allergenic molecules ³⁴ 244 are responsible, while such outcomes was not reported for multi-sensitization to 35 respiratory allergens, involving a much higher number of molecules. 36 2 4 5

37 ₃₈246 The basophil activation test (BAT), which measures basophil degranulation by flow ³⁹ 247 40 cytometry, has the unique characteristic to detect in vitro the reactivity of basophils to ⁴¹ 248 allergens. Since these cells play a crucial role in allergic reactions, their in vitro detection 42 has a similar meaning to the in vivo provocation test with specific allergens, without 43 249 44 44 45 250 however the limit of false positive results from non-specific reactions, which represented a ⁴⁶ 251 limit of in vivo tests. BAT was found to be very useful in the personalized diagnosis of 47 ⁴⁸ 252 patients with allergic conditions including respiratory, food and Hymenoptera venom 49 50 253 allergy who show multiple allergen reactivity, distinguishing the allergens as causative or ⁵¹ 52 **2**54 not based on the response of the basophils⁴⁴. As mentioned above, our review is focused ⁵³ 255 on the effects of personalized diagnosis on the outcomes of AIT. As for CAP inhibition, the 54 concerned Hymenoptera venom allergy, demonstrating that BAT 55 256 first studies 56 ₅₇ 257 accomplished with the recombinant allergens from Vespula spp Ves v 1, Ves v 2, Ves v 3 ⁵⁸ 258 59 and Ves v 5 achieved a clear improvement in the specificity of diagnosis in patients with 60 2 5 9 anaphylactic reactions to wasp stings over IgE detection by Enzyme-Linked

Page 45 of 68

1 2

Allergy

ImmunoSorbent Test (ELISA) or ImmunoCAP⁴⁵ and that in patients with severe reactions 3 260 4 to stings, some of them with negative response to slgE test and intradermal tests, BAT 5 261 6 was positive in 81% of patients compared with to a rate 57% with intradermal testing, 262 7 8 14% with IgE test, 19% of patients being negative to either test except BAT⁴⁶. A study 263 9 ¹⁰ 264 analyzed the correlation between the BAT changes during venom immunotherapy and 11 ¹² 265 the treatment outcome. BAT was unchanged after one year, but in subsequent years a 13 fourfold reduction was detected in all patients who developed tolerance to stings, while 14266 15 ₁₆ 267 no change in BAT occurred in patients with a persistently positive sting challenge⁴⁷. 17 18 268 Such important outcome was found also in patients treated with subcutaneous ¹⁹ 269 immunotherapy (SCIT) for grass pollen allergy. In fact, basophil sensitivity showed a 20 21 270 447-fold decrease in the first year of treatment, remaining 100-fold lower than baseline 22 in the 3 year-treatment period and 10-fold lower in the follow-up year. Notably, a 23 271 24 basophil sensitivity after three weeks of SCIT predicted long-₂₅ 272 decline in ²⁶ 27 **27**3 term improvement in symptom and medication scores during the three years of ²⁸ 274 treatment⁴⁸. Further studies are needed to clarify the role of BAT as a biomarker or a 29 30 275 predictive marker of AIT efficacy. 31

³³₃₄277 **2** *In vivo* tests

32 **27**6

⁴⁷ 285

³⁵ 278 Theoretically, inducing allergic symptoms by a challenge with the suspected allergen in the 36 37 279 target organs can be a valuable in vivo test. However, as stated in the International 38 Consensus Statement on allergic rhinitis, the contrasting findings from different studies 39 280 40 41 281 and the absence thus far of a standardized technique limit the diagnostic utility of nasal ⁴² 282 challenge, a pivotal role being currently acknowledged only in diagnosis of occupational 43 44 283 rhinitis and local allergic rhinitis⁴⁹. If future studies will achieve standardization of the 45 ₄₆ 284 method, the nasal challenge could be used, alike BAT, as a test toward precision medicine.

49 286 **3.Treatable traits** 50

The term "Treatable traits" was suggested by Agusti and coworkers to indicate a precision medicine methodology of diagnosis and treatment of chronic disorders of the airways based on finding genetic, phenotypic and psychosocial features which are associated with therapies able to improve respiratory health⁵⁰. The field of application considered as most appropriate for the use of treatable traits is represented by chronic respiratory diseases and in particular by asthma and chronic obstructive pulmonary disease (COPD), which share various clinical aspects but whose drug therapy has significantly differentiated in

1 2

3 recent years⁵¹. For example, using treatable traits in a patient with COPD but symptoms 294 4 compatible also with asthma and positivity of tests for respiratory allergy due to 295 5 6 asymptomatic sensitization would prevent the incorrect prescription of AIT. The role of 296 7 8 treatable traits in the management of chronic respiratory diseases has been outlined by 297 9 10 298 some important studies. The first investigated the role of extra-pulmonary comorbidities as 11 treatable traits in patients with difficult-to-control asthma. The proposed comorbidities were 12 299 13 13 14 300 allergic and nonallergic rhinitis, chronic rhinosinusitis, vocal cord dysfunction, dysfunctional ¹⁵ 301 breathing, gastroesophageal reflux, obesity, obstructive sleep apnoea, and anxiety/ 16 17 302 depression, of which the prevalence, impact and outcome of treatment were assessed, 18 ₁₉ 303 also appraising the associations of single comorbidities and the potential of comorbidity ²⁰ 304 clusters on asthma control. The authors concluded that extra-pulmonary comorbidities are 22 305 important treatable traits be evaluated in all asthmatic patients and especially in those with 23 24 306 difficult asthma. Such comorbidities may have a significant influence on asthma control, ²⁵ 26 307 thus their presence deserves treatment regardless of original asthma status and asthma ²⁷ 308 28 control⁵². The number of treatable traits involved in acute exacerbation differed according 29 309 to the respiratory disease, with a major role for C reacting protein in COPD, eosinophils 30 31 310 count and fractioned exhaled nitric oxide (FeNO) measurement in asthma, and bacterial ³² 33 311 infections for bronchiectasis⁵³.

³⁴ 312 An important observation obtained through the review of the literature by Pavord and 35 Agusti concerned the identification of eosinophilic airway inflammation, as assessed by the 36 3 1 3 37 ₃₈ 314 blood eosinophil count, as a treatable trait of particular importance in patients with airway ³⁹ 315 40 disease (including asthma and COPD, being significantly associated with long-term ⁴¹ 316 outcomes⁵⁴. The recent European Unbiased Biomarkers for the Prediction of Respiratory 42 Disease Outcomes (U-BIOPRED) project was aimed at identifying and quantifying, based 43 317 44 45 318 on the hypothesis that treatable traits are more common in severe asthma and may 46 47</sub>319 significantly differ according to asthma phenotypes, the treatable traits recognized in the ⁴⁸ 320 severe and mild/moderate adult asthma cohorts and across previously identified 49 phenotypes⁵⁵. 50 321

All studies available thus far support a chief role of treatable traits in evaluating patients with respiratory diseases, however the preferable method of application and the costeffectiveness of such a multidimensional intervention is still uncertain, making it necessary to conduct randomized controlled trials involving large populations of patients⁵⁶. Concerning AIT, treatable traits of clinical interest may consist of the treatment outcome, beyond the disease to be treated, on comorbidities⁵⁷. Another trait may concern the Page 47 of 68

1 2 Allergy

3 possible synergistic effect of biologics and AIT. Precision medicine of allergic diseases is 328 4 nowadays highlighted by the consistent data of efficacy of biologics targeting cytokines ((IL 329 5 6 330 5) or their receptors (IL 5 rec. or IL4/IL13 rec.). Nonetheless, we should consider that the 7 8 331 eligibility of allergic patients to biologics or AIT is only partially overlapping, being the first 9 10 3 3 2 limited to severe asthma or CRSwNP whereas AIT has indication for allergic rhinitis and 11 mild/moderate asthma while severe asthma is a contraindication. Based on the 12333 13 14 334 characteristics of the two treatments, a synergistic effect in allergic asthma is conceivable, ¹⁵ 335 with biological achieving control of severe asthma but not changing its natural history while 16 17 3 36 AIT, once ceased the contraindication, can induce the long-term immunological changes. 18 ₁₉ 337 Studies to investigate whether such synergy is achievable are warranted.

²² 339 **4.Omics**

²⁰ 21</sub>338

Following the definition of genomics in the 1960s as the complete nucleotide sequence of 24 3 4 0 25 26 341 an organism⁵⁸, a large number of other "omics" were recently proposed, such as ²⁷ 342 proteomics (the complete proteins of a cell in any organism), epi-genomics (the 29343 modification of nucleotides in an organism), metabolomics (the changes in gene activity in 30 31 344 response to metabolites⁵⁹, breathomics (the multidimensional molecular analysis of 32 33 345 32 enxhaled breath⁶⁰, but the list is very large and still expanding. In the field of allergy ³⁴ 346 diseases, asthma is the most investigated disease. In 2011, the detection of protein 35 36 3 47 changes by proteomics in different asthma stages was supported to improve the 37 ₃₈ 348 understanding of the molecular mechanisms of the disease and to find novel mediators ³⁹ 349 40 and biomarkers⁶¹. Another omic of potential interest for personalized medicine is the ⁴¹ 350 exposome, definable as a systematic approach to obtain large data sets on to 42 43 351 environmental exposures of an individual during the whole life⁶².

44 44 45</sub>352 However, the available data on the state of omics technology in the management of ⁴⁶ 353 asthma and allergic diseases were recently analyzed by Donovan et al. After pointing out 47 48 354 that omics-based investigation are used increasingly to distinguish subtypes of 49 allergic diseases and asthma subtypes, forecast patient responsiveness to specific 50 355 ⁵¹ 52 356 therapies, detect biomarkers and mediators, and verify the disease control, the authors ⁵³ 357 concluded that omics testing in this field for are not yet a standard of care, and that key 54 factors need to be recognized before such technologies can be used successfully in 55 358 56 ₅₇ 359 common clinical practice⁶³. On the other hand, according to Fitzgerald et al., the promise ⁵⁸ 360 of new technology must leave room to an humanomics perspective, i.e. the 60 361 acknowledgement of patient's behavioral aspects⁶⁴.

1

5

363 Impact of personalized medicine on AIT

6 The great advance provided by the introduction of personalized medicine in diagnosis of 364 7 8 allergy is likely to enable solving the long-standing problem of AIT related to the great 365 9 10 366 qualitative variability of AIT products and the consequent heterogeneity of the clinical 11 results. Actually, an updated way to correctly evaluate the effectiveness of AIT products 12 367 13 13 14 368 must avoid the mistakes of the past, when the results of a valid tool such as meta-analysis, ¹⁵ 369 despite the clear differences between different products, tended in the conclusions to 16 extend the positive outcome to AIT in general⁶⁵. The latest generation of registered 17 370 18 19371 products for SLIT, which were based on trials including large number of patients with ²⁰ 372 respiratory allergy to grass pollen and dust mites, meet the modern quality needs⁶⁶⁻⁷⁰. Still, 22 373 as mentioned above, the previous generation products include allergen extracts of efficacy 23 24 374 demonstrated by controlled trials, but also products missing such evidence. This implies 25 26 375 new properly designed clinical trials to demonstrate efficacy. Nonetheless, in order to ²⁷ 376 28 facilitate AIT product development it is advisable that the same product composition, 29377 possibly using different formulation (i.e. drops/tablets) should have a mutual program and 30 31 378 recognition and possibly a full development program. Also, the relevance of testing all ³² 33 379 allergens and the final cost of the studies for a limited effect size due to the huge placebo ³⁴ 380 effect in AIT trial is worthy of attention. These facets could provide a flexibility of treatment 35 otherwise difficult to reach in clinical practice, when batch to batch reproducibility is 36 381 37 ₃₈ 382 ensured in terms of quality product and standardization.

³⁹ 383 40 Today, to achieve the highest quality any manufacturer of allergen products must follow ⁴¹ 384 stringent scientific rules. The first is to ensure the presence in the allergen extracts of all 42 relevant allergens. As discussed above, PAMD@ provides the detections of all allergen 43 385 44 44 45</sub> 386 molecules, distinguishing those simply cross-reactive from genuine causative ones. ⁴⁶ 387 Similarly, the development of an AIT product requires during the manufacturing process 47 48 388 the identification of all component through mass-spectrometry based analysis, followed by 49 50 389 allergen extraction, purification and formulation, as well as yield cost, robustness and ⁵¹ 52 390 scaling up. The subsequent step is the product characterization, which results in ⁵³ 391 development and implementation of analytical methods for identity, purity, consistency and 54 stability, which makes clinical development possible in its various phases. These phases 55 392 56 ₅₇ 393 (I, II, III) are aimed at establishing safety, dosing and efficacy. For optimal quality level, ⁵⁸ 394 59 well-controlled source materials are also essential, which consist, for example for grass 60 3 9 5 pollen, in the harvesting and processing of pollens from cultured grasses, while for house

 $^{3}_{4}$ 396 dust mites the development of a synthetic cultured medium free from proteins of animal origin is needed⁷¹. As mentioned above, the use of omics is of marked importance in the comprehensive characterization of allergen extracts, including transcriptome for *de novo* sequencing, proteome for MS analysis, and allergome for IgE reactivity⁷².

10 400 In this context, the evaluation of the Real-World Evidences (RWE), should be properly 11 12 401 reappraised, since patients in clinical practice often do not meet the same criteria of the 13 14 402 subjects enrolled in the double-blind placebo-controlled trials (DBPCRT) leading to ¹⁵ 403 registration by Regulatory Authorities⁷³. In fact, distinction is made between the final 16 17 404 outcome of DBPCT efficacy and the one in RWE. Nonetheless, a correct evaluation of 18 ₁₉ 405 these RWE has to be methodologically performed. To this purpose an ongoing European ²⁰ 21</sub>406 Academy of Allergy and Clinical Immunology (EAACI) initiative is designed to ascertain the 22 407 validity of the existing RWE concerning AIT, applying the recent tools proposed by 23 24 408 Respiratory Effectiveness Group (REG)/EAACI from one side (Relevant) and Grading of 25 26 409 Recommendations, Assessment, Development and Evaluation (GRADE) on the other side ²⁷ 410 ⁷⁴. Through this initiative we will be able define the real validity of the existing AIT RWEs. 29 4 1 1 This action has been also stated and promoted by the recent Real-Life Research 30 31 412 Manifesto, where it is pointed out the need to consider RWE in the complex scenario of ³² 33</sub>413 scientific clinical research⁷⁵. This document supported the use of tools, such as the ones ³⁴ 414 mentioned previously, to analyze RWE properly. Finally, the Manifesto also underlined the 35 major differences existing between retrospective and prospective RWE: where prospective 36 4 1 5 37 ₃₈ 416 approach, whose typical example is a Disease or intervention's Registry, is the most ³⁹ 417 40 credible, as also stated by Sherman et al⁷⁶. In fact, it should be underlined that several AIT ⁴¹ 418 RWE reports were retrospectively collected, combining different methodologies, thus 42 decreasing the validity of the final outcomes/conclusions. However, recent, well conducted 43 4 19 44 45 420 real-life studies, derived from a well-designed and set up database and including very ⁴⁶ 421 large patient populations, were of relevant importance, because they contributed to 47 48 422 increase the knowledge on the effectiveness of AIT in patients seen in daily clinical 49 50 423 practice, possibly not meeting the strict criteria to be included in a trial^{77,78}.

⁵¹ 52 **42**4

53 425 Final message: AIT as personalized treatment

All the above is in line with the current view that collecting Big Data can lead to precision medicine^{79,80}. We previously pointed out AIT as a prototype of precision medicine⁷ and now we would propose AIT as one of the best example of Personalized and Participatory Medicine, aimed to satisfy the needs and preferences of patients and to strengthen the

1

cooperation patient/doctor in jointly choosing the best therapeutic option. AIT is the only medical treatment that has the capacity to change the natural history of allergic diseases ⁸¹ 431 and responds perfectly to the three major needs to be met in personalized medicine, which 432 433 are the identification of the molecular mechanism of the disease, the availability of 10 4 3 4 diagnostic tools to recognize this mechanism and the availability of a treatment capable of blocking the mechanism⁸². In Figure 1 we summarized all the possible aspects of the 12 4 3 5 14 14 14 updated journey to reach the best prescription of AIT, through a detailed and modern ¹⁵ 437 diagnosis (including PAMD@) and definition of patient's eligibility to AIT. As to diagnosis, it must be kept in mind that the medical history collected by a skilled doctor is the basis for 17 4 38 ₁₉ 439 deciding the subsequent investigations in accordance with the individual characteristics. ²⁰ 21</sub>440 The current and future tools to reach a AIT personalized prescription are summarized in 22 441 Figure 2 . Their variable characteristics suggest that personalized care is valuable in this 23 24 4 4 2 setting and may be also be preventive (by focusing on quality of life), predictive (by 25 26²443 allowing treatment to be adjusted as a function of the individual's response) and ²⁷ 444 28 participative (empowering the patient). In particular, SLIT can be considered a precision 29 4 4 5 medicine treatment (especially with high quality NPP) that enable the physician to identify 30 31 446 the optimal treatment for each patient. This tailor-made approach to diagnosis, decision-32 33 447 32 making, product choice and treatment schedules may enhance effectiveness, minimize ³⁴ 448 adverse events, improve patient's quality of live and reduce the socio-economic impact. A 35 number of SLIT drops updosing regimens and maintenance treatment were shown to be 36 4 4 9 37 ₃₈ 450 safe and effective. This means that SLIT liquid allergen extract formulations are extremely ³⁹ 451 40 flexible in terms of frequency of dosing and number of allergen doses delivered. Such ⁴¹ 452 parameters can be fine-tuned to suit the patient's day-to-day treatment response and 42 intercurrent events. Depending on the sensitization profile and the clinical signs, the 43 453 44 45⁴⁵⁴ specialist can develop a specific, tailor-made SLIT liquid-based approach that, due to its ⁴⁶ 455 ductility in clinical practice, may be an added value. In addition, SLIT liquid formulation 47 ⁴⁸ 456 makes it possible to adapt the dose and regimen during the updosing and/or the 49 50 457 maintenance phase to target optimal effectiveness. 51

- 52
- 53 54
- 55
- 56 57
- 58
- 59 60

Page 51 of 68

The clinician should then evaluate:

- The route of administration: presently SCIT and SLIT for aeroallergens, considering evidences and patient's needs/preference
- The AIT product to be chosen as recommended by WAO⁸³ and EAACI⁸⁴ among the products supported by evidences.
- SCIT: different schedules upon the products (i.e. depot or aqueous)
- SLIT: preference for drops or tablet, both considering evidences and patient's needs/preference
- Dosages and schedules: continuous or pre-seasonal; long or short term.
- Most of the above can be influenced by costs and/or reimbursements.

Personalized medicine in AIT has the potential to improve various outcomes which have so far produced limited results. This is true for preventive ability, which until now has been shown only for the development of asthma in patients with allergic rhinitis⁸⁵, the identification of biomarkers predictive of treatment efficacy (still not known)⁵⁷ and costeffectiveness compared to drug therapy, clearly demonstrated on the basis of the persistence over time of the control of symptoms after AIT withdrawal⁸⁶, but further improvable by greater diagnostic precision. Further issues could concern the expansion of e-health systems⁷ and the implementation of telemedicine⁸⁷.

This journey is leading to the most appropriate choice of the AIT treatment thanks to the multifaceted variety of AIT products empowering the professionality of the clinician in choosing, through a shared decision that considers the patient's needs, a proper AIT product for each patient according to eligibility and acceptability.

44 471 It is so conceivable to conclude that AIT is still a unique and unmatched model of Personalized Medicine for allergy treatment, able to encompass the prediction of a ₄₆ 472 47 48</sub>473 successful treatment and the potential prevention or progression of an allergic disease, ⁴⁹ 474 and possibly to face the challenge of providing such advances to at affordable costs. As well, the characteristics of Personalized Medicine for allergy are likely to enable to face 51 475 ₅₃ 476 challenges such as increasing prevalence, growing complexity and heterogeneity, impact ⁵⁴477 on patients, problem of access to care, therapeutic wandering, and successful 55 56 478 management of uncontrolled patients⁸⁸. 57

₅₈ 479

⁵⁹₆₀480 **Disclosure of Interests**

481 M. Al-Ahamad has nothing to disclose.

- ³ 482 I. Ansotegui declares he has received fees from Abbott, Astra Zeneca, Faes Farma,
 ⁴ 483 Hikma, Menarini, MSD, Mundipharma, Roxall, Sanofi, Stallergenes Greer, UCB.
- ⁶₇ 484 S. Arasi has nothing to disclose.

42

48

56

- ⁸ 485 C. Bachert declares he has received personal fees from Sanofi, personal fees from GSK,
 ¹⁰ 486 personal fees from Novartis, personal fees from Astra-Zeneca.
- J. Bousquet declares he has received lecture fees and/or participation at expert board meetings from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach (Advisory Board, consultant, meeting lectures fees), Kyomed (shares).
- ¹⁸ 19 491 A. Bozek has nothing to disclose.
- ²⁰₂₁492 D. Caimmi has nothing to disclose.
- ²² 493 M. Calderon has nothing to disclose.
- 24 494 T. Casale has nothing to disclose.
- $^{25}_{26}$ 495 A. Custovic has nothing to disclose.
- ²⁷ 496 GW. Canonica declares he has received lecture fees and/or participation at expert board
 ²⁹ 497 meetings BI, ALK, Stallergenes Greer (Grant/ research support), (Menarini, GSK, Sanofi,
 ³⁰ Teva, Hal, AZ, Novartis (honoraria or consultation fees).
- ³²₃₃ 499 F. De Blay declares he has receaved grants from Stallergenes Greer, Chiesi, ALK,
 ³⁴₃₅ 500 Mundipharma, Novartis.
- P. Demoly declares he had received personal fees for grants/lecture from Astra Zeneca,
 Mylan, Sanofi, ASIT Biotech, ALK, Stallergènes Greer, Thermofisher Scientific, Menarini,
 Chiesi, Bausch&Lomb, Yslab.
- P. Devillier declares he has received has received consultancy fees, honoraria for
 lectures, and/or research funding from ALKAbelló, Stallergenes Greer, AstraZeneca,
 Chiesi, Boehringer-Ingelheim, GlaxoSmithKline.
- ⁴⁹₅₀ 507 A. Didier declares he has received personal fees for consultancy services for ALK and
 ⁵¹₅₀ 508 grants for participation in clinical research projects with ALK.
- 53 509 A. Fiocchi has nothing to disclose.
- ⁵⁴₅₅510 A. Fox has nothing to disclose.

⁵⁷₅₈511 P. Gevaert declares he has received lecture fees and/or participation at expert board
 ⁵⁹512 meetings from Ablynx, ALK, Argenx, Astra-Zeneca, Genentech, HAL-Allergy, Novartis,
 ⁶⁰513 Roche, Regeneron, Sanofi, and Stallergenes Greer.

2 ³ 514 4	M. Gomez has nothing to disclose.
5 6 515	E. Heffler declares he has received lecture fees and/or participation at expert board
7	
8 516 9 517	meetings from AstraZeneca, GSK, Sanofi, Novartis, Boehringer Ingelheim, Valeas,
10 517	Circassia, Nestlè Purina.
¹¹ 518 12	N. Ilina has nothing to disclose.
13 519 14	C. Irani has nothing to disclose.
₁₅ 520	L. Klimek has nothing to disclose.
¹⁶ 17521	P. Kuna declares he has received honorarium as speaker from Allergopharma, ALK.
¹⁸ 522 19	Bencard and Stallergenes Greer.
20 523	R. O'Hehir C. has nothing to disclose.
²¹ 22 524	Incorvaia declares he has received fees for consultancies from Bayer and Stallergenes
²³ 525 24	Greer.
²⁵ 526	M. Jutel declares he has received personal fees from ALK-Abello, Allergopharma,
26 27 527	Stallergenes Greer, Anergis, Allergy Therapeutics , Circassia, Leti, Biomay, HAL.
²⁸ 29 528	O. Kurbacheva has nothing to disclose.
³⁰ 529 31	P. Matricardi declares he has received fees from Thermo Fisher Scientific, Hycor, Omron,
32 530	TPS, Stallergenes Greer, Euroimmun.
³³ 34 531	M. Morais de Almeida has nothing to disclose.
³⁵ 532 36	R. Mosges declares he has received fees from Allergopharma, ALK-Abelló, Glaxo, HAL
37 533 38	Allergy, Leti, Lofarma, Novartis, Parexel International, Stallergenes Greer.
39 534	N. Novak has nothing to disclose.
⁴⁰ 41 535	Y. Okamoto has nothing to disclose.
⁴² 536 43	P. Panzner has nothing to disclose.
44 537	N. Papadopoulos declares he has received fees from Novartis, NUTRICIA, HAL, Menarini,
45 46 538	SANOFI, MEDA, AstraZeneca, GSK, MSD, ASIT BIOTECH, Boehringer Ingelheim.
⁴⁷ 48539	H. Park has nothing to disclose.
⁴⁹ 540 50	G. Passalacqua has nothing to disclose.
51 541	R. Pawankar has nothing to disclose.
⁵² 53 542	O.Pfaar declares he has received grants and personal fees from ALK-Abelló,
⁵⁴ 543 55	Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, from
56 544	Bencard Allergie GmbH/Allergy Therapeutics, Lofarma.
57 58 545	P. Schmid-Grendelmeier has nothing to disclose.
⁵⁹ 60 546	H. Tortajada has nothing to disclose.
547	C. Vidal has nothing to disclose.

1 2	
³ 548	C Virchow declares he has received fees from Allergopharma, ALK, LETI, Stallergenes
4 5 549	Greer.
6 7 550	U. Wahn declares he has received honoraria for consultancy as well as lecture fees from
8 9 551	Allergopharma, Stallergenes Greer, ALK, Roxall, Sanofi-Aventis, Novartis, Berlin-Chemie
10 552	M. Worm declares she as received of honoraria or consultation fees by ALK-Abelló
11 12 553	Arzneimittel GmbH, Mylan Germany GmbH, Leo Pharma GmbH, Sanofi-Aventis
¹³ 14 554	Deutschland GmbH, Regeneron Pharmaceuticals, DBV Technologies S.A, Stallergenes
¹⁵ 555 16	Greer, HAL Allergie, Allergopharma, Bencard Allergie, Aimmune Therapeutics UK Limited,
17 556	Actelion Pharmaceuticals Deutschland G, Novartis AG, Biotest AG, AbbVie Deutschland &
18 19 557	Co. KG, Lilly Deutschland
²⁰ 558 21	P. ZiegImayer has nothing to disclose.
22 559 23	C. Bos, E. Karagiannis and S. Scurati are employee of Stallergenes Greer
24 560	
²⁵ 561 ²⁶ 562	
²⁷ 563	Acknowledgments
²⁹ 564 30	This is an initiative supported by Stallergenes Greer with an unrestricted grant
31	
32 33	
34 35	
36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57	
58 59	
60	

$\frac{3}{4}$ 565 Table 1 Studies that have assessed the benefits of attaining with PAMD a more

5 566 appropriate prescription for AIT

 Author, year (ref)	Allergens tested	Population	Results
Mitterman, 2010 (28)	Bee and wasp venom.	43 patients (pts)	Recombinant
			nonglycosylated allergen
			molecules (Api m 1, rApi
			m 2, rVes v 5) allowed to
			define the sensitizing
			venom in the 14 patients
			with positive test both
			bee and wasp venom
			extracts.
Castra 2012 (20)	Dellana	111 ptp	
Sastre, 2012 (29)	Pollens	141 pts	Agreement in AIT
			indication before and
			after ISAC(®) results in
	C		62 (46%) patients;
			(kappa = 0.1057 ±
		\mathcal{O}^{\vee}	0.0413).
Moreno, 2014 (30)	Pollens	1263 pts	Based on history and
			SPT, 73% of patients
		\mathbf{O}	would have been
	, N	4.	prescribed AIT with a mix
			of grass and olive
			pollens, while only in
		2	56.8% of patients the
0			double positivity was
			confirmed by molecular
			allergy diagnosis (MAD)
			alleruv diadhosis (IVIAD)
Ň			
28			with Ole e 1 and Phl p
RAY			with Ole e 1 and Phl p molecules.
Popescu, 2014 (31)	Grass pollen	Not defined (review	with Ole e 1 and Phl p
Popescu, 2014 (31)	Grass pollen	Not defined (review of published data)	with Ole e 1 and Phl p molecules.
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and PhI p molecules. MAD biomarkers (including tolerogenic
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers (including tolerogenic dendtitic, regulatory T
Popescu, 2014 (31)	Grass pollen		with Ole e 1 and Phl p molecules. MAD biomarkers (including tolerogenic dendtitic, regulatory T cells, IgE, IgA and IgG

			information for allergists
Vidal, 2014 (32)	Pollens, dust mites,	62 Spanish	SPTs are insufficient to
	moulds, animal epithelia	allergists	establish the clinical
			relevance of each
			allergen. Serum specific
			IgE adds value to SPT
			but MAD is strongly
			recommended,
			particularly in pollen-
			allergic patients.
Saltabayeva, 2017 (33)	Pollens	95 pts (real-life	A lower number of A
, , , , , ,		study)	treatments (n = 119) wa
			needed according
		ר	MAD compared to 27
		202	AIT treatments based o
			conventional diagnosi
			with large reduction
			the total costs for a
			year AIT treatment
Del-Rio Camacho, 2018	Pollens	70 children	MAD modified A
(34)			prescription in 54.3%
(),		Ζ.	cases, and increasir
			the indication of single
			allergen therapy fro
		2	18% to 51% reversir
			the decision to prescrib
			AIT in 9.3% of cases
Savi, 2016 (35)	Hymenoptera venoms	40 pts.	By MAD data VIT wou
			have been prescribed
0.5			7 pts for Polistes spp,
\mathbf{O}			6 for Vespula spp, and
			41 for both venoms. Wi
			the data from CA
			inhibition, it would have
			been a prescription to 1
			patients for Polistes,
			28 for Vespula, and to 1
			20 101 vespula, allu lu

1				
2 3				for both venoms. A good
4 5				concordance between
6				the results of MAD and
7 8				CAP-inhibition was found
9 10				only when the value in
11				kU/I of Ves v 5 were
12 13				about twice those of Pol
14				d 5, and vice versa.
15 16	Martinez-Canavate	Pollens	281 children	MAD results changed the
17 18	Burgos, 2018 (36)			specialist's composition
19				of the prescribed AIT in
20 21				52.87% of cases.
22 23	Peveri, 2019 (37).	Various aeroallergens	272 pts.	In 50% of cases a
24				change in the AIT
25 26			X	prescription for
27				respiratory allergy was
28 29				found, resulting in a
30 31			$\mathbf{G}^{\mathbf{v}}$	saving of financial
32			Ň	resources.
³³ 56 34	7	6		
35 56 8 36	8			
37		'A		
38 39				
40				
41 42				
43 44	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
45				
46 47	X.			
48 49				
50				
51 52				
53				
54 55				
56				
57 58				
59 60				

² ³ 569 **References**

- 4
 5 570 1) Jones AW. Early drug discovery and the rise of pharmaceutical chemistry. Drug Test
 6
 7 571 Anal. 2011;3 (6)337-44.
- ⁸ 572 2) Mahner, M. & Kary, M. (1997). "What exactly are genomes, genotypes and phenotypes? And what about phenomes?". J Theoretical Biology 186: 55–63.
- 3) Febbo PG, Ginsburg GS. Personalized diagnostic and therapeutic strategies
 in oncology. Per Med. 2005;2(2):97-110.
- ¹⁵ 576 4) Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015 Feb
 ¹⁷ 577 26;372(9):793-5
- ¹⁸
 ₁₉578 5) Busse WW. Biological treatments for severe asthma: A major advance in asthma care.
 ²⁰
 ₂₁579 Allergol Int. 2019;68(2):158-66.
- ²² 580 6) Frew AJ. Hundred years of allergen immunotherapy. Clin Exp Allergy. 2011;41(9):
 24 581 1221-225.
- ²⁵₂₆582
 ²⁷583
 ²⁷583
 ²⁷583
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁹584
 ²⁰584
 ²⁰584
- ³⁰
 ³¹ 585
 8) Roberts G, Pfaar O, Akdis CA, Ansotegui IJ, Durham SR, Gerth van Wijk R, Halken S,
 ³² Larenas-Linnemann D, Pawankar R, Pitsios C, Sheikh A, Worm M, Arasi S, Calderon
 ³⁴ 587
 MA, Cingi C, Dhami S, Fauquert JL, Hamelmann E, Hellings P, Jacobsen L, Knol EF,
- Lin SY, Maggina P, Mösges R, Oude Elberink JNG, Pajno GB, Pastorello EA,
- Penagos M, Rotiroti G, Schmidt-Weber CB, Timmermans F, Tsilochristou O, Varga
- ³⁹₄₀590 EM, Wilkinson JN, Williams A, Zhang L, Agache I, Angier E, Fernandez-Rivas M, Jutel
- ⁴¹ 591 M, Lau S, van Ree R, Ryan D, Sturm GJ, Muraro A. EAACI Guidelines on Allergen
 ⁴² Immunotherapy: Allergic rhinoconjunctivitis. Allergy. 2018;73(4):765-798.
- 9) Demoly P, Makatsori M, Casale TB, Calderon MA. The Potential Role of Allergen
 Immunotherapy in Stepping Down Asthma Treatment. J Allergy Clin Immunol Pract.
 2017 May Jun;5(3):640-648.
- ⁴⁹
 ⁵⁰ 596 10)Adkinson NF Jr, Eggleston PA, Eney D, Goldstein EO, Schuberth KC, Bacon JR, Hamilton RG, Weiss ME, Arshad H, Meinert CL, Tonascia J, Wheeler B. A controlled trial of immunotherapy for asthma in allergic children. N Engl J Med. 1997;
 ⁵³ 598 336(5):324-31.
- ⁵⁶₅₇600 11)Kaul S, May S, Lüttkopf D, Vieths S. Regulatory environment for allergen-⁵⁸₅₉601 specific immunotherapy. Allergy. 2011;66(6):753-64.
- 60

Page 59 of 68

1

2	
³ 602	12)Devillier P, Dreyfus JF, Demoly P, Calderón MA. A meta-analysis of sublingual allergen
5 603	immunotherapy and pharmacotherapy in pollen-induced seasonal allergic
6 7 604	rhinoconjunctivitis. BMC Med. 2014;12:71
8 9 605	13)Larenas-Linnemann D, Cox LS; Immunotherapy and allergy diagnostics Committee of
10 606	the American Academy of Allergy, Asthma and Immunology European allergen extract
11 12 607	units and potency: review of available information. Ann Allergy Asthma Immunol.
¹³ 14 608	2008;100(2):137-45.
¹⁵ 609 16	14)Larenas-Linnemann D, Esch R, Plunkett G, Brown S, Maddox D, Barnes C, Constable
17 610	D. Maintenance dosing for sublingual immunotherapy by prominent European allergen
18 19 611	manufacturers expressed in bioequivalent allergy units. Ann Allergy Asthma Immunol.
²⁰ 21612	2011;107(5):448-458.
²² 613	15)Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant
23 24 614	allergen-based concept of component-resolved diagnostics and immunotherapy (CRD
²⁵ 26 615	and CRIT). Clin Exp Allergy. 1999 Jul;29(7):896-904
²⁷ 616 28	16)Melioli G, Savi E, Crivellaro MA, Passalacqua G. Potential of molecular based
²⁹ 617	diagnostics and its impact on allergen immunotherapy. Asthma Res Pract. 2016 2;2:9.
30 31 618	17)Kespohl S, Raulf M. Mould allergens: Where do we stand with molecular allergy
³² 33 619	diagnostics?: Part 13 of the series Molecular Allergology. Allergo J Int. 2014;23(4):120-
³⁴ 620 35	125.
36 621	18)A WAO - ARIA - GA ² LEN consensus document on molecular-based allergy diagnosis
³⁷ 38 622	(PAMD@): Update 2020. World Allergy Organ J. 2020 Mar 7;13(2):100091. Steering
³⁹ 40 ⁶²³	Committee Authors; Review Panel Members. Collaborators (48) World Allergy Organ J.
⁴¹ 624 42	2020;13(2):10009.
43 625	19)Pomes A, Davies JM, Gadermaier G, et al. WHO/IUIS allergen nomenclature: providing
44 45 626	a common language. Mol Immunol. 2018;100:3–13.
⁴⁶ 627 47	20)van Hage M, Hamsten C, Valenta R. ImmunoCAP assays: pros and cons in allergology.
⁴⁸ 628	J Allergy Clin Immunol. 2017;140: 974–977.
49 50 629	21)Garib V, Rigler E, Gastager F, et al. Determination of IgE and IgG reactivity to more
⁵¹ 52 630	than 170 allergen molecules in paper dried blood spots. J Allergy Clin Immunol.
⁵³ 631 54	2019;143:437-440.
55 632	22) Jakob T, Forstenlechner P, Matricardi P, Kleine-Tebbe J. Molecular allergy diagnostics
⁵⁶ 57 633	using multiplex assays:methodological and practical considerations for use inresearch
⁵⁸ 634	and clinical routine: Part 21 of the Series Molecular Allergology. Allergo J Int.
60 635	2015;24:320-332.

³ 636 23)van Hage M, Schmid-Grendelmeier P, Skevaki C, Plebani M, Canonica W, Kleine ⁵ 637 Tebbe J, Nystrand M, Jafari-Mamaghani M, Jakob T. Performance evaluation
 ⁶ 638 of ImmunoCAP® ISAC 112: a multi-site study. Clin Chem Lab Med. 2017 Mar
 ⁸ 639 1;55(4):571-577

1 2

- ¹⁰ 640 24)Di Fraia M, Arasi S, Castelli S, et al. A new molecular multiplex IgE assay for the diagnosis of pollen allergy in Mediterranean countries: a validation study. Clin Exp
 ¹³ 642 Allergy. 2019;49:341-349.
- ¹⁵ 643 25) Buzzulini F, Da Re M, Scala E, et al. Evaluation of a new multiplex IgE assay for
 ¹⁷ 644 allergy diagnosis. Clin Chim Acta. 2019;493:73-78.
- 26)Melioli G, Spenser C, Reggiardo G, Passalacqua G, Compalati E, Rogkakou A, Riccio AM, Di Leo E, Nettis E, Canonica GW. Allergenius, an expert system for the interpretation of allergen microarray results. World Allergy Organ J. 2014 Jun 25;7(1):15.
- 27)Heffler E, Puggioni F, Peveri S, Montagni M, Canonica GW, Melioli G. Extended IgE
 profile based on an allergen macroarray: a novel tool for precision medicine in allergy
 diagnosis. World Allergy Organ J. 2018 Apr 26;11(1):7.
- 28)Mittermann I, Zidarn M, Silar M, Markovic-Housley Z, Aberer W, Korosec P, Kosnik M,
 Valenta R. Recombinant allergen-based IgE testing to distinguish bee and wasp
 allergy. J Allergy Clin Immunol. 2010 Jun;125(6):1300-1307.
- ³⁶ 655 29) Sastre J, Landivar ME, Ruiz-García M, Andregnette-Rosigno MV, Mahillo I.
 ³⁷ How molecular diagnosis can change allergen-specific immunotherapy prescription in a
 ³⁹ 657 complex pollen area. Allergy. 2012 May;67(5):709-11.
- 41 658 30)Moreno C, Justicia JL, Quiralte J, Moreno-Ancillo A, Iglesias-Cadarso A, Torrecillas M,
 43 659 Labarta N, García MA, Dávila I. Olive, grass or both? Molecular diagnosis for
 44 45 660 the allergen immunotherapy selection in polysensitized pollinic patients. Allergy. 2014
 46 661 Oct;69(10):1357-63.
- 48 662 31)Popescu FD. Molecular biomarkers for grass pollen immunotherapy. World J Methodol.
 2014 Mar 26;4(1):26-45.
- ⁵¹₅₂664 32) Vidal C, Enrique E, Gonzalo A, Moreno C, Tabar AI; Expert Clinical Participants.
 ⁵³₅₄665 Diagnosis and allergen immunotherapy treatment of polysensitised patients with
 ⁵⁵₅₄666 respiratory allergy in Spain: an Allergists' Consensus. Clin Transl Allergy. 2014 Nov
 ⁵⁶₅₇667 7;4:36.
- ⁵⁸₅₉668 33)Saltabayeva U, Garib V, Morenko M, Rosenson R, Ispayeva Z, Gatauova M, Zulus L,
 ⁶⁰669 Karaulov A, Gastager F, Valenta R. Greater Real-Life Diagnostic Efficacy

Page 61 of 68

1

2 3 670 4 Allergy

of Allergen Molecule Based Diagnosis for Prescription of Immunotherapy in an Area

4	
5 671	with Multiple Pollen Exposure. Int Arch Allergy Immunol. 2017;173(2):93-98.
6 7 672	34) Del-Río Camacho G, Montes Arjona AM, Fernández-Cantalejo Padial J, Rodríguez
8 9 673	Catalán J. How molecular diagnosis may modify immunotherapy prescription in multi-
10 674	sensitized pollen-allergic children. Allergol Immunopathol (Madr). 2018 Nov -
11 12 675	Dec;46(6):552-556.
¹³ 14676	35)Savi E, Peveri S, Makri E, Pravettoni V, Incorvaia C. Comparing the ability of molecular
¹⁵ 677 16	diagnosis and CAP-inhibition in identifying the really causative venom in patients with
17 678	positive tests to Vespula and Polistes speciesClin Mol Allergy. 2016 Feb 8;14:3.
18 19 679	36)Martínez-Cañavate Burgos A, Torres-Borrego J, Molina Terán AB, Corzo JL, García
²⁰ 21 680	BE, Rodríguez Pacheco R, Moreno Aguilar C, Dávila I. Molecular sensitization patterns
²² 681	and influence of molecular diagnosis in immunotherapy prescription in children
23 24 682	sensitized to both grass and olive pollen. Pediatr Allergy Immunol. 2018 Jun;29(4):369-
²⁵ 26 683	374.
²⁷ 684 28	37)Peveri S, Pattini S, Costantino MT, Incorvaia C, Montagni M, Roncallo C, Villalta D,
²⁹ 685	Savi E. Molecular diagnostics improves diagnosis and treatment of respiratory allergy
30 31 686	and food allergy with economic optimization and cost saving. Allergol Immunopathol
³² 33 687	(Madr). 2019 Jan - Feb;47(1):64-72.
³⁴ 688 35	38)Gupta M, Cox A, Nowak-Węgrzyn A, Wang J. Diagnosis of food allergy.
36 689	Immunol Allergy Clin North Am. 2018 Feb;38(1):39-52. Doi
³⁷ 38 690	39)Volpicella M, Leoni C, Dileo MCG, Ceci LR. Progress in the analysis of food allergens
³⁹ 40 ⁶⁹¹	through molecular biology approaches. Cells. 2019 Sep 12;8(9).
⁴¹ 692	40)Wai CYY, Leung NYH, Leung PSC, Chu KH. Immunotherapy of Food Allergy: a
42 43 693	Comprehensive Review. Clin Rev Allergy Immunol. 2019 Aug;57(1):55-73.
⁴⁴ 45 694	41)Schröder H, Yman L. Standardization of the RAST inhibition assay. Allergy. 1980
⁴⁶ 695 47	Apr;35(3):234-6.
⁴⁸ 696	42)Quercia O, Cova V, Martini M, Cortellini G, Murzilli F, Bignardi D, Cilia M, Scarpa A,
49 50 697	Bilò MB. CAP-Inhibition, molecular diagnostics, and total IgE in the evaluation of
⁵¹ 52 698	Polistes and Vespula double sensitization. Int Arch Allergy Immunol. 2018;177(4):365-
⁵³ 699	369.
54 55 7 00	43)Caruso B, Bonadonna P, Bovo C, Melloni N, Lombardo C, Senna G, Lippi G. Wasp
⁵⁶ 57 701	venom allergy screening with recombinant allergen testing. Diagnostic performance of
⁵⁸ 702 59	rPol d 5 and rVes v 5 for differentiating sensitization to Vespula and Polistes
⁵⁹ 60 703	subspecies. Clin Chim Acta. 2016 Jan 30;453:170-3.

- ³ 704 44)Hemmings O, Kwok M, McKendry R, Santos AF. Basophil activation test: old and new applications in allergy. Curr Allergy Asthma Rep. 2018 Nov 15;18(12):77.
- 45)Balzer L, Pennino D, Blank S, Seismann H, Darsow U, Schnedler M, McIntyre M, Ollert
 707 MW, Durham SR, Spillner E, Ring J, Cifuentes L. Basophil activation test using
 recombinant allergens: highly specific diagnostic method complementing routine tests
 in wasp venom allergy. PLoS One. 2014 Oct 17;9(10)
- ¹³/₁₄710 46)Korošec P, Šilar M, Eržen R, Čelesnik N, Bajrović N, Zidarn M, Košnik M. Clinical
 routine utility of basophil activation testing for diagnosis of hymenoptera-allergic
 patients with emphasis on individuals with negative venom-specific IgE antibodies. Int
 Arch Allergy Immunol. 2013;161(4):363.
- ²⁰₂₁714 47)Eržen R, Košnik M, Silar M, Korošec P. Basophil response and the induction of a tolerance in venom immunotherapy: a long-term sting challenge study. Allergy. 2012 Jun;67(6):822-30.
- 48)Schmid JM, Würtzen PA, Siddhuraj P, Jogdand P, Petersen CG, Dahl R, Erjefält JS,
 Hoffmann HJ. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy. 2020 Mar 7. [Epub ahead of print].
- 32 32 33 721 49)Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, ³⁴722 Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos 35 PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan 36723 37 ₃₈ 724 CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, ³⁹ 725 40 Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, ⁴¹ 726 Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, 42 Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson 43 727 44 45 45 728 HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, 46 729 Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, 47 48 730 Tantilipikorn P, Tversky JR, Veling MC, Wang Y, Westman M, Wickman M, Zacharek 49 M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int 50 731 ⁵¹ 52 732 Forum Allergy Rhinol. 2018;8(2):108-352
- ⁵³ 733 50)Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, Humbert M, Jones
 ⁵⁴ P, Gibson PG, Vestbo J, Beasley R, Pavord ID. Treatable traits: toward precision
 ⁵⁶ 735 medicine of chronic airway diseases. Eur Respir J. 2016 Feb;47(2):410-9
- 58

- 59
- 60

Page 63 of 68

1

Allergy

1	
2 3 736 4	51)Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts
5 737	in targeting chronic obstructive pulmonary disease pharmacotherapy: making
6 7 738	progress towards personalised management. Lancet. 2015;385(9979):1789-1798.
8 9 739	52)Tay TR, Hew M. Comorbid, "treatable traits" in difficult asthma: current evidence and
10 740	clinical evaluation. Allergy. 2017;101:130.
11 12 7 41	53)McDonald VM, Osadnik CR, Gibson PG. Treatable traits in acute exacerbations of
¹³ 14 742	chronic airway diseases. Chron Respir Dis. 2019;16:1479973119867954.
¹⁵ 743 16	54)Pavord ID, Agusti A. Blood eosinophil count: a biomarker of an important treatable trait
17 744	in patients with airway disease. Eur Respir J. 2016;47(5):1299-303.
18 19 7 45	55)Simpson AJ, Hekking PP, Shaw DE, Fleming LJ, Roberts G, Riley JH, Bates S, Sousa
²⁰ 746 21	AR, Bansal AT, Pandis I, Sun K, Bakke PS, Caruso M, Dahlén B, Dahlén SE, Horvath
²² 747 23	I, Krug N, Montuschi P, Sandstrom T, Singer F, Adcock IM, Wagers SS, Djukanovic
24 748	R, Chung KF, Sterk PJ, Fowler SJ; U-BIOPRED Study Group. Treatable traits in
²⁵ 26 749	the European U-BIOPRED adult asthma cohorts. Allergy. 2019 Feb;74(2):406-411.
²⁷ 750 28	56)Fingleton J, Hardy J, Beasley R. Treatable traits of chronic airways disease. Curr Opin
29 751 30	Pulm Med. 2018;24(1):24-31.
₃₁ 752	57)Bousquet J, Pfaar O, Togias A, Schünemann HJ, Ansotegui I, Papadopoulos NG,
³² 33753	Tsiligianni I, Agache I, Anto JM, Bachert C, Bedbrook A, Bergmann KC, Bosnic-
³⁴ 754 35	Anticevich S, Bosse I, Brozek J, Calderon MA, Canonica GW, Caraballo L, Cardona V,
36 755	Casale T, Cecchi L, Chu D, Costa E, Cruz AA, Czarlewski W, Durham SR, Du Toit G,
³⁷ 38 756	Dykewicz M, Ebisawa M, Fauquert JL, Fernandez-Rivas M, Fokkens WJ, Fonseca J,
³⁹ 757 40	Fontaine JF, Gerth van Wijk R, Haahtela T, Halken S, Hellings PW, Ierodiakonou D,
⁴¹ 758 42	linuma T, Ivancevich JC, Jacobsen L, Jutel M, Kaidashev I, Khaitov M, Kalayci O,
43 759	Kleine Tebbe J, Klimek L, Kowalski ML, Kuna P, Kvedariene V, La Grutta S, Larenas-
44 45 760	Linemann D, Lau S, Laune D, Le L, Lodrup Carlsen K, Lourenço O, Malling HJ, Marien
⁴⁶ 761 47	G, Menditto E, Mercier G, Mullol J, Muraro A, O'Hehir R, Okamoto Y, Pajno GB, Park
48 762 49	HS, Panzner P, Passalacqua G, Pham-Thi N, Roberts G, Pawankar R, Rolland C,
₅₀ 763	Rosario N, Ryan D, Samolinski B, Sanchez-Borges M, Scadding G, Shamji MH, Sheikh
⁵¹ 52764	A, Sturm GJ, Todo Bom A, Toppila-Salmi S, Valentin-Rostan M, Valiulis A, Valovirta E,
⁵³ 765 54	Ventura MT, Wahn U, Walker S, Wallace D, Waserman S, Yorgancioglu A, Zuberbier
55 766	T; ARIA Working Group. 2019 ARIA Care pathways for allergen immunotherapy.
⁵⁶ 57 767	Allergy. 2019;74(11):2087-2102.
⁵⁸ 768 ₅₉ 768	58)Mushra R. Science of omics: Perspectives and prospects for human health care. Integr
60 760	Mol. Mod. 2016: MM 1000258

⁶⁰769 Mol. Med. 2016;IMM.1000258.

- ³ 770 59) Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol. 2020;42(1):111-126. 5 771
- 6 60)Devillier P, Salvator H, Naline E, Couderc LJ, Gtassin-Delyle S. Metabolomics in the 772 7 8 773 diagnosis and pharmacotherapeutic management of respiratory diseases. Curr Pharm 9 10774 Des. 2917;23(14):2050-2059.
- 61)Park CS, Rhim T. Application of proteomics in asthma research. Expert Rev 12775 13 14 776 Proteomics. 2011;8(2):221-30
- ¹⁵ 777 62)Martin-Sanchez F, Bellazzi R, Casella V, Dixon W, Lopez-Campos G, Peek N. 16 Progress in Characterizing the Human Exposome: a Key Step for Precision Medicine. 17778 18 ₁₉779 Yearb Med Inform. 2020 [Epub ahead of print]
- ²⁰ 780 63) Donovan BM, Bastarache L, Turi KN, Zutter MM, Hartert TV. The current state 22 781 of omics technologies in the clinical management of asthma and allergic diseases. Ann 23 24 782 Allergy Asthma Immunol. 2019;123(6):550-557.
- 25 ²⁵₂₆783 64)FitzGerald JM, Poureslami I. The need for humanomics in the era of genomics and the ²⁷ 784 challenge of chronic disease management. Chest. 2014 Jul;146(1):10-12.
- 29 785 65)Canonica GW, Bagnasco D, Ferrantino G, Ferrando M, Passalacqua G. Update on 30 31 786 immunotherapy for the treatment of asthma. Curr Opin Pulm Med. 2016;22(1):18-2
- 32 32 33 787 66) Durham SR, Yang WH, Pedersen MR, et al. Sublingual immunotherapy with once daily ³⁴788 grass allergen tablet: a randomized controlled trial in seasonal allergic 35 rhinoconjunctivitis. J. Allergy Clin. Immunol. 2006;117:802-809. 36789
- 37 ₃₈790 67) Didier A, Malling HJ, Worm M, et al. Optimal dose, efficacy, and safety of once daily ³⁹ 791 40 sublingual immunotherapy with a 5-grass pollen tablet for seasonal allergic rhinitis. J. ⁴¹ 792 Allergy Clin. Immunol. 2007; 120:1338-1345. 42
- 68)Wahn U, Tabar A, Kuna P, et al. SLIT Study Group. Efficacy and safety of 5-grass 43 793 44 45 794 pollen sublingual immunotherapy tablets in pediatric allergic rhinoconjunctivitis. J. ⁴⁶ 795 Allergy Clin. Immunol. 2009;123:160-166. 47
- ⁴⁸ 796 69)Mosbech H, Deckelmann R, de Blay F, et al. Standardized quality (SQ) house dust 49 mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while 50 797 ⁵¹ 52 798 maintaining asthma control: a randomized, double-blind, placebo-controlled trial. J ⁵³ 799 Allergy Clin Immunol. 2014;134(3):568-75. 54
- 70)Bergmann KC, Demoly P, Worm M, et al. Efficacy and safety of sublingual tablets of 55 800 56 57 801 house dust mite allergen extracts in adults with allergic rhinitis. J Allergy Clin Immunol ⁵⁸ 802 59 2014;133(6):1608-14.
- 60

1 2

4

Page 65 of 68

1

2	
³ 803	71)Batard T, Hrabina A, Bi XZ, Chabre H, Lemoine P, Couret MN, Faccenda D, Villet
5 804	B, Harzic P, André F, Goh SY, André C, Chew FT, Moingeon P. Production and
6 7 805	proteomic characterization of pharmaceutical-grade Dermatophagoides pteronyssinus
8 9 806	and Dermatophagoides farinae extracts for allergy vaccines. Int Arch Allergy
10 807	Immunol. 2006;140(4):295-305)
11 12 808	72)Bordas-Le Floch V, Le Mignon M, Bussières L, Jain K, Martelet A, Baron-Bodo V, Nony
¹³ 14 809	E, Mascarell L, Moingeon P. A combined transcriptome and proteome analysis extends
¹⁵ 810	the allergome of house dust mite Dermatophagoides species. PLoS One. 2017 Oct
16 17 811	5;12(10):e0185830
18 19 812	73)Herland K, Akselsen JP, Skjønsberg OH, Bjermer LHow representative are clinical
²⁰ 21813	study patients with asthma or COPD for a larger "real life" population of patients with
²² 814	obstructive lung disease? Respir Med. 2005;99(1):11-9.
23 24 815	74)Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, Morgan
²⁵ 26 816	RL, Gartlehner G, Kunz R, Katikireddi SV, Sterne J, Higgins JP, Guyatt
²⁷ 28 28	G; GRADE Working Group_GRADE guidelines: 18. How ROBINS-I and other tools to
28 29 818	assess risk of bias in nonrandomized studies should be used to rate the certainty of a
30 31 819	body of evidence. J Clin Epidemiol. 2019 Jul;111:105-114.
³² 33 820	75)Roche N, Anzueto A, Bosnic Anticevich S, Kaplan A, Miravitlles M, Ryan D, Soriano JB,
³⁴ 821	Usmani O, Papadopoulos NG, Canonica GW; Respiratory Effectiveness Group
35 36 822	Collaborators. The importance of real-life research in respiratory medicine: manifesto of
³⁷ 38 823	the Respiratory Effectiveness Group: Endorsed by the International Primary Care
³⁹ 40824	Respiratory Group and the World Allergy Organization. Eur Respir J. 2019 19;54(3)
⁴⁰ ⁴¹ 825	76)Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, LaVange
42 43 82 6	L, Marinac-Dabic D, Marks PW, Robb MA, Shuren J, Temple R, Woodcock J, Yue
⁴⁴ 45 827	LQ, Califf RM . Real-World Evidence - What Is It and What Can It Tell Us? N Engl J
⁴⁵ 828 47	Med. 2016;375(23):2293-2297
47 48 82 9	77)Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefit of allergen

- ⁴⁸ 829 77)Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefit of allergen immunotherapy for birch pollen-associated allergic rhinitis and asthma. Allergy. 2018;
 ⁵¹ 52 831 74(3):594-604.
- ⁵³ 832 78)Zielen S, Devillier P, Heinrich J, Richter H, Wahn U. Sublingual immunotherapy
 provides long-term relief in allergic rhinitis and reduces the risk of asthma: a
 retrospective, real-world database analysis. Allergy. 2018;165-177.
- ⁵⁸ 835 59
- 60

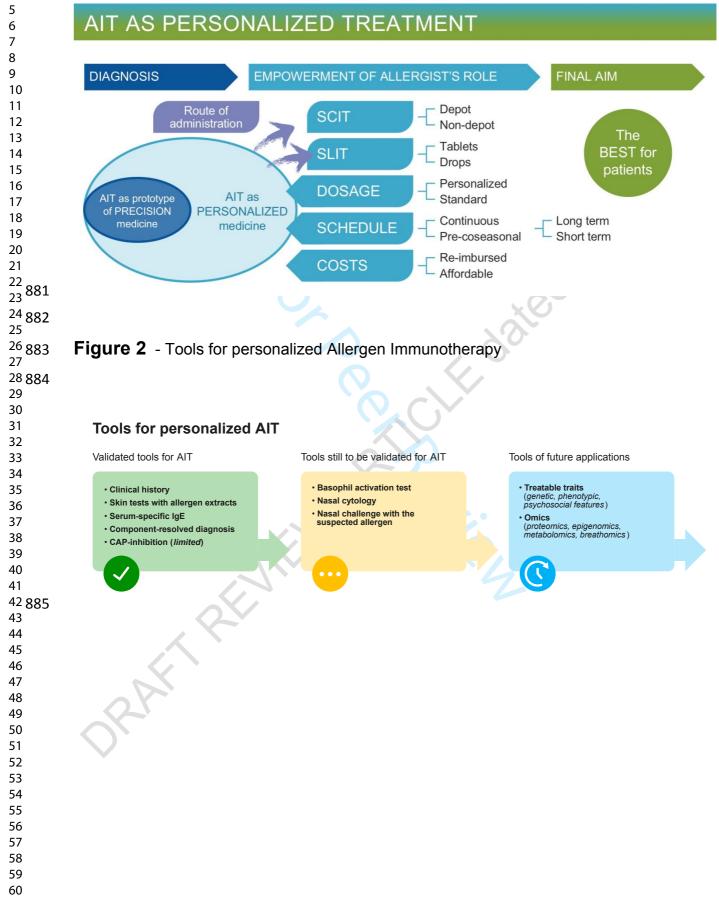
- 3 79)Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S, Spreafico 836 4 R, Hafler DA, McKinney EF. From Big Data to Precision Medicine. Front Med 837 5 6 838 (Lausanne). 2019;6:34. 2019. 7 8 839 9 -10⁸⁴⁰ 80)Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010: 22; ¹¹ 841 363(4):301-4. 12
 - 843 81)Calderon M, Demoly P, Gert van Wijk R, Bousquez J, Sheikh A, Frew A, Scadding G,
 Bachert c, et al. EAACI: a European declaration on immunotherapy. Designing the
 future of allergen specific immunotherapy. Clin Transl Allergy 2012 30;2(1):20.
 - ²¹ 847 82)Passalacqua G, Canonica GW. AIT (allergen immunotherapy): a model for the
 ²² 23 848 "precision medicine". Clin Mol Allergy. 2015: 8;13:24
 - ²⁶ 850 83)Bachert C, Larché M, Bonini S, Canonica GW, Kündig T, Larenas-Linnemann D, Ledford D, Neffen H, Pawankar R, Passalacqua G. Allergen immunotherapy on the way to product-based evaluation-a WAO statement. World Allergy Organ J. 2015;8(1):29.
 - ³⁴
 ³⁵
 84)Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klysner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Zieglmayer P, Zuberbier T, Wahn U; FASIT group.
 Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73 Suppl 104:5-23.
 - ⁴³/₄₄ 860
 ⁴³/₄₅ 861
 ⁴⁶/₄₅ 861
 ⁴⁶/₄₇ 862
 ⁴⁶/₄₇ 862
 ⁴⁶/₄₇ 863
 ⁴⁶/₄₇ 863
 ⁴⁸/₄₇ 863
 ⁴⁸/₄₇ 863
 ⁴⁹/₄₉ of immunotherapy can be categorised by level of benefit -the centenary
 ⁴⁹/₅₀ 864
 ⁵¹/₅₂ 865
 ⁵¹/₅₂ 865
 - ⁵⁴ 867 86)Cox LS, Murphey A, Hankin C.The Cost effectiveness of allergen
 ⁵⁶ 868 immunotherapy compared with pharmacotherapy for treatment of allergic rhinitis and
 ⁵⁷ asthma. Immunol Allergy Clin North Am. 2020;40(1):69-85.
 - ⁵⁹ 60 870

⁵³866

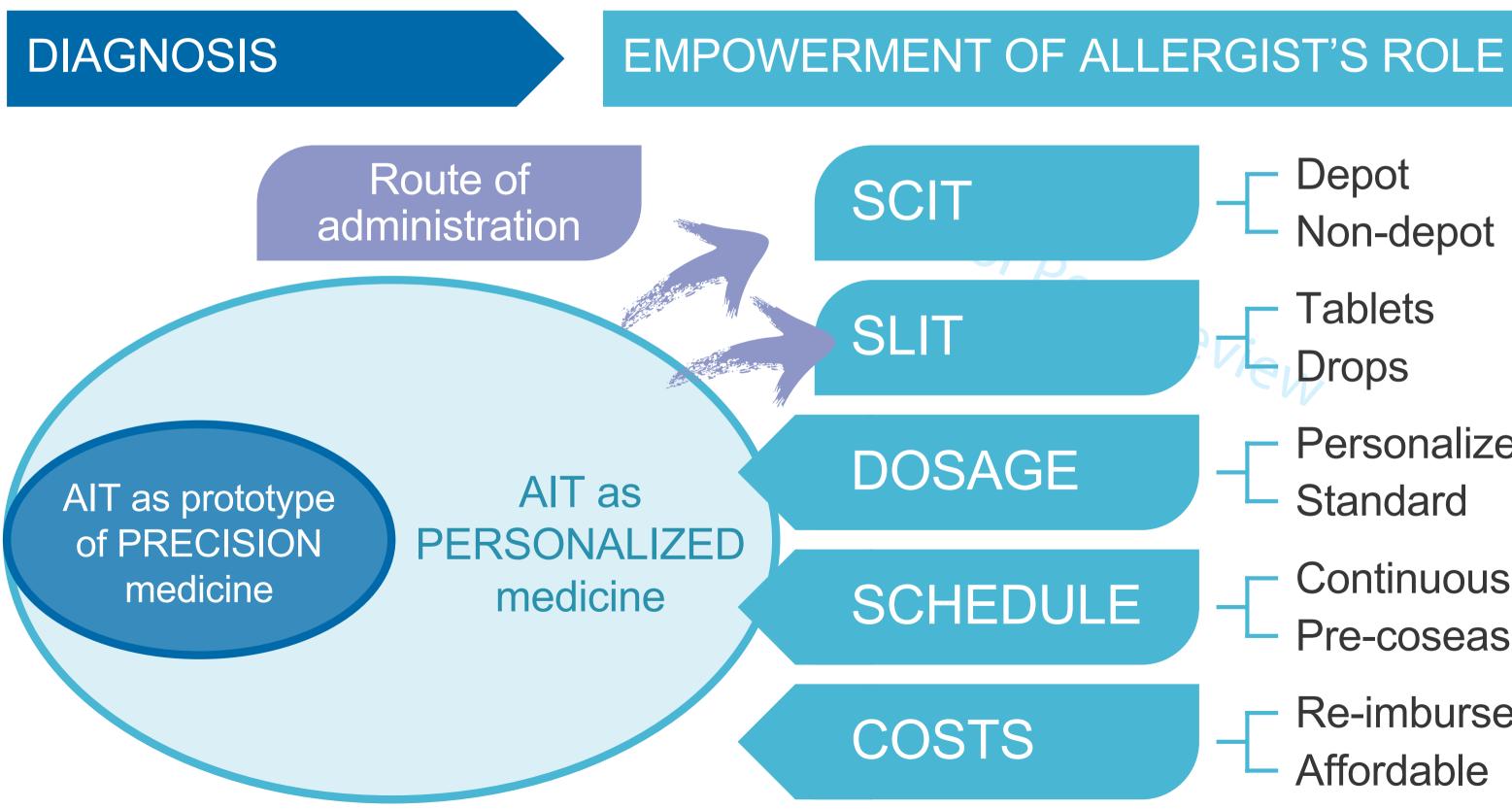
1 2

13842

20846


²⁴ 25 849

2 3 871 5 872 6 873 8 874	87)Krishna MT, Knibb RC, Huissoon AP. Is there a role for telemedicine in adult allergy services?.Clin Exp Allergy. 2016;46(5):668-77.
¹⁰ 875 11 12 876 13 14 877 ¹⁵ 878 16	88) Gómez RM, Ansotegui I, Canonica GW. Will precision medicine be available for all patients in the near future? Curr Opin Allergy Clin Immunol. 2019;19(1):75-80.
17 879 18 19 20 21 22 23 24 25	o ted .
26 27 28 29 30 31 32 33	
34 35 36 37 38 39 40 41	ALENA CZ
42 43 44 45 46 47 48 49	RHRE
50 51 52 53 54 55 56 57 58 59 60	



4

Figure 1 - Allergen Immunotherapy as personalized treatment

FINAL AIM

- Depot Non-depot
- Tablets
- Drops
- Personalized
- Standard
- Continuous
- Pre-coseasonal
- **Re-imbursed** Affordable

The **BEST** for patients

Long term Short term

Tools for personalized AIT

2 Validated tools for AIT

Clinical history

5

6

8

9

10 11 12

13 14 15

- Skin tests with allergen extracts
- Serum-specific IgE
- Component-resolved diagnosis
- CAP-inhibition (*limited*)

Tools still to be validated for AIT

- Basophil activation test
- Nasal cytology
- Nasal challenge with the suspected allergen

Tools of future applications

• Treatable traits (genetic, phenotypic, psychosocial features)

• Omics (proteomics, epigenomics, metabolomics, breathomics)