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Marc Alías-Rodríguez,∗a,b Miquel Huix-Rotllantb and Coen de Graafa,c

First row transition metal complexes with d4 to d7 electronic
configuration exhibit spin-crossover (SCO), which can be induced
by external stimulus such as temperature, pressure, light. The
low-spin to high-spin transition has been largely studied, but
very little is known about the reverse process. Here, we present
a theoretical study of thermal and light-induced high-to-low
spin crossover in prototypical Fe(II) complexes. The lifetime
of the high-spin state in the thermal process is determined
using Fermi’s golden rule. With this methodology, we have
accurately computed the transfer rate of the HS state thermal
relaxation at several time scales (from sub-nanosecond to a
few seconds) in two different iron complexes. The use of
quasi-degenerate perturbation theory (QDPT2) in the analysis
of the LS-HS spin-orbit coupling have allowed to identify 3T1

as the main intermediate state coupling LS and HS states.
The light-induced process has been studied using wavepacket
quantum dynamics along the main vibrational coordinates (one
symmetric and two asymmetric Fe-N stretchings). The study
suggests that after the initial excitation from 5T2g to 5Eg state,
the population is transferred back to a vibrationally hot 5T2g

from which a small amount of population is transferred to the
1A1g via the intermediate 3T1g. Most of the population re-
mains trapped in the HS state at the time scale of the simulation.

Spin-crossover (SCO) is a molecular phenomena wherein the
spin state of the system changes because of an external stimulus
such as pressure, temperature, light irradiation or the influence
of a magnetic field. This process commonly takes place from the
diamagnetic thermally stable low-spin state to the paramagnetic
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meta-stable high-spin state. Despite SCO can be observed in some
molecules,1,2 the phenomena is typically appreciated in d4 to d7

first row transition metal complexes.3–5

Among the different transition metal complexes exhibiting
spin-crossover, Fe(II) complexes have probably been the most
widely studied ones. Fe(II) has a d6 valence configuration and
is usually presenting a (quasi-)octahedral coordination.6–9 In fer-
rous complexes, the magnetization varies between the diamag-
netic singlet electronic state (S=0) and the paramagnetic quintet
electronic state (S=2).

The magnetic bistability gives to these complexes a wide range
of possible applications such as thermochromic paints, molecular
switches or nanophotonic devices to name a few.10 For techno-
logical uses, low and high spin states must show a reasonable
lifetime in the working temperatures, ideally room temperature.
The lifetime of meta-stable high-spin states strongly depends on
their adiabatic energies which makes it vary from a few picosec-
onds to several seconds or even days.

Hauser et al. described the thermal relaxation of the high-spin
state as a tunneling process, which does not need to overcome the
classical barrier.11 They approximated the quantum mechanical
expression for the rate constant in a tunneling process, assuming
that the LS-HS spin-orbit coupling is a fixed value of 150 cm−1,
the vibrational frequency along the Fe-N symmetric stretching is
for both the HS and LS states 250 cm−1 and these states are only
displaced along this mode at a constant distance ∆rHL ≈ 0.2Å.
The so-obtained analytical expression to determine the rate of the
high-spin to low-spin transition depends only on the adiabatic en-
ergy difference between these states, and is known as the energy
gap rule. This approach was validated for isotropic complexes,
for which the reaction coordinate is mainly a totally symmetric
Fe-N breathing mode such as [Fe(bpy)3]2+.

The light-driven mechanism for the formation of the HS state
in SCO complexes, (commonly known as light-induced excited
spin state trapping, LIESST) has been largely studied in Fe(II)
complexes using [Fe(bpy)3]2+as prototype complex. Auböck et
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al. determined a direct transfer from the metal to ligand charge
transfer (1,3MLCT) band to the 5T state in the sub-50-fs time scale
through ultrafast pump-probe spectroscopy.12 Zhang et al. based
on X-ray emission spectroscopy concluded that the population of
the 5T state was in two sequential steps, 1,3MLCT−→3T in 150 fs
and 3T−→5T in 70 fs.13 From a theoretical perspective, one of us
performed several studies based on Fermi’s golden rule. The de-
activation path via the 3MC states was confirmed in the symmet-
ric structures,14 but the presence of geometrical distortions re-
opened the direct transfer from the 1,3MLCT band, becoming both
paths competitive.15 Recently, Pápai published a study about the
LIESST in [Fe(NCH)6]2+, where only MC states play a role, based
on quantum dynamic simulations.16 He constructed a vibronic
Hamiltonian along the three main modes (Fe-N stretchings) and
determined an ultrafast first ISC 1T1g −→3T2g in 100 fs and a sec-
ond slower ISC to the 5T.

Despite the important amount of LIESST studies, of which
only a few are mentioned in the above paragraph, the num-
ber of studies on the reverse process is scarce. Marino et al.
studied the reverse-LIESST after the excitation to the 5Eg in
[Zn1−xFex(ptz)6](BF4)2, where ptz=1-propyltetrazole, using ul-
trafast pump-probe spectroscopy.17 Following the time-resolved
excited-state absorption (ESA), they established that two differ-
ent transitions are involved in the process, whose rates were de-
termined by a double exponential fitting. The first one was at-
tributed to the 5Eg −→3T1g in 1.7 ps ISC and the second to the
3T1g−→1A1g in 39 ps. The quantum yield was determined to be 0.1
for the reverse-LIESST and 0.8 for the LIESST in [Fe(ptz)6](BF4)2

at 10K, with a branching ratio 3T1 −→5T2/3T1 −→1A1 of 4:1.18

Fig. 1 Schematic diagram of the main electronic states involved in
thermal HS−→LS transition in [Fe(bpy)3]2+(top) and in the thermal and
photoinduced relaxation in [Fe(mtz)6]2+(bottom).

In the current study, we simulated the thermal and
light-induced conversion from the high-spin to low-spin in
[Fe(bpy)3]2+, where bpy=2,2’-bipyridine and [Fe(mtz)6]2+, mtz
= 1-methyl-1H-tetrazole. Two different processes have been
studied, the HS−→LS thermal relaxation and the photophysical
process upon the absorption of a photon from the HS (5T2g −→Eg),
i.e. the reverse-LIESST. The study of the thermal process is
based on Fermi’s golden rule and the photo process has been
performed using wave-packet quantum dynamics with a vibronic
model Hamiltonian.

Thermal relaxation. The HS−→LS direct transfer has been
studied in two Fe(II) complexes with significantly different HS-
LS relative energies. [Fe(bpy)3]2+is a commonly studied complex
with short-living HS state and [Fe(mtz)6]2+is either a paramag-
netic or diamagnetic complex depending on the temperature. The
intersystem crossing rate has been calculated using the Fermi’s
golden rule within the Condon approximation, which allows to
express the rate as a direct product between the vibrational over-
lap and the (effective) spin-orbit coupling.

ka→b
ISC =

2π

Ωa
∑
α

∑
γ

∣∣〈ψα
a |ĤSO|ψ

γ

b

〉∣∣2 ∑
j=0,k
| 〈{νa j}| |{νbk}〉 |2δ (Ea j−Ebk)

(1)
Herein ψα

a and ψ
γ

b are the spin-free electronic wave functions
where a and b label electronic states of different multiplicity and
α and γ are, respectively, the MS-components of the initial and fi-
nal states. j and k are the vibronic levels, Ea j and Ebk are, respec-
tively, the energies of the electronic state a in vibrational level j
and electronic state b in vibrational level k, Ebk=Eb+(k+1)h̄ωk/2.
Ωa is the degeneracy of the initial state and 〈{νa j}| |{νbk}〉 is the
two-center Franck-Condon integral. Note that this is the vibra-
tionally cold approximation and the vibrational level of the initial
state is fixed, j=0.

The effect of temperature is taken into account by the introduc-
tion of the Boltzmann distribution in the initial vibronic states.

ka→b
ISC =

2π

ZΩa
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γ

b

〉∣∣2
×∑

j,k
e−βE j | 〈{νa j}| |{νbk}〉 |2δ (Ea j−Ebk) (2)

where Z = ∑ j e−βE j is the canonical partition function for vibra-
tional term in the initial state, E j is the vibrational energy of the
level j and β is 1/(kBT), in which kB is the Boltzmann constant.

We have mainly used the time-dependent approach, obtained
after Fourier transform the δ function in Eq. 1, implemented in
the VIBES program.19 Then, the rate is determined analytically
and the number of grid points and the spacing between them to
perform the discrete Fourier transform were selected upon con-
vergence of the correlation and cumulant functions. In one case,
we have used the time-independent approach for comparison. η ,
the threshold that determines the number of vibronic states in-
cluded, was chosen as 1000 cm−1 after some testing of its influ-
ence. The basic ingredients for these calculations of the rates are:
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i) the vibrational normal modes and frequencies of the states to
account the vibrational overlap; ii) the adiabatic electronic energy
difference between the states, and iii) the modulus of (effective)
spin-orbit among the different spin components of each state.

The vibrational modes and frequencies are computed after a
geometry optimization for the lowest singlet (LS) and quintet
(HS) states using the TurboMole package.20 The Perdew-Becke-
Ernzerhof (PBE0) hybrid functional is used in combination with
the triple-ζ valence polarized Gaussian-type basis set, def2-TZVP.
Two-electron integrals are approximated by the resolution of
identity (RI) using the auxiliary basis def2-universal-JFIT. The
hessian matrix is calculated through analytical second derivatives
and no symmetry restrictions are imposed during the optimiza-
tion procedure.

The B3LYP adiabatic energies are unfortunately not accurate
enough in Fe(II) complexes to be used for further analysis. There-
fore, we determine the adiabatic energies with CASPT2 and shift
the DFT potentials accordingly. Unfortunately, the DFT minimum
considerably differs from the CASPT2 one and we carry out a
relaxed scan along the main reaction coordinate, the Fe-N sym-
mmetric stretching. The geometries at each point are optimised
through a constrained optimization at B3LYP/def2-SVP level. C2

symmetry is imposed in the case of [Fe(bpy)3]2+ and no symme-
try restrictions are applied in [Fe(mtz)6]2+. The Fe-N distances
for the LS and HS states in the relaxed scan minima are in good
agreement with the (XMS-)CASPT2 fully optimized geometries
by Finney et al.21 Further information about the relaxed scan is
found in SI.

CASPT2 calculations are performed using (Open)Molcas.22

The basis sets used are ano-rcc type with the following contrac-
tions: (7s6p5d4f3g2h) for the Fe, (4s3p1d) for N bonded with
Fe, (3s2p) for C and the other N and (2s) for H atoms. Cholesky
decomposition for the two-electron integrals is used to speed up
the calculations. The reference wave function is a CASSCF state-
averaged (SA) wave function, including the four lowest states for
the singlets, the six lowest for the triplets and the five lowest
for the quintets. The active space is formed by 10 electrons dis-
tributed over 12 orbitals, three more orbitals are added to those
calculations that include MLCT states. The molecular orbitals for
these systems are well-established23,24 and include two σ orbitals
mainly corresponding to a small bonding interaction between lig-
ands and Fe, the three 3d (t2g) orbitals of Fe, the two 3d (eg)
orbitals of Fe with a small anti-bonding contribution respect to
the ligands, an additional set of five 4d orbitals on Fe to intro-
duce radial electron correlation25. The influence of the MLCT
states has also been studied expanding the active space by in-
cluding three π* orbitals corresponding to the aromatic system of
the ligands. The perturbational treatment is carried out in all the
electrons except the deep core ones Fe (1s2s2p), C and N (1s)
and an imaginary shift of 0.15 Eh is used.

The spin-orbit coupling is calculated using Molcas22 in the
singlet-quintet minimum energy crossing point geometry and in
several conformations of the metadynamics for the LS and HS in
[Fe(bpy)3]2+Ṫhe settings for CASPT2 calculations are the same as
for the adiabatic energy differences. The direct coupling is deter-
mined using the effective one-electron Douglas-Kroll-Hess (DKH)

Hamiltonian. The off-diagonal spin-orbit matrix elements are cal-
culated by state interaction26 using the CASSCF wave functions
and the diagonal matrix elements are replaced by the CASPT2
energies. The direct coupling between states with ∆S=2, such as
singlet and quintet states, is strictly zero using the standard ef-
fective one-electron spin-orbit operators such as the DKH Hamil-
tonian. However, these states may have a non-vanishing effec-
tive coupling through intermediate states, which are states with
non-zero direct coupling simultaneously with both states. In this
case, triplet states can couple singlet and quintet states simulta-
neously. The effective Hamiltonian is constructed using the or-
thonormalised projections of SO wave functions Ψ̃⊥k and their re-
spective eigenvalues Ek using Bloch’s formula.

HSO,e f f
i j = 〈ψi| ĤSO,e f f |ψ j〉= 〈ψi|

[
∑

k∈S0

|ψ̃⊥k 〉Ek 〈ψ̃⊥k |

]
|ψ j〉 (3)

Herein, Ψ̃⊥k is the des Cloizeaux orthonormalised spin-orbit wave
function expressed in the basis of the spin-free states {ψ} span-
ning a smaller subspace S0 and Ek are the spin-orbit energies.

The effective Hamiltonian theory is an accurate an elegant way
to determine effective couplings but it is difficult to extract infor-
mation about the intermediate states that allow the coupling. For
this reason, the weight of the intermediate triplet states in the
singlet-quintet coupling was studied using second order Quasi-
Degenerate Perturbation Theory (QDPT2) in different conforma-
tions. QDPT2 allows to decompose the spin-orbit coupling as a
sum over the different intermediate states.

HSO,QDPT 2
i j = 〈ψi| ĤSO |ψ j〉+ ∑

µ 6=i, j

〈ψi| ĤSO |ψµ 〉〈ψµ | ĤSO |ψ j〉
Eµ −E j

(4)

Here, {ψ} are the spin-free states and {E} the spin-free energies.
ψi and ψ j are, respectively, the singlet and quintet states and ψµ

the intermediate states.
The results in Table 1 show that 3T1g, the lowest set of 3MC

states, have the largest influence in the coupling of the singlet
and quintet states. This can be easily rationalised because it is
the intermediate state closest in energy to the singlet and quintet
and has a strong direct coupling with both states. In addition, the
decomposition also showed an almost negligible influence of the
3MLCT states in the coupling of the 1A1g and 5T2g states.

Table 1 also show discrepancies between the effective Hamilto-
nian theory and the quasi-degenerate perturbation theory. These
differences are mainly associated to two intrinsic characteristics
of the perturbative method used. The first is that QDPT2 loses
accuracy when the initial and final states have larger energy dif-
ferences. Eq. 4 shows that the larger the difference between Ei

and E j, the larger the difference becomes between Hi j and H ji.
The relative similarity of the couplings with both methods in the
ISC geometry where singlet and quintet are quasi degenerate in
comparison with the disagreement in most of the conformations
where the energy difference is larger helps to corroborate this
observation. The other shortcoming is that in QDPT2 the interac-
tions are expanded up to second order and only the interactions
through one intermediate state are accounted for, while all higher
order terms are taken into account in the effective Hamiltonian
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Table 1 Influence of the intermediate states in the singlet-quintet spin-
orbit coupling for [Fe(bpy)3]2+. All the couplings and energies are ex-
pressed in cm−1.

Conf. ψµ HSO
Sµ

HSO
µQ γSµQ HSO

QDPT HSO
eff ∆E

ISC
3T1g 529 284 20.8

21.8 32.7 -1863T2g 55 232 1.0
ISC* 3T1g 548 449 27.9

29.0 29.9 -3173T2g 56 248 1.0
3MLCT 25 58 0.03

1a
3T1g 526 252 40.3

42.3 30.1 26153T2g 92 291 1.9

2a
3T1g 516 464 32.2

34.4 28.2 6963T2g 123 275 2.2

1b
3T1g 524 465 19.4

20.6 43.0 -56233T2g 70 294 1.1

2b
3T1g 519 452 23.8

25.4 37.0 -31683T2g 99 273 1.6
∆E=E(HS)-E(LS) in cm−1

ISC*: CAS(10,15); active space formed by 10 electrons distributed over 15 orbitals.
γSµQ is the 2nd order perturbative correction from state µ.

HSO
Sµ

and HSO
µQ are the average matrix elements 〈ψS| ĤSO |ψµ 〉 and 〈ψµ | ĤSO |ψQ〉,

respectively.
The labels a and b refers to conformations from the singlet and quintet

metadynamics simulations, respectively.

theory.
The influence of the thermal disorder in the spin-orbit coupling,

and therefore, in the intersystem-crossing rates was also studied.
Previously, it was demonstrated by one of us that the geometri-
cal distortions have a strong effect on the size of the coupling,
especially when MLCT states are involved. These changes in the
couplings changed the rates of some of the intersystem-crossings
by a few orders of magnitude in Fe(II) polypyridinal complexes.15

However, in the case of the 1MC-5MC coupling, the effect of ge-
ometrical distortions is almost negligible, giving in all the con-
formations the same order of magnitude for the couplings and,
therefore, the rates (or lifetimes).

Table 2 Singlet quintet effective spin-orbit coupling in cm−1 at different
conformations and its corresponding lifetime using different approaches
in [Fe(bpy)3]2+.

T = 0K T=300K T=0K
Sys. Conf. HSO,eff τ /ns τ/ns τFC

bpy

ISC 32.7 77.9 2.14 -
ISC(10,15) 29.9 92.8 2.54 -

1a 30.1 91.7 2.51 -
2a 28.2 104.7 2.87 -

Avg.(a) 28.1 106.1 2.9 -
1b 43.0 45.0 1.24 -
2b 37.0 60.7 1.66 -

Avg.(b) 37.5 61.1 1.67 -
mtz ISC 31.4 8.9 s - ∼10 years

(a) Average of the ten structures extracted from the singlet metadynamics.
(b) Average of the ten structures extracted from the quintet metadynamics.
The labels a and b refers to conformations from the singlet and quintet simulations,
respectively.

The results show that the spin-orbit coupling strength is almost

identical for both complexes. However, the HS-LS vibrational
overlap is completely different in the two complexes, what is
the responsible for the different HS lifetimes in these complexes.
Temperature is also important an important factor; the rates at
300 K are one order of magnitude faster than those at 0K us-
ing the vibrationally cold approximation. The HS state lifetime in
[Fe(bpy)3]2+computed with the methodology described here is in
good agreement with the 700 ps determined by Consani et al. for
the same complex in aqueous solution27, while the very slow ISC
rate for [Fe(mtz)6]2+is indicative of a stable HS spin, as observed
in experiment. Fermi’s golden rule methodology is presented as
an appropriate method to determine the order of magnitude of
the HS state lifetime in Fe(II) complexes.

Photophysical relaxation. The reverse-LIESST is studied
from the 5Eg state, after an excitation from the high spin state
(5T2g −→5Eg). The process is studied in [Fe(mtz)6]2+because of
the large HS state lifetime in this complex and the presence of
experimental studies in an analogue complex, [Fe(ptz)6]2+.17 In
the high-spin minimum geometry, the 5MLCT states are clearly
higher in energy than the 5MC states, therefore the former are
highly unlikely to play a role in the deactivation and only the lat-
ter are included in the study. The reverse-LIESST was in a first at-
tempt studied using Fermi’s golden rule, as a follow-up of the sat-
isfactory results reported in the literature for the singlet-quintet
conversion. The only energetically favourable intersystem cross-
ing transition from the 5Eg state to the triplets is the 5Eg −→3T1g.
However, the rate for this transition using the Fermi’s golden rule
is about a few miliseconds, several orders of magnitudes slower
than the experimental reported value of 1.7 ps. For this reason,
the process is studied using wave-packet quantum dynamic simu-
lations with a vibronic model Hamiltonian.

The simulations are carried out with the Multi-Configuration
Time-Dependent Hartree (MCTDH) method (Heidelberg package,
version 8.5.13).28 The basis of the method is to solve the time-
dependent Schrödinger equation using the following ansatz for
the nuclear wave function:

Ψ(q1,q2, . . . ,qp, t) =
n1

∑
j1=1

...
np

∑
jp=1

A j1... jp(t)
p

∏
k

ϕ
(k)
jk (qk, t) (5)

Herein, A j are the expansion coefficients and ϕ j are the single-
particle functions (SPFs), which are linear combinations of primi-
tive functions. In this case, the primitive functions take the shape
of the n j ’s lowest solutions for an harmonic oscillator. The multi-
set formalism is employed, where a different wave function is
written for each state

Ψ
m(q1,q2, . . . ,qp, t) =

σ

∑
α=1

Ψ
(α)|α〉 (6)

where σ is the number of electronic states. We have included 5
SPFs for each state along each mode and 151 primitive functions
for each mode.

The vibronic-coupling model Hamiltonian takes the following
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shape:

Ĥ({q}) =
2

∑
S=0

NS

∑
n=1

|S|

∑
α=−|S|

[(
TN({q})+V S

n ({q})
)
|nS,α 〉〈nS,α |

+
NS

∑
n′ 6=n

W NA
n,n′,S({q})|nS,α 〉〈n′S,α |

]

+
2

∑
S=0

NS

∑
n=1

|S|

∑
α=−|S|

2

∑
S′=1

NS′

∑
n′=1

|S′|

∑
α ′=−|S′|

[
W SO

nSα,n′S′α ′ |nS,α 〉〈nS′,α ′ |

+W SO,∗
n′S′α ′,nSα

|n′S′,α ′〉〈nS,α |
]

(7)

Herein, S is the spin quantum number, NS is the number of
states with S spin quantum number and α is the MS component.
TN({q}) is the nuclear kinetic energy, VS

n({q}) is the diabatic po-
tential, WNA

n,n′,S({q}) is the non-adiabatic coupling and WSO
nSα,n′S′α ′

and its hermitian conjugate WSO,∗
nSα,n′S′α ′ are the spin-orbit coupling

terms. Note that in our model spin-orbit is coordinate indepen-
dent while the other terms are coordinate dependent.

The nuclear kinetic energy is defined (in atomic units) as

TN =−
Nvib

∑
i

ωi

2
∂ 2

∂q2
i

(8)

where ωi is the frequency of the HS state in mode i and Nvib is the
number of vibrations included in the model Hamiltonian..

The diabatic potential is defined using a quartic polynomial ex-
pression

V S
n = ES

n +
Nvib

∑
i

4

∑
j=1

1
j!

kn,S
j,i q j

i (9)

Here ES
n is the diabatic energy for the state n with spin S at the

Franck-Condon region and kn,S
j,i is the jth expansion term along

vibrational mode i for this state.
The non-adiabatic coupling term is described as

W NA
n,n′,S =

Nvib

∑
i

λ
n,n′,S
i qi (10)

where λ
n,n′,S
i is a linear-expansion coefficient for the non-

adiabatic coupling between states n and n’ with spin S along mode
i.

The spin-orbit coupling term is defined as follows

W SO
nSα,n′S′α ′ = 〈nSα |ĤSO|n′S′α ′〉 (11)

where ĤSO is the DKH Hamiltonian, 〈nSα | is the state n with spin
S and MSα and |nSα 〉 is the state n’ with spin S’ and MSα ’.

The model is constructed by the expansion along the most rep-
resentative modes of the HS state optimized at PBE0/def2-TZVP
level and includes the electronic states 1A1g, 1T1g, 3T1g, 3T2g, 5T2g

and 5Eg, which generates a model of 47 states taking into account
the spatial and spin symmetries. The terms for the Hamiltonian
are obtained through a fitting procedure of the XMS-CASPT2 en-
ergies. These calculations are carried out using an active space
of 10 electrons distributed over 12 molecular orbitals. The per-

turbative treatment of the electron correlation is applied to all
electrons except the deep core ones Fe (1s2s2p) and C, N (1s)
and the 30 highest orbitals. An imaginary level shift of 0.25 Eh

is applied to avoid intruder state problems. From the adiabatic
energies along the main modes, we obtain the diabatic energies
as a quartic polynomia and the non-adiabatic couplings between
states of the same MS value within the linear-expansion approxi-
mation. The off-diagonal terms between states of different MS are
included with the spin-orbit coupling at the DFT optimised ge-
ometry. The nuclear kinetic energy operators in mass-frequency-
weighted coordinates are added using the frequencies of the HS
state at DFT level. The simulations are initialised after a relax-
ation of the wave-packet in the 5T2g state, which starts the dy-
namics at the minimum energy geometry of the HS state and the
wave-packet is distributed over the different components of the
5Eg state according to the oscillator strengths. Further (numeri-
cal) information about the couplings is given in the SI.

The selected normal modes are chosen based on those modes
with the largest reorganization energy connecting the minima of
the different states involved in the process. The difference be-
tween the optimized geometries for each state at DFT level is pro-
jected into the HS state normal modes, following the expression

qA
k = ω

1/2
k ∑

l
LHS

kl m1/2
l (RA,l −RHS,l) (12)

Herein, qA is the normal mass-frequency-weighted Cartesian co-
ordinate expanding the geometrical differences between state A
and the HS state projected in the basis of HS state reference nor-
mal modes. ml the mass of atom l, RA and RHS are the Cartesian
geometries for states A and the HS state, respectively and LHS is
the matrix that contains the eigenvectors of the HS state normal
modes.

Table 3 Coordinates qA of the main electronic states involved in reversed
LIESST projected on the HS state normal modes. In parenthesis the
value of qA, those modes with values larger than 1 are reported here.
The modes in the reaction coordinate are in bold.

Included modes Excluded modes

1A1g-5T2g
42 (-8.95), 30 (-1.99) -
10 (1.72), 39 (1.63)

3T1g-5T2g
42 (-4.28), 31 (2.50), 29 (-2.05), 165 (1.79)

33 (2.34) 11 (-1.11)
5Eg-5T2g

42 (3.89), 31 (-3.42) 29 (2.97), 11 (2.00)
33 (-1.36), 10 (-1.28) 21 (1.31), 28 (-1.17)

According to this analysis, there are three main modes repre-
senting the reverse-LIESST. These modes have Fe-N stretching
character, q42 is the symmetric motion and q31 and q33 corre-
spond to Fe-N asymmetric stretching vibrations, which are spe-
cially important for Jahn-Teller active states. This model with
three Fe-N modes coincides with the one proposed by Pápai in his
study of the LIESST for [Fe(NHC)6]2+. In our model, we include
the two asymmetric modes q31, q33 and the reaction coordinate
mode (qrc) that connects HS and LS geometries which is a com-
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Fig. 2 Schematic motions and diabatic potentials along the modes q31,
q33 and qrc. 1A1g in black, 1T1g in cyan, 3T1g in green, 3T2g in gold, 5T2g
in red and 5Eg in violet. The different components are represented with
solid, dashed and dotted lines.

bined mode described as:

qrc = 0.95q42 +0.21q30−0.18q10−0.17q39 (13)

This reaction coordinate mode describes the Fe-N symmetric
breathing (qrc) but slightly assisted for N-Fe-N bending modes
(q30, q10, q39) which aids to adapt the N-Fe-N angles to each Fe-N
distance.

The reaction coordinate mode does not break the pseudo-Oh

symmetry. In this mode, the triple degeneracy of 1T1g, 3T1g, 3T2g,
5T2g and the double degeneracy of 5Eg is maintained. The Fe-
N asymmetric stretching (q31) is described as a compression of
the four Fe-N distance for the N in the equatorial plane with an
elongation of the two Fe-N distances for the axial N. This breaks
the pseudo-Oh symmetry to a pseudo-D4h, which breaks the triple
degenerate states into doubly degenerate states and remove the
degeneracy for the 5Eg states. In the other asymmetric stretch-
ing (q33), the axial N remain in place while the two equatorial N
come closer and recede in pairs. After this motion, the pseudo-Oh

symmetry is broken to a pseudo-D2h that removes the degeneracy
for all the states.

The efficiency of an intersystem-crossing depends on the en-
ergy difference between a pair of states and the size of their cou-
pling. In this complex, the energetically accessible intersystem-

crossing from the 5Eg is the 5Eg −→3T1g. Near the absorption ge-
ometry, that is the 5T2g minimum, 3T1g is slightly lower in energy
than 5Eg, therefore, a crossing between these states is found after
the absorption. However, the gradients to the 5Eg minimum are
high and the system will evolve to this region where the energy
gap between the quintet and the triplet is large and the efficiency
of the ISC small. The transition to the 3T2g is discarded because
these states are above the 5Eg states in the absorption region.

Despite the energy gap does not seem to favour the ISC trans-
fer, this could still be efficient when there exists a large coupling
between the states. This is not the case for the 5Eg-3T1g coupling,
which is about 10 cm−1 in average at the 5T2g DFT minimum. The
small coupling can be easily rationalized observing the two elec-
trons of difference in the main configurations of the 5Eg(t3

2ge3
g)

and 3T1g(t5
2ge1

g), which are strictly uncoupled in the usual effec-
tive one-electron spin-orbit operator.

The minimum of the 5Eg is energetically far away from the
other states, 5Eg is lower in energy than 3T1g and above the 5T2g,
well separated from both. Despite the large energy gap with
these other states, the nuclear kinetic energy may bring the wave-
packet to regions with nearly degenerate 5T2g-5Eg, in a sloped
conical intersection. Unfortunately, this intersection could not
be determined because of the lack of an accurate computational
method to determine precisely at the same time geometries (for
the minima of states and minimum energy crossings) and ener-
gies at an affordable computational cost. The plausibility of the
crossing in the quintets is also not favoured by the energy differ-
ence between the states in the regions around the 5Eg minimum
but at least there is a strong coupling with values larger than 250
cm−1. This coupling is strong, as expected for the one-electron
of difference between the states in their dominant configurations
(t4

2ge2
g and t3

2ge3
g). These ingredients induce to think that the most

favourable transition is the 5Eg −→5T2g.

The evolution of the diabatic population (Fig. 3) shows that
almost half of the population of the 5Eg is rapidly transferred to
the 5T2g state. Then, part of the remaining population in the
5Eg evolves to the 5T2g when the wave-packet visits regions with
small energy gap between both states. From, this state part of the
population is gradually transferred to the 3T1g, above 10% in 2
ps, from which the LS may be populated. This last event is not
appreciated in our dynamics because it happens in a larger time
scale than our simulation time.

Our results indicates a faster 5Eg −→5T2g transition than exper-
imentally observed. This unexpectedly fast rate is probably be-
cause of the limitation of the model Hamiltonian. The complete
vibrational space is not represented but it is reduced to the three
main coordinates. Moreover, the diabatic coupling terms between
modes are not included in the model. These terms may be espe-
cially important in the description of Jahn-Teller modes. The lack
of this terms gives stronger gradients in the model and the wave-
packet may visit rapidly regions with small 5T2g-5Eg energy gaps
with high efficient population transfer. Unfortunately, the inclu-
sion of these terms dramatically increase the computational cost
of these calculations. In addition, the spin-orbit coupling is fixed
at the HS geometry and the variation along coordinates, vibronic
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Fig. 3 Time-evolution population of the diabatic states along the dy-
namics. The states are represented by the colours: 1A1g black, 1T1g cyan,
3T1g green, 1A1g gold, 5T1g red and 5Eg violet.

spin-orbit coupling, is not included in our model.
The quintet-quintet transition observed in the wave-packet

quantum dynamics is also determined by Fermi’s golden rule. The
calculated lifetime for the 5Eg at 0K is 2.3 ps, in good agreement
with the first transition determined by Marino et al. in Fe(ptz)6.17

Then, calculations at different level of theory point in the same di-
rection. The first transition into the reverse-LIESST process is the
relaxation to the 5T2g. After that, in a longer time scale, part of
the population is transferred from the vibrationally hot HS state
to the intermediate 3T1g and finally the 1A1g.

To conclude, we have applied two different methodologies to
study the thermal and photophysical conversions from the high-
spin to the low-spin state. The order of magnitude of the HS
state lifetime in the thermal relaxation process has been deter-
mined satisfactorily using Fermi’s golden rule. The influence of
the 3T1g as the main intermediate state coupling HS and LS has
been demonstrated, while the role of the 3MLCT states in this
coupling can be neglected. This rate theory has been used to de-
termine the HS state lifetime in Fe(II) complexes with nearly Oh

symmetry. This may be also tested to determine the HS state life-
time in complexes breaking the symmetry such as [Fe(terpy)2]2+,
where the empirical energy gap rule is not valid.11 The deter-
mination of the adiabatic energies is the key step in this process
and would be done using an appropriate DFT functionals or with
the recent algorithms to account for the (XMS-)CASPT229,30 op-
timization implemented in quantum codes such as BAGEL.

The calculations indicate that the intersystem-crossing from the
5Eg to the triplets in the reverse-LIESST is not favourable. The
mechanism that we propose according to the quantum dynamics
is 5Eg −→5T∗2g −→3T1g −→1A1g. The intersystem-crossing is produced
from the vibrationally hot, 5T∗2g which is formally as a thermal re-
laxation at an effective high temperature. This path could explain
the limitation on the results observed in Fermi’s golden rule when
it should work fine because it happens from the minimum of the
excited state due to the rate of the transition. This also would ex-
plain the two different rates reported in the reverse-LIESST and
the quantum yield reported by Marino et al.17 According to the

LIESST, the rate for the 3T1g −→5T2g/3T1g −→1A1g should be about
1.5 ps and the branching ratio 4:1. This does not compare with
the 37 ps and the quantum yield of 0.1 associated to these tran-
sitions. For this reason and based on our results, we propose an
alternative mechanism from the vibrationally hot 5T∗2g state. Our
results do not match completely with the experimental reported
rates, this may probably be associated with a limitation in our
model Hamiltonian. New improvements in the generation model
Hamiltonian such as the inclusion of diabatic coupling terms or
vibronic spin-orbit may be explored.
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