
HAL Id: hal-03613114
https://hal.science/hal-03613114

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Group interactions modulate critical mass dynamics in
social convention

Iacopo Iacopini, Giovanni Petri, Andrea Baronchelli, Alain Barrat

To cite this version:
Iacopo Iacopini, Giovanni Petri, Andrea Baronchelli, Alain Barrat. Group interactions modulate criti-
cal mass dynamics in social convention. Communications Physics, 2022, 5 (1), pp.64. �10.1038/s42005-
022-00845-y�. �hal-03613114�

https://hal.science/hal-03613114
https://hal.archives-ouvertes.fr


Group interactions modulate critical mass dynamics in social convention

Iacopo Iacopini,1, 2 Giovanni Petri,3 Andrea Baronchelli,4, 5, ∗ and Alain Barrat6, 7, ∗

1Department of Network and Data Science, Central European University, 1100 Vienna, Austria
2Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, 13009, France

3Mathematics and Complex Systems Research Area,
ISI Foundation, Via Chisola 5, 10126 Turin, Italy

4Department of Mathematics, City, University of London, EC1V 0HB, London, United Kingdom
5The Alan Turing Institute, British Library, 96 Euston Road, NW12DB, London, United Kingdom
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Abstract
How can minorities of individuals overturn social conventions? The theory of critical mass states
that when a committed minority reaches a critical size, a cascade of behavioural changes can occur,
overturning apparently stable social norms. Evidence comes from theoretical and empirical studies in
which minorities of very different sizes, including extremely small ones, manage to bring a system to
its tipping point. Here, we explore this diversity of scenarios by introducing group interactions as a
crucial element of realism into a model for social convention. We find that the critical mass necessary
to trigger behaviour change can be very small if individuals have a limited propensity to change
their views. Moreover, the ability of the committed minority to overturn existing norms depends in
a complex way of the group size. Our findings reconcile the different sizes of critical mass found in
previous investigations and unveils the critical role of groups in such process. This further highlights
the importance of the emerging field of higher-order networks, beyond pairwise interactions.

INTRODUCTION

The theory of critical mass argues that apparently
stable social conventions can be overturned by a minority
of committed individuals if such minority reaches a
critical size [1–3]. In this view, the power of small factions
comes not from their authority or wealth but from the
commitment to the cause and also, crucially, from their
size. Evidence from different contexts however shows a
wide range of possible sizes. On the one hand, several
studies have found that rather large minority sizes were
required to overturn a majority. Qualitative analyses of
gender conventions in corporate leadership roles have
hypothesised that a critical mass of 30% of the population
is necessary in order for the tipping point to be reached
[4, 5]. Related observational work has proposed a higher
critical mass size approaching 40% of the population
[6]. Controlled experiments of social coordination have
brought empirical evidence for tipping points in the
dynamics of social conventions, finding a critical threshold
of 25% of the population [7]. On the other hand, numer-
ous observations suggest that even a minority counting
just tens of committed individuals, and not significant
fractions of the population, may trigger abrupt social
and normative change. Social movements [8] offer several
examples in this sense (see [9–11] and examples therein),
and a data-driven analysis of linguistic norm change in
English and Spanish pointed that committed minorities as
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small as 0.3% of the population can impose their view [12].

To understand the origin and nature of critical masses,
several frameworks have been proposed to investigate
their role in human behaviour, the dynamics of opinions,
and the emergence of norms and consensus, starting from
simple models inspired by statistical physics[13–17]. In
particular, the naming game (NG) model has been influ-
ential in the theoretical description of the emergence of
social norms [18–20]. The model describes how a shared
convention can emerge in a population of agents that
interact locally with their peers, without any central co-
ordination. It has brought theoretical support to the
tipping points hypothesis, as a critical mass of 10% was
shown to be able to induce norm change in this model [3].
Subsequent generalisations of this model yielded critical
mass varying between 10% and 40% of the population
depending on the strength of individual commitment [21].
Adding further ingredients to the model, it was even possi-
ble to obtain vanishing sizes for the critical masses [22–26].
However, despite the wide range of observed critical mass
sizes and of potential theoretical descriptions, little at-
tention has been devoted to the problem of explaining
how the initial group building up the critical mass itself
emerges and what are its structural and dynamical de-
terminants. Qualitative hypothesis include the existence
of an intermediate phase composed by an initially small
core of committed individuals able to recruit the missing
mass of peers necessary to trigger a behavioural cascade
[27]. To this aim, small groups could exploit the role of
high-resource individuals to mobilise the masses [28], ho-
mophily and local coalition formation [27], or the role of
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non-committed individuals sitting at the periphery of the
social network (‘slacktivists’) [29]. In all cases, the effect
of small groups–and group interactions–can be determi-
nant. Indeed, group interactions are the building blocks
of real-world social systems, from discussions in real life
between a group of friends to collaboration networks,
and including online discussions on online social media
and forums, which can involve large numbers of individ-
uals [30–34]. Recent works in complex systems research
have focused on taking into account these more realistic
higher-order (non-pairwise) interactions [35–41]. This in-
cludes models of opinion dynamics such as the majority
rule [42, 43], or extensions of other models describing
social and evolutionary dynamics to hypergraphs [44–48],
leading to important changes of dynamical behaviour. For
instance, group interactions can dramatically alter social
contagion dynamics and lead to a rich phenomenology
including abrupt transitions, bi-stability and critical mass
phenomena [49].

Here, we investigate the role of group interactions on
critical mass effects. To this aim, we extend the widely
adopted naming game framework, which has been shown
to explain the outcome of controlled experiments [7], to
account for more realistic interaction patterns and dy-
namics. We improve the modeling along three directions.
First, we propose a model to describe norm evolution upon
group interactions between any number of agents. We
thus encode these many-body interactions into the hyper-
links of a hypergraph [50], which provides a more faithful
representation of real-world social structures [36, 40], and
define new rules for group agreement. Second, we take
into account that social influence is in general not perfect
[51–53]. Thus, individuals may successfully interact with
one another without necessarily converging on a norm
adoption as a result of the interaction. More specifically,
while in the standard naming game model a successful co-
ordination is followed by a certain and exclusive adoption
of the norm that allowed the coordination [16, 18] (perfect
social influence [54]), here individuals may be reluctant
to let go of alternative conventions even when they suc-
cessfully manage to coordinate with one another on a
specific norm. Third, we inform the model with a variety
of real-world data concerning the structure of empirical
social networks and their microscopic (non-pairwise) in-
teractions. This represents an improvement with respect
to standard all-to-all, pairwise, or synthetic approaches.
Taken together, these three advances contribute towards
a more realistic representation of both social interactions
and dynamics. Extensive numerical simulations of this
model on empirical data and synthetic hypergraphs show
that the critical mass required to induce norm change is
dramatically reduced when non-committed members of
the population are not fully susceptible to social influ-
ence. We also find a rich phenomenology in which groups
modulate the takeover by helping sustaining the view of
the minority. In particular, we unveil a non-monotonic

dependency in the long term dynamical output: interac-
tions in very small or very large size turn out to be more
favourable to the committed minority than interactions
in groups of intermediate size. Our results hold when
considering data from very different social contexts and in
a simplified version of the interaction structure, for which
we develop an analytical mean-field approach, allowing
us to get further insights and study the interplay between
social influence and size of the committed minority.

RESULTS

The Framework

In order to include a more realistic description of social
interactions, we generalise the standard NG by consid-
ering that agents can interact not only in pairs but also
in groups of arbitrary size. Groups are indeed the most
natural units through which individuals engage with each
other in social contexts [30–32, 34], and it has been shown
that considering these higher-order interactions may re-
veal a rich phenomenology [36, 41]. While the usual NG
considers that the agents are located on the nodes of a
network and interact along its links, we therefore encode
here the group interactions between the agents as the
hyperlinks of a hypergraph. This higher-order representa-
tion of the social structure, in which pairwise interactions
(links) [i, j] are called 1-interactions, expands the more
traditional representation offered by graphs by considering
relationships between any number of agents, such as 2-
interactions (triangles) [i, j, k], 3-interactions (tetrahedra),
etc: a hyperlink is simply a set of nodes [p0, p1, . . . , pk−1]
that conveniently represents a multi-body interaction be-
tween k nodes [36, 50].

The evolution rules of the game in the generalised set-
ting are the following. At each time step a hyperlink e is
randomly chosen and a speaker agent is chosen at ran-
dom among the nodes composing e. All the other nodes
participating in the same hyperlink act as hearers. The
speaker selects a random name, say A, from its current
vocabulary and communicates it to the group. In the
pairwise NG interactions, there is only one hearer and the
agreement can be reached if and only if the hearer has the
name A in its vocabulary. Here, the introduction of group
interactions requires the definition of a new generalised
condition on the group of hearers for an agreement to be
possible. Multiple options are obviously possible. The
strictest possible condition is that the agreement can be
reached by the group only if all the hearers have A in
their vocabularies. This agreement rule can be seen as a
unanimity condition rule between the hearers’ vocabular-
ies. On the other hand, the weakest condition would be
that an agreement can be reached provided at least one
of the hearers knows the name already. We call this the
union rule, as it is enough that the name is in the union of
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FIG. 1. Dynamics of the model. Agents are represented
by the nodes of a social structure composed by interacting
groups of different sizes. The vocabulary of the agents–for
simplicity containing at most only two names (or conventions)
{A,B}–is reflected in the colours of the nodes as shown in
the legend. At each interaction a group is chosen at random
(highlighted in yellow in the figure) together with a speaker
(node 1), while the remaining nodes act as hearers. Here we
illustrate the unanimity rule (see model definition). (a) The
speaker chooses a name at random from its vocabulary (here,
A), and communicates it to the rest of the group. Since A
is present in the vocabularies of all the hearers (nodes 2 and
3 support A, while node 4 knows both names), the group
can reach an agreement. (b) With probability β the group
agrees on the chosen name, and all nodes involved immediately
update their vocabulary to A, erasing B. With probability
1− β instead the agreement does not happen. (c) In this case,
the speaker selects A, but node 3 does not possess A in its
vocabulary. (d) Thus, there cannot be agreement in the group.
Nevertheless, all hearers update their vocabularies by adding
the heard name, i.e., node 3 switches from A to A,B.

the vocabularies of the hearers. The unanimity condition
seems more suitable when modeling consensus rule, as it
implies that all members of the interacting group need
to know a name to converge to it. On the other hand, in
the union rule, an alliance of two agents (the speaker and
one hearer) can make a group of arbitrary size converge.
We thus focus mainly on the unanimity condition rule in
the main text. We show the results for the union rule in
the Supplementary Note 2, and mention where relevant
how the results differ between the two rules. Intermedi-
ate rules such that a given fraction or number of hearers
need to have the name in their vocabularies could also be
considered.

In all cases, the propensity of the hearers to accept the
convergence to a consensus in the group is controlled by
a parameter β ∈ [0, 1] (notice that this parameter con-
tributes only when an agreement is possible) [20]. Thus,
if an agreement can be reached, two possibilities exist
[Fig. 1a]: (i) with probability β all the nodes of the consid-
ered hyperlink agree on the chosen name A and erase all
the other names from their vocabularies [Fig. 1b]; (ii) with
probability 1− β there is no convergence but the nodes
who did not have A add it to their vocabulary. When
agreement is instead not possible, all nodes who did not
have A add it to their vocabulary [Fig. 1c,d]. Thus, the
parameter β modulates social influence, i.e. the propen-

sity of individuals to change their behaviour to meet the
demands of a social environment. The smaller the β the
less the individuals participating are prone to change their
views in spite of the social influence mechanism [55–57].

Finally, we allow for the presence of a committed minor-
ity among the agents. The dynamics of these committed
agents does not obey to the aforementioned rules. Instead,
this fraction p of agents always sticks to the same name
and do not change it nor updates their vocabulary [3].
For simplicity of notations and consistency throughout
the manuscript, we assign to these agents the name A
(and we denote their fraction as Ac). We will also denote
with nx(t) the fraction of agents supporting name x at a
given time t, and with n∗x the corresponding values in the
stationary states reached in the long time regime.

Critical mass dynamics

We first show how the model allows for minority
takeover even in extreme cases. In Fig. 2a-c we show
an example of how a small minority, consisting here of a
single committed individual (0.3% of the population of
327 individuals), can overturn the majority. The example
reports the results of a single simulation (representative
of 95% of the runs we have simulated) of a NG with the
unanimity rule and β = 0.336. The considered empirical
social structure consists of face-to-face interactions–as
recorded by wearable sensors in a French high-school [61]–
and includes group interactions of sizes ranging from 2 to
5 (see Methods for details). The committed individual is
selected at random. We show in Fig. 2a visualisations of
the structure of interactions (showing for simplicity only
the links and not the groups of larger sizes) and of the
states of the nodes at several times during the simulation.
Figure 2b moreover shows the temporal evolution of the
fraction of nodes supporting a given name x (solid lines)
until the absorbing state with all nodes converging on A is
reached. The circular markers on the curves correspond to
the times at which the five configurations of Fig. 2a were
observed. In these visualisations, we distinguish the com-
mitted agent by a lighter orange cross (Ac). Notice that
this is the only node initially supporting A (nA(0) = 0),
while the remaining nodes are initially assigned the name
B (nB(0) = 1− p), represented by a blue colour. As time
evolves, the committed agent starts to spread name A
locally: The fraction of nodes supporting both names at
the same time (but without preference for either one, and
represented by white nodes) increases around the commit-
ted one, who converts a number of blue neighbours into
white nodes, that subsequently start to further diffuse the
name A. At later times, we observe a change in the slope
of nA(t): the fraction of nodes having adopted A starts to
rapidly increase up to the point when nA,B(t) reaches a
maximum and starts decreasing, while the initial minority
takes over.
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FIG. 2. Critical mass dynamics. (a) Illustrative example of a simulation of the Naming Game (NG) with unanimity rule
on an empirical social structure (Thiers13), where a minority Ac of one single committed individual supporting A–consisting
of 0.3% of the population of 327 individuals–overturns the stable social norms and reaches global consensus (under imperfect
communication, with social influence parameter β = 0.336). (b) Temporal evolution of the fraction nx(t) of nodes supporting
name x. Different solid lines correspond to different names, x = {A+Ac, B, (A,B)}. Dashed lines are reported as a benchmark,
representing the case with perfect communication (β = 1). (c) Temporal evolution of the normalised size of the largest connected
component (LCC) of nodes supporting name A (red curve) and nodes that have A (but not necessarily A only) in their
vocabulary (green curve). (d,e,f,g) Temporal evolution of the dynamics with committed minorities (p = 3%) on empirical
higher-order structures. The social structures are constructed from empirical data sets collected in six different context: a
workplace (InVS15) [58], a primary school (LyonSchool) [59], a conference (SFHH) [60], a high school (Thiers13) [61], email
communications (Email-EU) [62] and a political congress (Congress-bills) [63]. The temporal evolution of the densities of nodes
holding name A and holding both A and B are reported in panels (d,e) and (f,g), respectively, for two different values of the
parameter β quantifying the efficacy of reaching an agreement within a group, namely β = 0.28 (d,f) and β = 0.41 (e,g). The
results over different runs of stochastic simulations are reported as median values (solid lines) and values contained within the
25th and 75th percentiles (shaded areas).

Figure 2b shows also, as a benchmark, the outcome of a
simulation with the same committed individual but β = 1.
The associated temporal evolution, where the minority
remains as such (dashed lines), confirms the central role
played, in the minority takeover, by the parameter β
that encodes the propensity of individuals to accept the
convergence to a consensus in a group. Finally, Fig. 2c
shows the temporal evolution of the normalised sizes of the
largest connected component (LCC) of nodes supporting
name A (or Ac) and of the LCC of nodes that know
A, namely with vocabulary either A, Ac or A,B. More
precisely, we consider the subgraph induced by the nodes

having the considered status, we compute the size of its
LCC and then normalise it by the total number of nodes.
As the simulation evolves the subgraphs start growing
around the committed node until they span the entire
population, the subgraph of nodes knowing A naturally
growing faster than the subgraph of nodes whose inventory
contains only A.
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FIG. 3. Stationary state of the naming game (NG) dynamics with unanimity rule simulated on empirical
higher-order structures, and histograms of the group sizes of these structures. The considered social structures
correspond to empirical data sets collected in four different contexts (see Methods): a conference (SFHH), a high school (Thiers13),
email communications (Email-EU) and a political congress (Congress-bills). Panels (a) and (b) correspond respectively to
simulations without and with committed minorities Ac supporting name A (respectively, fraction of committed p = 0 and
p = 3%). In these panels, we plot the fraction of nodes supporting name x in the stationary state, n∗

x(β), obtained by means
of numerical simulations on each data set, as a function of the social influence parameter β. Lines (continuous and dashed,
respectively associated to names A+Ac and B) and shaded areas refer to the median values and values contained within the
25th and 75th percentile measured over 150 runs. The panels (c) show the histograms of group sizes associated to each data set,
where a group of size k represents a higher-order interaction (of order k − 1) between k nodes.

Analysis of Different Regimes

In order to clarify the role of the underlying social struc-
ture and of the corresponding group interactions, we study
the evolution of the model on different empirical data sets
of interactions. To this aim, we rely on publicly available
data sets of different kinds of temporally-resolved social
interactions, from which we can construct aggregated
higher-order (group) representations (see also [49]). The
data we use were collected in six different contexts, namely
a workplace (InVS15), a primary school (LyonSchool),
a conference (SFHH), a high school (Thiers13, the data
set used in Fig. 2), email communications (Email-EU)
and a political congress (Congress-bills). The resulting
hypergraphs are very different in terms of group size dis-
tribution, with some containing groups up to size 24. We
provide additional information on the data and the data
aggregation methodology in Methods.
We first simulate the model on each structure, with p = 3%
(see Methods for details of the numerical simulations) and
different values of β. Figure 2d-g shows the results aver-
aged across 50 different runs for each empirical structure.
In each panel, the fraction of nodes supporting name x
is plotted as a function of time [panels (d,e) x = A+Ac,
panels (f,g) x = A,B] for two different values of β, namely
β = 0.28 (d,f) and β = 0.41 (e,g) [see also Supplementary
Figure 1]. Clearly, and despite the significant differences
among the data sets, the dynamics falls into the same two
radically different regimes depending on the parameter

β. For low values of β [β = 0.28, Fig. 2d,f], all the curves
stabilise after some time–that depends on the considered
structure–on similar and intermediate values of the den-
sities of individuals with norm A or B. In this scenario
the initial very small minority of committed individuals
manages to strongly expand the reach of the name A, but
does not convince the entire population. Instead, there is
a co-existence regime, where the number of agents sup-
porting name A remains globally fairly constant, while,
microscopically, the nodes continue to switch between dif-
ferent states. We note that this regime is not present in
the traditional NG (β = 1) where a global consensus is al-
ways reached at long times. The picture changes for larger
values of β [β = 0.41, Fig. 2e,g]. After an initial tran-
sient, there is an abrupt transition (with a temporal scale
that depends on the particular structure) after which the
minority manages to convince the entire population and
simulations reach the absorbing state of global coherence
(with name A). Notice how the nAB(t) curve typically
presents a peak right before nA+Ac

(t) starts to increase,
corresponding to the behaviour already highlighted in
the single run investigated in Fig. 2b: the information
about name A diffuses from the committed, making the
vocabulary of individuals who have B first become (A,B)
and finally switch to A. We also illustrate this behaviour
in Supplementary Figure 2, by showing that the aver-
age time for individuals to adopt A (exclusively) for the
first time increases with their distance from a committed
individual.

We further characterise the behaviour of the model
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by studying how the stationary state changes with β.
Simulation results are shown in Figure 3, where we plot
the fraction of nodes holding each name (A or B) in
the stationary state as a function of β, either without
committed individuals (p = 0) or with a fraction p = 0.03
of committed (see Supplementary Figures 3-4 for the
results for the other data sets, as well as for different values
of the fraction of committed p and for the union condition
rule for group agreement). Figure 3a-b highlights the
rich behaviour of the model as β changes from 0 to 1,
with several clearly distinct regimes. In the absence of
committed minorities [p = 0, Fig. 3a], we initialise the
simulations with 40% of individuals supporting name A
(nB(0) = 0.6), and we obtain two distinct regimes. For low
values of β, the system reaches a stationary state where
the two names co-exist and have on average the same
density: neither one dominates, and a substantial fraction
of individuals hold the two names in their vocabulary (as
even when there is no local convergence because β is small,
the hearers add the speaker’s norm to their vocabulary,
which favours the emergence of agents having both names).
However, as consensus becomes easier (increasing β), the
social influence within groups tends to favour the name
of the initial majority (B). Above a critical value βc
that varies with the structure, the dynamics falls into the
absorbing state with no A agents left. In contrast with the
pairwise NG model in [20], the transition is not abrupt.
There is in fact a third intermediate regime–whose extent
strongly depends on the social structure–where names
co-exist, but B dominates.

A radically different scenario emerges when a com-
mitted minority is present. The system exhibits three
different regimes, illustrated in Figure 3b that gives the
results of simulations performed with a small seed of com-
mitted agents (chosen at random) with name A, all other
agents having initially the name B (p = 0.03, nA(0) = 0,
nB(0) = 1 − p). At small values of β, as for the for-
mer case, local convergence within each group interaction
is hard, and a stationary state with co-existence of the
two names is reached. Name A, despite being known
initially only to a small minority, reaches nevertheless a
substantial fraction of the population and is actually more
represented than B even in this regime. As β increases,
the advantage gained by A becomes rapidly stronger until
we reach an absorbing state in which the initial minority
wins and conquers the entire population, while name B,
which was initially shared by the majority (97%) of the
population, disappears. This regime persists for a certain
range of β values that we call ∆β∗. At larger β finally, we
enter a third regime where the committed minority is not
able to spread its norm widely, and the system converges
to a stationary state where the name supported by the
initial majority prevails, with the obvious exception of
the committed agents, and with a small fraction of agents
in contact with the committed who tend to have a shared
vocabulary (A,B).

This phenomenology is qualitatively robust, despite
different underlying social interaction structures. Fig. 3c
shows the numbers of groups of each size contained in
each data set. Face-to-face interactions involve relatively
low number of agents, so that group sizes are limited;
on the contrary, email communications (Email-EU) and
political networks of bills co-sponsoring (Congress-bills)
can correspond to larger groups, involving up to 24 indi-
viduals, with a heterogeneous distribution of group sizes.
The social structure influences the quantitative results of
the long term dynamics, as the larger intervals ∆β∗ are
associated to the data sets that include large groups. We
have verified that these quantitative differences are due
indeed to group size distributions and not to particular
correlations that might be present in the data, by per-
forming simulations using a group-size-based mean-field
approach, as in Supplementary Figure 5: in these sim-
ulations, the data are reshuffled so that the group size
distribution is preserved but other correlations are de-
stroyed. The differences in the width of the ∆β∗ interval
in which the committed minority prevails are preserved,
showing that the size of the groups plays an important
role. We investigate this role more systematically in the
next section.

The Role of Group Size

The results discussed above show a similar phenomenol-
ogy for different social contexts corresponding to different
interaction patterns, with different group sizes and gener-
alised degree distributions [64] (see Supplementary Figure
6). In this section, we explore more systematically the
impact of group size on the outcome of the dynamics, and
in particular its interplay with the existence of a commit-
ted minority. We therefore consider synthetic interaction
structures where we control the distribution of group sizes.
For simplicity, we consider homogeneous structures in
which individuals interact in groups of fixed size (uniform
hypergraphs). Figure 4 shows the results of stochastic
simulations on such (k − 1)-uniform hypergraphs, where
each hyperlink consists of exactly k nodes. In Fig. 4a-h
we plot the median fraction of nodes supporting name
x in the stationary state, n∗x(β), as a function of β for
several group sizes. Panels (a,c,e,g) and (b,d,f,h) show the
results of simulations initiated with a different fraction
of committed nodes holding name A, set respectively to
p = 0.01 and p = 0.03 (all the other nodes holding initially
name B). When varying the group size from k = 2 (a,b)
to k = 5 (c,d), the range ∆β∗ in which the committed
convert the whole population to A decreases. However,
when we further increase the group size (g,h), ∆β∗ in-
creases again. Thus, increasing k changes the range of β
values for which the minority manages to take over the
entire population in a non-monotonic way. This range
also depends on the committed population size p, with
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FIG. 4. Higher-order (group) effects in the naming
game (NG) for different values of the social influence
parameter β. We consider (k − 1)−uniform hypergraphs,
i.e. regular structures in which each interaction involves ex-
actly k agents. Group agreement follows the unanimity rule.
(a,b,c,d,e,f,g,h) The density of nodes supporting name x in
the stationary state, n∗

x(β), obtained by means of numerical
simulations, is shown as a function of the social influence
parameter β (Ac: committed minority). Lines (continuous
and dashed, respectively associated to names A + Ac and
B) and shaded areas refer to the median values and values
contained within the 25th and 75th percentiles of the 50 numer-
ical simulations. Panels (a,c,e,g) and (b,d,f,h) correspond
to simulations with different sizes of committed minorities
supporting name A, namely fractions p = 0.01 and p = 0.03
of the population. In the initial state, all the other agents
hold norm B. Four different group sizes are considered: k = 2
(a,b), k = 5 (c,d), k = 10 (e,f) and k = 40 (g,h). The range
∆β∗ of β values for which n∗

A = 1 (i.e., the committed minority
manages to convert the whole population), is plotted in (i)
as a function of the group size k and for different values of
the fraction p of committed (see legend). We show in Supple-
mentary Figure 8 the equivalent of this panel for the union
rule. (j) Fraction of nodes n∗

AB holding both names in the
stationary state as a function of k for different values of p.

a broader range for larger p. Similar plots for different
agreement rules can be found in Supplementary Figure 7.
Fig. 4i further highlights this non-monotonic dependence
of k by plotting the optimal range ∆β∗ as a function of
k for different values of p, for the unanimity rule. We
also show in Supplementary Figure 8 the evolution with
k of the minimal and maximal values of this range, β∗

min

and β∗
max, for both rules. For the intersection rule, both

are non-monotonic with k: at small k, β∗
min increases

and β∗
max decreases, while both reverse their tendency at

larger k. On the other hand, for the union rule, β∗
max

increases monotonically with k and only β∗
min keeps a

non monotonic behaviour. This complex behaviour can
be interpreted by several competing effects of the group
size. Let us first consider large β. For the intersection
rule, the unanimity condition makes it more difficult for
an agreement to be possible on a minority name when the
group size increases; on the other hand, more individuals
are converted to the new name upon each single successful
agreement. The competition between these effects leads to
a non-monotonic β∗

max. For the union rule, the first effect
does not exist and increasing group size makes it more
probable for a minority speaker to find a hearer knowing
the minority name: β∗

max increases monotonically with k.
At small β and low k, co-existence of norms is favoured
for both rules by increasing k (hence β∗

min increases), be-
cause it is more probable that both norms are represented
when a larger group is chosen to interact; as β is small,
local consensus is not very probable and instead the most
probable outcome is that all agents gain the word of the
speaker in their inventories, thus becoming (A,B). As k
continues to increase however, the local convergence of
large groups starts to dominate and β∗

min starts thus to
decrease. We note that similar competing effects of group
sizes have been described in a different type of cascade
dynamics [65], leading to non-monotonic group size effects.
Moreover, this phenomenology provides quantitative sup-
port to the so-called group size paradox well-studied in
sociology [66]. We also notice that even for large values
of β (in the regime where the name supported by the
committed minority does not reach the entire population)
group interactions still play a major role in keeping the
system out of the absorbing state of the majority and
promoting the alternative norm. This is evident from
Fig. 4j, where we report the fraction of agents having
both names in the stationary state as a function of k,
for a fixed value of β = 0.71, which–depending on k and
p–might fall inside or outside of the optimal range ∆β∗.
The corresponding points are also highlighted in Fig. 4a-h.
We see that n∗AB increases with the group size, up to the
point where the minority wins. Notice how this fraction
of individuals holding both norms becomes easily much
larger than p, highlighting how the committed individuals
propagate the knowledge of the alternative name to a
substantial part of the population, even when they do not
manage to completely reverse the initial majority.

Analytical approach

To get further insights on the observed behaviour, its
dependency on the parameters of the model, as well as
to access the impact of the microscopic rule for group
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FIG. 5. Mean field (MF) phase diagrams of the naming game with committed minorities on 2-uniform hyper-
graphs. Each three-dimensional surface (grey/yellow shading is only for the sake of visualisation) gives the stationary fraction
of agents supporting name A (z-axis) as a function of the social influence parameter β and of the fraction p of agents committed
to A (Ac). Different panels correspond to different conditions for group agreement, namely unanimity (a) and “union” (b).
The surfaces are obtained through numerical integration of Eq. (1) and Eq. (2) at fixed p, β, with initial conditions nA(0) = 0,
nB(0) = 1−p, nAB(0) = 0. Example curves with p = 0.08 are shown with a solid black lines. The associated results of stochastic
simulations (circles) for homogeneous systems of 1000 agents are shown for comparison.

agreement, we finally consider a mean-field (MF) descrip-
tion of the generalised model. We limit here our study to
groups of 3 nodes as the number of potential combinations
becomes soon intractable as the group size increases. We
thus consider an infinitely large homogeneously mixing
population such that each interaction involves three nodes
taken at random, obeying the rules of the NG defined
above, under the unanimity condition rule for reaching
an agreement. The equations for the dynamical evolution
of the densities of agents having each possible vocabulary,
nA, nB and nAB , can then be written as:

dtnA = −2n2AnB +
(
5
2β − 1

)
n2AnAB

− 2nAn
2
B − 3nAnBnAB

+ (4β − 1)nAn
2
AB + 3

2βn
3
AB + 5

2βp
2nAB

+ p[−2nAnB + (5β − 1)nAnAB + 4βn2AB ]

dtnB = −2n2BnA +
(
5
2β − 1

)
n2BnAB

− 2nBn
2
A − 3nBnAnAB

+ (4β − 1)nBn
2
AB + 3

2βn
3
AB − 2p2nB

− p[4nAnB + 2n2B + 3nbnAB ]

nAB = 1− nA − nB − p (1)

where dt denotes the time derivative.

Similar equations can be derived for different agreement
rules, such as for the less strict union rule, in which having
one of the hearers knowing the name expressed by the
speaker is potentially enough to reach consensus in the

entire group. The evolution equations in this case read

dtnA = 2(β − 1)n2AnB + ( 5
2β − 1)n2AnAB

− 2nAn
2
B + (6β − 3)nAnBnAB

+ (4β − 1)nAn
2
AB + 3βnBn

2
AB + 3

2βn
3
AB

+ p2[2βnB + 5
2βnAB ] + p[2(2β − 1)nAnB

+ (5β − 1)nAnAB + 6βnBnAB + 4βn2AB ]

dtnB = 2(β − 1)n2BnA + ( 5
2β − 1)n2BnAB

− 2nBn
2
A + (6β − 3)nBnAnAB

+ (4β − 1)nBn
2
AB + 3βnAn

2
AB + 3

2βn
3
AB

− 2p2nB − p[2n2B + (3− 3β)nBnAB ]

− p[−2βn2AB + 4nanB ]

nAB = 1− nA − nB − p . (2)

Equations for the benchmark pairwise rule, without
higher-order interactions, are reported in Supplementary
Note 1.

To explore the interplay between the size of the com-
mitted minority and the social influence parameter β in
determining the final state of the system evolving accord-
ing to these equations, we integrate them numerically. For
both rules, we use the same initial condition as in the pre-
vious sections: we fix a fraction p > 0 of committed agents
and a value for β, and we set nA(0) = nAB(0) = 0 so that
initially the only agents with name A are the committed
ones, all the others holding name B (nB(0) = 1− p). We
record the evolution of the densities nx(t) until they reach
a stationary value (results are also confirmed by directly
imposing the stationarity condition dt = 0, and solving
the resulting equations through the program Mathemat-
ica).

This allows us to study how the final fraction of agents
holding name A, n∗A+Ac

≡ nA(t→∞) + p, depends on p
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and β. Results are shown in Fig. 5 as three-dimensional
phase diagrams. We also show, to make the link with
previous figures clearer, a curve (in black) of n∗A+Ac

as a
function of β for a fixed fraction of committed individu-
als (p = 0.08). With the unanimity condition [Fig. 5a]
three regimes emerge, as observed before with stochastic
simulations: at low β the committed manage to create
a co-existence of names, with n∗A+Ac

>> p, but do not
overturn the initial majority. In the central region, whose
width depends on the size of the committed minority
p (see also Supplementary Figure 9), the new name A
prevails and the initially general name B completely dis-
appears. Finally, at large enough β the system is not
much perturbed by the committed. Overall, the larger
the committed minority, the higher β needs to be to
avoid the initial name to disappear. This phenomenology
persists for different agreement rules, as for the less restric-
tive union condition shown in Fig. 5b. In this case, for
p = 0.08 the third regime vanishes and the optimal range
∆β∗ expands up to the case β = 1 corresponding to the
perfect social influence scenario (as for the standard NG).
We also note that the results of our MF approach are in
perfect agreement with the ones from stochastic simula-
tions, here reported as white circles (further comparisons
with stochastic simulations are reported in Supplementary
Figures 10-11). Additional heatmaps for both rules and
the pairwise benchmark are reported in Supplementary
Figures 12-13.

DISCUSSION

Online connectedness is reportedly speeding up the
process of collective behavioural change [67, 68] through
the adoption of new norms [7, 69–71]. In this scenario,
clarifying the microscopic mechanisms driving this pro-
cess is key to gain a better understanding of our society
and to design possible interventions aimed at contrasting
undesired effects. At the same time, understanding how
policy can create tipping points where none exist and
how it can push the system past the tipping point are
fundamental questions whose answer might change the
way in which we address major societal challenges [72],
such as accelerating the post-carbon transition [11] or
contrasting vaccine-hesitancy [73, 74].

The model for tipping points dynamics in social con-
vention introduced in this work extends the usual naming
game framework towards more realism. First, we moved
beyond peer-to-peer communication by considering group
interactions not only restricted to pairs, as many actual
interactions, both in real life and online, involve group
discussions. In addition, we investigated the effects of
imperfect social influence and considered real social struc-
tures for interactions. Our results show that critical mass
dynamics can be initiated by minorities of very different
sizes, including by an (almost) arbitrarily small minor-

ity, and that groups play a crucial role in determining
the minority takeover. For example, one single individ-
ual with no special power or wealth can overturn the
social conventions held by a group of hundreds of peers.
Counter-intuitively, this happens when agents are not
fully inclined to let go of the convention they currently
use in favour of a new one. Note that if agents are ex-
tremely reluctant to change, the system remains in a state
where both norms co-exist at a similar level and many
agents hold both norms. In order to consider realistic
interactions, we have performed extensive numerical sim-
ulations on higher-order social networks constructed from
empirical data and including group interactions of very
different sizes, confirming that the findings hold in a broad
region of the parameter space and for different interac-
tion settings. Moreover, we have unveiled an interesting
role of the size of interacting groups. Recently, large
groups have been found to have a dominant role in seed-
ing and sustaining contagion processes on hypergraphs
[75]. Here, we have shown a non-monotonic behaviour
in which both small and large group interactions favour
the committed minority. We believe that our group com-
munication model, which includes higher-order effects in
micro-interactions, opens up a new direction in naming
game applications to study opinion spreading and norm
emergence. For instance, it would be relevant to explore
how the influence of a minority can be maximized [75–77],
depending on whether its members tend to be cohesive
or part of different groups. More broadly, this confirms
the relevance of going beyond network representations
and taking into account higher-order interactions when
modelling social phenomena [36, 41].

It is important to delimit the scope of our findings. The
major limitation of our results is, of course, that they
have been obtained in the context of a single theoreti-
cal model, i.e., the naming game framework. However,
this model has been previously used in several theoretical
and empirical studies on tipping point dynamics in social
convention, successfully reproducing the results obtained
in controlled experiments [7]. As such, by generalising
this model towards the inclusion of realistic interactions,
by confirming how committed minorities of varying sizes
can take over and even small committed minorities can
be dramatically effective, and by shedding light on the
effect of higher-order interactions, our work contributes to
the development of more realistic modelling approaches
and to the understanding of the critical mass phenom-
ena. Naturally, it would be interesting to expand the
results to other modelling frameworks of emergence or
social cooperation [42, 78, 79]. An even more substantial
step further would involve the design of novel controlled
experiments [7, 80, 81] to empirically assess the impact of
the (different) group interactions introduced and of the
various model parameters. For instance, p can be tuned
by giving specific instructions to some participants to act
as committed, while the role of β could be mimicked by
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artificial agents similar to bots [82, 83] that could prevent
convergence with a tunable probability.

A second limitation is that our model cannot fully ac-
count for the complexity of real world interactions. While
this is certainly true, it is worth stressing that we have
considered more realistic interactions patterns than ever
before in this context, or for that matter in many multi-
agent models. Future work may further enrich this aspect
by considering the effect of community structures [84] and
of temporal (higher-order) networks [24, 48, 85]. More-
over, the model and the generalisations we have considered
lend themselves easily to many natural extensions: in par-
ticular, the parameter β describing the modulation of
social influence could depend on agents’ properties, such
as their centrality, or on the size of each interacting group.
The activity of a group (probability to be selected at each
time step) could also depend on its size. Co-evolution of
the interaction structure and of the norms could also be
introduced in the model [86]. Finally, it would be very
interesting to investigate the behaviour of our model when
agents committed to different opinions are present [87],
with two distinct minorities pushing each a distinct new
norm against an initial well established one.

METHODS

Data Description and Aggregation

We build empirical hypergraphs by aggregating six dif-
ferent data sets of temporally resolved interactions. Four
of these data sets, provided by the SocioPatterns collabo-
ration [88], describe face-to-face interactions collected in
different social contexts: a workplace (InVS15) [58], a pri-
mary school (LyonSchool) [59], a conference (SFHH) [60],
and a high school (Thiers13) [61]. Data from these ex-
periments are initially aggregated by using a temporal
window of 15 minutes and the maximal cliques within
each temporal snapshot are retained (a similar procedure
was used in Ref. [49]). We then simply filtered the cliques
by removing those that appeared only once, and finally
used them to build each of the four empirical hypergraphs
considered. The other two data sets involve considerably
bigger interactions, and it is evident from the group size
distributions reported in Fig. 3. The Email-EU data set
refers to email communications from a European research
institution [62], where each node represent a different
email address and each hyperlink involves the sender and
the (multiple) recipients of each message (1-second res-
olution). Finally, the Congress-bills data set refers to
legislative bills in the U.S. congress [63], where each node
represent a person in the congress and hyperlinks join
sponsors and co-sponsors of bills put forward in the House
of Representatives and the Senate. No additional data
processing has been performed on these last two data
sets, as they already come in the form of simplices from

Ref. [33].
The six empirical hypergraphs, in addition to describ-

ing very different types of interactions and contexts, are
composed by different numbers of nodes N and groups
E: N = 217, E = 3, 704 (InVS15), N = 242, E = 8, 010
(LyonSchool), N = 403, E = 7, 741 (SFHH), N = 327,
E = 4, 862 (Thiers13), N = 9, 79, E = 209, 005 (Email-
EU), N = 1, 718, E = 105, 929 (Congress-bills). The
histograms of group sizes are shown in Fig. 3 and in
Supplementary Figure 3, while generalised degree distri-
butions are reported in Supplementary Figure 6.

Stochastic simulations

We run agent-based stochastic simulations of the gen-
eralised NG model on real-world social structures and on
idealised homogeneous populations of N = 1000 agents.
In this latter case, simulations are performed assuming
an homogeneous mixing population: all agents can poten-
tially interact with each other. In both cases the dynamics
evolves in the following way. At each timestep a group is
chosen at random, either from the actual list of groups
composing the empirical data set, or in the homogeneous
case, by selecting at random k nodes. One of the nodes
composing the selected group, randomly chosen, acts as a
speaker and the remaining nodes as hearers. The status
of each node is then updated according to the specific
rules defined in the model. The process is repeated until
the system reaches an absorbing state (with all the nodes
holding the same norm) or a steady state for the densities
of agents holding a given norm. Densities in the steady
state are computed by taking the average over 100 values
sampled from the last 50,000 steps. The results shown in
the figures correspond to median and standard deviations
computed on 50 runs with random initial conditions (i.e.,
with a random selection of committed agents).
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[58] Génois, M. et al. Data on face-to-face contacts in an office
building suggest a low-cost vaccination strategy based on
community linkers. Netw. Sci. 3, 326–347 (2015).
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