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Mutually unbiased bases correspond to highly useful pairs of measurements in quantum informa-
tion theory. In the smallest composite dimension, six, it is known that between three and seven
mutually unbiased bases exist, with a decades-old conjecture, known as Zauner’s conjecture, stating
that there exist at most three. Here we tackle Zauner’s conjecture numerically through the con-
struction of Bell inequalities for every pair of integers n, d ≥ 2 that can be maximally violated in
dimension d if and only if n MUBs exist in that dimension. Hence we turn Zauner’s conjecture
into an optimisation problem, which we address by means of three numerical methods: see-saw
optimisation, non-linear semidefinite programming and Monte Carlo techniques. All three methods
correctly identify the known cases in low dimensions and all suggest that there do not exist four
mutually unbiased bases in dimension six, with all finding the same bases that numerically optimise
the corresponding Bell inequality. Moreover, these numerical optimisers appear to coincide with
the “four most distant bases” in dimension six, found through numerically optimising a distance
measure in [P. Raynal, X. Lü, B.-G. Englert, Phys. Rev. A, 83 062303 (2011)]. Finally, the Monte
Carlo results suggest that at most three MUBs exist in dimension ten.

I. INTRODUCTION

Mutually unbiased bases (MUBs), on the one hand,
are highly symmetric bases in complex Hilbert spaces
and, on the other hand, correspond to pairs of quantum
measurements. The defining property of a pair of MUBs
is that the overlaps between any two vectors from the
two different bases is uniform. This property translates
to the corresponding measurements as follows: If a mea-
surement yields a definite outcome when measured on a
quantum state, then a measurement unbiased to it will
yield a uniformly random outcome on the same state.
This feature makes MUBs widely useful in quantum in-
formation processing. MUBs were originally introduced
in the context of optimal state determination [1], but
since have been found to be useful in a variety of quan-
tum information processing tasks, such as quantum cryp-
tography [2–4], quantum communication tasks [5, 6], Bell
inequalities [7–9] and so on (for a review, see Ref. [10]).

While MUBs have been extensively studied both in
the quantum information and the mathematics commu-
nity for decades, there are still open questions regarding
their structure. Most notably, the maximal number of
bases that are pairwise mutually unbiased is unknown
for general Hilbert space dimension. A general upper
bound was shown by Wooters and Fields, stating that in
dimension d there exist no more than d + 1 MUBs [11].
In the same work, they showed that this upper bound
is saturated in prime power dimensions, by providing an
explicit construction. However, in composite dimensions

∗ These authors contributed equally to this work.
† mate.farkas@icfo.eu

the only known generic lower bound on the number of
MUBs is pr + 1, where pr is the smallest prime power
in the prime decomposition of the dimension (this lower
bound is shown using tensor products of the Wooters–
Fields construction). While in certain dimensions this
lower bound has been improved [12], there exists no com-
posite dimension in which the exact number of MUBs is
known. For the smallest composite dimension, six, the
number of MUBs is known to be no more than seven and
no less than three, from the general bounds. However,
which of the numbers in between is the exact number of
MUBs in dimension six is unknown (apart from the fact
that it cannot be six, following from a general result by
Weiner [13]). It was first conjectured by Zauner in 1999
that there are no more than three MUBs in dimension six
[14], and this conjecture has not been resolved to date,
despite substantial efforts.

There are numerous works trying to prove (or disprove)
Zauner’s conjecture, both analytically and numerically.
While not providing an exhaustive list of references here,
let us note that on the analytic side, it has been shown
that Zauner’s conjecture is equivalent to a conjecture on
orthogonal decompositions of Lie algebras [15]. Further-
more, there exist various analytic constructions of MUB
triplet families (see Ref. [16] and references therein), but
thus far there has not been found even a single vector
that is unbiased to all the vectors in any of these triplets.
For notable recent developments on Zauner’s conjecture
see Refs. [17, 18].

On the numerical side, Bengtsson et al. introduced a
distance measure of two bases that is maximised if and
only if the bases are mutually unbiased [19]. This con-
struction turns the problem of finding a set of MUBs into
an optimisation problem, maximising all the pairwise dis-
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tances within a set of bases. Using this approach, Raynal,
Lü and Englert later constructed a two-parameter family
of four bases in dimension six, such that for certain values
of the parameters, the bases coincide with the numerical
maximiser of the distance function [20]. These four bases
are not MUBs, but based on the numerical evidence the
authors refer to them as “the four most distant bases in
dimension six”.

Since MUBs optimise various quantum information
processing tasks, it is natural to measure the closeness
of a set of bases to MUBs in terms of some quantum in-
formation processing protocol. This was studied formally
by Aguilar et al. [21], using the fact that MUBs optimise
the success probability of a communication task called
quantum random access codes (QRACs). A slight gen-
eralisation of the QRAC task is then optimised by a set
of n MUBs, and finding n MUBs in dimension d corre-
sponds to optimising the associated success probability.
With this method, Aguilar et al. managed to re-prove the
non-existence of d + 2 MUBs in certain low dimensions
using quantum information theoretic tools. However, the
case of dimension six remains open.

In this work, we employ similar ideas to tackle Zauner’s
conjecture. Namely, we study a recently introduced fam-
ily of Bell inequalities, known to be maximally violated
by a pair of MUBs in dimension d [9]. We then extend
these inequalities to new ones, maximally violated by a
set of n MUBs in dimension d. Then, we apply three nu-
merical methods for finding the maximal value of these
Bell inequalities in a fixed dimension. Namely, we ap-
ply see-saw semidefinite programming (SDP), non-linear
SDP, and Monte Carlo techniques. While these meth-
ods are heuristic—in the sense that there is no guarantee
for finding a global maximum—they find the maximum
in all the cases where the maximum is known (i.e., it
is known that n MUBs exist in the given dimension d).
Furthermore, when applying these techniques to dimen-
sion six and four bases, all the different numerical tools
converge to the same bases, and these four bases are—
numerically—very close to the “four most distant bases”
of Ref. [20]. Hence, our results provide further numer-
ical evidence for Zauner’s conjecture. Finally, we were
able to implement the Monte Carlo algorithm for d = 10,
where—similarly to d = 6—we do not find more than
three MUBs.

II. PRELIMINARIES

In this section, we introduce the mathematical back-
ground and concepts necessary for turning the MUB
problem into an optimisation problem. Namely, we for-
mally introduce MUBs, Bell inequalities and the specific
family of Bell inequalities tailored for MUBs.

A. Mutually unbiased bases

Let us take a d-dimensional Hilbert space H ∼= Cd, and
two orthonormal bases on it, {|b1j 〉}dj=1 and {|b2k〉}dk=1.
We say that these two bases are mutually unbiased if

|〈b1j |b2k〉|2 =
1

d
∀j, k ∈ [d], (1)

where [d] ≡ {1, 2, . . . , d}. A simple example in dimen-
sion two is the computational basis {|0〉, |1〉} and the
Hadamard basis { 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)}.

One may also associate an orthonormal basis with a
quantum measurement. In general, a quantum measure-
ment is described by a positive operator-valued measure
(POVM), which, in the d-dimensional, d-outcome case
corresponds to a set of d positive semidefinite operators
Bj ≥ 0 on Cd, adding up to the identity operator 1.
Given an orthonormal basis {|bj〉}dj=1 on Cd, one can de-
fine the corresponding POVM {Bj = |bj〉〈bj |}dj=1, con-
sisting of rank-1 projections onto the basis elements. We
say that two measurements are MUBs if they correspond
to a pair of orthonormal bases that are MUBs.

B. Bell inequalities

We look at MUBs in the context of Bell scenarios (see
Ref. [22] for a review). Bell scenarios describe physical
experiments performed by two distant parties, usually
referred to as Alice and Bob. These parties share many
copies of a bipartite (quantum) state, and perform lo-
cal measurements on these copies. The experiment is
described by the correlation, p, with elements p(a, b|x, y)
specifying the probability of Alice (Bob) observing locally
the outcome a (b) upon choosing the measurement setting
x (y). In quantum theory, the shared state is described
by a density operator ρ ≥ 0 with unit trace (tr ρ = 1) on
a tensor product Hilbert space HA ⊗HB . The measure-
ments are described by local POVMs {Axa} and {B

y
b } on

the Hilbert spaces HA and HB , respectively. For a fixed
state and measurements, the correlation is given by the
Born rule,

p(a, b|x, y) = tr[ρ(Axa ⊗B
y
b )]. (2)

Note that for a pure state, ρ = |ψ〉〈ψ |, with |ψ〉 ∈ HA ⊗
HB and 〈ψ |ψ〉 = 1, the Born rule reduces to

p(a, b|x, y) = 〈ψ |Axa ⊗B
y
b |ψ〉. (3)

Bell functionals are linear functionals of correlations,
i.e., functionals of the form

W (p) =
∑
a,b,x,y

cabxyp(a, b|x, y), (4)

where cabxy are real coefficients. Non-trivial Bell inequal-
ities are Bell functionals for which W (p) ≤ βL holds for
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every correlation of the form

p(a, b|x, y) =

∫
Λ

dµ(λ)pA(a|x, λ)pB(b|y, λ) (5)

(also called a local correlation, considered as the notion
of classicality in Bell scenarios), but for which there ex-
ists a quantum correlation p of the form (2) such that
W (p) > βL. In Eq. (5), Λ is a measurable set with a
probability measure µ, λ ∈ Λ, and pA and pB are condi-
tional probability distributions.

While the original interest in Bell inequalities was pre-
cisely this separation of local and quantum correlations,
we will be interested in their quantum maximum (or
maximal quantum violation), i.e., the tight upper bound
W (p) ≤ βQ satisfied by all correlations of the form (2).

C. Bell inequalities for mutually unbiased bases

In this work, we are interested in a family of Bell
inequalities that was introduced in Ref. [9], and is
parametrised by an integer d ≥ 2. For a fixed d, Al-
ice has d2 measurement settings labelled as x = x1x2

with x1, x2 ∈ [d]. Each of these measurements has three
outcomes, a ∈ {1, 2,⊥}. Bob, on the other hand, has two
measurement settings, y ∈ {1, 2}, with d outcomes each,
b ∈ [d]. The Bell inequality then reads

Wd(p) =
∑

x1,x2,y

[
p(y, xy|x1x2, y)− p(ȳ, xy|x1x2, y)

]
−1

2

√
d− 1

d

∑
x1,x2

[
pA(1|x1x2) + pA(2|x1x2)

]
,

(6)

where ȳ flips the value of y ∈ {1, 2}, and pA(a|x) =∑
b p(a, b|x, y) is the marginal probability distribution of

Alice (which is independent of y).
This is a non-trivial Bell inequality with maximal

quantum violation βQ =
√
d(d− 1) [9]. The maximal

violation can be achieved with the maximally entangled
d-dimensional state |φ+

d 〉 ≡
1√
d

∑d
j=1 |j〉 ⊗ |j〉, and any

pair of MUB measurements on Bob’s side. Moreover, if
the dimension is fixed to be d, this is the only way in
which the maximal quantum violation can be achieved,
up to local unitary freedom [9]. This property of the Bell
inequality (6) forms the core of our numerical approaches
to construct MUBs.

The above Bell inequality can be straightforwardly ex-
tended to a set of n measurements on Bob’s side. The
Bell inequality for n measurements is a sum of Bell in-
equalities of the form (6). For each pair y, z ∈ [n]
such that y < z (denoted in the following as (y, z) ∈
Pairs[n]), we introduce d2 settings for Alice, labelled as
x = (y, z)xyxz with xy, xz ∈ [d], and take a copy of the

Bell inequality in Eq. (6), defined as

W
(y,z)
d (p) =

∑
xy,xz,w

[
p(aw, xw|(y, z)xyxz, w)

−p(āw, xw|(y, z)xyxz, w)
]

−1

2

√
d− 1

d

∑
xy,xz

[
pA(1|(y, z)xyxz)

+pA(2|(y, z)xyxz)
]
,

(7)

where w ∈ {y, z}, ay = 1, az = 2, and āw flips the value
of aw. The final Bell inequality then reads

Wd,n(p) =
∑

(y,z)∈Pairs[n]

W
(y,z)
d (p). (8)

It is clear that Wd,n(p) ≤
(
n
2

)√
d(d− 1), by applying

the known bound to each individual term in the above
sum. Moreover, if the dimension is d, the only way to
reach this maximum (up to local unitary freedom) is by
using the maximally entangled state, and if the n mea-
surements on Bob’s side correspond to MUBs. Hence, we
can reformulate the MUB problem in terms of these Bell
inequalities:

Proposition 1. Wd,n(p) =
(
n
2

)√
d(d− 1) can be

achieved in dimension d if and only if n MUBs exist in
dimension d.

D. The optimisation problem

According to the above proposition, finding n MUBs
in dimension d can be cast as an optimisation problem,
maximising Wd,n(p) over d-dimensional quantum states
and measurements. To see how to do this explicitly, let
us first write out the Bell inequality Wd in Eq. (6) in
terms of a quantum state |ψ〉 and measurements {Axa},
{Byb }, using Born’s rule in Eq. (3):

Wd(|ψ〉, {Axa}, {B
y
b }) =

∑
x1,x2,y

(
〈ψ |Ax1x2

y ⊗Byxy |ψ〉

−〈ψ |Ax1x2
ȳ ⊗Byxy |ψ〉

)
−1

2

√
d− 1

d

∑
x1,x2

(
〈ψ |Ax1x2

1 ⊗ 1|ψ〉

+〈ψ |Ax1x2
2 ⊗ 1|ψ〉

)
.

=
∑
j,k

〈ψ |
[
(Ajk1 −A

jk
2 )⊗ (B1

j −B2
k)

−1

2

√
d− 1

d
(Ajk1 +Ajk2 )⊗ 1

]
|ψ〉,

(9)

where in the second equality we wrote out the summation
over y and switched to the notation x1x2 → jk with
j, k ∈ [d]. Maximising the inequality (9) in terms of the
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state and the measurements can then be written as the
optimisation problem

max
|ψ〉,{Axa},{B

y
b }

Wd(|ψ〉, {Axa}, {B
y
b })

s.t. |ψ〉 ∈ Cd ⊗ Cd, 〈ψ |ψ〉 = 1

Axa, B
y
b ∈ Lsa(Cd) ∀a, b, x, y

Axa ≥ 0 ∀a, x, Byb ≥ 0 ∀b, y∑
a

Axa = 1 ∀x,
∑
b

Byb = 1 ∀y,

(10)

where Lsa(Cd) is the set of self-adjoint linear operators on
Cd. Optimising Wd,n can be written in a similar fashion,
with:

Wd,n (|ψ〉, {Axa}, {B
y
b }) =

∑
(y,z)∈Pairs[n]

{
∑
j,k

〈ψ |
[
(A

(y,z)jk
1 −A(y,z)jk

2 )⊗ (Byj −B
z
k)

−1

2

√
d− 1

d
(A

(y,z)jk
1 +A

(y,z)jk
2 )⊗ 1

]
|ψ〉

}
.

(11)

The optimisation problem is then

max
|ψ〉,{Axa},{B

y
b }

Wd,n(|ψ〉, {Axa}, {B
y
b })

s.t. |ψ〉 ∈ Cd ⊗ Cd, 〈ψ |ψ〉 = 1

Axa, B
y
b ∈ Lsa(Cd) ∀a, b, x, y

Axa ≥ 0 ∀a, x, Byb ≥ 0 ∀b, y∑
a

Axa = 1 ∀x,
∑
b

Byb = 1 ∀y.

(12)

In this work, we consider various approaches to solve
the optimisation problem (12). In particular, from
Proposition 1 it follows that n MUBs exist in dimension
d if and only if the solution of the above optimisation
problem is

(
n
2

)√
d(d− 1). We will facilitate the problem

using knowledge about the optimal realisation of the Bell
inequality from Ref. [9].

First of all, we notice that the value
(
n
2

)√
d(d− 1) can

only be achieved in dimension d with the maximally en-
tangled state [9]. Without loss of generality, we therefore
impose that |ψ〉 = |φ+

d 〉 = 1√
d

∑d
j=1 |j〉 ⊗ |j〉. We can

then use the fact that for any two operators A and B on
Cd we have that 〈φ+

d |A⊗B|φ
+
d 〉 = 1

d tr(ATB), where (.)T

is the transposition in the basis {|j〉}. As a second sim-
plification, we notice that in order to saturate the bound(
n
2

)√
d(d− 1) in dimension d, Alice’s measurement oper-

ators Ax1 and Ax2 , and all of Bob’s measurement opera-
tors must be trace-1 [9]. For such operators we have that
〈φ+
d |Ax1⊗1|φ+

d 〉 = 〈φ+
d |Ax2⊗1|φ+

d 〉 = 1
d . The second term

in Eq. (11) is then a constant, −
(
n
2

)√
d(d− 1), and does

not influence the optimisation problem. The simplified

Bell expression finally reads

W+
d,n ({Axa}, {B

y
b }) =

∑
(y,z)∈Pairs[n]

{

1

d

∑
j,k

tr
(
(A

(y,z)jk
1 −A(y,z)jk

2 )T (Byj −B
z
k)
)}
,

(13)

and its maximum quantum value W+
d,n satisfies:

W+
d,n ≤WMUB(d, n) ≡ n(n− 1)

√
d(d− 1) . (14)

The simplified optimisation problem becomes

max
{Axa},{B

y
b }

W+
d,n({Axa}, {B

y
b })

s.t. Axa, B
y
b ∈ Lsa(Cd) ∀a, b, x, y

Axa ≥ 0 ∀a, x, Byb ≥ 0 ∀b, y
trAxa = 1 ∀a, x, trByb = 1 ∀y, b∑
a

Axa = 1 ∀x,
∑
b

Byb = 1 ∀y.

(15)

The optimal value of this optimisation problem is n(n−
1)
√
d(d− 1) if and only if n MUBs exist in dimension d.

We may further simplify the optimisation problem.
From Ref. [9] we know that in the optimal realisation
the Byb operators are rank-1 projections, Byj = |byj 〉〈b

y
j |

(they are projections onto the basis elements of MUBs).
For such operators, we have that

(Byj −B
z
k)3 = [1− tr(ByjB

z
k)](Byj −B

z
k), (16)

which implies that the spectrum of Byj − Bzk is con-

tained in {0,±λyzjk}, where λyzjk ≡
√

1− tr(ByjB
z
k) =√

1− |〈byj |bzk〉|2. Moreover, we have that tr[(Byj−Bzk)2] =

2(λyzjk)2 and tr(Byj −Bzk) = 0, and therefore Byj −Bzk has
one eigenvalue λyzjk , one eigenvalue −λyzjk and the rest of
the eigenvalues are 0. Furthermore, in the optimal real-
isation we have that (A

(y,z)jk
1 )T is the rank-1 projection

onto the eigenspace of Byj −Bzk corresponding to λyzjk , and

(A
(y,z)jk
2 )T is the rank-1 projection onto the eigenspace

of Byj −Bzk corresponding to −λyzjk . With these final sim-
plifications the Bell expression reads

W+B
d,n ({Byb }) =

2

d

∑
(y,z)∈Pairs[n]

∑
j,k

√
1− tr(ByjB

z
k)(17)

=
2

d

∑
(y,z)∈Pairs[n]

∑
j,k

√
1− |〈byj |bzk〉|2 (18)
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and the corresponding optimisation problem is

max
{Byb }

W+B
d,n ({Byb })

s.t. Byb ∈ Lsa(Cd) ∀a, b, x, y
(Byb )2 = Byb ∀b, y
trByb = 1 ∀b, y∑
b

Byb = 1 ∀y.

(19)

Note that projectivity and self-adjointness implies posi-
tive semidefiniteness, and therefore positive semidefinite-
ness does not need to be imposed.

The optimal value of the optimisation problem (19),
denoted as Wmax(d, n), is n(n− 1)

√
d(d− 1) if and only

if n MUBs exist in dimension d. In fact, Alice’s mea-
surements have been completely removed from the prob-
lem, and one may regard Eq. (19) as a purely geometrical
problem: find n orthonormal bases,

{
{|byj 〉 | j ∈ [d]} | y ∈

[n]
}
, maximising the “MUB-ness measure” of Eq. (18).

In the following three sections we apply three numeri-
cal methods to solve the optimisation problems (15) and
(19) in order to numerically tackle Zauner’s conjecture.

III. SEE-SAW SDP

A. Methodology

One arrives at a relatively simple method of optimising
problem (15) by noticing that the objective function is
bi-linear in the Axa and Byb matrices. That is, if every
Axa is fixed, then the problem simplifies to optimising a
linear functional of the Byb matrices with a series of linear
and positive semidefinite constraints. This is a standard
SDP, for which there exist efficient solvers.

The see-saw optimisation technique starts with fixing
the set of Axa matrices satisfying the constraints of the
problem (15), either with random values or based on
some prior knowledge. We then solve the problem for
the Byb matrices, which is a standard SDP. Then, we fix
the Byb matrices to the optimum found, and solve the re-
sulting SDP for the Axa matrices, and so on. By repeating
this process, the system eventually converges to a stable
result, i.e. the value of the objective function does not
change beyond a given threshold within a certain win-
dow of iterations (a change of less than 10−9 for 10 it-
erations in our implementation). Although the see-saw
method has never been proven to converge to the global
optimum, for our current problem it has never failed to
converge within the chosen precision if given sufficient
time, always to the value expected (i.e., to WMUB(d, n)
whenever it is known that nMUBs exist in dimension d).
We implemented the see-saw algorithm with the help of
the SDP solving library MOSEK [23].

B. Results

The values obtained with the see-saw algorithm
are shown in Table I (the values displayed are 1 −
Wd,n/WMUB(d, n) for easier comparison across different
n and d, where Wd,n is the result of the optimisation).
Notice that whenever n MUBs exist in dimension d, the
see-saw method correctly converges to the MUB solu-
tion, and whenever it is known that n MUBs do not ex-
ist in dimension d, the method does indeed converge to
a value less than WMUB(d, n). For the unknown case of
four MUBs in dimension six, the see-saw method could
not find four MUBs, providing further numerical evidence
for Zauner’s conjecture. Furthermore, the optimal mea-
surements found by the see-saw method are numerically
very close to the “four most distant bases” of Ref. [20]
(see also Section VIC).

The method also has consistent convergence, for exam-
ple, for d = 2 and n = 2, all of 10000 see-saw optimisa-
tions from random starts converged to the correct value
ofWMUB(2, 2) = 2.82843 up to five decimal places, albeit
finding a different set of optimum matrices. Similarly, for
10000 optimisations for d = 2 and n = 4, all optimisa-
tions converged to the same value of 16.72616 (correctly
signifying non-existence).

All of the results for this method were obtained on a
desktop PC with 8GB of RAM using 4 cores, with times
varying between milliseconds for the smallest problem
(d = 2, n = 2) and hours for the largest one (d = 6,
n = 4). Since SDP solvers are efficiently parallelised, this
method offers good parallel scaling, however, the memory
requirement is the highest of all of our methods, since
it requires explicit storage and optimisation of the Axa
matrices.

IV. NON-LINEAR SDP

A. Methodology

An alternative approach to the optimisation is to fo-
cus on problem (19), which features only the Byb matrices
and thus contains fewer variables for a reduction in the
size of the search space as well as the memory required.
The downside, however, is that the objective function is
now non-linear (not even bi-linear) and thus many ef-
ficient solvers (i.e. for standard SDP systems) can no
longer be applied. To optimise this problem we adapt
a method based on the work by Yamashita et al. for op-
timising a non-linear SDP using a primal-dual interior
point method [24]. This method, assuming a few basic
conditions (discussed later), is guaranteed to converge
to a Karush–Kuhn–Tucker (KKT) point, a point satisfy-
ing a series of constraints known as the KKT conditions,
which are necessary for optimality [25].

These KKT conditions are only sufficient (imply a
global minimum) in a subset of cases, the main of which
being that the problem is convex, which is unfortunately
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@
@@n
d 2 3 4 5 6

2 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.01440 0.00000 0.00000 0.00000 0.00004
5 - 0.00391 0.00000 0.00000 -
6 - - 0.00186 0.00000 -
7 - - - 0.00091 -

Table I. The values 1 −Wd,n/WMUB(d, n), where Wd,n is the result of the optimisation, obtained with the see-saw method
after convergence for various dimensions (d) and numbers of bases (n), to 5 decimal places. The values in bold indicate that
the value was at least 10−5 away from zero, providing numerical evidence that n MUBs do not exist in dimension d. The
“-” symbol indicates that we have not performed the optimisation. Note that in all the known cases, the algorithm predicts
correctly existence/nonexistence, and it predicts that four MUBs do not exist in dimension six.

not true in our case. An interesting property of our
search-space, however, is that by taking the derivative
of our objective function it can be shown that all lo-
cal minima are global minima if the constraints are met,
thus implying that our search space is, in fact, a series
of discontinuous convex regions. This signifies that for
the MUB-existence case this method will always converge
to MUBs, although no claim can be made for the non-
existence case.

In order to implement the method of Yamasitha et
al., we parametrise the measurement operators {Bxy} by
a real vector x = (xi)i. To be able to deal with real
numbers instead of complex ones, we note that every self-
adjoint matrix B = Br+iBi (where Br is real symmetric
and Bi is real anti-symmetric) can be mapped to the real
symmetric matrix B̂ via

B 7→ B̂ =

[
Br Bi
−Bi Br

]
. (20)

It is easy to verify that B ≥ 0 if and only if B̂ ≥ 0, and
trB = 1

2 tr B̂.
We therefore define—in line with the method of Ya-

masitha et al.—a matrix X(x) =
∑
i Cixi + D, which

is a block diagonal matrix containing the B̂yb matrices
on its diagonal in such a way that the linear constraints∑
bB

y
b = 1 and trByb = 1 of the optimisation problem

(19) are already enforced. The real parameters xi corre-
spond to those elements of the B̂yb matrices that are free
after enforcing the linear constraints. While the con-
straint Byb ≥ 0 is superfluous for the problem (19), we
chose to include this in our optimisation problem, as this
constraint is heavily used in the method of Yamashita
et al. With the parametrisation above, this constraint is
equivalent to X(x) ≥ 0. The last remaining constraint
is projectivity, (Byb )2 = Byb for all y and b, which is
equivalent to X2(x) = X(x). We enforce this constraint
through g(x) ≡ ||X2(x)−X(x)||2F = 0, where ||.||F is the
Frobenius norm. Further, we denote the objective func-
tion in terms of x by W (x), suppressing the d, n indices
whenever it does not lead to confusion.

The method requires introducing Lagrange multipliers

(dual variables) for every constraint. In our case, there
is a single inequality constraint X(x) ≥ 0, to which we
assign the dual variable Z, which is a matrix with the
same dimensions as X(x). Furthermore, we have a single
equality constraint, g(x) = 0, to which we assign the dual
variable y, which is a scalar. The resulting Lagrangian
reads

L(x, y, Z) = W (x)− yg(x)− tr[ZTX(x)]. (21)

The algorithm for solving the optimisation problem is
iterative, and each iteration begins with the calculation
of G, the Hessian of the Lagrangian. In our case this
can be quite expensive so we opt to use the alternative
update method also proposed in Ref. [24] based on the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
which approximates the Hessian without requiring the
full calculation of the second derivatives. This G is then
used to form a series of linear equations which we solve
using a stabilised bi-conjugate gradient method in or-
der to obtain the update directions for the primal (x)
and dual (y, Z) variables. Following this, a simple line
search is performed to find the optimum step size, then
the variables are updated. This process is then repeated
until the following barrier KKT conditions are met for
some barrier parameter µ:

r(x, y, Z, µ) ≡

∇L(x, y, Z)

g(x)

X(x)Z − µI

 =

0

0

0

 (22)

Through repeated iterations of this method with values
of µ converging towards zero, this algorithm has been
proven to always converge to a KKT point of the system,
assuming certain conditions. The first of these is that
the functionsW (x) and g(x) are both twice continuously
differentiable, which in our case is true: W (x) is simply a
sum of square roots of polynomials of x, whilst g(x) is a
vector of polynomials of x. The second condition is that
the vector x must remain within a finite set during the
optimisation, which for us is true since infinite values are
non-optimal for the MUB functional. The third condition
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is that the matrices Ci must be linearly independent,
which for us is true since they serve to place a single
component of x to one (diagonal) or two (off-diagonal)
positions in the matrix X(x).

B. Results

The values obtained through this algorithm are shown
in Table II. The optimal values, as well as the optimal
bases found, agree with the result of the see-saw method
up to high numerical precision. In particular, we find the
same set of four bases to numerically optimise the six
dimensional case (see Section VIC for further details).

Regarding performance, a large amount of time can
be saved if certain parameters, such as the initial step
size, are chosen correctly. Notably, there appears to be
no universally optimal set of parameters, and many of
the results are obtained through the manual tweaking of
the parameters for the specific system. All of the results
for this method were obtained on a standard desktop PC
using 4 cores, with the times varying between millisec-
onds for the smallest problem and an hour for the largest
one. This method has a significantly reduced memory
cost compared to the see-saw method, since here the Axa
matrices are not used, as well as in general offering faster
optimisation.

V. THE MUB PROBLEM AS A GROUND
STATE PROBLEM

A. Methodology

Finally, we apply an optimisation method inspired
by statistical physics, namely simulated annealing [26].
Given n orthonormal bases {|byj 〉; j ∈ [d]}(y ∈ [n]) in a
Hilbert space of dimension d, our goal is to maximise the
expression of Eq. (18), which we rewrite here for com-
pleteness (we keep the d, n dependence implicit through-
out this section, and keep the +B superscript implicit in
Eq. (18)):

W [x] =
2

d

∑
(y,z)∈Pairs[n]

d∑
j,k=1

√
1− |〈byj |bzk〉|2, (23)

where x = {|byj 〉} defines the collection of n bases. When
the n bases are mutually unbiased (|〈byj |bzk〉|2 = 1/d for all
y, z ∈ Pairs[n] and all j, k ∈ [d]), we have W = WMUB =

n(n − 1)
√
d(d− 1). In general, the maximal value is

Wmax ≤ WMUB, with equality if and only if n MUBs
exist in dimension d. Our strategy is then to optimise
the bases by maximising W (or equivalently, minimising
−W ) via simulated annealing. As detailed below, this
amounts to parametrising the vectors |byj 〉 by some pa-
rameters x, and regarding −W (x) as the energy of the

configuration x. The ground state (namely, the lowest-
energy configuration) of −W is found by sampling x with
probability ∝ exp[βW (x)], progressively ramping up the
inverse temperature β. In contrast to gradient-descent-
based approaches, this allows to explore a variety of local
minima of −W at nonzero temperature, with the hope
of finally converging to the global minimum when the
temperature approaches zero. As our results show, this
hope is indeed confirmed by solid evidence. If nMUBs do
exist, they are obtained at the end of the optimisation,
saturating the value Wmax = WMUB. Otherwise, the al-
gorithm converges to an optimum (presumably the global
optimum) Wmax < WMUB, supporting that n MUBs do
not exist in dimension d.
Parametrising the bases.– Each vector |byj 〉 is sim-

ply parametrised by its decomposition in the canonical
basis: |byj 〉 =

∑d
i=1 U

y
ji|ei〉, where x := {Uy}ny=1 are n

complex d × d unitary matrices. The overlaps are then
obtained as 〈byj |bzk〉 =

∑d
i=1(Uyji)

∗Uzki, where (.)∗ is the
complex conjugation.
Simulated annealing.– The basic idea of simulated

annealing [26] is to consider:

〈W 〉β =

∫
dx W (x)

eβW (x)

Zβ
, (24)

where Zβ =
∫
dx eβW (x) is a normalisation factor.

Eq. (24) corresponds to an effective thermal average,
where the parameters x are sampled from a Gibbs distri-
bution eβW (x)/Zβ , in which −W (x) plays the role of the
energy, and 1/β is the temperature. We have that [26]:

〈W 〉β −→
β→∞

Wmax . (25)

In words, progressively ramping up the inverse tempera-
ture β, the thermal average Eq. (24) converges towards
the global maximum of the function W . At each value
of β, the Gibbs distribution in Eq. (24) is sampled via a
Markov-chain Monte Carlo algorithm [27].
Monte Carlo sampling.– The Markov chain is a list

of samples {xi}Ni=1, generated in such a way that in the
limit of infinitely many samples, the average value of
W ({xi}) over the N samples converges towards the exact
average value, up to O(1/

√
N) corrections:

1

N

N∑
i=1

W (xi) = 〈W 〉β +O(1/
√
N) . (26)

In order to sample x according to the Gibbs distribu-
tion [Eq. (24)], we implement a Metropolis algorithm [27].
That is, we start from an arbitrary initial configuration
x1, and then iterate:

1. propose a new configuration xnew (see below)

2. compute the difference ∆ = β[W (xnew)−W (xi)]

3. if ∆ > 0, accept the move
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@
@@n
d 2 3 4 5 6

2 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.01440 0.00000 0.00000 0.00000 0.00004
5 - 0.00391 0.00000 0.00000 -
6 - - 0.00161 0.00000 -
7 - - - 0.00091 -

Table II. The values 1 −Wd,n/WMUB(d, n), where Wd,n is the result of the optimisation, obtained at an approximate KKT
point with ||r(x, y, Z, µ)|| ≡

√
||∇L(x, y, Z)||2 + |g(x)|2 + ||X(x)Z − µI||2F ≤ 10−5 for various dimensions (d) and numbers of

bases (n), to 5 decimal places. The values in bold indicate that the value was at least 10−5 away from zero, providing
numerical evidence that n MUBs do not exist in dimension d. Note that in all the known cases, the algorithm predicts correctly
existence/nonexistence, and it predicts that four MUBs do not exist in dimension six.

@
@@n
d 2 3 4 5 6 7 8 9 10

2 0. 0. 0. 0. 0. 0. 0. 0. 0.
3 0. 0. 0. 0. 0. 0. 0. 0. 0.
4 0.01440 0. 0. 0. 0.00004215 0. 0. 0. 0.000005938
5 - 0.003912 0. 0. - 0. 0. 0. -
6 - - 0.001609 0. - 0. 0. - -
7 - - - 0.0009073 - 0. 0. - -
8 - - - - - 0. 0. - -

Table III. Monte Carlo results. Relative deviation from the MUB optimum in Eq. (23) 1−Wmax/WMUB. “0.” indicates that n
MUBs have been found in dimension d up to at least 10−10 precision. The positive values in bold are the numerical maxima
found over at least three independent Monte Carlo simulations. For d = 10, n = 4, three out of ten independent simulations
found the indicated value; it remains possible that this does not correspond yet to the true optimum.

4. if ∆ < 0, accept the move with probability e∆

5. if the move is accepted, update xi+1 = xnew; oth-
erwise xi+1 = xi.

Implementation of the updates.– In our imple-
mentation, we ramp β linearly from βi = 1 to βf ≈ 104–
105 in nsteps = 103 steps. For each value of β, we at-
tempt nattempts = 105 Metropolis updates. Each move
consists of selecting randomly one basis among n, and
rotate randomly all its elements. Specifically, the moves
are proposed as follows

1. choose randomly and uniformly one of the bases
y ∈ [n]

2. draw 2d2 independent random numbers
{(rjk, sjk)}(j,k)∈[d]2 , uniformly in the interval
[−ε, ε] (see below for the choice of ε)

3. define Uynew as Uyjk + rjk + isjk

4. make Uynew unitary via the Gram–Schmidt proce-
dure.

The parameter ε, which defines the typical amplitude of
the proposed moves, is adapted throughout the algorithm
in order to ensure a constant acceptance rate. Intuitively,
when the temperature is very high, large moves involving

a potentially large change in energy are required to effi-
ciently explore the parameter space. Progressively ramp-
ing down the temperature, the bases start to stabilise in
the vicinity of the maxima ofW , and large moves become
often rejected by the Metropolis rule. On the other hand,
if ε is very small, the moves will not efficiently explore
the parameter space. As a compromise, we adapt ε such
that the acceptance rate raccept of the Metropolis update
(that is, for each value of β, raccept is the number Naccept

of accepted moves divided by the number Nattempts of
attempts), is kept between rmin = 0.32 and rmax = 0.48.
We initialise ε = 1 at the beginning of the simulation, and
whenever raccept < rmin, we change ε to 0.8ε. Similarly,
whenever raccept > rmax, we change ε to 1.2ε.

Optimal bases.– As the goal of the simulation is
not to accurately estimate the thermal average 〈W 〉β
[Eq. (24)], but only to efficiently find its global maxi-
mum, we do not carry out a detailed evaluation of the
error on 〈W 〉β as estimated from our samples. Through-
out the simulation, we record the optimal bases xopt en-
countered, corresponding to the maximal value of Wopt

found so far. As a last step of the optimisation, we set
β = ∞ and start a new simulation starting from xopt

as the initial configuration. Effectively, this amounts to
only accepting the moves that increase W , in order to
achieve as many digits of precision as needed for Wopt,
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Figure 1. Monte Carlo simulation for d = 6, n = 4. As a
function of the inverse temperature β, mean value of the Bell
operator [cf. Eq. (24)]. Three independent simulations are
plotted, and the dashed red line indicates the maximal value
found throughout the simulations (see text). Inset: Zoom of
the main panel for 1000 < β < 3000.

Figure 2. Monte Carlo simulation for d = 10, n = 4. As
a function of the inverse temperature β, mean value of the
Bell operator [cf. Eq. (24)]. Ten independent simulations are
plotted, and the dashed red line indicates the maximal value
found throughout the simulations. Inset: Zoom of the main
panel for 10000 < β < 20000.

as well as for the basis elements themselves.

B. Results

The results of this optimisation are summarised in
Table III. For a meaningful comparison of different di-
mensions d, and different number of bases n, we in-
dicate the relative deviation to the MUB optimum:
1−Wmax/WMUB.

Power-of-prime dimensions.– All dimensions
2 ≤ d ≤ 9 except d = 6 are powers of prime, for which
the maximal number of MUBs is exactly d + 1. Our
numerical simulations are consistent with this fact, and
our variational optimisation systematically reconstructs
n MUBs for all n ≤ d + 1 [28]. For d = 2, 3, 4, 5, we
also performed the optimisation for n = d + 2, where
three independent simulations gave the same optimum
within numerical accuracy. The corresponding optimal
solutions are analysed analytically in Section VI for
d = 2 and 3.

d=6.– In the case d = 6, we do not find more
than n = 3 MUBs. For n = 4, three indepen-
dent simulations gave consistently the optimum
Wopt(6, 4) = WMUB(1 − 0.00004215) ≈ 65.723938549 . . .
(within numerical accuracy). The optimal bases found
also coincide within numerical precision with those
found by the see-saw and non-linear SDP techniques
of the previous sections (also see Section VIC for a
close analytical construction). The complete evolution
of 〈W 〉β is illustrated in Fig. 1 for these three simulations.

d=10.– The simulations for d = 10 are reaching the
limits of our current implementation. We did find n = 3
MUBs, but not n = 4. As illustrated in Fig. 2 over ten
independent simulations, three of them converged to the
same optimum Wopt(10, 4) = WMUB(1− 0.000005938) ≈
113.8413197 . . . . This value is reported in Table III, and
is our best estimate for the true optimum. Even though
some of our simulations are trapped in local optima, our
results support the conjecture that no more than three
MUBs exist in dimension 10.

VI. ANALYTIC CONSTRUCTIONS

In this section we describe analytic constructions that
match the best bases found numerically for the cases
of four bases in dimension two, five bases in dimension
three, and four bases in dimension six.

A. Dimension two

One can parametrise any rank-1 qubit projection B
using the Bloch representation

B =
1

2
(1 + ~r · ~σ), (27)

where ~r = (x, y, z) is a unit vector in R3, ~σ = (σx, σy, σz)
is a vector of the Pauli matrices, and ~r ·~σ = xσx + yσy +
zσz. Accordingly, for the case of four rank-1 projective
measurements on a qubit, we use the parametrisation
By1 = 1

2 (1 + ~ry · ~σ) for y ∈ {1, 2, 3, 4}, and By2 = 1−By1 .
Consider then the four measurements parametrised by
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the four vectors

~r1 =
1√
3

(1, 1, 1)

~r2 =
1√
3

(1,−1,−1)

~r3 =
1√
3

(−1, 1,−1)

~r4 =
1√
3

(−1,−1, 1),

(28)

defining a regular tetrahedron on the Bloch sphere. It
is straightforward to verify that by plugging these mea-
surements into Eq. (17) we get

W+B
2,4 ({Byb }) = 4(

√
3 +
√

6) ≈ 16.7262, (29)

which agrees (after normalisation) with the values in Ta-
bles I, II, and III up to numerical precision.

B. Dimension three

For the three-dimensional case, we parametrise each
basis y ∈ {1, . . . , 5} by a unitary matrix Uy, whose
columns correspond to the basis vectors. Fixing the
computational basis allows us to write the first basis as
U1 = 1. We then take the second basis to be the Fourier
basis

U2 =
1√
3

1 1 1

1 ω3 ω2
3

1 ω2
3 ω3

 , (30)

where ω3 = e
2πi
3 . We define the remaining three bases as

U3 = diag(ω6, ω̄6, 1)U2

U4 = diag(1, ω6, ω̄6)U2

U5 = diag(ω̄6, 1, ω6)U2,

(31)

where ω6 = e
2πi
6 , ω̄6 is its complex conjugate, and

diag(x, y, z) is a diagonal matrix of x, y, and z. Note that
all the bases U2, U3, U4, and U5 are unbiased to U1. It is
straightforward to verify that by plugging the measure-
ments Byb corresponding to the bases Uy into Eq. (17),
we get

W+B
3,5 ({Byb }) = 8(

√
2 +
√

5 +
√

6) ≈ 48.7982, (32)

which agrees (after normalisation) with the values in Ta-
bles I, II, and III up to numerical precision.

C. Dimension six

All three numerical methods converged to (numeri-
cally) the same set of four bases in dimension six. Just

like in the case of five bases in dimension three, this set
has the property that one basis is unbiased to the other
three bases. Upon closer inspection, one finds that these
bases are numerically very close to the “four most distant
bases” of Ref. [20], which were found via maximising the
MUBness measure

D2 ∝
∑

(y,z)∈Pairs[n]

∑
j,k

|〈byj |b
z
k〉|2(1− |〈byj |b

z
k〉|2) . (33)

One can again parametrise the bases by four unitary
matrices such that the first one is U1 = 1. The rest of
the bases are based on Eq. (6) of Ref. [20], in which the
authors describe a family of three unitary matrices, de-
pending on two parameters, θt and θx. The “optimal” val-
ues of these parameters (optimality here originally means
maximising the distance measure of Ref. [19]) is then de-
termined by finding the unique real solution of Eq. (20)
in Ref. [20], plugging it into Eq. (19) of Ref. [20] to ob-
tain θt, and plugging it into Eq. (21) of Ref. [20] to ob-
tain θx. These analytic values correspond to approxi-
mately (θx, θt) ≈ (0.9852276, 1.0093680).

If we substitute the resulting bases {Byb } into our op-
timisation problem in Eq. (19), we obtain (analytically)

W+B
6,4 ({Byb }) ≈ 65.7239381 (34)

Comparing with our optimum ≈ 65.7239385, we ob-
serve that: 1) the analytical optimum (for the bases of
Ref. [20]) and our numerical optimum differ after the
eighth significant figure; and 2) consistently, our numer-
ical optimum is larger than the analytical one. This
should not be a surprise, for the two solutions optimise
different MUBness measures, respectively Eq. (18) and
Eq. (33). As a further comparison, one can look at the
overlaps tr(ByjB

z
k) = |〈byj |bzk〉|2 of the bases found. We

indeed find that one of the bases is unbiased to the other
three, i.e.

tr(B1
jB

y
k) = |〈byj |b

z
k〉|2 = 0.166667 ∀j, y, k. (35)

Apart from these, there are three different values of over-
laps, whose approximate values 0.124, 0.181, and 0.152
agree with our numerical findings up to two or three sig-
nificant digits.

In conclusion, our three numerical methods, together
with the approach of Ref. [20] all appear to converge
to essentially the same set of four bases in dimension
six. Small differences in the overlaps originate in the
different MUBness measures which are optimised. This
provides further numerical evidence supporting Zauner’s
conjecture.

VII. CONCLUSIONS

We reformulated the existence problem of MUBs as an
optimisation problem, using a recently found family of
Bell inequalities. We then applied three numerical meth-
ods suitable for optimising Bell inequalities in order to
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tackle the existence problem: see-saw SDP optimisation,
non-linear SDP, and Monte Carlo techniques. The results
of all these numerical optimisations is in full accordance
with the known cases in dimensions d = 2, 3, 4, 5, where
we find d+ 1 MUBs. Furthermore, whenever it is known
that n MUBs do not exist in a given dimension d, all the
different algorithms converge to the same set of bases
in all cases (with a slight difference between the see-saw
method and the other two methods for d = 4, n = 6).

We applied our numerical techniques to the open case
of four MUBs in dimension six. All three algorithms sug-
gest that there do not exist four MUBs in dimension six,
by converging to a Bell value strictly smaller than the
hypothetical MUB value. Moreover, the bases found by
all three algorithms are very close numerically with the
“four most distant bases” in dimension six of Ref. [20].
Hence, our findings provide further numerical evidence
for Zauner’s conjecture. In the next composite dimen-
sion, d = 10, our Monte Carlo results suggest that no
more than n = 3 MUBs exist.

It is important to point out that the numerical
methods used in this work are heuristic, i.e. there is no
guarantee of convergence to the global optimum. As
such, heuristic numerics can never provide a rigorous
proof of the non-existence of MUBs (only that of
existence, by explicitly finding MUBs). To overcome
this shortcoming, a plausible future direction towards
a rigorous numerical proof is using a variant of the
Navascués–Pironio–Acín hierarchy of SDPs [29] for

maximising a Bell inequality in a fixed dimension.
While such numerical optimisation is computationally
significantly more expensive than those in our work,
it provides certifiable upper bounds on Bell inequality
violations, and therefore could in principle be used to
rigorously prove the non-existence of MUBs.

Code availability. The numerical findings presented
in this paper can be reproduced using the codes
made available on public repositories. For the see-saw
SDP, see https://github.com/Lumorti/seesaw. For
the non-linear SDP, see https://github.com/Lumorti/
nonlinear. For the Monte Carlo simulations, see https:
//github.com/mariaprat/mubs-montecarlo.
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