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Mutually unbiased bases correspond to
highly useful pairs of measurements in
quantum information theory. In the small-
est composite dimension, six, it is known
that between three and seven mutually
unbiased bases exist, with a decades-old
conjecture, known as Zauner’s conjecture,
stating that there exist at most three.
Here we tackle Zauner’s conjecture numer-
ically through the construction of Bell in-
equalities for every pair of integers n,d > 2
that can be maximally violated in dimen-
sion d if and only if n MUBs exist in
that dimension. Hence we turn Zauner’s
conjecture into an optimisation problem,
which we address by means of three nu-
merical methods: see-saw optimisation,
non-linear semidefinite programming and
Monte Carlo techniques. All three meth-
ods correctly identify the known cases in
low dimensions and all suggest that there
do not exist four mutually unbiased bases
in dimension six, with all finding the same
bases that numerically optimise the corre-
sponding Bell inequality. Moreover, these
numerical optimisers appear to coincide
with the “four most distant bases” in di-
mension six, found through numerically
optimising a distance measure in [P. Ray-
nal, X. Lii, B.-G. Englert, Phys. Rev. A, 83
062303 (2011)]. Finally, the Monte Carlo
results suggest that at most three MUBs
exist in dimension ten.

Maté Farkas: mate.farkasQicfo.eu

1 Introduction

Mutually unbiased bases (MUBs), on the one
hand, are highly symmetric bases in complex
Hilbert spaces and, on the other hand, correspond
to pairs of quantum measurements. The defin-
ing property of a pair of MUBs is that the over-
laps between any two vectors from the two dif-
ferent bases is uniform. This property translates
to the corresponding measurements as follows: If
a measurement yields a definite outcome when
measured on a quantum state, then a measure-
ment unbiased to it will yield a uniformly random
outcome on the same state. This feature makes
MUBs widely useful in quantum information pro-
cessing. MUBs were originally introduced in the
context of optimal state determination [1]|, but
since have been found to be useful in a variety
of quantum information processing tasks, such as
quantum cryptography [2, 3, 4], quantum com-
munication tasks [5, 6], Bell inequalities [7, 8, 9|
and so on (for a review, see Ref. [10]).

While MUBs have been extensively studied
both in the quantum information and the math-
ematics community for decades, there are still
open questions regarding their structure. Most
notably, the maximal number of bases that are
pairwise mutually unbiased is unknown for gen-
eral Hilbert space dimension. A general up-
per bound was shown by Wootters and Fields,
stating that in dimension d there exist no more
than d + 1 MUBs [11]. In the same work, they
showed that this upper bound is saturated in
prime power dimensions, by providing an explicit
construction. However, in composite dimensions
the only known generic lower bound on the num-
ber of MUBs is p" + 1, where p" is the smallest
prime power in the prime decomposition of the di-

Accepted in (uantum 2022-07-30, click title to verify. Published under CC-BY 4.0. 1


https://quantum-journal.org/?s=Three%20numerical%20approaches%20to%20find%20mutually%20unbiased%20bases%20using%20Bell%20inequalities&reason=title-click
https://quantum-journal.org/?s=Three%20numerical%20approaches%20to%20find%20mutually%20unbiased%20bases%20using%20Bell%20inequalities&reason=title-click
https://orcid.org/0000-0002-7866-8356
https://orcid.org/0000-0002-5644-8985
https://orcid.org/0000-0002-7703-8539
https://orcid.org/0000-0002-2682-8215
https://orcid.org/0000-0002-1355-3435
mailto:mate.farkas@icfo.eu

mension (this lower bound is shown using tensor
products of the Wootters—Fields construction).
While in certain dimensions this lower bound has
been improved [12], there exists no composite di-
mension in which the exact number of MUBs is
known. For the smallest composite dimension,
six, the number of MUBs is known to be no more
than seven and no less than three, from the gen-
eral bounds. However, which of the numbers in
between is the exact number of MUBs in dimen-
sion six is unknown (apart from the fact that it
cannot be six, following from a general result by
Weiner [13]). It was first conjectured by Zauner
in 1999 that there are no more than three MUBs
in dimension six [14], and this conjecture has not
been resolved to date, despite substantial efforts.

There are numerous works trying to prove (or
disprove) Zauner’s conjecture, both analytically
and numerically. While not providing an exhaus-
tive list of references here, let us note that on
the analytic side, it has been shown that Zauner’s
conjecture is equivalent to a conjecture on orthog-
onal decompositions of Lie algebras [15]. Further-
more, there exist various analytic constructions of
MUB triplet families (see Refs. [16, 17| and ref-
erences therein), but thus far there has not been
found even a single vector that is unbiased to all
the vectors in any of these triplets. For notable
recent developments on Zauner’s conjecture see

Refs. [18, 19].

On the numerical side, Bengtsson et al. intro-
duced a distance measure of two bases that is
maximised if and only if the bases are mutually
unbiased [20]. This construction turns the prob-
lem of finding a set of MUBs into an optimisa-
tion problem, maximising all the pairwise dis-
tances within a set of bases. Using this approach,
Raynal, Lii and Englert later constructed a two-
parameter family of four bases in dimension six,
such that for certain values of the parameters,
the bases coincide with the numerical maximiser
of the distance function [21]. These four bases
are not MUBs, but based on the numerical evi-
dence the authors refer to them as “the four most
distant bases in dimension six”.

Since MUBs optimise various quantum infor-
mation processing tasks, it is natural to measure
the closeness of a set of bases to MUBs in terms of
some quantum information processing protocol.
This was studied formally by Aguilar et al. [22],
using the fact that MUBs optimise the success

probability of a communication task called quan-
tum random access codes (QRACs). A slight gen-
eralisation of the QRAC task is then optimised by
a set of n MUBs, and finding n MUBs in dimen-
sion d corresponds to optimising the associated
success probability. With this method, Aguilar et
al. managed to re-prove the non-existence of d+2
MUBS in certain low dimensions using quantum
information theoretic tools. However, the case of
dimension six remains open.

In this work, we employ similar ideas to tackle
Zauner’s conjecture. Namely, we study a recently
introduced family of Bell inequalities, known to
be maximally violated by a pair of MUBs in di-
mension d [9]. We then extend these inequalities
to new ones, maximally violated by a set of n
MUBEs in dimension d. Then, we apply three nu-
merical methods for finding the maximal value
of these Bell inequalities in a fixed dimension.
Namely, we apply see-saw semidefinite program-
ming (SDP), non-linear SDP, and Monte Carlo
techniques. While these methods are heuristic—
in the sense that there is no guarantee for finding
a global maximum—they find the maximum in all
the cases where the maximum is known (i.e., it is
known that n MUBs exist in the given dimension
d). Furthermore, when applying these techniques
to dimension six and four bases, all the different
numerical tools converge to the same bases, and
these four bases are—numerically—very close to
the “four most distant bases” of Ref. [21] (one
should not expect exact equality, since the mea-
sure optimised in Ref. [21] is different from the
Bell inequalities we optimise). Hence, our results
support Zauner’s conjecture, even though no rig-
orous claim can be made due to the heuristic na-
ture of our methods. Finally, we were able to im-
plement the Monte Carlo algorithm for d = 10,
where—similarly to d = 6—we do not find more
than three MUBs.

2 Preliminaries

In this section, we introduce the mathematical
background and concepts necessary for turning
the MUB problem into an optimisation problem.
Namely, we formally introduce MUBs, Bell in-
equalities and the specific family of Bell inequal-
ities tailored for MUBs.
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2.1 Mutually unbiased bases

Let us take a d-dimensional Hilbert space H =
C?, and two orthonormal bases on it, { \b}) ?:1
and {|b2)}¢_,. We say that these two bases are
mutually unbiased if
12y2 _ 1 -
b [b) [ = = Vi, k € d], (1)
where [d] = {1,2,...,d}. A simple example in di-
mension two is the computational basis {|0),[1)}
and the Hadamard basis {%(m) +11)), %OO) -
1)},

One may also associate an orthonormal ba-
sis with a quantum measurement. In general, a
quantum measurement is described by a positive
operator-valued measure (POVM), which, in the
d-dimensional, d-outcome case corresponds to a
set of d positive semidefinite operators B; > 0
on C? adding up to the identity operator 1.
Given an orthonormal basis {|b;) ?:1 on C9,
one can define the corresponding POVM {B; =
|b;)(b; |}?:1, consisting of rank-1 projections onto
the basis elements. We say that two measure-
ments are MUBs if they correspond to a pair of
orthonormal bases that are MUBs.

2.2 Bell inequalities

We look at MUBs in the context of Bell sce-
narios (see Ref. [23] for a review). Bell scenar-
ios describe physical experiments performed by
two distant parties, usually referred to as Al-
ice and Bob. These parties share many copies
of a bipartite (quantum) state, and perform lo-
cal measurements on these copies. The experi-
ment is described by the correlation, p, with el-
ements p(a,blz,y) specifying the probability of
Alice (Bob) observing locally the outcome a (b)
upon choosing the measurement setting = (y). In
quantum theory, the shared state is described by
a density operator p > 0 with unit trace (trp = 1)
on a tensor product Hilbert space Ha ® Hp.
The measurements are described by local POV Ms
{AZ} and {B/} on the Hilbert spaces H4 and
H g, respectively. For a fixed state and measure-
ments, the correlation is given by the Born rule,

pla,bla,y) = tr[p(A; @ By)]. (2)

Note that for a pure state, p = [¢) (|, with |¢) €
Ha ® Hp and (P|y) = 1, the Born rule reduces

to
pla,blz,y) = (V|A7 @ Bi|v). (3)
Bell functionals are linear functionals of corre-
lations, i.e., functionals of the form

W(p) = Z Cabacyp(c%b’xvy)a (4)
a,b,x,y

where cqpyy are real coefficients. Non-trivial Bell
inequalities are Bell functionals for which W (p) <
B, holds for every correlation of the form

pla.ble,y) = [ du(Npa(ale. Npa(bly.N) (5)

(also called a local correlation, considered as the
notion of classicality in Bell scenarios), but for
which there exists a quantum correlation p of the
form (2) such that W(p) > fr. In Eq. (5), A is
a measurable set with a probability measure p,
A €A, and p4 and pp are conditional probability
distributions.

While the original interest in Bell inequalities
was precisely this separation of local and quan-
tum correlations, we will be interested in their
quantum maximum (or mazximal quantum viola-
tion), i.e., the tight upper bound W(p) < Bg
satisfied by all correlations of the form (2).

2.3 Bell inequalities for mutually unbiased
bases

In this work, we are interested in a family of Bell
inequalities that was introduced in Ref. [9], and
is parametrised by an integer d > 2. For a fixed
d, Alice has d? measurement settings labelled
as * = zyxe with x1,29 € [d]. Each of these
measurements has three outcomes, a € {1,2, L}.
Bob, on the other hand, has two measurement
settings, y € {1, 2}, with d outcomes each, b € [d].
The Bell inequality then reads

Walp) = Y [p(y, zylz122,9) — p(, 2yl2122, )]
1,22,y
1 /d—1
5\~ > [pa(l|zizs) + pa(2lzias)],

1,22
(6)

where y flips the value of y € {1,2}, and
palalx) = >, p(a,blx,y) is the marginal proba-
bility distribution of Alice (which is independent

of y).
This is a non-trivial Bell inequality with max-

imal quantum violation Bg = +/d(d—1) [9].
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The maximal violation can be achieved with the
maximally entangled d-dimensional state ]¢j) =
% Z?ZI |7)®]J), and any pair of MUB measure-
ments on Bob’s side. Moreover, if the dimension
is fixed to be d, this is the only way in which the
maximal quantum violation can be achieved, up
to local unitary freedom [9]. This property of the
Bell inequality (6) forms the core of our numerical
approaches to construct MUBs.

The above Bell inequality can be straightfor-
wardly extended to a set of n measurements on
Bob’s side. The Bell inequality for n measure-
ments is a sum of Bell inequalities of the form (6).
For each pair y, z € [n] such that y < z (denoted
in the following as (y, z) € Pairs[n]), we introduce
d? settings for Alice, labelled as x = (y, z)zyx,
with zy,z, € [d], and take a copy of the Bell
inequality in Eq. (6), defined as

Z [p(aUM $w|(y, Z)xyl'z, w)

Ty, Tz, W

W (p) =

—p aw,xw| Y,z :nyz,w)]

(7)
Y Z pa(1l(y, 2 l'yl'z)
xyrrz

+pa2l(y, 2)zyz.)],

where w € {y,z}, ay = 1, a, = 2, and a,, flips
the value of a,. The final Bell inequality then
reads

W p).  (8)

Wd,n (p) = Z

(y,z) €Pairs[n]

It is clear that Wy, (p) < (5)/d( ), by ap-

plying the known bound to each 1nd1v1dual term
in the above sum. Moreover, if the dimension is
d, the only way to reach this maximum (up to
local unitary freedom) is by using the maximally
entangled state, and if the n measurements on
Bob’s side correspond to MUBs.
reformulate the MUB problem in terms of these
Bell inequalities:

Proposition 1. Wy, (p) = (3)/d(d —1) can be
achieved in dimension d if and only if n MUBs
exist in dimension d.

Hence, we can

2.4 The optimisation problem

According to the above proposition, finding n
MUBs in dimension d can be cast as an opti-
misation problem, maximising Wy ,(p) over d-
dimensional quantum states and measurements.

To see how to do this explicitly, let us first write
out the Bell inequality Wy in Eq. (6) in terms
of a quantum state |1) and measurements { A%},
{B{}, using Born’s rule in Eq. (3):

Wa(lv), {AT B = Y (w]A7™ @ BY |v)
x1,T2,Y

—(¥ 45" © B [¥))

1S (a7 @ 1))

+{ |43 @ 1])).
= > WA~ A @ (B} - BY)

7.k

d— . .
s\ A+ A @ 1),

where in the second equality we wrote out the
summation over y and switched to the notation
x1xe — jk with j,k € [d]. Maximising the in-
equality (9) in terms of the state and the mea-
surements can then be written as the optimisa-
tion problem

(9)

|w>7{rj?}>7<{35} Wa(|v), {Ag} By })
5.t ) e Ch@C (ply) =1
A%, By € La(CY) Va,b,z,y
A >0 Va,z, B} >0 Vb,y
Y AT=1 vV, » Bl =1 Wy,
a b

(10)

where Lg,(C?) is the set of self-adjoint linear op-
erators on C%. Optimising W can be written in
a similar fashion, with:

Wan (0), {42} B/ = {

(y,z)€Pairs[n]
S @I[AP — AP @ (8] - BY)

7,k
1 d_l 2 'k ,Z ik
—o\| g AP A >®1]w>}.

(11)
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The optimisation problem is then

max

Wan(19), {AS}, {B}
|9){Az}.{B} (19 {4t By}

s.t. [4) eCl@CY (yly) =1
AZ Bl € L,(CY) Va,b,z,y
A? >0 Va,z, B} >0 Vb,y

S AT=1Vx, > Bl=1W.
a b
(12)

In this work, we consider various approaches to
solve the optimisation problem (12). In particu-
lar, from Proposition 1 it follows that n MUBs
exist in dimension d if and only if the solution of
the above optimisation problem is (5)/d(d — 1).
We will facilitate the problem using knowledge
about the optimal realisation of the Bell inequal-
ity from Ref. [9].

First of all,
(3)V/d(d —1) can only be achieved in dimension
d with the maximally entangled state [9]. With-
out loss of generality, we therefore impose that
[¥) = [67) = 75 S5=115) @ [4). We can then
use the fact that for any two operators A and B
on C? we have that (¢ |[A® B|¢}) = 1 tr(ATB),
where (.)7' is the transposition in the basis {|j)}.
As a second simplification, we notice that in or-
der to saturate the bound (3)/d(d—1) in di-
mension d, Alice’s measurement operators A7
and A%, and all of Bob’s measurement operators
must be trace-1 [9]. For such operators we have
that (¢ |AT ® 1|of) = (¢ |45 ® 1|of) = §.
The second term in Eq. (11) is then a constant,
—(5)+/d(d — 1), and does not influence the opti-
misation problem. The simplified Bell expression
finally reads

we notice that the value

Win (A B = > {

(y,z)€Pairs[n]
1 Ztr ((A(y,z)jk _ A(yvz)jk)T(By . BZ))
d — 1 2 j k ’
J

(13)

and its maximum quantum value Wj ., satisfies:

Wj:n < WMUB(da n) = n(n—l) d(d — 1) . (14)

The simplified optimisation problem becomes
max Wi, ({A7} {B{})
fashiy ’

s.b. AZ B} € Lsa(CY) Va,b,z,y
A7 >0 Va,z, B >0 Vb,y
trA; =1 Va,z, trBf =1 Vy,b

Y AT=1Vz, > Bl=1wy.
a b
(15)

The optimal value of this optimisation problem
is n(n —1)/d(d — 1) if and only if n MUBs exist
in dimension d.

We may further simplify the optimisation prob-
lem. From Ref. [9] we know that in the optimal
realisation the B} operators are rank-1 projec-
tions, BY = [b%)(b7| (they are projections onto
the basis elements of MUBs). For such operators,
we have that

(BY = Bf)? = [1 - tx(BY Bp))(B] - Bf), (16)

which implies that the spectrum of BY —
B is contained in {0,£A5}, where N =

1-— tr(B}yBg) = ,/1- ](b?]”|bz>|2
we have that tr[(B;-J - B} = 2()\%)2 and
tr(B]y — B}) =0, and therefore B;./ — Bj has one
eigenvalue AJ, one eigenvalue —\%/ and the rest
of the eigenvalues are 0. Furthermore, in the op-
timal realisation we have that (Agy’z)j k)T is the
rank-1 projection onto the eigenspace of B;-’ - B;,

Moreover,

corresponding to AJ, and (Agy’z)j ")T is the rank-
1 projection onto the eigenspace of B]y — B cor-
responding to —)\%. With these final simplifica-

tions the Bell expression reads

S Y /1-u(Bia)

(y,2)€Pairs[n] j,k

DR SRVARITTT

(y,2)€Pairs[n] j,k

Wi ({B}) =

QDN Ul

and the corresponding optimisation problem is

max Wi ({B}})
By
st. B} € Ls(CY) Va,b,x,y
(BY)*> =B} Vby (19)
trBY =1 Vb,y
Y By =1 wy.
b
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Note that projectivity and self-adjointness im-
plies positive semidefiniteness, and therefore posi-
tive semidefiniteness does not need to be imposed.

The optimal value of the optimisation problem
(19), denoted as Wiax(d, n), is n(n—1)/d(d — 1)
if and only if n MUBs exist in dimension d. In
fact, Alice’s measurements have been completely
removed from the problem, and one may regard
Eq. (19) as a purely geometrical problem: find n
orthonormal bases, {{|b¥) | j € [d]} | y € [n]},
maximising the “MUB-ness measure” of Eq. (18).

In the following three sections we apply three
numerical methods to solve the optimisation
problems (15) and (19) in order to numerically
tackle Zauner’s conjecture.

3 See-saw SDP

3.1 Methodology

One arrives at a relatively simple method of op-
timising problem (15) by noticing that the objec-
tive function is bi-linear in the A* and B} matri-
ces. That is, if every A? is fixed, then the problem
simplifies to optimising a linear functional of the
B} matrices with a series of linear and positive
semidefinite constraints. This is a standard SDP,
for which there exist efficient solvers.

The see-saw optimisation technique starts with
fixing the set of A? matrices satisfying the con-
straints of the problem (15), either with random
values or based on some prior knowledge. We
then solve the problem for the B matrices, which
is a standard SDP. Then, we fix the B} matrices
to the optimum found, and solve the resulting
SDP for the AZ matrices, and so on. By repeating
this process, the system eventually converges to a
stable result, i.e. the value of the objective func-
tion does not change beyond a given threshold
within a certain window of iterations (a change of
less than 10~ for 10 iterations in our implemen-
tation). Although the see-saw method has never
been proven to converge to the global optimum,
for our current problem it has never failed to con-
verge within the chosen precision if given suffi-
cient time, always to the value expected (i.e., to
Waus(d, n) whenever it is known that n MUBs
exist in dimension d). We implemented the see-
saw algorithm with the help of the SDP solving
library MOSEK [24].

3.2 Results

The values obtained with the see-saw algorithm
are shown in Table 1 (the values displayed are
1-Wyn/Waus(d, n) for easier comparison across
different n and d, where Wy, is the result of the
optimisation). Notice that whenever n MUBs ex-
ist in dimension d, the see-saw method correctly
converges to the MUB solution, and whenever it
is known that n MUBs do not exist in dimension
d, the method does indeed converge to a value
less than Wyryg(d,n). For the unknown case of
four MUBs in dimension six, the see-saw method
could not find four MUBSs, supporting Zauner’s
conjecture. Furthermore, the optimal measure-
ments found by the see-saw method are numeri-
cally very close to the “four most distant bases”
of Ref. [21] (see also Section 6.3). Note, however,
that the results simply mean that the method
could not find four MUBs in dimension six, but
one cannot rule out the possibility that they exist.

The method also has consistent convergence,
for example, for d = 2 and n = 2, all of 10000 see-
saw optimisations from random starts converged
to the correct value of Wyup(2,2) = 2.82843 up
to five decimal places, albeit finding a different
set of optimum matrices. Similarly, for 10000
optimisations for d = 2 and n = 4, all optimi-
sations converged to the same value of 16.72616
(correctly signifying non-existence). We did not
perform a similar sized convergence analysis for
the larger dimensions due to the time required to
optimise, however, several runs were always per-
formed to certify a minimal level of consistency.

All of the results for this method were obtained
on a desktop PC with 8GB of RAM using 4 cores,
with times varying between milliseconds for the
smallest problem (d = 2, n = 2) and hours for
the largest one (d = 6, n = 4). Since SDP
solvers are efficiently parallelised, this method of-
fers good parallel scaling, however, the memory
requirement is the highest of all of our methods,
since it requires explicit storage and optimisation
of the AY matrices.

4  Non-linear SDP

4.1 Methodology

An alternative approach to the optimisation is to
focus on problem (19), which features only the
Bg matrices and thus contains fewer variables for
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n d 2 3 4 5 6
2 0.00000  0.00000  0.00000  0.00000  0.00000
3 0.00000  0.00000  0.00000  0.00000  0.00000
4 0.01440 0.00000  0.00000  0.00000 0.00004
5 - 0.00391  0.00000  0.00000 -
6 - - 0.00186  0.00000 -
7 - - - 0.00091 -

Table 1: The values 1 — Wy,,/Wwmus(d,n), where W, is the result of the optimisation, obtained with the see-
saw method after convergence for various dimensions (d) and numbers of bases (n), to 5 decimal places. The
values depicted are consistently obtained by multiple runs. The values in bold indicate that the value was at least

10~° away from zero, meaning that the method could not find » MUBs in dimension d. The

symbol indicates

that we have not performed the optimisation. Note that in all the known cases, the algorithm predicts correctly
existence/nonexistence, and it predicts that four MUBs do not exist in dimension six.

a reduction in the size of the search space as well
as the memory required. The downside, how-
ever, is that the objective function is now non-
linear (not even bi-linear) and thus many effi-
cient solvers (i.e. for standard SDP systems) can
no longer be applied. To optimise this problem
we adapt a method based on the work by Ya-
mashita et al. for optimising a non-linear SDP
using a primal-dual interior point method [25].
This method, assuming a few basic conditions
(discussed later), is guaranteed to converge to a
Karush-Kuhn—Tucker (KKT) point, a point sat-
isfying a series of constraints known as the KKT
conditions, which are necessary for optimality
[26].

These KKT conditions are only sufficient (im-
ply a global minimum) in a subset of cases, the
main of which being that the problem is convex,
which is unfortunately not true in our case. An
interesting property of our search-space, however,
is that by taking the derivative of our objective
function it can be shown that all local minima are
global minima if the constraints are met, thus im-
plying that our search space is, in fact, a series of
discontinuous convex regions. This signifies that
for the MUB-existence case this method will al-
ways converge to MUBs, although no claim can
be made for the non-existence case.

In order to implement the method of Ya-
mashita et al., we parametrise the measurement
operators {By} by a real vector x = (x;);. To
be able to deal with real numbers instead of com-
plex ones, we note that every self-adjoint matrix
B = B, +iB; (where B, is real symmetric and
B is real anti-symmetric) can be mapped to the

real symmetric matrix B via

(20)

BHB:[B’" B’}.

-B;, B,

It is easy to verify that B > 0 if and only if B >0,
and tr B = %trB.

We therefore define—in line with the method of
Yamasitha et al.—a matrix X (x) = >, Cjz; + D,
which is a block diagonal matrix containing the
Bg matrices on its diagonal in such a way that
the linear constraints Y, BY = 1 and tr B} =
of the optimisation problem (19) are already en-
forced. The real parameters x; correspond to
those elements of the Eg matrices that are free
after enforcing the linear constraints. While the
constraint By > 0 is superfluous for the problem
(19), we chose to include this in our optimisa-
tion problem, as this constraint is heavily used
in the method of Yamashita et al. With the
parametrisation above, this constraint is equiv-
alent to X (x) > 0. The last remaining constraint
is projectivity, (BY)? = BY for all y and b, which
is equivalent to X?(x) = X (x). We enforce this
constraint through g(x) = | X?%(x) — X (x)|% = 0,
where |.|r is the Frobenius norm. Further, we
denote the objective function in terms of x by
W (x), suppressing the d,n indices whenever it
does not lead to confusion.

The method requires introducing Lagrange
multipliers (dual variables) for every constraint.
In our case, there is a single inequality constraint
X (x) > 0, to which we assign the dual variable
Z, which is a matrix with the same dimensions
as X (x). Furthermore, we have a single equal-
ity constraint, g(x) = 0, to which we assign the
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dual variable y, which is a scalar. The resulting
Lagrangian reads

L(x,y,Z) = W(x) —yg(x) — tz[Z" X (x)]. (21)

The algorithm for solving the optimisation
problem is iterative, and each iteration begins
with the calculation of G, the Hessian of the
Lagrangian. In our case this can be quite ex-
pensive so we opt to use the alternative update
method also proposed in Ref. [25] based on the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) al-
gorithm, which approximates the Hessian with-
out requiring the full calculation of the second
derivatives. This G is then used to form a se-
ries of linear equations which we solve using a
stabilised bi-conjugate gradient method in order
to obtain the update directions for the primal (x)
and dual (y, Z) variables. Following this, a simple
line search is performed to find the optimum step
size, then the variables are updated. This process
is then repeated until the following barrier KKT
conditions are met for some barrier parameter u:

VL(x,y,Z)

9(x) =
X(x)Z — ul

0
r(x,y, Z,p) = o (22)
0

Through repeated iterations of this method
with values of u converging towards zero, this al-
gorithm has been proven to always converge to a
KKT point of the system, assuming certain con-
ditions. The first of these is that the functions
W (x) and g(x) are both twice continuously dif-
ferentiable, which in our case is true: W(x) is
simply a sum of square roots of polynomials of
x, whilst g(x) is a vector of polynomials of x.
The second condition is that the vector x must
remain within a finite set during the optimisa-
tion, which for us is true since infinite values are
non-optimal for the MUB functional. The third
condition is that the matrices C; must be linearly
independent, which for us is true since they serve
to place a single component of x to one (diago-
nal) or two (off-diagonal) positions in the matrix
X (x).

Similarly to the the see-saw method, there ex-
ists some non-determinism to this method due to
it starting from a randomised interior point. This
is found by first beginning with a random vec-
tor, then performing gradient descent using the

derivatives of the constraints until the vector sat-
isfies all constraints within some precision. This
vector is then used as the starting point for the
iterative method. Although perhaps one could
start with a “good guess” for the vector and op-
timise from there, we decided to begin from a
random point to attempt to cover a wider search
space.

4.2 Results

The values obtained through this algorithm are
shown in Table 2. The optimal values, as well as
the optimal bases found, agree with the result of
the see-saw method up to high numerical preci-
sion. In particular, we find the same set of four
bases to numerically optimise the six dimensional
case (see Section 6.3 for further details).
Regarding performance, a large amount of time
can be saved if certain parameters, such as the
initial step size, are chosen correctly. Notably,
there appears to be no universally optimal set of
parameters, and many of the results are obtained
through the manual tweaking of the parameters
for the specific system. All of the results for this
method were obtained on a standard desktop PC
using 4 cores, with the times varying between mil-
liseconds for the smallest problem and an hour for
the largest one. This method has a significantly
reduced memory cost compared to the see-saw
method, since here the A? matrices are not used,
as well as in general offering faster optimisation.

5 The MUB problem as a ground state
problem

5.1 Methodology

Finally, we apply an optimisation method in-
spired by statistical physics, namely simulated
annealing [27].  Given n orthonormal bases
{[65);5 € [d]}(y € [n]) in a Hilbert space of di-
mension d, our goal is to maximise the expres-
sion of Eq. (18), which we rewrite here for com-
pleteness (we keep the d,n dependence implicit
throughout this section, and keep the +B super-
script implicit in Eq. (18)):

d
oo > @R (23

(y,z)EPairs[n] j,k=1
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2 3 4 5 6

0.00000  0.00000  0.00000  0.00000  0.00000
0.00000  0.00000  0.00000  0.00000  0.00000
0.01440 0.00000  0.00000  0.00000 0.00004

- 0.00391  0.00000  0.00000 -

- - 0.00161  0.00000 -

- - - 0.00091 -

N O O W N

Table 2: The values 1 — W ,,/Wmug(d, n), where W, ,, is the result of the optimisation, obtained at an approximate
KKT point with |r(x,y, Z,p)| = V/IVL(x,y, Z)|? + |9(x)]> + | X (x)Z — pI|% < 1077 for various dimensions (d)
and numbers of bases (n), to 5 decimal places. The values depicted are consistently obtained by multiple runs. The
values in bold indicate that the value was at least 10~° away from zero, meaning that the method could not find
n MUBs in dimension d. Note that in all the known cases, the algorithm predicts correctly existence/nonexistence,
and it predicts that four MUBs do not exist in dimension six.

n d 2 3 4 5 6 7T 8 9 10

2 0. 0. 0. 0. 0. 0. 0. 0. 0.

3 0. 0. 0. 0. 0. 0. 0. 0. 0.

4 |0.01440 0. 0 0. 0.00004215 0. 0. 0. 0.000005938
5 - 0.003912 0. 0. - 0. 0. 0. -

6 - - 0.001609 0. - 0. 0. - -

7 - - - 0.0009073 - 0. 0. - -

8 - - - - - 0. 0. - -

Table 3: Monte Carlo results. Relative deviation from the MUB optimum in Eq. (23) 1 — Wyax/Wnmus. “0.”
indicates that n MUBs have been found in dimension d up to at least 10719 precision. The positive values in bold
are the numerical maxima found over at least three independent Monte Carlo simulations. For d = 10, n = 4, three
out of ten independent simulations found the indicated value; it remains possible that this does not correspond yet
to the true optimum.

where x = {[bf)} defines the collection of n  finally converging to the global minimum when
bases. When the n bases are mutually unbi- the temperature approaches zero. As our results
ased (|<bg|bz>\2 = 1/d for all y,z € Pairs[n]  show, this hope is indeed confirmed by solid evi-
and all 5,k € [d]), we have W = Wyup = dence. If n MUBs do exist, they are obtained at

n(n—1)y/d(d — 1). In general, the maximal value  the end of the optimisation, saturating the value
is Whax < Wynus, with equality if and only Winax = Wwymus. Otherwise, the algorithm con-

if n MUBs exist in dimension d. Our strategy verges to an optimum (presumably the global op-
is then to optimise the bases by maximising W timum) Wax < Waus, supporting that n MUBs
(or equivalently, minimising —W') via simulated do not exist in dimension d.

annealing. As detailed below, this amounts to
parametrising the vectors \b?) by some parame-
ters x, and regarding —W (x) as the energy of the

configuration x. The ground state (namely, the Parametrising the bases.— Each vector [b¥)
lowest-energy configuration) of —W is found by is simply parametrised by its decomposition in
sampling x with probability oc exp[8W (x)], pro-  the canonical basis: b%) = 4, UZilei), where
gressively ramping up the inverse temperature 3. x = {Uy};tzl are n complex d x d unitary matri-
In contrast to gradient-descent-based approaches, ces. The overlaps are then obtained as <b?]/|bz> =

this allows to explore a variety of local minima of Zd (UY)*U%, where (.)* is the complex conju
i=1\Vji) Yk : -

—W at nonzero temperature, with the hope of gation.
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Simulated annealing.— The basic idea of
simulated annealing [27] is to consider:

AW ()
Zs

W) = [ dx W(x) (24
where Zg = [ dx ePW ) is a normalisation factor.
Eq. (24) corresponds to an effective thermal av-
erage, where the parameters x are sampled from
a Gibbs distribution eV ®) /Z5 in which —W (x)
plays the role of the energy, and 1/ is the tem-
perature. We have that [27]:
<W>5 — Whax - (25)
B—o0
In words, progressively ramping up the inverse
temperature 3, the thermal average Eq. (24) con-
verges towards the global maximum of the func-
tion W. At each value of 3, the Gibbs distribu-
tion in Eq. (24) is sampled via a Markov-chain
Monte Carlo algorithm [28].
Monte Carlo sampling.— The Markov chain
is a list of samples {x;} ,, generated in such a
way that in the limit of infinitely many samples,
the average value of W ({x;}) over the N samples
converges towards the exact average value, up to
O(1/v/N) corrections:

N
}Vzlmxi) = (W) +O0(1/VN) . (26)

In order to sample x according to the Gibbs dis-
tribution [Eq. (24)], we implement a Metropolis
algorithm [28]. That is, we start from an arbi-
trary initial configuration x;, and then iterate:

1. propose a new configuration Xpey (see below)

2. compute the difference A = B[W (Xpew) —
W(x)]

3. if A > 0, accept the move

4. if A < 0, accept the move with probability

e

5. if the move is accepted, update X;+1 = Xpew;
otherwise x;41 = x;.

Implementation of the updates.— In our
implementation, we ramp ( linearly from §; = 1
to Br =~ 10%-10° in Ngteps = 103 steps. For each
value of 3, we attempt nattempts = 105 Metropo-
lis updates. Each move consists of selecting ran-
domly one basis among n, and rotate randomly
all its elements. Specifically, the moves are pro-
posed as follows

1. choose randomly and uniformly one of the
bases y € [n]

2. draw 2d? independent random numbers
{(rjk> 8jk) } (j,k)e[d?> uniformly in the interval
[—e€, €] (see below for the choice of €)

3. define UY,,, as U;’k + ik 1Sk

4. make UY

new
procedure.

unitary via the Gram—Schmidt

The parameter €, which defines the typical ampli-
tude of the proposed moves, is adapted through-
out the algorithm in order to ensure a constant
acceptance rate. Intuitively, when the temper-
ature is very high, large moves involving a po-
tentially large change in energy are required to
efficiently explore the parameter space. Progres-
sively ramping down the temperature, the bases
start to stabilise in the vicinity of the maxima
of W, and large moves become often rejected by
the Metropolis rule. On the other hand, if €
is very small, the moves will not efficiently ex-
plore the parameter space. As a compromise, we
adapt € such that the acceptance rate raccept Of
the Metropolis update (that is, for each value of
B, Taccept 1s the number Nyceept of accepted moves
divided by the number Nyttempts of attempts), is
kept between rin = 0.32 and rpax = 0.48. We
initialise € = 1 at the beginning of the simulation,
and whenever raccept < T'min, We change € to 0.8e.
Similarly, whenever raccept > Tmax, We change €
to 1.2€.

Optimal bases.— As the goal of the simula-
tion is not to accurately estimate the thermal av-
erage (W)3 [Eq. (24)], but only to efficiently find
its global maximum, we do not carry out a de-
tailed evaluation of the error on (W)g as esti-
mated from our samples. Throughout the sim-
ulation, we record the optimal bases xqp; en-
countered, corresponding to the maximal value
of Wopt found so far. As a last step of the opti-
misation, we set § = oo and start a new simu-
lation starting from Xp¢ as the initial configura-
tion. Effectively, this amounts to only accepting
the moves that increase W, in order to achieve
as many digits of precision as needed for Wy, as
well as for the basis elements themselves.

5.2 Results

The results of this optimisation are summarised
in Table 3. For a meaningful comparison of differ-
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Figure 1: Monte Carlo simulation for d = 6, n = 4.
As a function of the inverse temperature (3, mean value
of the Bell operator [cf. Eq. (24)]. Three independent
simulations are plotted, and the dashed red line indicates
the maximal value found throughout the simulations (see
text). Inset: Zoom of the main panel for 1000 < § <
3000.

ent dimensions d, and different number of bases
n, we indicate the relative deviation to the MUB
optimum: 1 — Wiax/Waus.

Power-of-prime dimensions.— All dimen-
sions 2 < d < 9 except d = 6 are powers of
prime, for which the maximal number of MUBs
is exactly d + 1. Our numerical simulations
are consistent with this fact, and our varia-
tional optimisation systematically reconstructs n
MUBs for alln < d+1 1. Ford = 2,3,4,5, we
also performed the optimisation for n = d + 2,
where three independent simulations gave the
same optimum within numerical accuracy, also
in agreement with the see-saw and non-linear
SDP methods, and with the fact that there
cannot exist d + 2 MUBs in dimension d. The
corresponding optimal solutions are analysed
analytically in Section 6 for d = 2 and 3.

d=6.— In the case d = 6, we do not find
more than n = 3 MUBs. For n = 4, three
independent simulations gave consistently the
optimum W (6,4) = Wyug(1 — 0.00004215) ~
65.723938549 ... (within numerical accuracy).
The optimal bases found also coincide within
numerical precision with those found by the
see-saw and non-linear SDP techniques of the

TFor d = 8 we actually stopped at n = 8, and ford = 9
at n = 5, because of the high numerical cost of these
higher-dimensional instances.
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B

Figure 2: Monte Carlo simulation for d = 10, n = 4.
As a function of the inverse temperature 3, mean value
of the Bell operator [cf. Eq. (24)]. Ten independent
simulations are plotted, and the dashed red line indicates
the maximal value found throughout the simulations.
Inset: Zoom of the main panel for 10000 < 8 < 20000.

previous sections (also see Section 6.3 for a close
analytical construction). The complete evolution
of (W)g is illustrated in Fig. 1 for these three
simulations.

d=10.— The simulations for d = 10 are reach-
ing the limits of our current implementation. We
did find n = 3 MUBs, but not n = 4. As il-
lustrated in Fig. 2 over ten independent simula-
tions, three of them converged to the same op-
timum W (10,4) = Wyus(1 — 0.000005938) ~
113.8413197.... This value is reported in Ta-
ble 3, and is our best estimate for the true opti-
mum?. Even though some of our simulations are
trapped in local optima, our results support the
conjecture that no more than three MUBs exist
in dimension 10.

6 Analytic constructions

In this section we describe analytic constructions
that match the best bases found numerically for
the cases of four bases in dimension two, five bases
in dimension three, and four bases in dimension
Six.

2Using our open source code, Markus Grassl was able
to run the simulation for d = 10 and n = 4 on a com-
puter cluster 2000 times. He reported to us that the most
frequent optimum in these runs agrees with our findings,
however, in two instances he found the slightly larger value
of Wopt(10,4) =~ 113.8414358.
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6.1 Dimension two

One can parametrise any rank-1 qubit projection
B using the Bloch representation

B=_-(147 ), (27)

where 7 = (x,,2) is a unit vector in R?, & =
(02,0y,0;) is a vector of the Pauli matrices, and
70 = 0, +yoy+z0,. Accordingly, for the case of
four rank-1 projective measurements on a qubit,
we use the parametrisation Bf = (147, - &) for
y € {1,2,3,4}, and BY =1 — BY. Consider then
the four measurements parametrised by the four
vectors

1
= %(1,1,1)
. 1
Ty = %(1,—1,—1) (28)
Py = %(—1,17—1)
= %(—1,—1,1),

defining a regular tetrahedron on the Bloch
sphere. It is straightforward to verify that by
plugging these measurements into Eq. (17) we get

Wi P({BY}) = A(V3 +V6) ~ 16.7262,  (29)

which agrees (after normalisation) with the values
in Tables 1, 2, and 3 up to numerical precision.

6.2 Dimension three

For the three-dimensional case, we parametrise
each basis y € {1,...,5} by a unitary matrix Uy,
whose columns correspond to the basis vectors.
Fixing the computational basis allows us to write
the first basis as U; = 1. We then take the second
basis to be the Fourier basis

1 1 1 1
Uy=—1|1 20, 30

where w3 = e . We define the remaining three
bases as
U3 = diag(wﬁ,@@-, 1)U2
Uy = diag(1, we, we) U2 (31)
U5 = diag(a)ﬁa 17w6)U27

where wg = e%, wg 1s its complex conjugate, and
diag(x,y, ) is a diagonal matrix of x, y, and z.
Note that all the bases Us, Us, Uy, and Us are un-
biased to Uj. It is straightforward to verify that
by plugging the measurements B; corresponding
to the bases U, into Eq. (17), we get

WP ({BY}) = 8(v2+ V5 + v6) ~ 48.7982,
(32)
which agrees (after normalisation) with the values
in Tables 1, 2, and 3 up to numerical precision.

6.3 Dimension six

All three numerical methods converged to (nu-
merically) the same set of four bases in dimension
six. Just like in the case of five bases in dimension
three, this set has the property that one basis is
unbiased to the other three bases. Upon closer
inspection, one finds that these bases are numer-
ically very close to the “four most distant bases”
of Ref. [21], which were found via maximising the
MUBness measure

Do IR - [YBR)) -

(y,z)€Pairs[n] 3,k

D? x

(33)
One can again parametrise the bases by four
unitary matrices such that the first one is U; = 1.
The rest of the bases are based on Eq. (6) of
Ref. [21], in which the authors describe a family of
three unitary matrices, depending on two param-
eters, 0; and 6,. The “optimal” values of these pa-
rameters (optimality here originally means max-
imising the distance measure of Ref. [20]) is then
determined by finding the unique real solution of
Eq. (20) in Ref. [21], plugging it into Eq. (19)
of Ref. |21] to obtain 6;, and plugging it into
Eq. (21) of Ref. [21] to obtain 6,. These analytic
values correspond to approximately (0,,6;) =~
(0.9852276, 1.0093680).
If we substitute the resulting bases {B}'} into
our optimisation problem in Eq. (19), we obtain
(analytically)

Wil ({BY}) ~ 65.7239381 (34)

Comparing with our optimum = 65.7239385, we
observe that: 1) the analytical optimum (for the
bases of Ref. [21]) and our numerical optimum dif-
fer after the eighth significant figure; and 2) con-
sistently, our numerical optimum is larger than
the analytical one. This should not be a surprise,
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for the two solutions optimise different MUBness
measures, respectively Eq. (18) and Eq. (33). As
a further comparison, one can look at the overlaps
tr(BYB}) = |<b§’\bi>]2 of the bases found. We in-
deed find that one of the bases is unbiased to the
other three, i.e.

tr(Bj BY) = |(bY|b§)|* = 0.166667 Vj,y, k.
(35)
Apart from these, there are three different val-
ues of overlaps, whose approximate values 0.124,
0.181, and 0.152 agree with our numerical find-
ings up to two or three significant digits.

In conclusion, our three numerical methods, to-
gether with the approach of Ref. [21] all appear to
converge to essentially the same set of four bases
in dimension six. Small differences in the over-
laps originate in the different MUBness measures
which are optimised. The results of these four
independent different numerical approaches may
signify that Zauner’s conjecture is indeed correct,
although they cannot rule out the contrary.

7 Conclusions

We reformulated the existence problem of MUBs
as an optimisation problem, using a recently
found family of Bell inequalities. We then ap-
plied three numerical methods suitable for opti-
mising Bell inequalities in order to tackle the ex-
istence problem: see-saw SDP optimisation, non-
linear SDP, and Monte Carlo techniques. The
results of all these numerical optimisations is in
full accordance with the known cases in dimen-
sions d = 2,3,4,5, where we find d + 1 MUBs.
Furthermore, whenever it is known that n MUBs
do not exist in a given dimension d, all the differ-
ent algorithms converge to the same set of bases
in all cases (with a slight difference between the
see-saw method and the other two methods for
d =4, n=06), and these bases are not MUBs.
We applied our numerical techniques to the
open case of four MUBs in dimension six. All
three algorithms suggest that there do not exist
four MUBs in dimension six, by converging to a
Bell value strictly smaller than the hypothetical
MUB value. Moreover, the bases found by all
three algorithms are very close numerically with
the “four most distant bases” in dimension six of
Ref. [21]. Hence, our findings provide further nu-
merical evidence for Zauner’s conjecture. In the
next composite dimension, d = 10, our Monte

Carlo results suggest that no more than n = 3
MUBs exist.

It is important to point out that the numerical
methods used in this work are heuristic, i.e. there
is no guarantee of convergence to the global
optimum. As such, heuristic numerics can never
provide a rigorous proof of the non-existence
of MUBs (only that of existence, by explicitly
finding MUBs). To overcome this shortcoming,
a plausible future direction towards a rigor-
ous numerical proof is using a variant of the
Navascués—Pironio-Acin hierarchy of SDPs [29]
for maximising a Bell inequality in a fixed
dimension. While such numerical optimisation
is computationally significantly more expensive
than those in our work, it provides certifiable
upper bounds on Bell inequality violations, and
therefore could in principle be used to rigorously
prove the non-existence of MUBs.

Code availability. The numerical findings pre-
sented in this paper can be reproduced using
the codes made available on public reposito-
ries. For the see-saw SDP, see https://github.
com/Lumorti/seesaw. For the non-linear SDP,
see https://github.com/Lumorti/nonlinear.
For the Monte Carlo simulations, see https:
//github.com/mariaprat/mubs-montecarlo.
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