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We introduce a simulation-based, amortised Bayesian inference scheme to infer the parameters
of random walks. Our approach learns the posterior distribution of the walks’ parameters with a
likelihood-free method. In the first step a graph neural network is trained on simulated data to
learn optimized low-dimensional summary statistics of the random walk. In the second step an
invertible neural network generates the posterior distribution of the parameters from the learnt
summary statistics using variational inference. We apply our method to infer the parameters of the
fractional Brownian motion model from single trajectories. The computational complexity of the
amortized inference procedure scales linearly with trajectory length, and its precision scales similarly
to the Cramér-Rao bound over a wide range of lengths. The approach is robust to positional noise,
and generalizes well to trajectories longer than those seen during training. Finally, we adapt this
scheme to show that a finite decorrelation time in the environment can furthermore be inferred from
individual trajectories.

I. INTRODUCTION

Fractional Brownian motion (fBm) [1, 2] is a paradig-
matic model of anomalous transport. It is a non-
Markovian Gaussian process characterized by stationary
increments and long temporal correlations in the noise
driving the process. It allows capturing long-range tem-
poral correlations in the dynamics of a walker or its envi-
ronment, and it is a model of choice to describe a multi-
tude of dynamic processes in numerous scientific fields [3–
21]. Following the classification given in [22] of the three
main sources of anomalous diffusion, the anomalous dy-
namics of fBm stems from the statistical dependency of
the displacements at all time scales. Since fBm is a
Gaussian process, it admits an analytical expression of
the joint likelihood of the recorded signal. It is thus an
ideal model to investigate the performance of approxi-
mate schemes to infer anomalous diffusion, such as vari-
ational inference or machine-learning-based approaches,
since it allows direct comparison to statistically optimal
exact inference.

The position of a random walker undergoing fBm is
described by a Langevin equation [1] of the form

dr (t)

dt
=
√
Kα η (t) , (1)
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where η is a zero-mean Gaussian noise process with co-
variance 〈η (t1) η (t2)〉 = α (α− 1) |t1 − t2|α−2 and Kα

is a generalized diffusion constant that sets the scale of
the process. fBm is self-similar and ergodic [23, 24].
However, it has been shown to exhibit transient non-
ergodic behaviour when confined [24, 25] and it is worth
noting that the ergodic regime is witnessed only after
a long transient passage exhibiting non-ergodic proper-
ties [24, 26–28]. The noise η is negatively correlated in
the subdiffusion regime (α < 1), while it is positively
correlated in the super-diffusion regime (α > 1).

Methods for estimating a random walk’s parameters
can roughly be divided into two types: heuristic ap-
proaches using features extracted from the trajecto-
ries [17, 29–32], and likelihood-based (e.g., Bayesian) ap-
proaches [33–36]. Each has its strengths and weaknesses.
Likelihood-based approaches are provably asymptotically
optimal, but they are often computationally intensive
and are only applicable to random walk models that have
a tractable likelihood. Feature-based approaches are typ-
ically computationally cheaper, and they can be applied
to a much larger range of models since they do not re-
quire a tractable likelihood. However, they are generally
not statistically efficient, are prone to bias when used
on experimental data and their precision can be diffi-
cult to evaluate. It is worth noting the rapid progress
of machine learning based approaches [32, 37], which fall
in the category of feature-based approaches, and which
allow to learn high quality features to perform both pa-
rameter estimation and model classification. While such
machine learning approaches generally outperform hand-
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crafted features on numerically generated data, it re-
mains difficult to evaluate their actual performance and
robustness on empirical data.

Here, we develop an amortized Bayesian inference ap-
proach to estimate the parameters of a fBm from a single
recorded trajectory. More precisely, this paper focuses
on two tasks: (i) amortizing the inference of the anoma-
lous exponent to reduce the computational cost of in-
ference and test how much information about temporal
correlation can be inferred by a computational scheme
of linear complexity, and (ii) exploring the possibility of
retrieving information about finite decorrelation times of
the walker’s dynamics. We use a graph neural network
(GNN) to encode a set of summary features of the trajec-
tory. The GNN is trained on simulated trajectories , and
allows capturing long-range interactions while retaining
a linear scaling of the computational complexity with the
length of the trajectories. We train an invertible network
to generate the posterior distribution from the summary
features using a variational objective. Focusing on the
fBm model allows us to compare the performance of the
amortized approach to maximum likelihood estimation
and to the Cramér-Rao bound which provides a lower
bound on the variance of any unbiased estimator. We
show that our amortized inference attains near-optimal
performance as compared to exact likelihood-based infer-
ence and to the Cramér-Rao bound. We furthermore dis-
cuss the latent space structure learned by the summary
network and its ability to encode physical properties. We
test the applicability of the approach to trajectories cor-
rupted by positional noise and its potential to generalize
to trajectories that are longer than those seen during
training. Finally, we extend the inference procedure to
capture a finite decorrelation time in the dynamics which
may typically arise in physical environments.

II. AMORTISED BAYESIAN INFERENCE

In the context of parameter estimation, Bayesian infer-
ence uses Bayes’ theorem to compute the posterior prob-
ability distribution of the parameters θ given recorded
data R (here a trajectory) and a probabilistic model of
these data,

p (θ |R) =
p (R|θ) p (θ)

p (R)
. (2)

Equation (2) relates the posterior distribution, p (θ |R)
to the likelihood p (R|θ), the prior p (θ) and the evi-
dence p (R). Here, we only consider one single model,
i.e., the fBm, and thus do not explicitly refer to it. The
principle of amortized inference [39] is to split the estima-
tion of the posterior p (θ |R) into two independent steps.
The first is computationally costly and involves learning
an approximate posterior density p̂ (θ |R) from numeri-
cally generated data. Then, the second step consists in
running the pre-trained approximate system on the ex-

perimental data to infer the posterior density, assuming
that they are similar to the training data.

A tractable likelihood can be computed for fBm.
We consider a trajectory R = (r0, r2, . . . , rN ) to be
a 1-dimensional time-series of positions ri recorded at
equidistant points in time ti ∈ {0,∆t, 2∆t, . . . , N∆t}.
The likelihood of a trajectory reads

p (R|θ) =
1

(2π)
N/2

√
det Σ(θ)

exp

(
−1

2
(∆r)

>
Σ(θ)−1∆r

)
,

(3)

where ∆r = (∆r1, ..,∆rN )
>

, with ∆ri = ri − ri−1 the
individual displacements. Then, θ = (Kα, α) are the
fBm’s parameters to infer, and Σ is the displacements’
covariance matrix whose coefficients are given by

[Σ(θ)]ij = Kα∆tα (|i− j + 1|α + |i− j − 1|α − 2|i− j|α) .
(4)

We choose to rely on a likelihood-free approach to amor-
tize our inference procedure. This may seem a counter-
intuitive choice for the precise case of fBm because the
likelihood is analytically tractable, but this method has
the advantage of relying solely on computations of linear
complexity. Furthermore, the approach is also directly
portable to more complex problems for which a tractable
likelihood may not be available or may be too compu-
tationally costly. Indeed, likelihood-free inference is a
method of choice to address such problems. As more and
more complex models are encountered in numerous fields
of science, the field of simulation-based inference [39] is
growing very rapidly to address the associated challeng-
ing inverse problems. The shift towards amortization of
the likelihood is notably driven by new tools and concep-
tual approaches derived from machine learning [40, 41].

The architecture of the amortized model of the pos-
terior distribution is shown in Figure 1. It is based on
the recently introduced Bayes Flow (BF) [42] procedure.
In this framework, a first neural network, working as
an encoder, creates a fixed-dimension vector of summary
statistics from a set of observations. In our case, the en-
coder takes the form of a GNN (Fig. 1A). The encoder’s
output, the summary statistics vector, parametrizes an
invertible transformation between easily sampled distri-
butions (Gaussian) and the posterior distribution of the
parameters (Fig. 1B). The full procedure generates the
posterior distribution of the parameters. Such flow-based
approaches, derived from normalizing flows [43], have the
advantage that they provide an estimation of the poste-
rior without requiring extensive sampling. The whole
module is trained on numerically generated data and can
then be used for inference. In the two following subsec-
tions, we first present the GNN (Section II A) and then
the invertible network (Section II B).
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FIG. 1. Model Architecture. A: Construction of a graph from a single trajectory, on which graph learning is performed by
the summary network shown in B, see [38] for details. B: Summary network consisting of graph convolution layers, a pooling
layer and a multi-layer perceptron. The vector of statistics is indicated by h. C: General structure of the model, with the
summary network parametrizing the invertible network. In training mode, the invertible network is used from left to right, and
in inference mode it is used from right to left.

A. Graph neural network for learning summary
statistics

GNNs have been introduced to model and analyse
graphs, meshes and point clouds [44–46]. They are well
suited to capture geometric properties from point clouds
and other datasets of variable size [46, 47], they can keep
a sparse architecture while encoding long temporal corre-
lations [48, 49] and they exhibit good performance with a
limited number of parameters compared to other modern
architectures. For these reasons, they are well adapted
to analysing random walks [38], and we adopt a GNN
architecture for our summary network.

As indicated by their name, GNNs process graphs, and
the first step of our inference pipeline is thus to build a
graph from a trajectory. To do so, we represent each
trajectory R = (r0, r1, r2, . . . , rN ) by a directed graph
G = (V,E,X,Y). Here V = {1, 2, . . . , N} is the set

of nodes, each corresponding to a recorded position of
the observed walker. E ⊆ {(i, j)|(i, j) ∈ V 2} is the set
of edges connecting pairs of nodes. Each node has a

vector of features, x
(0)
i (of size nx) which initially en-

capsulates information linked to the i-th position of the
trajectory and to the displacement that led to it. X(0) =

(x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
N ) is the (N,nx) matrix of initial node

feature vectors. Amongst features associated to node i
are the normalized time i/N , as well as the total distance
covered by the walker, its mean square displacement, and
the maximal jump size, all measured since the beginning

of the trajectory. Finally, Y = (y
(0)
1 ,y

(0)
2 , . . . ,y

(0)
|E|) is a

matrix of edge features, y
(0)
e , each associated to an edge

e in E. The features vector of a given edge e, y
(0)
e , of

size ny, encapsulates information about the trajectory’s
course between the two nodes i and j it connects, such as
the normalized time difference (j− i)/N and various dis-
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tance measures (see Supplemental Material for details).
All distance measures are provided with multiple nor-
malization factors (see Supplementary Material). The
edges in G are placed such that incoming edges of each
node originate only from nodes in the past (i.e., respect-
ing causality): node i receives connections from nodes
i−∆1, . . . , i−∆max, where (∆i)i≥1 is a geometric series.
The training is specific to the dimension of the trajec-
tories. Yet, the GNN architecture can be adapted to
trajectories of any dimension by adapting the features’
initialization. A key point about the graph construction
procedure is that it has linear algorithmic complexity.

Following the graph initialization step, the sum-
mary network performs several graph convolution oper-
ations [50–52]. It then passes the learnt node feature
vectors as inputs to a pooling layer that aggregates fea-
tures across all nodes of a trajectory graph into a fixed-
length vector. The vector is finally passed through a
multi-layer perceptron to obtain the summary statistics
vector h = gψ(R), where ψ denotes the neural network
coefficients. We refer the interested reader to [38] for
details about the graph generation and GNN implemen-
tation.

B. Invertible network for generating a variational
posterior density

The Bayes Flow approach provides an invertible trans-
formation, fφ(·; h), between the parameter space (in RD,
with D ≥ 2) and the prior space (in RD), on which a D-
dimensional standard Gaussian density is assumed. The
transformation fφ(·; h) is parametrized by a conditional
invertible neural network (cINN) [53] made of a succes-
sion of affine coupling blocks [54] (multiple blocks sequen-
tially applied) and maps θ to the prior conditioned on h,
the summary statistics of the trajectory.

By design, these blocks can be inverted and the de-
terminant of the Jacobian matrix Jfφ of the transforma-
tion is retrieved from the forward pass. During train-
ing we seek to approximate the true posterior p (θ|R) by

the learnt posterior pφ (θ|R) = exp
(
−‖fφ(θ;h)‖22

2

)
. The

loss function is the Kullback-Leibler divergence between
p (θ|R) and pφ (θ|R) which reads as

L(R) =
1

2
‖fφ (θ; h)‖22 − log |det Jfφ |, (5)

where h = gψ(R). Sampling the posterior distribution
consists in computing h from the trajectory R, and gen-
erating the required number of sample as θ = f−1

φ (z; h)
with z generated from a standard D-dimensional Gaus-
sian distribution.

III. ESTIMATION OF THE ANOMALOUS
EXPONENT

We evaluate the performance of our amortized infer-
ence procedure on numerically generated trajectories.
Estimating the anomalous exponent α is the most chal-
lenging part of the inference, and we thus focus on this
here, but our approach infers a joint posterior density for
θ = (Kα, α). Figure 2A shows the inferred posteriors of
α on portions of increasing length of two example tra-
jectories. The amortized posterior is consistent with the
exact one (See Supplementary). Both become increas-
ingly peaked around the true value of α as the length of
the trajectory increases. The inferred posterior distribu-
tions do not exhibit broad tails or divergences, and are
thus proper distributions, i.e., they are normalizable.

We show the precision of the inference on trajectories
with lengths varying across two orders of magnitudes.
Both the variance of the approximated posterior and
the square error of the estimator follow a power-law de-
crease, as can be seen Fig. 2B. Using the exact likelihood
shown in Eq. 3 we can evaluate the Cramér-Rao bound
and compare the amortised inference’s performance to
it. The amortised inference is suboptimal (as expected
from a variational inference), but its variance shows a
fast decreasing trend similar to the Cramér-Rao bound,
i.e., close to ∝ 1/N .

We looked at the learnt summary statistics h, that
after training constitutes a low-dimensional representa-
tion of the random walks which is use as features to
compute the posterior distribution. The latent repre-
sentation can be interpreted for its own sake as the way
the encoder represents information about the trajecto-
ries. An assumption in representation learning [55] is
that interpretable representation lead to better generali-
sation. We projected h onto a 2D plane using UMAP [56]
(a non-linear dimenstionality reduction algorithm) and
mapped α on it (see Supplementary Fig. S1A). We see
that the latent space is organised according the value of
α, a good indication that the learning process properly
captured the underlying physical properties. We tested
the robustness of the inference procedure when applied
to trajectories corrupted by positional noise. We show
in Supplementary Figure S2 the evolution of the mean
square error of the amortised inference of α and compare
it with the corresponding Cramér-Rao bound. The preci-
sion of the amortised inference procedure closely follows
the lower bound set by the Cramér-Rao inequality. This
was obtained by training models specifically on trajecto-
ries corrupted with increasing amounts of noise.

The summary network’s architecture, with normal-
ized initial features, leads to an approximately ”length-
invariant” inference, i.e., the vector of summary statistics
captures relevant information regardless the length of the
trajectories. Hence, the approach is not limited to tra-
jectories seen during training. We show in Figure 2C an
example of application for trajectories a hundred times
longer than the maximal ones the inference procedure
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FIG. 2. Model performance. A: Evolution of the posterior density of α inferred by the model (plain lines) versus the true
posterior (dotted lines) from two example trajectories with α = 0.6 (top) and α = 1.4 (bottom), respectively. The length of the
portion of the trajectory used for inference is increased ten-fold between each panel, i.e., from left to right: N = 10 (blue), 100
(green), 1000 (red). B: Evolution of the variance of the estimator α̂ (dashed line), the mean square error of the mean posterior
α̂ (dotted line) and the Cramér-Rao bound for an unbiased estimator of α, for increasing values of trajectory length N . In red:
power-law fits on large values of N C: Convergence towards the true value of α as function of trajectory length. The model was
trained on trajectories of length 10 ≤ N ≤ 1, 000. Darker zones correspond to the first and third quartiles, while lighter ones
correspond to 5% and 95% quantiles We modified the normalization procedure so that it is able to generalize to trajectories
longer than those seen during training.

was trained on. The inferred α̂ for long trajectories were
still well ordered, but suffered from a slight bias, which
we corrected using a simple polynomial of degree 3.

An important attribute of the amortized approach is
that is has linear computational complexity at inference
time, i.e., when applied to infer the parameters of a ran-
dom walk. To show this, we subdivide the amortised
inference procedure into three steps: (i) initial feature
evaluation, (ii) forward pass through graph convolutions
and pooling, and (iii) operations on summary statistics to
generate the posterior. (i) The initial evaluation of node

and edge features requires O(N + |E|) time and memory,
where N is the number of nodes (for a trajectory of N+1
points) and |E| is the number of edges. Here |E| ∝ N by
design (the in-degree of nodes is bounded), so this step
has O(N) complexity. (ii) The forward pass through the
graph convolutions and the following pooling of node fea-
tures requires O(|E|) operations and memory slots, and
hence this step also has O(N) complexity. (iii) The la-
tent space is of fixed dimensions, and hence all operations
after the pooling layer have O(1) complexity. The global
complexity of the amortised architecture is thus linear
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with respect to the number of points in the trajectory.
In comparison, calculating the exact likelihood

[Eq. (3)] requires evaluating the determinant detΣ(θ)
and the quadratic form (∆r)>Σ(θ)−1∆r, which can be
done in O(N2) time [57]. This makes exact inference
prohibitively expensive for very long trajectories, where
our amortized inference scheme may instead be used
(Fig. 2C). Note furthermore that for many models the
exact likelihood cannot be calculated at all, in which case
approximate inference is the only route possible. In all of
the above cases, our amortized inference scheme retains
its linear computational complexity.

IV. ESTIMATION OF A FINITE
DECORRELATION TIME

When considering fBm as a model of biomolecule ran-
dom walks, we have to keep in mind that many physical
environments might exhibit a finite decorrelation time
τc possibly stemming from motion occurring outside a
polymer-dominated environment [58] or from changes of
conformations of the bimolecule altering the nature of
its interactions The characteristic time bears informa-
tion on the local environment’s physical properties, and
it might be spatially dependent or specific to interac-
tions with local partners. In practice, inferring τc from
individual trajectories is challenging. Autocorrelation-
based approaches for example give incomplete results on
individual trajectories as the limited number of points
prevents proper averaging [59, 60].

We adapted our amortised inference procedure to infer
(α, τc) instead of (Kα, α). We left out Kα here since it
is simply a scale factor and can be removed by rescal-
ing the trajectories. We used the same node and edge
features as above, and we thus conserve the procedure’s
linear computational complexity. A finite decorrelation
time was modeled by multiplying the autocovariance of
the fBm by an exponential factor, min(1, eτc−τ ), where
τ is the time difference. Examples of the autocorrelation
function for several values of α and τc are given in Sup-
plementary Figure S3. The modified covariance matrix
thus reads

[Σ(α, τc)]i,j= min
(

1, eτc−|i−j|∆t
)
×

(|i− j + 1|α + |i− j − 1|α − 2|i− j|α) ,

where we have ignored the scale factor Kα∆tα.
There is no simple means to relate the length of a tra-

jectory to the difficulty of inferring its finite correlation
time, so we performed this inference solely on trajectories
of length 1,000 with τc integer-valued and ranging from
5 to 50.

We compared our estimator with the maximum likeli-
hood estimator, obtained by choosing the value of (α,τc)
that maximizes the likelihood of the observed trajectory.

To optimize the likelihood in practice, we computed
the log-likelihood on a grid of values, of α and τc, with

α taking 30 regularly spaced values between 0.4 and
1.6, and τc taking all possible values in its range. As
shown in Figure 3B (upper panel), our amortised in-
ference yields a slightly more biased estimate than the
maximum-likelihood estimator (when taking the mean
of the posterior distribution) but has a smaller variance.
When α = 1, successive increments are completely inde-
pendent of each other and there is thus no information
to retrieve regarding τc. This is observable on the lower
panel of Figure 3, both by looking at the Cramér-Rao
bound, which diverges, and at the variance of our esti-
mator, which is maximal at α = 1.

V. DISCUSSION

Simulation-based inference coupled with machine
learning are a promising avenue to address challenging
inverse problems. When applied to intractable systems,
this combination allows splitting the inference task into
two steps. In the first, computationally intensive simu-
lations produce artificial data. These data are used to
train neural networks to approximate the posterior dis-
tribution of the parameters using a variational objective.
In the second step, which is computationally fast, infer-
ence is performed on experimental data and the posterior
distribution is evaluated by a direct forward pass through
the trained neural networks. The procedure is statisti-
cally efficient if the numerical data match the properties
of experimental one and if the variational inference is
able to capture the complex relations that might exist
between the variables to be inferred.

There are two main challenges associated with amor-
tised approaches. First, training variational inference of-
ten consists in minimising a Kullback-Liebler distance
between the approximate distribution and the real (un-
known) one [61]. Optimising such a non-convex function
is challenging and is not generally guaranteed to con-
verge towards a global optimum. The second challenge is
linked to interpretability. Both the models used to learn
the summary statistics and the variational posterior dis-
tribution are generally intractable. There is thus limited
insurance that the process does not misbehave, especially
when applied to real experimental data. Evaluation of
the exact posterior distribution using sampling, such as
in approximate Bayesian computation, may however lead
to similar problems due to the difficulty of properly sam-
pling complex likelihood landscapes.

We here used fBm to quantify the performance of our
amortised inference approach. We chose to focus on fBm
both due to its paradigmatic status as an anomalous ran-
dom walk model and because it has a tractable likelihood,
allowing us to compare our amortised method to exact
likelihood-based inference and to the Cramér-Rao bound
on estimator precision. We advocate more generally for
the use of exactly solvable random walk models, such as
the fBm, as benchmarks to evaluate the performance of
machine-learning based inference methods.
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FIG. 3. Performance of the anomalous exponent and decorrelation time estimation A: Posteriors of α and log10(τc)
for two trajectories with different α (plain lines). Dashed green lines indicate true parameter values. B: Top: Comparison
of the values of log(τc) inferred by our method (in green) and by a maximum-likelihood estimator (in red). The thick line
represents the mean across all trajectories, while the filled regions correspond to the first and last quartiles. Bottom: Variance
and mean square error of our inference of log10(τc) plotted as a function of α, compared with the Cramér-Rao bound for an
unbiased estimator.

We showed that our amortized inference can success-
fully be applied to infer the parameters of fBm, with a
precision that is lower than the Cramér-Rao bound but
which increases with a scaling that is similar to it. Our
algorithm has a linear complexity in the length of the tra-
jectory and can be applied to trajectories of any length at
inference time, even if the algorithm has not been specif-
ically trained on trajectories of the same length. We fur-
thermore showed that our amortised approach could be
used to efficiently infer the parameters of a more realistic
fBm-type model with a finite decorrelation time.

Our amortised inference framework can be used for
any random walk model, even for models that do not
have a tractable likelihood, provided that they can be
simulated efficiently enough to provide a large number
of trajectories for training. In all cases, our approach
retains its linear computational complexity at inference
time. For random walk models with intractable likeli-
hoods, only empirical evaluation of the performance will
in general be possible. Thus, it is not possible to make
absolute statements about the statistical efficiency of the
approach in these cases.

Beyond random walks, amortized inference can more
generally be instrumental in providing posterior distri-
butions for models of complex systems with fractional
noise and/or long memory. Numerous challenges have
to be addressed to standardise the optimisation of the
variational inference, especially in cases where some pa-
rameters are not sufficiently constrained by data or when

there are sloppy directions in the parameter space [62].
Furthermore, variational inference does not necessarily
lead to physically realistic parameters. Ensuring the
physics-informed [63, 64] nature of the inference may re-
quire imposing constraints on the network generating the
summary statistics. Though our results show that the
network is able to learn physically meaningful features
without inductive bias. Finally, the statistical efficiency
of amortised approaches will depend on the ability of
numerically generated data to match experimental ob-
servations.
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Physical Review Letters 94, 10.1103/phys-
revlett.94.170602 (2005).

[31] L. P. Sanders and T. Ambjörnsson, The Journal of Chem-
ical Physics 136, 175103 (2012).
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SUPPLEMENTARY MATERIAL

1. Amortized inference model architecture and
training

a. Node and edge features

The features associated to each node i ∈ {1, . . . , N} in
the graph of a trajectory (r0, . . . , rN ) of length N are:

1. the normalized time: i/N ;

2. the cumulative distance covered by the trajectory
up to i:

∑
k≤i‖∆rk‖2;

3. the cumulative squared distance covered by the tra-
jectory up to i:

∑
k≤i‖∆rk‖22;

4. the maximum step size up to i: maxk≤i‖∆rk‖2.

The features associated to an edge ei,j with i < j are:

1. the normalized time difference: (j − i)/N ;

2. the distance: ‖rj − ri‖2;

3. the dot product of jumps: ∆r>i ∆rj (equal to
∆ri∆rj for 1D trajectories);

4. the distance covered by the trajectory between
i and j:

∑
i<k≤j‖∆rk‖2 =

∑
k≤j‖∆rk‖2 −∑

k≤i‖∆rk‖2

5. sum of square step sizes between i and j :∑
i<k≤j‖∆rk‖22 =

∑
k≤j‖∆rk‖22 −

∑
k≤i‖∆rk‖22.

The computation of each features is done in linear or con-
stant time. In particular, the last two features are cal-
culated in linear complexity by leveraging the fact that
they equal to the differences of two node features, which
each solely depends on i or j. All features based on po-
sitions or steps are computed on normalized trajectories,
with three normalization scales applied in parallel: (i) the
standard deviation of the step sizes, (ii) the total covered
distance and (iii) the standard deviation of the positions.

2. Neural network architectures and training

a. GNN Architecture

The architecture of the GNN used in the summary net-
work is similar to the encoder network proposed in [38],
with the difference that we here additionally apply edge
features. Node and edge features are first passed to
perceptrons, which embeds them in a 32-dimensional
space. The network is then composed of three successive
convolution layers (one taken from [65] and two edge-
conditioned layers taken from [66]) outputting node fea-
tures matrices x(1), x(2) and x(3), each of 32 dimensions,
which are summed to form x(f). The rows of this matrix

of nodes features are then averaged during the pooling
step, to keep just one row per graph, i.e., per trajectory.
This vector is subsequently passed to a three-layer per-
ceptron, the output of which is the summary statistics
vector.

b. Invertible network

The invertible network is a succession of three affine
coupling blocks. These blocks, introduced in [54], trans-
form an input vector u into v in an invertible manner
parametrized by the summary statistics vector h. They
do so by splitting u into two halves u1 and u2, used to
compute the two halves v1 and v2 of v by consecutively
performing the two following operations :

v1 = u1 � exp (s1 (u2; h)) + t1(u2; h)

v2 = u2 � exp (s2 (v1; h)) + t2(v1; h)

where � denotes the element-wise multiplication (the
Hadamart product) and where s1, s2, t1 and t2 are multi-
layer perceptrons, which do not need to be invertible. In
our case, they have five hidden layers and their activation
function is an exponential linear unit. This procedure can
be inverted to efficiently retrieve u from v.

c. Training the networks

Not all parameter directions in the parameter space
are equally constrained by the data. Thus ,we split the
summary statistics vector in two halves (one per param-
eter to infer) and pre-train summary networks to infer
each parameter individually.this is motivated by the ex-
pected misbehaviour of variational optimisation for an
inference whose parameters are under significantly dif-
ferent constraints. Hence, the good performance at in-
ferring an easily learnt parameter (such as Kα) does not
prevent the network from converging towards a better
optimum where it infers more challenging parameters as
well. We do this by using the output of the encoder GNN
as an input to a multi-layer perceptron, and optimizing
the so-obtained regressor to infer a given parameter in a
regression setting. The multi-layer perceptron is then dis-
carded, and the outputs of the parameter-specific GNNs
are concatenated to form the summary statistics vector
used in the coupled inference. Weights of the summary
networks are then frozen and only the invertible part of
the network is trained with the objective function pre-
sented in equation 5.

3. Exact posterior inference

To compute exact posteriors, likelihood values were
computed on grids of points in parameter space. We
picked a uniform prior on (0, 2) for α and a log-uniform
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one for τc and Kα, which spanned 8 orders of magni-
tude. There was thus no coupling between parameters in
the priors. The parameters used to generate trajectories
during training were sampled from these same priors.

4. Cramér-Rao bound

Formally, we consider any estimator of the param-
eters θ to be a (possibly implicit) function of the

recorded trajectory, R, i.e., θ̂ = T(R). We de-
note by ψ(θ) = E [T(R)] its expectation, and by
Γ(θ) = E[(T(R) − ψ(θ))(T(R) − ψ(θ))>] its covari-
ance matrix. Finally, I(θ) is the Fischer informa-
tion matrix, whose elements are given by In,m(θ) =

E
[
∂
∂θn

log p(R|θ) ∂
∂θm

log p(R|θ)
]
.

The Cramér-Rao bound states that, for any unbiased
estimator T,

Γ(θ) ≥ ∇ψ(θ) [I(θ)]
−1

[∇ψ(θ)]
>
, (6)

where ∇ψ is the Jacobian of ψ. In particular, this ma-
trix inequality implies the following lower bound on the

variance of any unbiased estimator of a single parameter:

Varθ(Tn(R)) ≥
[
I(θ)−1

]
n,n

(7)

5. Supplementary figures

FIG. S1. Latent space representations of individual
trajectories. 2D visualisation of summary vectors (one point
per trajectory), obtained by UMAP and colored according to
A: their anomalous diffusion exponent α, and B: their corre-
lation time τc. Trajectories are of length N = 1, 000.
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FIG. S2. Robustness to noise. Mean square error on α
estimated with amortised inference compared to the Cramér-
Rao bound as a function of positioning noise σ. Trajectories
are of length N = 200 and generalised diffusivity 1. Positions
are independently corrupted with Gaussian noise of variance
σ2.
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FIG. S3. Temporal correlations of fBm with finite
decorrelation time. Autocovariance of increments of the
fBm trajectory, with finite correlation time τc, in the sub-
diffusive and super-diffusive case. Red curves correspond to
α = 0.6, and τc = 5 (dashed line), 15 (dotted line), ∞ (plain
line). Green curves correspond to α = 1.4, and τc = 5, 25,
∞.
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