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Abstract: 

With osteoporosis and aging, structural changes occur at all hierarchical levels of bone 

from the molecular scale to the whole tissue, which requires multiscale modeling to analyze 

the effect of these modifications on the mechanical behavior of bone and its remodeling 

process. In this paper, a novel hybrid multiscale model for cortical bone incorporating the 

tropocollagen molecule based on the combination of finite element method and different 

homogenization techniques was developed. The objective was to investigate the influence of 

age-related structural alterations that occur at the molecular level, namely the decrease in both 

molecular diameter (due to the loss of hydration) and number of hydrogen bonds, on 

mechanical properties of the bone tissue. The proposed multiscale hierarchical approach is 

divided in two phases: (i) in Step 0, a realistic 3D finite element model for tropocollagen was 

used to estimate the effective elastic properties at the molecular scale as a function of the 

collagen molecule’s degree of hydration (represented by its external diameter) and the number 

of its intramolecular hydrogen bonds, and (ii) in Steps 1-10, the effective elastic constants at 

the higher scales from mineralized fibril to continuum cortical bone tissue were predicted 

analytically using homogenization equations. The results obtained in healthy mature cortical 

bone at different scales are in good agreement with the experimental data and multiscale 

models reported in the literature. Moreover, our model made it possible to visualize the 

influence of the two parameters (molecular diameter and number of hydrogen bonds) that 

represent the main age-related alterations at the molecular scale on the mechanical properties 

of cortical bone, at its different hierarchical levels. Keywords: Bone aging, multiscale model, 

tropocollagen, cortical bone, finite element modeling, homogenization method. 
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I INTRODUCTION  

Bone is a multiscale composite structured tissue extending from a nano-scale level to 

the whole bone geometry (Figure 1) (Habelitz et al., 2002; Hambli, 2011; Raspanti et al., 

2001; Rho et al., 1998). The composition of bone and the organization of its constituents give 

it outstanding mechanical properties. The lowest scale of bone consists primarily of a type I 

collagen molecule, also called tropocollagen (TC), which gives bone its flexibility, and an 

inorganic matrix (hydroxyapatite crystals) that gives bone its resilience. 

 

 

Figure 1: Hierarchical structure of bone. 

 

With osteoporosis, bone aging involves structural changes at all hierarchical levels of 

bone (Bailey et al., 1998; Barros et al., 2002; Campagnola and Loew, 2003; Chen et al., 2010; 

Currey, 1969; Mouss et al., 2020; Nagaraja et al., 2007; Saito and Marumo, 2010; Tommasini 

et al., 2009; Verzár, 1969; Viguet-Carrin et al., 2006; Wallace et al., 2007), which requires 

multiscale modeling to analyze the effect of aging on the mechanical behavior of bone and its 

remodeling mechanism. 

Several analytical and numerical studies have been performed to address the 

multiscale modeling of cortical bone’s mechanical behavior. Some focused only on certain 

levels of the bone hierarchy, while others used multi-scale approaches including several 

levels. However, multiscale models that give a complete description of the hierarchical 

organization of cortical bone from the molecular scale to the macro-scale level are still 

lacking. 
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Among the studies that have focused on a single microscopic scale level, some have 

described the mechanical behavior of lamellae (Akiva et al., 1998; Vercher et al., 2014; Yoon 

and Cowin, 2008b), while others have investigated osteons (Ascenzi et al., 2008; Pidaparti et 

al., 1996; Yoon and Cowin, 2008a). At the submicroscopic scale, just a few models have been 

developed to estimate the mechanical properties of the mineralized collagen fiber (Yoon and 

Cowin, 2008b), while most of the studies have been concerned with the mineralized collagen 

fibrils (Akkus, 2005; Buehler, 2008; Eppell et al., 2006; Ghanbari and Naghdabadi, 2009; 

Hang and Barber, 2011; Jäger and Fratzl, 2000; Sansalone et al., 2009; Shen et al., 2008; Van 

Der Rijt et al., 2006; Vercher-Martínez et al., 2015; Yuan et al., 2011). At a lower scale, 

several studies, mainly based on the finite element (FE) method, have been performed to 

investigate the mechanical properties of mineralized collagen microfibrils (Barkaoui et al., 

2011; Barkaoui and Hambli, 2011, 2014; Barkaoui et al., 2015; Gautieri et al., 2011; Hambli 

and Barkaoui, 2012). Compared to the previous scales, few modeling studies have focused on 

the lowest hierarchical level of bone, namely the TC scale. At this molecular scale, the studies 

based on steered molecular dynamics (SMD) have investigated the mechanical behavior of a 

single TC molecule under different loading conditions (Buehler, 2006; Gautieri et al., 2009; 

Lorenzo and Caffarena, 2005), while FE models of the TC have been proposed to study the 

influence of certain geometrical (Kraiem et al., 2017) and age-related (Mouss et al., 2020) 

changes on the mechanical properties of the molecule. 

On the other hand, bone multiscale modeling has been addressed by many researchers 

by developing analytical models using homogenization techniques or numerical models. 

Based on analytical homogenization methods, some of them have estimated the elastic 

properties of bone. Two examples are the work of (Hamed et al., 2010) and (Martínez-Reina 

et al., 2011). The former authors proposed a multiscale model of cortical bone by considering 

four hierarchical levels: the nanoscale (mineralized fibril), the sub-microscopic scale 

(lamella), the microstructural level (lamellar structure and osteons), and the mesostructural 

level (cortical bone). The predicted elastic properties at a lower scale were used as input data 

for the upper scale. The homogenization method in this model was based on composite 

laminate theory models for the consideration of constituent orientation at the lamella level, 

and on the Mori-Tanaka and self-consistent schemes at the other hierarchical levels. In their 

work, (Martínez-Reina et al., 2011) combined the models proposed by (Yoon and Cowin, 

2008a, 2008b) to include the effect of the mineralization process within cortical bone. For this 

multiscale model, eleven steps and different methods were employed to calculate the stiffness 
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tensors at different levels. Briefly, the authors used (i) the upper and lower Hill bounds to 

predict the behavior of elementary constituents (mineral, collagen, and water), (ii) periodic 

homogenization to account for the periodic distribution of some constituents such as collagen 

crystals and fibrils, and (iii) the self-consistent scheme for the superposition of osteons and 

the Mori-Tanaka scheme to include vascular porosity. In the final step, the authors used the 

theory of poroelasticity to consider the marrow filling pores. Other authors used the analytical 

homogenization method to predict the fracture toughness of cortical bone (Brynk et al., 2011; 

Budyn and Hoc, 2010; Fritsch and Hellmich, 2007; Jonvaux et al., 2012). In this regard, 

(Fritsch et al., 2009) extended their multiscale model (Fritsch and Hellmich, 2007) to present 

a continuum micromechanics theory for the upscaling of elastoplastic properties. This 

multiscale model of cortical bone was based on six homogenization steps using the Mori-

Tanaka scheme and the self-consistent model. 

Studies based on the FE method have also been interested in the multi-scale modeling of 

bone. As an example, (Barkaoui et al., 2014) proposed a multiscale model to estimate the 

elastic properties of cortical bone using a hybrid multiscale approach. Their three-phase 

approach extends the model proposed by (Martínez-Reina et al., 2011) by implementing a 3D 

FE model of the mineralized collagen microfibril whose mechanical properties were 

calculated via the neural network method. Another example is that of (Ural and Mischinski, 

2013) who developed a multiscale model based on the cohesive FE method to simulate bone 

fracture at the micro and macroscopic levels. The simulations were performed in three steps: 

(i) a two-dimensional cortical bone model based on microscopic images, (ii) a simplified 

three-dimensional cortical bone model with osteons modeled as circular tubes to determine 

the effect of microscale properties on macroscale fracture toughness, and (iii) an idealized 

three-dimensional macroscale distal forearm model based on mechanical properties obtained 

from the microscale model. 

In this study, a multi-scale model of bone tissue including all hierarchical levels was 

developed in order to investigate the effect of age-related structural alterations occurring at 

the molecular level on the mechanical properties of different bone hierarchical levels. The 

proposed model is based on two phases. The first phase concerns the molecular scale and is 

based on the FE method to provide an estimate of the effective mechanical properties of the 

TC as a function of two parameters affected by bone aging, namely the degree of hydration 

and the number of hydrogen bonds (H-bonds) (Mouss et al., 2020). This method makes it 

possible to vary these age-related structural parameters of this elementary constituent and 
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visualize their influence on the overall mechanical properties of cortical bone, which is 

difficult using the homogenization equations due to the complex triple helical structure of the 

TC. Moreover, it may be useful to reproduce other types of collagen molecule structural 

alterations, such as mutations of H-bonds due to substitutions of residues in certain 

pathologies (Gautieri et al., 2008), and to study their influence on bone mechanical properties, 

which is not necessarily accessible with experimental devices. The second phase deals with 

the higher scales, which were modeled using different micromechanics models published in 

the literature. The combination of the previous two phases allows us to evaluate the 

macroscopic elastic properties of the cortical bone, and to investigate the influence of some 

age-related molecular modifications on the mechanical properties of its different levels. 
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II MATERIALS AND METHODS 

The proposed step-by-step model to estimate the effective elastic properties of bone at 

different scales is based on an algorithm composed of 11 steps built in 2 phases (Figure 2). 

Collagen, together with hydroxyapatite (HA crystals) and water, constitute the 

elementary components of bone tissue. The first phase (Step 0) is based on our previous 

work on the study of the effect of hydration and number of H-bonds within the collagen 

molecule on the mechanical properties of the TC. It consists in using FEM and DOE methods 

to estimate the stiffness matrix of the collagen molecule as a function of its degree of 

hydration (represented by its external diameter) and the number of intramolecular H-bonds. 

This first phase represents in large part the originality of the proposed multiscale model. To 

the best of our knowledge, none of the proposed multiscale models in the literature 

incorporate a 3D FE model of TC to consider the effect of structural alterations, which occur 

at the molecular scale, on the macroscopic bone mechanical properties. In this study, we will 

focus mainly on the age-related alterations in osteoporosis. 

The second phase includes 10 analytical homogenization steps based on several 

methods in the literature to estimate elastic properties at each scale of the hierarchical 

structure of cortical bone (Barkaoui et al., 2014; Hamed et al., 2010; Martínez-Reina et al., 

2011; Yoon and Cowin, 2008a, 2008b): considering the water embedded in the space between 

collagen molecules and the fact that these molecules are linked through cross-links, Step 1 

consists in determining the elastic constants of the collagen-water composite using the (Mori 

and Tanaka, 1973) scheme. Then, the method of (Nemat-Nasser and Hori, 2013) for 

composites with periodically distributed inclusions is applied in Steps 2, 3, and 4 to calculate 

the stiffness tensor of collagen fibrils (composed of HA crystals surrounded by cross-linked 

collagen), fibers (composed of fibrils surrounded by extra-fibrillar mineral), and lamellae 

(fibers surrounded by extra-fibrillar mineral). The method of (Nemat-Nasser and Hori, 2013) 

is also used in Step 5 to calculate the stiffness tensor of the lamellae with canaliculi, which 

were simplified as straight tubes oriented in three directions within the osteon: radial, 

longitudinal, and circumferential. Three different laminate structures were considered to take 

into account each type of canaliculus. In Step 6, the stiffness tensor of a material that 

comprises the three types of the canaliculi is obtained by a laminate-specific homogenization 

method developed by (Chou et al., 1972). In Step 7, the lacunar porosity is introduced into the 

model in the same way as the canalicular porosity in step 5, simply by changing the pore 

shape. In Step 8, a symmetrization technique is used to estimate the effective transversely 
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isotropic elastic constants of a single osteon, given its approximately cylindrical shape. The 

cortical tissue is considered as a composite formed by the interpenetration of osteons with 

different mineral content as a consequence of bone remodeling. Therefore, the stiffness tensor 

of this new composite is estimated in Step 9 using the self-consistent scheme to take into 

account the superimposition of these phases of osteons. Finally, in Step 10, a Mori-Tanaka 

scheme with diluted inclusions representing the Haversian canals is used to include vascular 

porosity in the model. 

 

Erreur ! Source du renvoi introuvable.

 

Figure 2: Overview of the algorithm used for estimating the elastic properties of cortical tissue. The 

illustrations in phase2 are from the work of (Hamed et al., 2010; Martínez-Reina et al., 2011; Yoon 

and Cowin, 2008a, 2008b). 
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II.1 Step 0: tropocollagen molecule 

This section describes how the effective stiffness matrix of the organic elementary 

component of bone tissue, namely the TC molecule, was estimated. This step is based on the 

work of (Mouss et al., 2020) and presents three principal stages: (i) the development of a 

realistic 3D model of type I TC, taking into account the intramolecular H-bonds between the 

three polypeptide chains of the triple helix, (ii) the performance of a numerical design of 

experiments (DOE) for the variations in the degree of hydration (represented by the external 

diameter) of the TC and the number of H-bonds, and (iii) the estimate of an analytical 

function ��� linking the mechanical properties (the apparent Young's modulus ����) of the 

collagen molecule to the previous two parameters (degree of hydration and H-bond number). 

II.1.1 3D finite element modeling 

Before describing the 3D FE model of the TC, it is necessary to provide a brief 

description of the components of this molecule. 

Type I collagen molecules are rod-like structures with a length of about 300	
� and a 

diameter of 1.5	nm composed of three α-chains, which twist tightly around each other to form 

a right handed triple-stranded superhelix with a pitch of ~	8.6	nm (Figure 3). The formation 

of H-bonds between the three helical polypeptide chains stabilizes the triple helix (Bhagavan, 

2001; Bhattacharjee and Bansal, 2008; Ramachandran and Kartha, 1955; Ramachandran, 

1956; Ramachandran and Kartha, 1954). 

 

 

Figure 3: Tropocollagen molecule: The pitch of the triple-helix is about 8.6 nm (a), its length and 

diameter are 300 and 1.5 nm respectively (b). 
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Each of the three α-chains forms a left-handed helix with approximately three amino 

acid residues per turn and a rise per residue along the helical axis of 3	Å. These chains are 

characterized by a series of Gly � X � Y repeats where X and Y can accommodate any type of 

amino acids. The stability of the triple helix depends on residues in the X and Y positions 

(Persikov et al., 2000). Polypeptide chains consisting of proline �Pro� and hydroxyproline �Hyp� residues in the X and Y positions respectively form an extremely stable triple helix 

(Figure 4). The α-chains are also characterized by amino �N� � and carboxy �C� �terminal 

propeptide sequences, which flank the series of Gly � X � Y. The TC structure is stabilized by 

a direct N � H	�GLY� ### O % C (X position) inter-chain H-bond for all sequences (Bella et al., 

1994; Privalov, 1982). The existence and the importance of these intramolecular links in 

stabilizing the TC conformation and assembly have been widely studied and confirmed using 

different approaches (Bella et al., 1994; Brodsky and Ramshaw, 1997; Fratzl and Weinkamer, 

2007; Gautieri et al., 2008; Privalov, 1982). 

 

 

Figure 4: Periodic arrangement of interchain NH...OC hydrogen bonds within the triple helix 

(Shoulders and Raines, 2009). 
 

(Mouss et al., 2020) developed a 3D FE model for the TC molecule taking into 

account the intramolecular H-bonds between helices to study the influence of molecular 

diameter and H-bond number on the elastic modulus of the collagen molecule. The three α-

chains in the proposed model were approximated by continuous helices, and assumed to have 

an isotropic elastic behavior. The inter-chain H-bonds that connect the NH of Gly in a chain to 

the CO of the residue in the position X of the neighboring chain were modeled using 

calibrated linear elastic elements (Spring elements). Localization of the residues was carried 

out using their coordinates, which were calculated based on the parametric equations of each 

helix of the FE model and the axial distance between two residues. The elastic properties of 

the α-chains and the tensile stiffness of the spring elements were based on the available data 

in the literature. The 3D geometry model was meshed using about 9000 hexahedral linear 

elements of type C3D8 and solved via the ABAQUS standard scheme. This discretization of 
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the model was chosen from a convergence study by varying the density of the mesh (Figure 

5). 

 

 
Figure 5: Mesh of the 3D finite element model of tropocollagen (The spring elements are the 

representation of H-bonds). 

 

II.1.2 Parametric study (DOE) 

Along with osteoporosis, bone aging involves structural changes at all hierarchical 

scales of bone (Bailey et al., 1998; Barros et al., 2002; Campagnola and Loew, 2003; Chen et 

al., 2010; Currey, 1969; Nagaraja et al., 2007; Saito and Marumo, 2010; Tommasini et al., 

2009; Verzár, 1969; Viguet-Carrin et al., 2006; Wallace et al., 2007). Particularly at the 

molecular level, two main age-related structural alterations occur within the TC, namely the 

change in diameter (due to the change in the degree of hydration of the molecule) and the 

change in the number of H-bonds (Bailey et al., 1998; Barros et al., 2002; Eklouh-Molinier et 

al., 2015; Verz et al., 1963; Verzár, 1969). It has been suggested that a weakening of water/ 

TC interactions occurs with age, resulting in a loss of hydration of the molecule and a 

corresponding decrease in its diameter (Bella et al., 1995). Moreover, heat denaturation 

experiments showed that H-bonds in the collagen molecule decrease with age (Verzár, 1969) 

confirmed by (Verz et al., 1963) who observed a higher frequency of H-bonds in the collagen 

molecule of young tendons compared with older ages. Therefore, the objective of the 

parametric study was to use the previously developed TC FE model to identify an analytical 

relationship between these two parameters affected by aging and the mechanical properties (in 

terms of Young's modulus) of the macromolecule. In order to establish this analytical 

relationship a numerical factorial DOE of two factors was performed (Figure 6). 
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Figure 6: Schematic representation of the numerical parametric study. 

 

Depending on the degree of hydration, numerical simulations were carried out for 

various diameters '()  = 1, 1.23, and 1.5 nm, which correspond to the dry, semi-wet and wet 

states of the TC, respectively (Charvolin and Sadoc, 2012; Cusack and Miller, 1979; Gautieri 

et al., 2009; Harley et al., 1977; Sasaki and Odajima, 1996). The H-bond number was chosen 

to vary from 0, corresponding to the case of unlinked helices, to 30 corresponding to the 

average number of H-bonds in an ideal collagen segment of about 8 nm in length (Bella et al., 

1994; Gautieri et al., 2008; Lorenzo and Caffarena, 2005; Persikov et al., 2000; Vesentini et 

al., 2005). The other geometrical parameters (length and pitch of the molecule as well as the 

diameter of the helices) were not modified during this parametric study. 

The apparent Young's modulus of the TC is the primary response of this DOE. To 

evaluate this parameter, tensile loads were applied along the axial direction of the triple helix 

for different combinations of diameter and number of H-bonds in small-scale strain (* 10%). 

The tensile test provides a "force-displacement" curve, which allows the local Young's 

modulus E(d) to be assessed (in terms of deformation) by applying the following relation 

derived from continuum mechanical theories (Buehler and Wong, 2007): 

�����,� % ,-.() /0�,�/,  (Eq.1) 

where ,- is the initial undeformed length of the collagen molecule, .()  denotes the 

equivalent cross-sectional area of a collagen molecule assuming a cylindrical shape of 

diameter �'()�, and 0 is the magnitude of stretching load. 

The apparent Young's modulus was then determined as the tangential slope corresponding to 

10% tensile strain (Buehler, 2006). 

II.1.3 Results of the DOE 

The results of the parametric study, i.e., the values predicted by the proposed FE 

model of the apparent Young's modulus for each combination of molecular diameter and 

number of H-bonds, are represented in Figure 7 in the two-dimensional domain ('() , N). 
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Figure 7: Apparent Young's modulus as a function of H-bonds and molecular diameter (response 

surface). 

 

The surface response ���� % �('() ,	N) was constructed using polynomial 

approximation. The nonlinear model of the approximated function ��� can be written in the 

following form: 

 

� % 1- 2314546
478 231445496

478 2314:545:6
4;: 23<4454=>

478 23<4:5495:6
4784?:

23@4454A6
478 23@4:54=5:6

4784?:
2BC5496

478 2 D 

(Eq.2) 

 

where k=1 and n=2; the variables 58 and 59 denote N and '() , respectively, E1, <, @, CG are 

the regression coefficients; and ε is the error of the approximation. The regression coefficients 

in (Eq.2) were determined using the curve fitting tool in MATLAB software. The obtained 

constants are summarized in Table 1. 

 

Table 1: Coefficients of the approximated polynomial function. 

Coefficients 1- 18 19 188 189 199 <88 <89 <98 @88 @89 C 

Values 22.01 0.2138 -25.44 -0.06821 -0.03195 7.928 0.001816 0.06027 -0.03344 -2.551.HIJK -3.4.	HIJL -0.01696 
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Step 0 provides the approximate analytical function ���� 	% �	�'() , N�, which is used 

to determine the stiffness matrix of collagen, the elementary organic component of bone 

tissue. The other two elementary bone components are hydroxyapatite (HA) and water-NPCs. 

The stiffness matrices of these two components were defined from the elastic properties 

available in the literature (Table 2). For simplicity, all elementary components are assumed to 

have an isotropic linear elastic behavior. The following steps of the multiscale model 

development are based on different analytical homogenization methods mainly inspired by the 

work of (Martínez-Reina et al., 2011), which we have slightly modified. The proposed 

approach includes ten steps starting with Step 1 representing the matrix of cross-linked 

collagen molecules up to Step 10 representing the cortical bone. 

II.2 Step 1: Cross-linked collagen 

Unlike (Martínez-Reina et al., 2011), who used Voigt and Reuss bounds to estimate 

the effective mechanical properties at the nanostructural level, we assume that a continuous 

approach is applicable at this scale. This assumption has been made by several researchers, 

and the fact that collagen molecules are linked through cross-links has motivated the use of a 

continuous matrix containing some holes filled with water and NPCs (Fritsch and Hellmich, 

2007; Fritsch et al., 2009; Hamed et al., 2010; Hellmich et al., 2004; Hellmich and Ulm, 

2002). The holes are represented as cylindrical inclusions (inhomogeneities). The Mori-

Tanaka scheme (Benveniste, 1987; Mori and Tanaka, 1973) was used to estimate the effective 

stiffness tensor of the bone at this scale. Subscripts "NO" and "P" refer to collagen and water 

with NPCs, respectively. Given the stiffness tensors of collagen, Q(), and water-NPCs, RS, 

the effective stiffness tensor of the collagen-water composite, RSTUV is obtained as: 

 RSTUV %	R() 2	ϕSX�RS � R()� ∶ 	Z[ ∶ 	 X�1 � ϕS�	\ 2	ϕS 	Z[ (Eq.3) 

 

where Z %	 ]\ 2 ^_VV ∶ 	 RTJH ∶ �RS � RT�`J8 is the strain concentration tensor for a single 

ellipsoidal inclusion in an infinite elastic matrix, \ is the identity tensor, and ^_VV is the Eshelby 

tensor which depends on the elastic properties of the matrix and on the cylindrical shape of 

inclusions (see Appendix B). ϕS is the volume fraction of water and NPCs in the cross-linked 

collagen. 
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II.3 Step 2: Mineralized collagen fibril 

In this step, the mineralized collagen fibril is considered as a composite in which the 

cross-linked collagen molecules (matrix) embed platelet-shaped crystals (inclusions), which 

are assumed to be periodically distributed along the axes of the cross-linked collagen 

molecules. Therefore, the method of (Nemat-Nasser and Hori, 2013) was used to calculate the 

effective stiffness tensor of this composite with periodically distributed inclusions: 

 

Ra % RSTUV b1 � ϕc�]�RSTUV � Rc��J8. RSTUV � d�,STUV`J8e (Eq.4) 

 

where Ra is the effective stiffness tensor of the mineralized collagen fibril, Rc� is the stiffness 

tensor of the HA crystals (intrafibrillar mineral) and RSTUV is the tensor of the collagen-water 

composite obtained in Step 1. ϕc� is the volumetric fraction of platelet shaped mineral 

crystals in the composite and d�,STUV is a periodic tensorial operator for platelet-shaped 

inclusions of mineral crystals in a cross-linked collagen matrix (see Appendix C). 

II.4 Step 3: Mineralized collagen fiber 

The collagen fiber is assumed as a composite with periodically distributed cylindrical 

inclusions (collagen fibrils) that are embedded in an extrafibrillar mineral matrix. Depending 

on the made assumption about the arrangement of HA crystals in the extra-fibrillar matrix, 

different homogenization schemes have been used in the literature to calculate the elastic 

constants RSc� of this matrix. Some assumed that the extra-fibrillar mineral crystals are 

closely packed and adhere strongly to the fibril surface (Hassenkam et al., 2004; Sasaki and 

Sudoh, 1997; Zhang et al., 2003), and therefore they presented it as a continuous HA matrix 

with a small volume fraction of void spaces filled with water and NPCs. In this case, the 

Mori-Tanaka method is an appropriate choice to obtain the effective elastic properties of the 

extra-fibrillar HA matrix. Others have assumed that the extra-fibrillar mineral crystals are 

dispersed and highly disordered (Fratzl et al., 1996; Lees et al., 1994; Rosen et al., 2002), and 

thus the extra-fibrillar HA matrix was considered as a porous polycrystal consisting of HA 

crystals with intercrystalline pores in-between filled with water and NPCs (Fritsch et al., 

2009; Hellmich et al., 2004). In this case, a self-coherent scheme (Budiansky, 1965; Hill, 

1963) with two interpenetrating phases, namely HA crystals and pores filled with water and 

NPCs, was used to capture the overall behavior of the extra-fibrillar matrix (Fritsch et al., 

2009; Hellmich et al., 2004). 
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With our model, we have assumed the first hypothesis which justifies the choice of the 

Mori-Tanaka scheme to estimate the stiffness matrix RSc� of the extra-fibrillar mineral HA: 

 

RSc� %	Rc� 2	ϕSf 	X�RS � Rc�� ∶ 	Z[ ∶ 	 X�1 � ϕSf �	\ 2	ϕSf 	Z[ 
 Z %	 ]\ 2 ^g�c ∶ 	 Rc�J8 ∶ �RS � Rc��`J8 

(Eq.5)  

 

where the subscripts "P" and "ℎi" refer to water-NPCs and extrafibrillar HA crystals, 

respectively. 

\ is the identity tensor and ^g�c is the Eshelby tensor which depends on the elastic properties 

of the matrix and on the spherical shape of inclusions (see Appendix B). 

The effective stiffness tensor of the fiber Rj is estimated by employing an analogous 

expression to the one previously used for the fibril in Step 3 (Martínez-Reina et al., 2011; 

Nemat-Nasser and Hori, 2013): 

 

Rj % RSc� b1 � ϕa]�RSc� � Ra�J8. RSc� � dT,Sc�`J8e (Eq.6) 

 

ϕa is the volumetric fraction of fibrils within the fiber.	dT,Sc� is a periodic operator, 

corresponding to infinite cylindrical periodic inclusions of fibrils embedded in an extra-

fibrillar mineral matrix with the stiffness tensor RSc� (see Appendix C). 

II.5 Step 4: Lamella 

In the same way as the fiber, the effective stiffness tensor of the lamella, RV, is 

estimated by assuming that the lamella is a composite with a matrix of extrafibrillar mineral 

and periodically distributed cylindrical inclusions of fibers (Nemat-Nasser and Hori, 2013): 

 

RV % RSc� b1 � ϕj]�RSc� � Rj�J8. RSc� � dT,Sc�`J8e (Eq.7) 

 

where ϕj is the volumetric fraction of fibers and dT,Sc� the same operator as in Step 3. 
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II.6 Step 5: Lamella with canaliculi 

The aim of this step is to include the canalicular porosity. The canaliculi are assumed 

as infinite cylindrical periodically distributed voids. These voids (inclusions) or 'pores' have a 

null stiffness (Martínez-Reina et al., 2011). Thus, the stiffness tensor of a lamella with 

canaliculi RT�6 takes the form (Nemat-Nasser and Hori, 2013): 

 

RT�6 % RV 	k1 � lT�6	�\ � dT,V�J8m (Eq.8)  

 

where lT�6 is the canalicular porosity and dT,V the periodic operator for infinite cylindrical 

inclusions in a matrix of lamellar tissue (see Appendix C). 

II.7 Step 6: Laminate with lamellae LRC 

(Beno et al., 2006) sorted the canaliculi in osteons into three directions: longitudinal 

(L), radial (R), and circumferential (C). On the other hand, (Yoon and Cowin, 2008a) 

identified these directions with the lamellar orthotropy directions. Thus, with the previous 

equation (Eq.8)  and using the appropriate periodic operator dT,V, it is possible to estimate RT�6 

for three types of laminates (L, R and C). The only difference between these laminates is the 

direction of the canaliculi, which is taken into account in the operator dT,V of (Eq.8) . The 

components of the effective stiffness tensor of a laminate �Rno)� composed of three layers is 

calculated following (Chou et al., 1972): 

 

�Rno)�4: %3V>=
>78 qrr

rs�RT�6							>�4: � tRT�6							>u4=	tRT�6							>u4=tRT�6							>u== 2 tRT�6							>u4=∑ wx�RT�6							x�:=�RT�6							x�===x78
�RT�6							x�==∑ Vx�RT�6							x�===x78 yzz

z{
 

 

(Eq.9) 

where |, } ∈ E1, 2, 3	��	6G, and V> is the volume fraction of the layer, where the indices � %
1, 2, 3 correspond to L, R, C. 

 

If | % 1, 2, 3 or 6 and } % 4 or 5, then �Rno)�4: % �Rno)�:4 % 0. Finally, if | and } are 4 or 5, the 

components are: 

 

�Rno)�4: % ∑ V>∆> tRT�6							>u4:=>78
∑ ∑ V>	V�∆>	∆x=x78=>78 �>x (Eq.10) 
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where ∆>% tRT�6							>uAAtRT�6							>u�� � tRT�6							>uA�tRT�6							>u�A 

and �>x % tRT�6							>uAA�RT�6							x��� � tRT�6							>uA��RT�6							x��A 

II.8 Step 7: Lamellae with lacunae 

At this step, lacunar porosity is included in the lamella layers assuming that the 

lacunae are periodically distributed ellipsoids (Martínez-Reina et al., 2011). 

The stiffness tensor of the lamellae with lacunae, RV�T, is estimated by an equation similar to 

(Eq.8): 

 

RV�T % Rno) 	k1 � lV�T 	�1 � d_,no)�J8m (Eq.11) 

 

where lV�T is the lacunar porosity and d_,no) is the periodic operator for ellipsoidal inclusions 

in a matrix of laminate LRC. This periodic operator (Nemat-Nasser and Hori, 2013) and the 

ellipsoidal lacunae dimensions (Remaggi et al., 1998) are given in Appendix C. 

II.9 Step 8: Single osteon 

The effective stiffness tensor of the osteon, R(��, was estimated using the method 

presented in (Yoon et al., 2002) and (Martínez-Reina et al., 2011). This method consists in 

constructing the effective upper and lower bounds of the effective transversely isotropic 

elastic constants using the known orthotropic values. Since the upper and lower bounds are 

generally very close, this method allows the mean value to be used as an estimate of the 

transversely isotropic elastic constants of the osteon. This symmetrization step provides an 

estimate of the stiffness tensor of a single osteon, R(��, where the subscript �N��� stands for 

transversely isotropic. 

II.10 Step 9: Superposition of osteons 

In adults, most of the cortical tissue is secondary lamellar bone, in which osteons 

interpenetrate each other. Osteons may have different mineral contents: newly formed osteons 

(phase a), with a low mineral content and old osteons (phase b) with a high mineral content. 

The objective of this step is to superimpose these two types of osteons. A self-consistent 

scheme was used (Hill, 1963), according to Martínez (Martínez-Reina et al., 2011): 

 

R�)� % bϕ� 	R(��� 	]1 2 ℙT�V 	�R(��� � R�)��`J8
2 �1 � ϕ��R(��� 	]1 2 ℙT�V 	tR(��� � R�)�u`J8e	. (Eq.12)  
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bϕ� 	]1 2 ℙT�V	�R(��� � R�)��`J8 2 �1 � ϕ��	]1 2 ℙT�V 	�R(��� � R�)��`J8eJ8 

 

where R�)�, R(���  and R(���  are, respectively, the stiffness tensors of the composite (secondary 

lamellar tissue), phase a (newly formed osteons) and phase b (mature osteons). These two 

tensors are obtained by the previous steps (from Step 1 to Step 8) starting from different 

mineral contents. ϕ� is the volume fraction of newly formed osteons and ℙT�V is the Hill 

polarization tensor for cylindrical inclusions corresponding to the shape of the osteons. This 

tensor is related to both the Eshelby tensor �T�V (see Appendix B) and the stiffness tensor of 

the matrix by (Suvorov and Dvorak, 2002): �T�V % ℙT�V	Q(��� . (Eq.12) is solved iteratively with 

the following initial value: R�)�							- % R(��� . 

II.11 Step 10: Drained cortical tissue 

In this last step, vascular porosity was introduced to estimate the stiffness tensor of the 

cortical tissue, R�. For this purpose, Benveniste's (Benveniste, 1987) interpretation of Mori-

Tanaka’s approach for void inclusions was used (Martínez-Reina et al., 2011): 

 

R� % R(�� 	�1 2 l��g1 � l��g 	t1 � ^T�VuJ8�
J8

 (Eq.13) 

 

where l��g is the vascular porosity (Haversian canals). The Eshelby tensor ^T�V, as stated 

earlier, is the one corresponding to cylindrical inclusions in a transversely isotropic matrix. 

II.12 Model parameters 

In the same way as other composite materials, the overall mechanical behavior of bone 

is strongly affected by the mechanical properties and the volume fraction of its elementary 

components. A wide range of values for these mechanical properties has been reported in the 

literature. The values chosen in our model are shown in Table 2. Note that the Young's 

modulus of collagen is given by the analytical function, approximated in Step 0, as a function 

of the hydration state of the molecule (represented by its diameter) and the number of H-

bonds. 
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Table 2: Mechanical properties and volume fractions of selected bone elementary components in our 

model (Hamed et al., 2010; Martínez-Reina et al., 2011). Superscripts "a" and "b" denote the values 

used in newly formed and mature osteons, respectively. The non-indexed values are fixed. 

Component Elastic modulus (GPa) Poisson’s ratio Volume fraction 

Collagen  ���� % ��'() , N� 0.35	 0.354	
HA crystals  114	 0.28	 0.163� 0.418� 

Water-NPCs 0.138	 0.49	 0.483� 0.228� 

It should also be noted that two volume fractions for HA crystals were selected to distinguish 

newly formed osteons from more mineralized mature osteons. Finally, we note that the 

volume fractions ��� used in the different homogenization steps of the model were estimated 

based on the work of (Martínez-Reina et al., 2011). The calculated values are summarized in 

Table 3. 

 

Table 3: Different volume fractions used in the model (Martínez-Reina et al., 2011; Yoon and Cowin, 

2008a). Superscripts "a" and "b" denote the values used in newly formed and mature osteons, 

respectively. The non-indexed values are fixed. 

Volume fraction  Value 

Water-NPCs in the cross-linked 

collagen ���� 0.27� 0.14� 

HA crystals in the fibril ����� 0.09� 0.22� 

Water-NPCs in the HA extrafibrillar 

matrix ���f � 0.39� 0.36� 

Fibrils within the fiber t��u 0.58 

Fibers within the lamella ���� 0.91 

Canalicular porosity ������ 0.0418 

Type L lamellae layer t Hu 0.115 

Type R lamellae layer t ¡u 0.606 

Type C lamellae layer t ¢u 0.279 

Lacunar porosity ��£��� 0.0082 

Newly formed osteons ���� 0.086 

Vascular porosity ��¤�¥� 0.04 
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III RESULTS AND DISCUSSION 

This work aims to propose a multiscale model of cortical bone by including the TC at 

the molecular scale. The main objective is to investigate the effect of the principal age-related 

structural alterations within the TC, namely the change in the diameter (due to change in the 

molecule degree of hydration) and the change in the number of H-bonds, on bone mechanical 

properties at different hierarchical levels. 

In this section, we first present and discuss the results of our proposed model at different 

scales, with the TC-related inputs corresponding to the ideal case in healthy mature cortical 

bone (¦ % 30 and '() % 1.5	
�). In order to validate our approach, we compare the 

obtained results with experimental data and multiscale model results available in the 

literature. Then, we examine the effect of the H-bond number and the TC diameter on bone 

mechanical behavior at different levels of its hierarchical structure. We focus on the effect of 

each parameter acting alone. More attention is devoted to the upper scales since the effect of 

these two parameters on the TC mechanical behavior at the molecular scale has been 

previously presented and discussed in (Mouss et al., 2020). 

It should be noted that the proposed model was tested with a well-defined configuration, as 

described in section II. Studies of the variation of mechanical and geometrical parameters, of 

different bone constituents’ volume fractions, or the variation of bone porosity on the 

macroscopic mechanical properties of the cortical bone are beyond the scope of the present 

paper. These studies have already been performed by previous bone multiscale modeling 

studies published in the literature (Barkaoui et al., 2014; Fritsch and Hellmich, 2007; Hamed 

et al., 2010; Martínez-Reina et al., 2011). 

III.1 Model validation 

The TC effective Young’s modulus (����=4.41GPa) predicted using the proposed FE 

model in the ideal case (¦ % 30 and '() % 1.5	
�) is in good agreement with earlier values 

published in the literature. It is within the range of available experimental results (between 

0.35 and 12.2 GPa) and is consistent with computational studies, particularly with the results 

reported in (Lorenzo and Caffarena, 2005) and (Gautieri et al., 2008) (4.8 GPa and 4.56 GPa, 

respectively) (Table 4). Moreover, the FE result is in agreement with the SMD study 

demonstrating that the Young’s modulus of TC molecules is rate-dependent tending towards 

to 4GPa under loading rates slower than 0.5m/s (Gautieri et al., 2009). 
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Table 4: Comparison between experimental and numerical approaches for estimating the Young's 

modulus of a single tropocollagen molecule. 

Young's modulus 

(GPa) 

Method Reference 

≈9 Brillouin light scattering (Rat tail tendon) (Harley et al., 1977) 

≈5.1 Brillouin light scattering (Rat tail tendon) (Cusack and Miller, 1979) 

3–5.1 Electron microscopy (Calf skin) (Hofmann et al., 1984) 

2.9±0.1 X-ray diffraction (Bovine Achilles tendon) (Sasaki and Odajima, 1996) 

0.35–12 Optical tweezer (Human pro-collagen) (Sun et al., 2002) 

4.1 MLR (Lathyritic rat skin) (Nestler et al., 1983) 

≈7 Reactive atomistic modeling (Buehler, 2006) 

4.59±0.38 Atomistic modeling  (Gautieri et al., 2008) 

≈4 Atomistic modeling  (Gautieri et al., 2009) 

4.41 Finite element model Present work 

 

The observed variability of the Young’s modulus of the TC reported in the literature 

can be explained by several factors. With experimental techniques, it may be related to the 

difference in the properties of the experimented collagen in different tissues (Table 4). This 

hypothesis is supported by instances that revealed that the Young's modulus of collagen 

reconstituted from calf skin is larger than that of collagen reconstituted from bovine tendon by 

an order of magnitude (Sasaki and Odajima, 1996). 

The differences between Young’s modulus values using MD simulation studies is 

probably due to differences in the atomistic model. In fact, SMD simulations on TC 

molecules have been performed with different amino acid sequences in the alpha-chains. 

(Lorenzo and Caffarena, 2005) who found a value of 4.8	GPa, used a sequence �Pro � Hyp �Gly�A � Pro � Hyp � Ala � �Pro � Hyp � Gly�� while (Buehler, 2006) used a TC sequence 

of �Pro � Hyp � Gly�A � Glu � Lys � Gly � �Pro � Hyp � Gly�� and assessed the Young’s 

modulus of single TC molecules ranging from 6.99 to 18.82	GPa for various deformation 

rates. This theory is supported by (Vesentini et al., 2005) and (Gautieri et al., 2008). The 

former studied the elastic properties of four different type I collagen 30-residue sequences 

and reported Young’s moduli values varying between 1.33 and 2.41		GPa, while the latter 

tested different amino acid sequences directly and showed that a difference of 30% in elastic 

modulus may occur. 
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Table 5 shows the longitudinal elastic moduli of mineralized fibril and fiber, lamellar 

tissue, single osteon, and cortical bone obtained using our model. This table also gives 

experimental data available in the literature and the results of the main previously published 

multi-scale models. It should be noted that the model provides the elastic properties in the 

three directions after each of the steps described in section II. The set of stiffness matrices for 

all scales of the model is given in Appendix D. For comparison purposes, only the longitudinal 

elastic moduli at the bone scales shown in Table 5 are presented. 

It can be seen that our results are globally within the range of the reported values of elastic 

moduli from experimental studies. We can also observe a discrepancy in these experimental 

measurements, specifically at the scale of nanostructures (fibrils and mineralized collagen 

fibers). This difference can be explained by several factors, including the sample nature. 

Indeed, Yang and colleagues (Yang et al., 2007), using atomic force microscopy (AFM), 

tested both native collagen fibrils and cross-linked collagen fibrils, which are thinner than the 

former ones. The authors reported a longitudinal Young's modulus of approximately 5.4	«¬i 

for the first type of fibrils and 14.7	«¬i for the second one. Furthermore, for two collagen 

fiber samples of the same type (cross-linked) with different hydration states, Law et al. (Law 

et al., 1989) found that the longitudinal elastic modulus of the wet fiber is more than ten times 

lower than that of the dry collagen. This remarkable difference in elastic modulus between dry 

and wet samples was also observed at both levels of the collagen fibrils (Grant et al., 2008; 

Van Der Rijt et al., 2006) and the osteons (Ascenzi and Bonucci, 1967) (Table 5). In addition, 

the deformation regime also seems to be relevant in the analysis of nanoscale results since, for 

the same wet fibrils sample, (Eppell et al., 2006) measured a longitudinal Young's modulus of 0.4	«¬i and 6	«¬i in the small and large-deformations regimen, respectively. 
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Table 5: Comparison of results from the present model to experimental data and results available in 

the literature. 

Level Longitudinal elastic modulus (GPa) 

This 

model 

Experimental data Multiscale Models 

Nanostructural 

Fibril H¡. H¢ I. L	– 	® (Eppell et al., 2006) HK. ¯¡ (Hamed et al., 2010) 

K	 ± 	H (Wenger et al., 2007)	HH. K ± ¡. ¢	 (Wenger et al., 2007) 

±. ±	 (Yoon and Cowin, 2008b) 

K. L	 ± 	H. ¡	 (Yang et al., 2007) 

(native collagen) 	HL. ±	 ± 	¡. ±	 (Yang et al., 2007) 

(cross-linked collagen)  

I. ²¢K	 (Barkaoui et al., 2014) 

Fiber ¡¢. ¯² I. ¡¢ ± I. IL	 (Law et al., 1989) 

(wet)  ¢. ±H ± I. ®±	 (Law et al., 1989) 

(dry)  

H®. ²	 (Yoon and Cowin, 2008b) 

®. L¢	 ± 	I, ¯K	 (Silver et al., 2000) H¡. ®	 (Barkaoui et al., 2014) 

Microstructural 

Lamella ¡K. ¢¯ H². H  ±  K. L	 (Zysset et al., 1999) ¡L. ±K	 (Hamed et al., 2010) 

¡H. ¯  ±  ¡. H	 (Rho et al., 2002) ¡¡. ¯	 (Yoon and Cowin, 2008b) 

¡K. H  ±  ¡. H	 (Fan et al., 2002) ¡±. ®	 (Barkaoui et al., 2014) 

Mesostructural 

Osteon ¡L. HH ¡¢. L	 ± 	®. ²	 (Ascenzi and 

Bonucci, 1967) 

(dry)  

H±. ¡¢	 (Hamed et al., 2010) 

HH. ±	 ± 	K. ®	 (Ascenzi and 

Bonucci, 1967) 

(wet)  

¡I. ¢	 (Yoon and Cowin, 2008a) 

¡¡. L ± 	H. ¡	 (Rho et al., 1999) ¡². ±	 (Barkaoui et al., 2014) 

Cortical 

bone 

¡¢. HL H±. ²	 ± ¢. ²¡	 (Reilly and Burstein, 

1975) 

H¯. ®²	 (Hamed et al., 2010) 

¡±. L  ±  I. ²¯	 (Yoon and Katz, 

1976) 

H². K	 (Martínez-Reina et al., 

2011) 

¡¢. LK  ±  I. ¡H	 (Turner et al., 

1999) 

H². L	 (Barkaoui et al., 2014) 
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As compared to the results reported by multi-scale models in the literature, our results 

seem to be slightly higher. Then again, differences between model values can be noticed 

(Table 5). These differences can be explained firstly by the authors' choice of mechanical 

properties and volume fractions of bone constituents in their multiscale model. Indeed, there 

is a wide range of values in the literature for the elastic moduli of collagen and mineral 

crystals, whereas fewer data are available for the mechanical properties of NPCs. Different 

choices for these properties can lead to significantly different results. In our model, for 

example, the fitted analytical equation derived from the parametric study estimates the 

Young's modulus of the ideal collagen to be approximately 4.41 GPa, which is higher than the 

input values used by (Yoon and Cowin, 2008a, 2008b) and (Barkaoui et al., 2014) (1.2 GPa 

and 2.5 GPa, respectively). Regarding the Young's modulus of the hydroxyapatite crystals, we 

selected the value 114 GPa similarly to (Yoon and Cowin, 2008a, 2008b), while both 

(Barkaoui et al., 2014) and (Hamed et al., 2010) used 120 GPa. On the other hand, the mineral 

volume fraction is crucial in the mechanical behavior modeling of bone tissue since the 

variation of this parameter can explain certain physiological phenomena, such as the 

differences between young and mature bone or between healthy and diseased bone 

(osteoporotic bone, for example). The way this volume fraction was estimated differs from 

one multiscale model to another. For instance, (Yoon and Cowin, 2008a, 2008b) considered 

that the intrafibrillar mineral represents 25% of the total mineral content and simply assume 

that the rest is equally shared (37.5% and 37.5%) between the interfibrillar and the 

interlamellar space. Furthermore, these ratios were fixed, as the authors did not consider any 

variation in the mineral content. In contrast, in our model, the mineral distribution of 

reference bone minerals was assumed to be equal to 28, 58, and 14% for the intra-fibrillar, 

inter-fibrillar, and inter-lamellar spaces, respectively (Martínez-Reina et al., 2011; 

ROBINSON and ELLIOTT, 1957). The intra-fibrillar fraction is similar, but the other 

fractions are different from the values assumed by (Yoon and Cowin, 2008a, 2008b). In this 

regard, the 58% volume fraction of the inter-fibrillar mineral in our model may have 

significantly contributed to the abrupt increase in longitudinal Young's modulus at the 

collagen fiber scale (Table 5). 

Second, there are differences between the models with regard to the method of estimating 

mechanical properties at some scales. As an example, to estimate the mechanical properties of 

the extra-fibrillar mineral where fibrils are unidirectionally embedded to form a mineralized 

collagen fiber, we used the Mori-Tanaka homogenization method. The advantage of this 
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approach is that it takes fibril interactions into consideration. In their work, (Hamed et al., 

2010) also applied this method to estimate the effective properties of bone at this level, 

whereas (Yoon and Cowin, 2008a, 2008b) and (Barkaoui et al., 2014) used the bounds of 

Reus and Voigt. As another example, starting from the lamellar scale, the estimation of the 

isotropic transverse elastic properties of the osteon in our model was performed in several 

steps considering the different types of porosities (canaliculi and lacunae) as well as their 

different orientations. This method, based on the work of (Yoon and Cowin, 2008a, 2008b), 

was also used by (Martínez-Reina et al., 2011) and (Barkaoui et al., 2014), while (Hamed et 

al., 2010) used the formulation of (Sun and Li, 1988) for laminated composites. 

Finally, the way in which the scales are defined in our model is not unique or fixed. While 

there is a consensus regarding the classification of the principal scales, some dissimilarity 

regarding the intermediate levels exists. For example, (Hamed et al., 2010) considered only 

four hierarchical levels, namely the mineralized collagen fibril, the single lamella, the single 

osteon, and the cortical bone scale. In turn, (Barkaoui et al., 2014) considered the microfibrils 

as substructures of collagen fibrils and consequently defined one more scale. According to the 

authors, the consideration of this fibril substructure scale explains their low predicted value 

for the longitudinal elastic modulus of the fibril, as compared to the other multiscale models 

(Table 5). 

It should be noted that the osteon-scale mechanical properties reported in Table 5 refer 

specifically to type L osteons, those having collagen fibers aligned with the longitudinal axis 

(Figure 8). Except for the model proposed by (Yoon and Cowin, 2008a, 2008b), the existing 

models in the literature only consider type L osteons. In our case, we were also interested in 

estimating the mechanical properties of the other two types of osteons (type T and A), by 

rotating the orientation of the collagen fibers using simple tensorial transformation laws at 

Step 4 as described in section II. The obtained stiffness matrices are presented in Appendix D. 

They are qualitatively in good agreement with the results obtained from (Yoon and Cowin, 

2008a, 2008b): type T osteon is more rigid along the transverse direction ��9 >	�= > �8�, 
while type A osteon is more rigid along both the longitudinal and transverse directions ��9 %	�= > �8�. 
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Figure 8: Different types of osteons: T (a), A (b) and L (c). 

 

After testing the proposed multiscale model for cortical bone in the case of the ideal collagen 

molecule, we investigated the model response in different situations by varying the input 

values related to the TC: the number of intramolecular bonds and the degree of hydration 

(represented by the molecular diameter). The objective was to assess the effect of structural 

alterations occurring at the level of these two molecular-scale parameters on the mechanical 

properties of the upper hierarchical bone scales. Figure 9 summarizes the results of our 

investigations. 

III.2 Effect of H-bonds 

It can be clearly observed that the deterioration of the H-bonds within the TC leads to 

a decrease in the longitudinal elastic modulus at all scales, for all values of the molecular 

diameter. In the specific case of the TC at the molecular scale, the significant decrease in the 

TC effective Young's modulus occurring with a decrease in the number of H-bonds was also 

observed by (Gautieri et al., 2008) using SMD simulations. This loss in stiffness becomes less 

significant when transitioning from one scale to the upper scale, however. In the case of a wet 

TC, for example, considering the intermediate scale of the lamella, the longitudinal elastic 

modulus decreases by 14% when N drops from 30 to 0, against a decrease of 16% and 12% at 

the fiber and osteon scales, respectively. 

On the other hand, for each hierarchical level, the elastic modulus decrease is more 

pronounced for the largest diameters. For example, the elastic modulus of the fibril decreases 

by 15% when the number of H-bonds (N) drops from 30 to 0 in the case of dry TC �'() %
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1	
��, while it decreases by 42% and 54% in the case of semi-wet �'() % 1.23	
�� and wet �'() % 1.5	
�� TC, respectively. Note that although the case of unbound polypeptide chains 

(N=0) is unrealistic and biologically irrelevant, it still allowed us to qualitatively and 

quantitatively describe the contribution of H-bonds to the bone strength at different scales. 

In conclusion, this study highlights the significant contribution of the H-bonds linking 

the polypeptide chains within the TC triple-helix structure to the mechanical properties of 

bone at different hierarchical scales. Several experimental and numerical studies have 

investigated the effect of cross-links between collagen molecules on the mechanical behavior 

of bone (Barkaoui and Hambli, 2014; Buehler, 2008; Campagnola and Loew, 2003; Depalle et 

al., 2015; Saito and Marumo, 2010; Viguet-Carrin et al., 2006). However, to the best of our 

knowledge, the influence of H-bonds within these molecules on upper scales of bone has not 

been addressed yet, which does not allow us to compare our results so far. 

III.3 Effect of the degree of hydration of tropocollagen (phase II) 

The TC dehydration also seems to affect the elastic properties at the different 

hierarchical levels but in a less pronounced way in comparison with the effect of a loss of H-

bonds. In fact, for a given number of H-bonds, the decrease in TC diameter induces an 

increase in longitudinal elastic modulus for all the bone scales (Figure 9). The most relevant 

increase is observed at the fibril scale and is 15.5% for N=0 when changing from a wet TC �'() % 1.5	
�� to a dry case �'() % 1	
��. Under these same conditions at higher 

hierarchical levels (mineralized collagen fiber scale and upper scales), we observe almost the 

same increase rate below 4.2%. Furthermore, it can be noticed that for all scales, TC 

dehydration has a weak effect with large numbers of H-bonds, but this effect becomes more 

pronounced as the number of H-bonds decreases. For example, at the collagen fiber scale, the 

transition from wet �'() % 1.5	
�� to dry �'() % 1	
�� TC leads to a 4.6% increase in the 

longitudinal elastic modulus when N=30, while an increase of 14% is observed for N=12. In 

the particular case where N=30, a negligible effect (<0.1%) is noted for all scales when 

transiting from a semi-wet �'() % 1.23	
�� to a wet TC �'() % 1	
��. 
In a multiscale study evaluating the effect of collagen mechanical properties on the 

overall mechanical properties of cortical bone, (Hamed et al., 2010) tested a higher value for 

the elastic modulus corresponding to dry collagen (5.4 GPa) instead of the modulus initially 

used in their multiscale model (2.5 GPa). The authors found that this 116% increase in the 

Young's modulus of collagen resulted in a 39.8 and 35.9% increase in the longitudinal and 
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transverse moduli of bone elasticity, respectively. These results are qualitatively consistent 

with the results of our model. Indeed, in our case, starting from an initial value of 4.41 GPa of 

the elastic modulus of wet collagen, dehydration of the TC caused an increase of 28% in the 

apparent Young's modulus of the molecule leading to about a 4% increase in the longitudinal 

elastic modulus of the cortical bone. 

Such an increase in the elastic modulus upon dehydration has been widely 

demonstrated by previous experimental studies at different scales of the hierarchical structure 

of bone: at the organ level (trabecular bone and cortical bone) (Broz et al., 1993; Frank et al., 

2018; Nyman et al., 2013; Nyman et al., 2006; Sedlin and Hirsch, 1966; Smith and Walmsley, 

1959; Townsend et al., 1975; Wolfram et al., 2010; Yan et al., 2008), at the tissue level 

(lamellae and osteons) (Hengsberger et al., 2002; Rho and Pharr, 1999), and the ultrastructural 

levels (microfibrils, fibrils, and collagen fiber) (Eppell et al., 2006; Fielder and Nair, 2019; 

Shen et al., 2008; Van Der Rijt et al., 2006; Wenger et al., 2007; Zhang et al., 2007). 

Numerical studies based on the FE method and molecular dynamics mainly focusing on 

nanoscale structures, have also investigated the effect of water on the mechanical properties 

of bone and reached the same conclusion (Fielder and Nair, 2019; Gautieri et al., 2011; 

Hambli and Barkaoui, 2012; Mouss et al., 2020; Siegmund et al., 2008; Yuan et al., 2011). In 

addition, some of these studies showed that dehydration of bone compromised its quality by 

making it stiffer and stronger, but brittle, with almost no plastic deformation before failure 

(Broz et al., 1993; Currey, 1988; Dempster and Liddicoat, 1952; Nomura et al., 1977; Sedlin 

and Hirsch, 1966; Smith and Walmsley, 1959; Townsend et al., 1975; Weiner and Wagner, 

1998). Given these findings, some researchers have recently suggested that the amount of 

water in bone could potentially be used as a meaningful index in assessing patients' risk of 

fragility (Samuel et al., 2016; Unal and Akkus, 2015; Unal et al., 2014). Nevertheless, it is not 

appropriate to compare our results with the data from these studies, since our study focused 

only on the effect of water within the TC. The investigation of the effect of dehydration on the 

mechanical properties of higher scales requires consideration of water outside the collagen 

molecule as well, such as the water that occupies the void space of the vascular network 

(Sasaki and Enyo, 1995), the water that resides on the surface of hydroxyapatite (HA) mineral 

crystals (Jaeger et al., 2005), and the water confined within interstitial nanopores of the 

extracellular matrix (Pham et al., 2015) or even the water enclosed within the reticular 

structure of the mineral phase (Maghsoudi-Ganjeh et al., 2020). 
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Figure 9: Evolution of the longitudinal Young's modulus at different scales of bone as a function 

of the number of H-bonds within tropocollagen �NO� and its molecular diameter �'()�.  
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IV CONCLUSION 

In summary, we have proposed a multiscale model to describe the mechanical 

behavior of cortical bone (a heterogeneous material with a complex structure), by combining 

the FE method and different analytical homogenization methods. The main assumption of our 

approach, which differentiates it from previously published multiscale models, is the 

introduction of the TC, as the lowest hierarchical scale of the bone. To do so, we used the 

finite element method, but alternative approaches such as the recently proposed atom-to-beam 

homogenization strategy could also be performed to incorporate this macromolecule into a 

multiscale model (Kalliauer et al., 2020). The objective was to include the effect of molecular 

phenomena on the mechanical properties of bone tissue at the macroscopic scale, in particular 

the structural changes due to aging, namely the decrease in the number of H-bonds within the 

TC and the dehydration of this molecule. 

The results presented demonstrate that the model is able to provide realistic estimates 

of the elastic properties of bone at different scales in healthy cortical bone (ideal collagen). In 

addition, they contribute to understanding the contribution of the H-bonds within the collagen 

molecule and its degree of hydration to the mechanical behavior of the bone at different 

hierarchical levels, which is not necessarily accessible with current experimental devices. 

Among the main limitations of the proposed model is the non-consideration of water-

mediated H-bonding at the molecular scale level. Although the TC hydration was related to 

the molecular diameter, future work could explicitly take this factor into account, which 

would allow further investigation of the influence of the collagen hydration state on bone 

mechanical properties. Other limitations can also be mentioned, such as the non-consideration 

of the interphase layer between collagen and HA crystals, and the effects of cement lines, 

which make multi-scale modeling of cortical bone a rich and complex problem with much 

potential for future work. 

In future developments, we plan to introduce the effects of aging on the input 

parameters at different scales and to extend our model by coupling it to a dynamic 

mathematical bone remodeling model in order to capture the elastic behavior of cortical bone 

in osteoporosis disease. 
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APPENDIX A: List of symbols 

 

Symbol Description  ����  : The apparent Young's modulus of the tropocollagen, defined in Eq.14 RSTUV  : The effective stiffness tensor of the collagen-water composite, defined in Eq.15 R()   : The stiffness tensors of collagen, defined in Eq.16 RS  : The stiffness tensors of water-NPCs, defined in Eq.17 Ra  : the effective stiffness tensor of the mineralized collagen fibril, defined in Eq.18 Rc�  : The stiffness tensor of the intrafibrillar mineral, defined in Eq.19 RSc�  : The stiffness matrix of the extra-fibrillar mineral HA, defined in Eq.20  Rj  : The effective stiffness tensor of the fiber, defined in Eq.21 RV  : The effective stiffness tensor of the lamella, defined in Eq.22 RT�6  : The stiffness tensor of a lamella with canaliculi, defined in Eq.23 Rno)  : The effective stiffness tensor of a laminate, defined in Eq.24 RV�T  : The stiffness tensor of the lamellae with lacunae, defined in Eq.25 R�)�  : The stiffness tensor of the secondary lamellar tissue, introduced in Eq.26 R(��  : The effective symmetrized stiffness tensor of the osteon, defined in Eq.27 R(���   : The stiffness tensor of newly formed osteons, introduced in Eq.28 R(���   : The stiffness tensor of mature osteons, introduced in Eq.29 R�  : The stiffness tensor of the cortical tissue, defined in Eq.30 Z  : The strain concentration tensor, defined in Eq.31 \  : The identity tensor ^_VV  : The Eshelby tensor for an ellipsoidal inclusion, introduced in Eq.32 ^g�c  : The Eshelby tensor for a spherical inclusion, introduced in Eq.33  ^T�V  : The Eshelby tensor for cylindrical inclusion, introduced in Eq.34 ℙT�V  : The Hill polarization tensor for cylindrical inclusions, introduced in Eq.35 d�,STUV  : The periodic tensorial operator for platelet-shaped inclusions of mineral crystals in a 

cross-linked collagen matrix, introduced in Eq.36 dT,Sc�  : The periodic tensorial operator for infinite cylindrical periodic inclusions of fibrils 

embedded in an extra-fibrillar mineral matrix, introduced in Eq.37 dT,V  : The periodic operator for infinite cylindrical inclusions in a matrix of lamellar tissue, 

introduced in Eq.38 d_,no)  : The periodic operator for ellipsoidal inclusions in a matrix of laminate LRC, 

introduced in Eq.39 '()  : The external diameter of the collagen molecule N  : The hydrogen bond number within the collagen molecule .()   : The equivalent cross-sectional area of a collagen molecule ,-  : The initial undeformed length of the collagen molecule, introduced in Eq.40 0  : The magnitude of stretching load, introduced in Eq.41 �  : The nonlinear estimated analytical function linking the apparent Young's modulus of 

the collagen molecule to its degree of hydration and H-bond number, defined in Eq.42 E1, <, @, CG  : The regression coefficients of the polynomial approximation, defined in Eq.43 

ε : The error of the polynomial approximation, defined in Eq.44 ϕS  : The volume fraction of water and NPCs within the cross-linked collagen, introduced 

in Eq.45 ϕc�  : The volume fraction of the intrafibrillar mineral, introduced in Eq.46 ϕSf   : The volume fraction of the extra-fibrillar water and NPCs, introduced in Eq.47  ϕa  : The volumetric fraction of fibrils within the fiber, introduced in Eq.48 ϕj  : The volumetric fraction of fibers within the lamella, introduced in Eq.49 
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ϕ�  : The volume fraction of newly formed osteons, introduced in Eq.50 lT�6  : The canalicular porosity, introduced in Eq.51 lV�T  : The lacunar porosity, introduced in Eq.52 l��g  : The vascular porosity (Haversian canals) , introduced in Eq.53  H  : The volume fraction of the Type L lamellae layer, introduced in Eq.54  9  : The volume fraction of the Type R lamellae layer, introduced in Eq.55  =  : The volume fraction of the Type C lamellae layer, introduced in Eq.56 
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APPENDIX B: Eshelby Tensor 

Elliptical inclusion 

For the isotropic medium, the Eshelby tensor can be expressed in terms of elliptic integrals 

(Weinberger and Cai, 2004). Assuming that i	 > 	µ	 > 	¶ and that the semi-axis a is aligned 

with the coordinate 5 (and similarly µ with · and ¶ with ¸) then: 

 

¹8888 % 38º�1 � »� i9�88 2 1 � 2»8º�1 � »� �8											 
¹8899 % 18º�1 � »� µ9�89 2 1 � 2»8º�1 � »� �8											 
¹88== % 18º�1 � »� ¶9�8= 2 1 � 2»8º�1 � »� �8												 
¹8989 % i9 2	µ916º�1 � »� �89 2 1 � 2»16º�1 � »� ��8 2 �9� 

¹8889 % ¹899= % ¹89=9 % 0 

 

where a, b and c specify the size of the ellipsoid and » is the Poisson coefficient. The other 

non-zero terms can be found by cyclic permutation (i	�	µ	�	¶ with 1	�	2	�	3) of the above 

formulas. The I terms are defined in terms of standard elliptic integrals (Weinberger and Cai, 

2004): 

�8 % 4ºiµ¶�i9 � µ9��i9 � ¶9�8/9 X0�½, �� � ��½, ��[									 
�= % 4ºiµ¶�µ9 � ¶9��i9 � ¶9�8/9 ¾µ�i9 � ¶9�8/9i¶ � ��½, ��¿ 

where: 

½ % arcsinÂi9 � ¶9i9  

� % Âi9 � µ9i9 � ¶9 

and: 

�8 2 �9 2 �= % 4º 

3�88 2 �89 2 �8= % 4ºi9  

3i9�88 2 µ9�89 2 ¶9�8= % 3�8 

�89 % �9 � �8i9 � µ9 
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and the standard elliptic integrals are defined as: 

0�½, �� % Ã ,Ä�1 � �9Å|
	9Ä�8/9Æ
-  

 

��½, �� % Ã �1 � �9Å|
	9Ä�8/9	,ÄÆ
-  

Spherical inclusion 

For a spherical inclusion �i	 % 	µ	 % 	¶�the Eshelby tensor has the following compact 

expression: 

¹4:>V % 5» � 115�1 � »� Ç4:Ç>V 2 4 � 5»15�1 � »� �Ç4>Ç:V 2 Ç4VÇ:>� 
where Ç4:is the Kronecker delta. One can notice that the tensor itself does not depend on the 

radius of the sphere. 

 

Cylindrical inclusion 

For an elliptical cylinder �	¶	�	∞	� : 
¹8888 % 12�1 � »� ¾µ9 2 2iµ�i 2 µ�9 2 �1 � 2»� µi 2 µ¿ 
¹9999 % 12�1 � »� ¾i9 2 2iµ�i 2 µ�9 2 �1 � 2»� ii 2 µ¿ 
¹==== % 0																																																																					 
¹8899 % 12�1 � »� ¾ µ9�i 2 µ�9 � �1 � 2»� µi 2 µ¿ 
¹99== % 12�1 � »� 2»ii 2 µ																																											 
¹9988 % 12�1 � »� ¾ i9�i 2 µ�9 � �1 � 2»� ii 2 µ¿ 
¹==88 % ¹==99 % 0																																																				 
¹8888 % 12�1 � »� ¾ i9 2 µ92�i 2 µ�9 2 �1 � 2»�2 ¿										 
¹88== % 12�1 � »� 2»µi 2 µ																																												 
¹88== % i2�i 2 µ�						¹88== % µ2�i 2 µ�																	 
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APPENDIX C: Periodic Operator Tensor 

The fourth-order tensor of the periodic operator for isotropic materials is given by (Nemat-

Nasser and Hori, 2013) as follows: 

 

¬ %3	É
f �	Ê��C�	Ê�C�	0¬�C� 

 

where the apostrophe on the sum indicates that C % 0 is excluded. Ê�C� is called the g-integral 

function and represents the geometry of a cavity. It is defined as the volume integral of Ë5l	�|C. 5� on this cavity. The variable C is given by C ≡ 6ÍÎ�Í where 
4 is the number of unit cells 

in the direction |. Note that | can be replaced by 5, ·, ¸ for the directions 5, · and ¸ 

respectively and that the domain of a unit cell is given by Ï % 	 E5;	�i4 Ñ 54 Ñ i4	�| % 5, ·, ¸�G. 
The fourth order tensor 0¬�C� for anisotropic symmetry is defined in the work of (Nemat-

Nasser and Hori, 2013) as : 

 0¬�C� % Å·�	EC ⊗ �C. O. C�J8⊗CG ∶ O 

 

where O is the fourth rank elasticity tensor of the bone matrix and the term �C. O. C� can be 

expressed using index notation as follows: 

 tC4O4:>VCVu % C8O8:>8C8 2 C8O8:>9C9 2 C8O8:>=C= 

																					2	C9O9:>8C8 2 C9O9:>9C9 2 C9O9:>=C= 

																					2	C=O=:>8C8 2 C=O=:>9C9 2 C=O=:>=C= 

 

Note that the summation in the previous equation with respect to C (or 
Ó, 
� and 
Ô) is 

generally 1 at infinity. Nevertheless, in our case the summation has been performed from 1 to ±	50 since (Nemat-Nasser and Hori, 2013) have shown that the summation up to ±	40 is only 0.7% less precise than the summation up to ±	50. 

 

As previously mentioned, the g-integral function is calculated as a function of the shape of the 

inclusion. Three shapes of inclusions were used in the model: cubic (for mineral crystals), 

infinite cylindrical (for collagen fibers and fibrils) and ellipsoidal (for lacunar porosity). The 

expression of Ê�C� in each of these cases is given below (Nemat-Nasser et al., 1993): 

 

Ellipsoidal shape 

Ê�C� % 3Õ= �sin Õ � Õ cos Õ�																	�Õ Ö 0� 
where: 
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Õ % 	ºÂ×
Ó µÓiÓØ
9 2	Ù
� µ�i�Ú

9 2	×
Ô µÔiÔØ
9
 

 5, · and ¸ indicate three perpendicular directions. The number of cavities in the directions 5, · and ¸ directions is indicated by 
Ó, 
� and 
Ô. The lengths of the principal axes of an 

ellipsoidal shape representing a gap are denoted by µÓ, µ� and µÔ. For the L-type osteon, the 

approximate dimensions of a lacuna are µÓ 	% 	5Û�, µ� 	% 	10Û�, and µÔ 	% 	25Û�. 

 

Cylindrical shape 

Ê�C� % Ü2Ý Þ8�Ý�												Å|	
¸ % 00																								Å|	
¸ Ö 0								 
 

where Þ1 is the Bessel function of order 1 and: 

 

Ý % ºÂ×
Ó µÓiÓØ
9 2 Ù
� µ�i�Ú

9
 


Ó and 
� are the number of cylindrical inclusions in the directions 5 and · respectively. 

 

Cubic shape 

Ê�C� % 	 sin ßÓ sin ß� sin ßÔßÓß�ßÔ  

where ß4 % C4à4. The index | is replaced by 5, ·	and ¸ to indicate three perpendicular directions, 

and à4 is the size of the platelet-shaped mineral crystals (àÓ % 	3nm, à� % 25nm and àÔ %	50nm). 
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APPENDIX D: Stiffness Matrices at different hierarchical levels 

of the multi-scale model of cortical bone (values in GPa) 

 

Cross-linked collagen: 

OSTUV %
á
ââã	
5.10 2.95 2.95 0 0 02.95 5.10 2.95 0 0 02.95 2.95 5.94 0 0 00 0 0 2.79 0 00 0 0 0 2.79 00 0 0 0 0 2.58

	
ä
ååæ 

Mineralized collagen fibril: 

Oa %
á
ââã	
10.29 5.59 5.60 0 0 05.59 13.29 5.99 0 0 05.60 5.99 16.03 0 0 00 0 0 8.02 0 00 0 0 0 9.97 00 0 0 0 0 7.61

	
ä
ååæ 

Extrafibrillar mineral: 

OSc� %
á
ââã	
48.78 16.86 16.86 0 0 016.86 48.78 16.86 0 0 016.86 16.86 48.78 0 0 00 0 0 40.07 0 00 0 0 0 40.07 00 0 0 0 0 40.07

	
ä
ååæ		 

Mineralized collagen fiber: 

Oj %
á
ââã	
25.63 10.30 10.14 0 0 010.30 27.50 10.39 0 0 010.14 10.39 29.61 0 0 00 0 0 21.09 0 00 0 0 0 22.32 00 0 0 0 0 20.91

	
ä
ååæ 

Lamella: 

OV %
á
ââã	
27.14 10.92 10.62 0 0 010.92 28.94 10.87 0 0 010.62 10.87 31.31 0 0 00 0 0 22.58 0 00 0 0 0 23.77 00 0 0 0 0 22.46

	
ä
ååæ 
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Lamella with canaliculus: 

OT�6 %
á
ââã	
26.01 10.47 10.18 0 0 010.47 27.73 10.41 0 0 010.18 10.41 30.01 0 0 00 0 0 21.63 0 00 0 0 0 22.78 00 0 0 0 0 21.52

	
ä
ååæ 

 

Laminate with lamellae LRC: 

Ono) %
á
ââã	
26.01 10.47 10.18 0 0 010.47 27.73 10.41 0 0 010.18 10.41 30.01 0 0 00 0 0 21.63 0 00 0 0 0 22.78 00 0 0 0 0 21.52

	
ä
ååæ 

Osteon: 
 

Type of 

osteon 

Orthotropic results Isotropic-Transverse Results 

 

 

Type L OV�Tn %
á
ââã	
25.72 10.36 10.07 0 0 010.36 27.46 10.31 0 0 010.07 10.31 29.73 0 0 00 0 0 21.43 0 00 0 0 0 22.57 00 0 0 0 0 21.32

	
ä
ååæ 

 

O(��n %
á
ââã	
27.76 9.16 10.19 0 0 09.16 27.76 10.19 0 0 010.19 10.19 29.73 0 0 00 0 0 21.99 0 00 0 0 0 21.99 00 0 0 0 0 18.59

	
ä
ååæ 

 

 

 

Type T OV�T( %
á
ââã	
27.76 10.07 10.36 0 0 010.07 29.73 10.31 0 0 010.36 10.31 27.46 0 0 00 0 0 22.57 0 00 0 0 0 21.43 00 0 0 0 0 21.32

	
ä
ååæ 

 

O(��( %
á
ââã	
28.52 9.16 10.33 0 0 09.16 28.52 10.33 0 0 010.33 10.33 27.46 0 0 00 0 0 21.99 0 00 0 0 0 21.99 00 0 0 0 0 19.36

	
ä
ååæ 

 

 

 

Type A 

 

OV�Tç %
á
ââã	
26.82 10.11 10.31 0 0 010.11 28.35 10.33 0 0 010.31 10.33 27.72 0 0 00 0 0 22.42 0 00 0 0 0 21.53 00 0 0 0 0 21.35

	
ä
ååæ 

 

O(��ç %
á
ââã	
28.49 	9.18 10.32 0 0 0	9.18 28.49 10.32 0 0 010.32 10.32 27.72 0 0 00 0 0 21.97 0 00 0 0 0 21.97 00 0 0 0 0 19.31

	
ä
ååæ 

 

 

Cortical bone: 

O� %
á
ââã		
26.65 8.79 9.78 0 0 08.79 26.65 9.78 0 0 09.78 9.78 28.54 0 0 00 0 0 20.99 0 00 0 0 0 20.99 00 0 0 0 0 17.85

		
ä
ååæ 
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