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Boundary Control of the Kuramoto-Sivashinsky Equation Under
Intermittent Data Availability

M. Maghenem, C. Prieur, and E. Witrant

Abstract— In this paper, two boundary controllers are pro-
posed to stabilize the origin of the nonlinear Kuramoto-
Sivashinsky equation under intermittent measurements. More
precisely, the spatial domain is divided into two sub-domains.
The state of the system on the first sub-domain is measured
along a given interval of time, and the state on the remaining
sub-domain is measured along another interval of time. Under
the proposed sensing scenario, we control the considered
equation by designing the value of the state at three isolated
spatial points, the two extremities of the spatial domain plus
one inside point. Furthermore, we impose a null value for the
spatial gradient of the state at these three locations. Under
such a control loop, we propose two types of controllers and
we analyze the stability of the resulting closed-loop system in
each case. The paper is concluded with some discussions and
future works.

I. INTRODUCTION

Partial differential equations (PDE)s have numerous appli-
cations in many engineering fields including fluid flows in
conservation laws [1], flexible structures [2], electromagnetic
waves, and quantum mechanics [3]. The control design for
PDEs is a key step to guarantee that the related process
achieves a desired behavior in closed loop, i.e., a state of
interest converges (in an appropriate norm) to an invariant
set [4], [5], or tracks the state of a driving process [6],
[7]. Before designing the control input, it is important to
know the control actions allowed by the physical process.
Indeed, some processes allows to act on the dynamics at
every spatial point and for all time [8]. However, in some
other processes, we act intermittently in time or in space [9],
[10]. Furthermore, in some scenarios, we can reset the state
intermittently in time and at every spatial point [11], but
in other scenarios, we reset the state only at some spatial
points [6], the latter case corresponds to the well-studied
boundary-control paradigm [12]. On the other hand, it is
important to know the outputs available for input design.
In some cases, we measure the state at every spatial point
all the time [13]. However, in most realistic scenarios, we
measure only intermittently in space and time [9], [14]. The
feedback law, in consequence, must adapt to each of these
control and sensing scenarios.

Some intermittent control strategies for PDEs are available
in the literature. In [11], the Gray-Scott and the Kuramoto-
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Sivashinsky equations are controlled via a periodic reset of
the state using impulsive systems theory. Furthermore, in
[9], the Kuramoto-Sivashinsky equation is controlled via a
periodic update of the input affecting the right-hand side
using sample-data control techniques. A common feature
among the aforementioned works is that the PDEs are
controlled at every spatial point. When controlling PDEs
at isolated spatial points or intervals, the existing control
literature considers only the particular case of boundary
control. However, the physics community, since the late
nineties, has shown an intensive interest in general spatially-
and temporally-intermittent control of PDEs. For example,
in [6], the Gray-Scott equation is controlled by resetting the
state periodically in time and at periodically separated spatial
points. In [10], [15], the Kuramoto-Sivashinsky equation is
controlled by acting on the right-hand side at periodically
separated spatial intervals. In [16], the Ginzburg-Landau
equation is studied following the strategy in [10]. The results
in the aforementioned physics literature are guaranteed via
simulations, and experiments in some cases. To the best
of our knowledge, a rigorous study of the aforementioned
problems is not available in the literature.

The Kuramoto-Sivashinsky equation is one of the well-
studied PDEs in control literature. In particular, different
types of boundary controllers are proposed to stabilize the
origin in a given norm. For example, in [17], the lin-
ear Kuramoto-Shavinsky equation is transformed into an
equivalent finite-dimensional linear system using the Sturm-
Liouville decomposition. As a consequence, a linear feed-
back law is assigned to one extremity of the spatial do-
main. Furthermore, the nonlinear equation is studied in [18],
[19], [20], [21] under various boundary conditions. It is
important to note that although the aforementioned results
assume point-wise measurements, the equation is assumed
to be either linear or intrinsically stable. To the best of our
knowledge, boundary control of the nonlinear Kuramoto-
Sivashinski equation without restricting the destabilizing
coefficient is studied only in [22], where the state, on the
whole spacial domain, is assumed to be available all the
time.

In this paper, we study boundary control of the nonlin-
ear Kuramoto-Sivashinsky equation, without restricting the
destabilizing coefficient, under intermittent measurements.
Strictly speaking, we measure the state on a given spatial
sub-domain along a given interval of time and, then, we
measure the state on the remaining spatial sub-domain along
another time interval. As a result, we do not measure the



state, on the whole spatial domain, at the same time. Under
the proposed sensing scenario, we control the considered
equation by designing the state at three isolated points, the
two extremities of the spatial domain plus one inside point.
Furthermore, we impose a null value for the spatial gradient
of the state at these three locations. Two types of design
approaches are proposed. In the first one, we design feedback
laws at the two extremities and set the input to zero at the
inside point. In the second case, we design a feedback law
at one extremity and at the inside point, and set the input to
zero at the remaining extremity. The stability properties of
the resulting closed-loop system are analyzed in each case
using Lyapunov methods.

The remainder of the paper is organized as follows.
The problem formulation is in Section II. The proposed
Lyapunov-based approach is described in Section III. The
main results are in Sections IV and V, respectively. Finally,
the paper is concluded by some discussions and future works.

Notation. For x ∈ Rn, (a, b) ∈ R × R with a < b, and
a function z : [a, b] → R, we let |x| :=

√
x>x, ||z|| :=√∫ b

a
|z(x)|2dx, zx := ∂z

∂x , zxx := ∂2z
∂x2 , zxxx := ∂3z

∂x3 , and

zxxxx := ∂4z
∂x4 . Furthermore, we say that z ∈ L2(a, b) if

||z|| is finite, z ∈ H1(a, b) if ||z|| + ||zx|| is finite and z ∈
H2(a, b) if ||z||+ ||zx||+ ||zxx|| is finite. Moreover, we say
that z ∈ H1

o (a, b) if z ∈ H1(a, b) and z(a) = z(b) = 0,
and we say that z ∈ H2

o (a, b) if z ∈ H2(a, b) and z(a) =
z(b) = zx(a) = zx(b) = 0. For a matrix M ∈ Rn×n, detM
denotes the determinant of the matrix M . To avoid heavy
notations, for a function u : [a, b] × R≥0 → R, the time
dependence is implicit when we write u(x). In other words,
we use u(x), to express u(x, t). Moreover, we use domu to
denote the domain of definition of the map t 7→ u(x, t) for
all x ∈ [a, b]. Finally, κ : R≥0 → R≥0 is a class K function
if it is continuous, increasing, and κ(0) = 0.

II. PROBLEM FORMULATION

Consider the nonlinear Kuramoto-Sivashinsky equation
given by

Σ1 : ut = −uux − λ1uxx − uxxxx x ∈ [0, L],

where L > 0 and λ1 ≥ 0 are constant coefficients assumed to
be known. The boundary conditions of Σ1 will be eventually
specified.

A. Intermittent Sensing

For some Y ∈ (0, L), we measure the state u on the
spatial domain [0, Y ] for some interval of time and, then, we
measure u on the domain [Y,L] along another time interval.
In particular, we do not measure u along the whole line
[0, L] simultaneously. The proposed sensing scenario has the
following motivations.

In network control systems [23]. Assume that we dispose
of two sensors, the first one measures u([0, Y ]) and the
second one measures u([Y,L]). The two sensors share the
same channel when sending their data to the controller.

Hence, u([0, Y ]) is available to the controller only for some
interval of time and u([Y, L]) only for another interval of
time. The same reasoning can be extended if a network
of sensors share the same communication channel with
the controller [24]. Also, when using mobile or scanning
sensors; see [25] and [26], respectively. Assume that we
dispose of one mobile sensor measuring the state u([0, Y ])
for some interval of time, then, it changes location to measure
u([Y, L]) for another interval of time. Note that, here, we are
neglecting the dynamics of the mobile sensor compared to
the dynamics of Σ1. This reasoning can be extended to a
network of mobile sensors as in [27], [28], [29].

Strictly speaking, we assume the existence of a sequence
of times {ti}∞i=1, with t1 = 0 and ti+1 > ti, such that

• u([0, Y ], t) is available for all t ∈
⋃∞
k=1[t2k−1, t2k).

• u([Y,L], t) is available for all t ∈
⋃∞
k=1[t2k, t2k+1).

Next, we consider the following assumption:
Assumption 1: There exist T̄1, T̄2 > 0 such that, for each

k ∈ {1, 2, ...}, t2k − t2k−1 = T̄1 and t2k+1 − t2k = T̄2. •
Remark 1: The proposed sensing scenario can be gen-

eralized if we decompose the interval [0, L] into many
sub-intervals instead of only two. In this case, we de-
fine an increasing sequence {Yi}Ni=1, with Y1 = 0
and YN = L such that, for each i ∈ {1, 2, ..., N},
u([Yi, Yi+1], t) is available to the controller for all t ∈⋃∞
k=1

[
t(N−1)(k−1)+i, t(N−1)(k−1)+i+1

)
. •

Remark 2: Note that most of existing results on boundary
stabilization of Σ1 assume point-wise measurements; namely,
the state u is measured at the isolated points where the
control is effective; see for example [18], [19], [20], [21],
[17]. However, in the aforementioned results either λ1 is
assumed to be sufficiently small or the linear version of Σ1

is considered. To the best of our knowledge, boundary con-
trol of the nonlinear Kuramoto-Sivashinski equation without
restricting the size of λ1 is studied only in [22], where the
availability of u on the whole line [0, L] and for all time is
assumed. •

B. Boundary Control

We propose to control Σ1 at three different locations;
namely, at x = 0, x = Y , and x = L. As a result, we view
Σ1 as a system of two PDEs interconnected by a boundary
constraint. That is, we consider the system

Σ2 :

{
wt = −wwx − λ1wxx − wxxxx x ∈ [0, Y ]
vt = −vvx − λ1vxx − vxxxx x ∈ [Y, L]

under the boundary constraints

w(Y ) = v(Y ) and wx(Y ) = vx(Y ). (1)

Condition (1) guarantees that w, defined on [0, Y ], is a
continuously differentiable extension of v, defined on [Y, L],
and vice-versa.

Furthermore, each equation in Σ2 allows for four boundary
conditions, counting the two conditions in (1), we conclude



that we are allowed to control Σ2 by imposing six other
boundary conditions, which are given by

vx(L) = 0, wx(Y ) = 0, wx(0) = 0,

w(0) = u1, w(Y ) = u2, v(L) = u3,
(2)

where (u1, u2, u3) are control inputs to be designed.
Next, we specify the set of solutions to Σ2.
Definition 1: A pair

(
(w, v), {ui}3i=1

)
, with w : [0, Y ] ×

domw → R, v : [Y,L]×dom v → R, and ui : domui → R,
is a solution pair to Σ2 if domw = dom v = domu1 =
domu2 = domu3, (w(·, t), v(·, t)) ∈ H4(0, Y )×H4(Y,L),
(w(x, ·), v(x, ·)) is locally absolutely continuous, (1)-(2)
hold, and

∂w

∂t
(x, t) = −w(x, t)wx(x, t)− λ1wxx(x, t)− wxxxx(x, t)

for almost all (x, t) ∈ [0, Y ]× domw,

∂v

∂t
(x, t) = −v(x, t)vx(x, t)− λ1vxx(x, t)− vxxxx(x, t)

for almost all (x, t) ∈ [Y,L]× dom v.

•
As a consequence, we study Σ1 under

(ux(L), ux(Y ), ux(0)) = (0, 0, 0),

(u(0), u(Y ), u(L)) = (u1, u2, u3)
(3)

by studying Σ2 under (1)-(2). Hence, we specify the set of
solutions to Σ1 as follows:

Definition 2: A pair
(
u, {ui}3i=1

)
, with u : [0, L] ×

domu→ R and ui : domui → R, is a solution pair to Σ1 if
there exists (w, v) such that

(
(w, v), {ui}3i=1

)
is a solution

pair to Σ2, domu = domw = dom v, u(x, t) = w(x, t)
for all (x, t) ∈ [0, Y ]× domu, and u(x, t) = v(x, t) for all
(x, t) ∈ [Y,L]× domu. •

Remark 3: In [18], Σ1 is considered under the boundary
conditions ux(L) = ux(0) = 0, uxxx(0) = u1, and
uxxx(L) = u2. Furthermore, in [22], the boundary conditions
u(L) = u(0) = 0, uxx(0) = 0, uxx(L) = u2 are considered.
Compared to the latter two references, in our work, we use an
additional control action at x = Y to handle the intermittent
availability of the measurements. •
In the sequel, we design (u1, u2, u3) for Σ1, by following
two scenarios. First, we set u2 = 0 and we design u1 and
u3. Second, we set u3 = 0 and we design u1 and u2.

III. GENERAL APPROACH

Before designing the control inputs, we consider the
following two Lyapunov function candidates:

V1(w) :=
1

2

∫ Y

0

w(x)2dx, V2(v) :=
1

2

∫ L

Y

v(x)2dx. (4)

Lemma 1: Along the solutions to Σ2 and under (1) and
(2), we have

V̇1 =−
∫ Y

0

wxx(x)2dx+ λ1

∫ Y

0

wx(x)2dx

− u32 − u31
3

− u2wxxx(Y ) + u1wxxx(0),

V̇2 =−
∫ L

Y

vxx(x)2dx+ λ1

∫ L

Y

vx(x)2dx

− u33 − u32
3

− u3vxxx(L) + u2vxxx(Y ).

(5)

�

Next, we introduce a key result that allows us to upper
bound the terms

[
−
∫ Y
0
wxx(x)2dx+ λ1

∫ Y
0
wx(x)2dx

]
and[

−
∫ L
Y
vxx(x)2dx+ λ1

∫ L
Y
vx(x)2dx

]
in (5) using V1, V2,

and the inputs (u1, u2, u3). To this end, we introduce the
following eigenvalue problem.

Problem 1: Given λ ≥ 0, find the smallest δ ∈ R, denoted
δo, such that

zxxxx + λzxx = δz x ∈ [a, b] (6)

admits a nontrivial solution z : [a, b] → R in H2(a, b)
satisfying

z(a) = z(b) = zx(a) = zx(b) = 0. (7)

•
The following result can be found in [19, Lemma 2.1,
Theorem 2.1, and Remark 1].

Lemma 2: Given λ ≥ 0, we let δo ∈ R be the correspond-
ing solution to Problem 1. Then, if λ < 4π2 then δo > 0.
Furthermore, if λ > 4π2 then δo < 0. Finally, if λ = 4π2

then δo = 0. �

The following lemma can be found in [19, Lemma 3.1].
Lemma 3: Given λ ≥ 0 and z ∈ H2

o (a, b). Let δo ∈ R be
the solution to Problem 1. Then,

−
∫ b

a

zxx(x)2dx+ λ

∫ b

a

zx(x)2dx ≤ −δo
∫ b

a

z(x)2dx. (8)

�

Now, we propose a generalization of Lemma 3.
Lemma 4: Given λ1 > 0 and z ∈ H2(a, b) with zx(a) =

zx(b) = 0. Let δo be the solution to Problem 1 with λ :=
3λ1. Then, for each δ ≤ δo, we have

−
∫ b

a

zxx(x)2dx+ λ1

∫ b

a

zx(x)2dx ≤ δ1
∫ b

a

z(x)2dx

+ Cz1(z(a), z(b)) + δ2Cz2(z(a), z(b)) + λ1Cz3(z(a), z(b)),
(9)

where δ1 := (|δ| − 2δ) /3, δ2 := (4|δ| − 2δ) /3,

Cz1(·) := 2

∫ b

a

κxx(x)2dx,

Cz2(·) :=

∫ b

a

κ(x)2dx, Cz3(·) := 2

∫ b

a

κx(x)2dx,

(10)



κ(x) := z(a)− 2[z(b)− z(a)]

(
x− a
b

)3

+ 3[z(b)− z(a)]

(
x− a
b

)2

.

(11)

�

Remark 4: We can explicitly compute δ, a lower bound
of δo, and numerically approach δo. This is omitted due to
space limitation. •

Remark 5: According to (10) and (11), we conclude that,
for each i ∈ {1, 2, 3}, Czi(z(a), z(b)) := aziz(a)2 +
bziz(b)

2 + cziz(a)z(b), where (azi, bzi, czi) are constants
obtained by integrating the polynomials κ2, κ2x, and κ2xx
on the interval [a, b]. It is also important to note that the
parameters (azi, bzi, czi) depend only on the domain of z,
which is the interval [a, b]. •

At this point, using Lemma 4, we translate the analysis of
Σ2, which is an infinite-dimensional system, into the analysis
of a finite-dimensional system of differential inequalities.

Lemma 5: Along the solutions to Σ2 and under (1) and
(2), we have

V̇1 ≤ 2δ1V1 + Cw1(u1, u2) + δ2Cw2(u1, u2)

+ λ1Cw3(u1, u2)− u32 − u31
3

− u2wxxx(Y ) + u1wxxx(0),

V̇2 ≤ 2δ1V2 + Cv1(u2, u3) + δ2Cv2(u2, u3)

+ λ1Cv3(u2, u3)− u33 − u32
3

− u3vxxx(L) + u2vxxx(Y ),

(12)
where (δ1, δ2) are given in Lemma 4, and {Cwi}3i=1 and
{Cvi}3i=1 are obtained as in Lemma 4 while substituting
(a, b, z) therein by (0, Y, w) and (Y, L, v), respectively. �

Remark 6: The control action u2 = w(Y ) = v(Y ) will be
helpful to handle the boundary terms at x = Y that appear
in (12). Without this additional control action, the problem
is hard to solve when λ1 ≥ 4π2. •

IV. MAIN RESULT 1:
ACTIVE CONTROL AT x = 0 AND x = L

In this section, we let u2 = 0; hence, (12) becomes

V̇1 ≤ 2δ1V1 + Cw1(u1, 0) + δ2Cw2(u1, 0)

+ λ1Cw3(u1, 0) + u1wxxx(0) + u31/3,

V̇2 ≤ 2δ1V2 + Cv1(0, u3) + δ2Cv2(0, u3)

+ λ1Cv3(0, u3)− u3vxxx(L)− u33/3.

Next, using Remark 5, we obtain

V̇1 ≤ 2δ1V1 + aw1u
2
1 + δ2aw2u

2
1

+ λ1aw3u
2
1 + u1wxxx(0) + u31/3,

V̇2 ≤ 2δ1V2 + bv1u
2
3 + δ2bv2u

2
3

+ λ1bv3u
2
3 − u3vxxx(L)− u33/3.

A. Control Design

• When t ∈ I1, we measure w([0, Y ], t) and we choose
(u1, u3) so that u3 = 0 and

u31
3

+(aw1 + δ2aw2 + λ1aw3)u21 + u1wxxx(0)

≤ −(α1 + 2δ1)V1,
(13)

for some α1 > 0. Hence, we have

V̇1 ≤ −α1V1 and V̇2 ≤ 2δ1V2. (14)

• When t ∈ I2, we measure u([Y,L], t) and we choose
(u2, u3) so that u1 = 0 and

−u
3
3

3
+(bv1 + δ2bv2 + λ1bv3)u23 − u3vxxx(L)

≤ −(α2 + 2δ1)V2,
(15)

for some α2 > 0. Hence, we obtain

V̇1 ≤ 2δ1V1 and V̇2 ≤ −α2V2. (16)

In the following lemma, we show how to design u1 and
u3 to satisfy (13) and (15), respectively.

Remark 7: Note that (13) involves wxxx(0), which is
not guaranteed to remain bounded. Hence, it is impor-
tant to design u1 := κ1(V1, wxxx(0)) with wxxx(0) 7→
κ1(V1, wxxx(0)) globally bounded. Similarly, (15) in-
volves vxxx(L). Hence, it is important to design u3 :=
κ3(V2, vxxx(L)) with vxxx(L) 7→ κ3(V2, vxxx(L)) globally
bounded. •

Lemma 6: To satisfy (13), we take

u1 := κ1(·) :=

{
−sign(wxxx(0))V1 if |wxxx(0)| ≥ l1(V1)

k1(V1) otherwise,

where k1 is such that

k31 + 3(aw1 + δ2aw2 + λ1aw3 + 1)k21 + 3l1(V1)2

≤ −3(α1 + 2δ1)V1,
(17)

and l1(V1) := V 2
1 /3 + (aw1 + δ2aw2)V1 + (α1 + 2δ1).

Similarly, to satisfy (15), we take

u3 := κ3(·) :=

{
−sign(vxxx(L))V2 if |vxxx(L)| ≥ l3(V2)

k3(V2) otherwise,

where k3 is such that

k33 + 3(bv1 + δ2bv2 + λ1bv3 + 1)k23 + 3l3(V2)2

≤ −3(α2 + 2δ1)V2,
(18)

and l3(V2) := V 2
2 /3 + (bv1 + δ2bv2)V2 + (α2 + 2δ1). �

Remark 8: Note that (17) and (18) always admit a solution
k1 and k3 function of V1 and V2, respectively. For example,
one can take k1 as a second-order polynomial of V1 with
strictly negative coefficients that are sufficiently large. •



B. L2 Exponential Stability

Let Σcl1 be the system obtained from Σ1 when (3) holds,
u2 = 0, (u1, u3) = (κ1, 0) on I1, and (u1, u3) = (0, κ3) on
I2. In this section, we show how to find positive constants
α1 and α2 such that the trivial solution to Σcl1 is L2 globally
exponentially stable.

Definition 3: The trivial solution to Σcl1 is L2-GES if there
exist γ, κ > 0 such that, for each solution u to Σcl1 , we have
||u(to + t)|| ≤ κe−γt||u(to)|| for all (to, t) ∈ R≥0 ×R≥0. •
According to the proposed approach, we establish the L2-
GES for Σcl1 by showing, for an appropriate choice of
(α1, α2), GES of the origin for the switched system

Σ3 :


V̇1 = −α1V1
V̇2 = 2δ1V2

t ∈ I1,

V̇1 = 2δ1V1
V̇2 = −α2V2

t ∈ I2,

(V1, V2) ∈ R≥0 × R≥0.

Theorem 1: Consider system Σ1 under the sensing sce-
nario in Section II-A and the boundary conditions in (3).
Assume that, for some T̄1, T̄2 > 0, Assumption 1 holds.
Furthermore, we let u2 = 0, (u1, u3) = (κ1, 0) on I1, and
(u1, u3) = (0, κ3) on I2, where κ1, κ3 come from Lemma
6. Then, for (α1, α2) satisfying

α1 >
2δ2T̄2
T̄1

and α2 >
2δ2T̄1
T̄2

, (19)

the trivial solution to the closed-loop system is L2-GES. �

V. MAIN RESULT 2 :
ACTIVE CONTROL AT x = 0 AND x = Y

In this section, we let u3 = 0. As a result, (12) reduces to

V̇1 ≤ 2δ1V1 −
u32
3
− u2wxxx(Y ) +

u31
3

+ u1wxxx(0)

+ Cw1(u1, u2) + Cw2(u1, u2)δ2 + Cw3(u1, u2)λ1,

V̇2 ≤ 2δ1V2 +
u32
3

+ u2vxxx(Y )

+ Cv1(u2, 0) + Cv2(u2, 0)δ2 + Cv3(u2, 0)λ1.

(20)

A. Control Design

When t ∈ I1, we set u2 = 0 and choose u1 such that (13)
holds. To obtain

V̇1 ≤ −α1V1 and V̇2 ≤ 2δ1V2. (21)

When t ∈ I2, we note that the first inequality in (20)
involves the term [u1wxxx(0)]. Note that wxxx(0) is un-
known on the interval I2. Hence, before designing (u1, u2),
we introduce the following lemma.

Lemma 7: Consider Σ2 under (1) and (2). Then

wxxx(0) = wxxx(Y ) +
u22 − u21

2
+ γ̇,

where γ :=
(∫ Y

0
w(x)dx

)
. �

Using Lemma 7, (20) becomes

V̇1 ≤ −
u32
3

+ (u1 − u2)wxxx(Y )− u31
6

+ Cw1(u1, u2) +
u1u

2
2

2
+ 2δ1V1 + δ2Cw2(u1, u2)

+ λ1Cw3(u1, u2) + u1γ̇,

V̇2 ≤
u32
3

+ Cv2(u2, 0)δ2 + Cv3(u2, 0)λ1

+ Cv1(u2, 0) + u2vxxx(Y ) + 2δ1V2.

(22)

Now, we introduce constants B > 0 and C > 0 such that

Bu22 := Cv3(u2, 0)λ1 + Cv2(u2, 0)δ2 + Cv2(u2, 0),

Cu22 := Cw1(u2, u2) + δ2Cw2(u2, u2) + λ1Cw3(u2, u2).

Hence, on the interval I2, we propose to choose (u1, u2)
such that u1 = u2 and

u32
3

+Bu22 + u2vxxx(Y ) ≤ −α2V
3
2 . (23)

As a consequence, we obtain, for almost all t ∈ I2,

V̇1 ≤ 2δ1V1 + u2γ̇ + Cu22

V̇2 ≤ −α2V
3
2 + 2δ1V2.

(24)

Now, we propose to find κ2
(
α

1
3
2 V2, vxxx(Y )

)
such that,

when u2 = κ2

(
α

1
3
2 V2, vxxx(Y )

)
, both (23) and the follow-

ing property hold.
Property 1: There exists P > 0 such that∣∣∣∣κ2 (α 1

3
2 V2, vxxx(Y )

) ∣∣∣∣ ≤ Pα 1
3
2 V2 ∀vxxx(Y ) ∈ R, (25)

and, for almost all t ≥ to ≥ 0, we have
d

dt
κ2

(
α

1
3
2 V2(to), vxxx(Y, t)

)
= 0. (26)

•
Lemma 8: Property 1 and (23) hold for

κ2 (·) :=

{
−sign(vxxx(Y ))α

1
3
2 V2 if |vxxx(Y )| ≥ 2α

2
3
2 V

2
2

−βα
1
3
2 V2 otherwise,

where β > 0 is chosen so that −β3 + 6β + 3 ≤ 0. �

B. L2-Stability Analysis

Let Σcl1 be the system obtained from Σ1 when (3) holds,
u3 = u2 = 0, u1 = κ1 on I1, and u3 = 0 and
u1 = u2 = κ2

(
α

1
3
2 V2(t2k), vxxx(Y )

)
on each interval

[t2k, t2k+1] ⊂ I2. Recall that, by definition of κ1 and κ2, Σcl1
includes (α1, α2) as free design parameters. Next, inspired
by [30], we introduce some useful L2-semi-global and L2-
practical-stability notions.

The trivial solution to Σcl1 is L2 practically semi-globally
attractive (L2-PSGA) if, for each β > ε > 0, there exists
α?2 > 0 such that, for each α2 ≥ α?2, there exists α?1 such that,
for each α1 ≥ α?1, every solution u to Σcl1 with ||u(to)|| ≤ β,
there exists T > 0 such that ||u(to + T )|| ≤ ε.



Σcl1 is L2 semi-globally bounded (L2-SGB) if, for each
β > 0, there exists exists γ > 0 and α?2 > 0 such that, for
each α2 ≥ α?2, there exists α?1 such that, for each α1 ≥ α?1,
we have, for every solution u to Σcl1 with ||u(to)|| ≤ β,
||u(to + t)|| ≤ γ for all t ≥ 0. Furthermore, Σcl1 is L2 semi-
globally ultimately bounded (L2-SGUB) if there exists γ > 0
such that, for each β > 0, there exists α?2 > 0 such that, for
each α2 ≥ α?2, there exists α?1 such that, for each α1 ≥ α?1,
for every solution u to Σcl1 with ||u(to)|| ≤ β, there exists
T > 0 such that ||u(to + t)|| ≤ γ for all t ≥ T .

The trivial solution to Σcl1 is L2 practically stable (L2-PS)
if there exists κ ∈ K such that, for each ε > 0, there exists
α?2 > 0 such that, for each α2 ≥ α?2, there exists α?1 such
that, for each α1 ≥ α?1, we have ||u(t)|| ≤ κ (||u(to)||) + ε
for t ≥ to.

Remark 9: Note that to guarantee L2-practical semi-
global asymptotic stability, we need to guarantee L2-PSGA,
L2-SGB, and L2-PS. However, in our case, we will be able
to show only L2-PSGA, L2-SGB, and L2-SGUB. •

Theorem 2: Consider system Σ1 under the sensing sce-
nario in Section II-A and the boundary conditions in (3).
Assume that, for some T̄1, T̄2 > 0, Assumption 1 holds.
Furthermore, we let u3 = u2 = 0, u1 = κ1 on I1, and
u1 = u2 = κ2

(
α

1
3
2 V2(t2k), vxxx(Y )

)
on each interval

[t2k, t2k+1] ⊂ I2 and u3 = 0 on I2, where κ1, κ2 come from
Lemmas 6 and 8, respectively. Then, the trivial solution to
Σcl1 is L2-PSGA and Σcl1 is L2-SGB and L2-SGUB. �

VI. CONCLUSIONS

This paper proposed two boundary controllers to stabilize
the origin of the nonlinear Kuramoto-Sivashinsky equation,
under intermittent measurements. Using the first controller,
we are able to provide stronger stability properties compared
to the second one. In future work, we would like to improve
the stability properties of the second controller and consider
the case where the coefficient λ1 is unknown.
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