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The numerical solution of saddle point systems has received a lot of attention over the past few years in a
wide variety of applications such as constrained optimization, computational fluid dynamics and optimal
control, to name a few. In this paper, we focus on the saddle point formulation of a large-scale variational
data assimilation problem, where the computations involving the constraint blocks are supposed to be
much more expensive than those related to the (1, 1) block of the saddle point matrix. New low-rank
limited memory preconditioners exploiting the particular structure of the problem are proposed and anal-
ysed theoretically. Numerical experiments performed within the Object-Oriented Prediction System are
presented to highlight the relevance of the proposed preconditioners.

Keywords: data assimilation; limited memory preconditioning; saddle point system; weak-constraint

1. Introduction

This paper investigates the saddle point representation of a large-scale quadratic minimization
problem subject to linear equality constraints which is solved within a Gauss–Newton (GN)
method. Therefore, in this study we deal with the solution of a sequence of saddle point systems
particularly arising from data assimilation problems such as applications in Earth-system mod-
elling. For instance, in meteorological applications the result of the data assimilation problem
is the initial state of a dynamical system, which is then integrated forward in time to produce a
weather forecast.

It has been shown that the saddle point formulation of the four-dimensional variational data
assimilation (4D-Var) problem allows parallelization in the time dimension [34]. Therefore,
this formulation represents a crucial step towards improved parallel scalability of the 4D-Var
problem.

When the saddle point system is large, the problem is solved iteratively, usually by using a
Krylov subspace method. When using Krylov methods, it is well-known that their convergence
can be slow on indefinite systems unless a good preconditioner is used to accelerate the con-
vergence. Therefore, finding an efficient preconditioner is crucial when solving the large-scale
saddle point systems [1].
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In recent years, a large amount of work has been devoted to find efficient preconditioners
such as block diagonal, triangular and constrained preconditioners (see, e.g. [1,2,6,24, 25,28]
and references therein). However, the efficiency of most of these preconditioners depends on
the property that the computations involving the (1,1) primal variable block are computationally
more expensive than the calculations involving the off-diagonal (constraint) blocks. This prop-
erty does not hold for the saddle point representation of the variational data assimilation problem
as we shall see. Therefore, many preconditioners in the literature become computationally
expensive and not well-suited to our problem.

One preconditioner of interest for this study is the inexact constraint preconditioner proposed
in [2]. It has been shown that this preconditioner can be used as a first-level preconditioner [34].
In this study, we investigate whether it is possible to further accelerate the convergence by
improving the first-level preconditioner with low-rank updates generated from the inherited
information.

The paper is structured as follows. In Section 2, we derive the variational data assimilation
problem in which model errors are taken into account. We then focus on solution algorithms. The
first standard solution approach includes the model constraints into the objective function and
solves the resulting unconstrained optimization problem. By using this approach, the expensive
matrix–vector products need to be performed sequentially in the time domain. As an alternative
to the standard approach in terms of parallelization in the time domain, the second approach
introduces additional constraints on the observation operator which leads to a quadratic problem
with nonlinear equality constraints. This formulation is then solved by introducing a sequence of
quadratic programs where second order derivatives of the constraints are ignored as in GN-like
methods. The main computational work in this algorithm consists in solving saddle point linear
system as discussed in [34].

In Section 3, we present new low-rank limited memory updates to precondition the saddle
point matrix. These updates are obtained by solving the two-sided secant equations. According
to our knowledge, two-sided equations are considered only in [19, 20] where authors used two-
sided secant equations in order to approximate the Jacobian matrix. In this study, we use the
approximation for preconditioning, which we believe is new in the literature. The performance of
the derived preconditioners is shown in Section 4 by using a simple two-layer quasi-geostrophic
model, and finally the conclusions are summarized in Section 5.

2. Problem definition and solution algorithms

We consider a set of states {xi ∈ R
n} valid at times {ti}, i = 0, 1, . . . , N during an analysis window

[t0, tN ]. We define the model error {qi}, i = 1, 2, . . . , N associated with these states such that

xi = Mi(xi−1)+ qi, i ≥ 1,

where Mi represents the physical model integration from time ti−1 to time ti. We assume that a
set of observations yi ∈ R

mi is available at time ti, i = 0, . . . , N . Our aim is then to find the best
model fit to the observed data in the sense that the sum of square errors between the observed
data and the model prediction is minimized. During this minimization, the model error will also
be taken into account. This leads to a nonlinear least squares problem minx f (x) with

f (x) = 1

2
‖x0 − xb‖2

B−1
b

+ 1

2

N∑
i=0

‖Hi(xi)− yi‖2
R−1

i
+ 1

2

N∑
i=1

‖qi‖2
Q−1

i
, (1)

where x = [x0, x1, . . . , xN ]T is a four-dimensional variable (i.e. time-distributed state variable),
xb ∈ R

n is the a priori information (background) for the state x0, Hi is an observation operator



that represents a mapping from the state space to the observation space, Bb, Ri and Qi are n × n,
mi × mi and n × n symmetric positive definite error covariance matrices corresponding to the
background, observation and model errors, respectively. The first term in this nonlinear least
squares problem is the Tikhonov regularization term [5, p. 101] which is often needed when
the problem is under-determined, as it is the case in practical applications when there are fewer
observations than variables in the model.

The formulation of the weighted nonlinear cost function (1) is known in the data assimilation
community as the weak-constraint four-dimensional variational data assimilation (weak-4D-Var)
problem [41,45]. This approach has its origin in the maximum likelihood estimation under the
assumptions that all errors are unbiased, uncorrelated, and can be represented by zero mean
Gaussian distributions [41]. In the nonlinear cost function (1), the model and observation errors
are also assumed to be temporally uncorrelated. Time correlations can be included at the cost of
using block-structured covariance matrices, provided that the required statistics is known [42].
We also note that, in practical applications, the Gaussian assumption may not be always realistic
and can be partially relaxed [21,22,40]. The salient properties of this 4D-Var problem in real-life
applications such as ocean or atmospheric data assimilation can be summarized as follows

• The dimension of the state variable n exceeds 106 in general. Hence, this problem can be really
considered as a large-scale nonlinear least squares problem.

• The integrations of the physical model involving Mi are typically very costly. For this reason,
exact second order derivative information is too expensive to compute.

• The error covariance matrices are not explicitly available. They are modelled or estimated
using either smoothing functions or filters [9,44], and only their actions on a vector can be
computed.

Taking into consideration these main properties, we review in Sections 2.1 and 2.2 practical
algorithms for the solution of the large-scale nonlinear least squares problem given by (1).

2.1 Solution via the GN method

A widely used algorithm to minimize the large-scale nonlinear least squares cost function (1)
is the GN method known in the data assimilation community as Incremental 4D-Var [10]. At
each iteration (say the jth iteration) of the GN method, named as the outer loop, a step (an incre-
ment) δx(j) from a given x(j) is computed by minimizing a quadratic cost function which is the
linearized least squares approximation of the nonlinear problem. This quadratic approximation
in the neighbourhood of the iterate x(j) is given by

J (j) = 1

2
‖δx0 − r(j)‖2

B−1
b

+ 1

2

N∑
i=0

‖H (j)
i δxi − d(j)i ‖2

R−1
i

+ 1

2

N∑
i=1

‖δqi − c(j)i ‖2
Q−1

i
, (2)

where

r(j) = xb − x(j)0 , c(j)i = −q(j)i , d(j)i = yi − Hi(x
(j)
i ).

In the quadratic cost function (2), H (j)
i represents the Jacobian matrix of the observation oper-

ator Hi at x(j)i , and δqi is defined by δxi = M (j)
i δxi−1 + δqi, where M (j)

i represents the Jacobian
matrix of the physical model Mi at x(j)i−1. The state is then updated according to x(j+1) = x(j) + δx
where δx = [δx0, δx1, . . . , δxN ]T. We can rewrite the quadratic subproblem (2) in a more compact
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form as

J = 1
2‖δp − b‖2

D−1 + ‖HFδp − d‖2
R−1 , (3)

where we have dropped the outer loop index j for sake of clarity. In Equation (3), given
� = n × (N + 1) and m = ∑N

i=0 mi, the vectors δp ∈ R
�, d ∈ R

m and b ∈ R
� are defined as

δp =

⎛
⎜⎜⎜⎝
δx0

δq1
...
δqN

⎞
⎟⎟⎟⎠ , d =

⎛
⎜⎜⎜⎝

d0

d1
...

dN

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

r
c1
...

cN

⎞
⎟⎟⎟⎠ ,

and the matrices D ∈ R
�×�, R ∈ R

m×m, H ∈ R
m×� are given by

D = diag(Bb, Q1, . . . , QN), R = diag(R0, . . . , RN), H = diag(H0, . . . , HN).

The vectors δx and δp are related by δx = Fδp with F a � by � matrix defined as

F =

⎛
⎜⎜⎜⎜⎜⎝

In

M1,1 In

M1,2 M2,2 In
...

...
. . .

. . .
M1,N M2,N · · · MN ,N In

⎞
⎟⎟⎟⎟⎟⎠ ,

where Mi,ī = Mī · · · Mi represents an integration of the linear model from time ti−1 to time tī. The
entries of this matrix are not available explicitly and the computation of matrix–vector products
is performed through an operator. We stress that these matrix–vector products are very expensive
since they require expensive model integrations.

Minimizing J defined in Equation (3) using iterative methods involves the computation of
matrix–vector products with F, which requires sequential model integrations. Hence, since the
matrix–vector products with Mi,ī are known to be expensive, the sequential integrations will be
very costly in this approach. An alternative method referred to as the ‘saddle point approach’
in [34] is briefly explained next, since it will be the basis for further developments.

2.2 Solution via a sequence of quadratic programming problems

The saddle point formulation of the weak-constrained 4D-Var provides a framework for allowing
parallelization in the time domain. This is a key issue when tackling large-scale problems in data
assimilation on modern architectures. In this section, we briefly present this algorithm and refer
the reader to [34] for a complete description.

We can simply reformulate the nonlinear problem (1) as a the minimum of a convex quadratic
function under nonlinear equality constraints as

f (p, w) = 1
2‖p‖2

D−1 + 1
2‖w − y‖2

R−1 (4)

subject to

pi = xi − Mi(xi−1), (i = 1, . . . , N),

wi = Hi(xi), (i = 0, 1, . . . , N),

where p = [x0 − xb, p1, . . . , pN ]T, w = [w0, w1, . . . , wN ]T, and y = [y0, y1, . . . , yN ]T. This con-
strained minimization problem can be solved by using a sequential quadratic programming
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that represents a mapping from the state space to the observation space, Bb, Ri and Qi are n × n,
mi × mi and n × n symmetric positive definite error covariance matrices corresponding to the
background, observation and model errors, respectively. The first term in this nonlinear least
squares problem is the Tikhonov regularization term [5, p. 101] which is often needed when
the problem is under-determined, as it is the case in practical applications when there are fewer
observations than variables in the model.

The formulation of the weighted nonlinear cost function (1) is known in the data assimilation
community as the weak-constraint four-dimensional variational data assimilation (weak-4D-Var)
problem [41,45]. This approach has its origin in the maximum likelihood estimation under the
assumptions that all errors are unbiased, uncorrelated, and can be represented by zero mean
Gaussian distributions [41]. In the nonlinear cost function (1), the model and observation errors
are also assumed to be temporally uncorrelated. Time correlations can be included at the cost of
using block-structured covariance matrices, provided that the required statistics is known [42].
We also note that, in practical applications, the Gaussian assumption may not be always realistic
and can be partially relaxed [21,22,40]. The salient properties of this 4D-Var problem in real-life
applications such as ocean or atmospheric data assimilation can be summarized as follows

• The dimension of the state variable n exceeds 106 in general. Hence, this problem can be really
considered as a large-scale nonlinear least squares problem.

• The integrations of the physical model involving Mi are typically very costly. For this reason,
exact second order derivative information is too expensive to compute.

• The error covariance matrices are not explicitly available. They are modelled or estimated
using either smoothing functions or filters [9,44], and only their actions on a vector can be
computed.

Taking into consideration these main properties, we review in Sections 2.1 and 2.2 practical
algorithms for the solution of the large-scale nonlinear least squares problem given by (1).

2.1 Solution via the GN method

A widely used algorithm to minimize the large-scale nonlinear least squares cost function (1)
is the GN method known in the data assimilation community as Incremental 4D-Var [10]. At
each iteration (say the jth iteration) of the GN method, named as the outer loop, a step (an incre-
ment) δx(j) from a given x(j) is computed by minimizing a quadratic cost function which is the
linearized least squares approximation of the nonlinear problem. This quadratic approximation
in the neighbourhood of the iterate x(j) is given by

J (j) = 1

2
‖δx0 − r(j)‖2

B−1
b

+ 1

2

N∑
i=0

‖H (j)
i δxi − d(j)i ‖2

R−1
i

+ 1

2

N∑
i=1

‖δqi − c(j)i ‖2
Q−1

i
, (2)

where

r(j) = xb − x(j)0 , c(j)i = −q(j)i , d(j)i = yi − Hi(x
(j)
i ).

In the quadratic cost function (2), H (j)
i represents the Jacobian matrix of the observation oper-

ator Hi at x(j)i , and δqi is defined by δxi = M (j)
i δxi−1 + δqi, where M (j)

i represents the Jacobian
matrix of the physical model Mi at x(j)i−1. The state is then updated according to x(j+1) = x(j) + δx
where δx = [δx0, δx1, . . . , δxN ]T. We can rewrite the quadratic subproblem (2) in a more compact
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As mentioned in [15], this approach is a particular case of the simultaneous analysis and design
method (SAND) [4]. We note that the SAND formulation differs from the one introduced in [15]
by the presence of an additional constraint in the observation space. The crucial property of the
SAND approach is that it already offers a first level of parallelism in the time domain. Indeed,
matrix–vector products with

F−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

In

−M1 In

−M2 In

. . .
. . .

−MN In

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

can be obtained by performing the integrations of the linear model in parallel. Since the model
integrations are known to be expensive, this approach represents a crucial step towards higher
computational efficiency. In the SAND formulation (5), by defining additional constraints on the
observation operator, we introduce additional parallelism in H and HT operators. Nevertheless,
the dimension of the global problem (3�+ 2m) has significantly increased. Hence, we consider
the application of Schur complement reduction techniques to find the solution in a space of
reduced dimension. Using the following partitioning of unknowns in (6)

⎛
⎜⎜⎜⎜⎜⎝

D−1 0 0 I 0
0 R−1 0 0 I

0 0 0 −F−T −HT

I 0 −F−1 0 0
0 I −H 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δp
δw
λ

μ

δx

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

D−1b
R−1d

0
0
0

⎞
⎟⎟⎟⎟⎠ ,

a reduced system of order (2�+ m) involving the negative Schur complement is obtained as
⎛
⎝ D 0 F−1

0 R H
F−T HT 0

⎞
⎠

⎛
⎝ λ

μ

δx

⎞
⎠ =

⎛
⎝b

d
0

⎞
⎠ . (7)

The order of this reduced system is still large. Nevertheless, this formulation preserves the par-
allelization in the time domain. As a summary, the solution of the minimization problem (5) can
be obtained by solving the saddle point system (7), which is then used to update the state vector
x. In the remainder of this paper, we focus on efficient preconditioned iterative methods for the
solution of the saddle point system given by (7).

2.2.1 Solution of the linearized subproblem.

We consider preconditioned Krylov subspace methods for the solution of (7) and refer the reader
to [1] for a survey of numerical methods related to the solution of indefinite linear systems. First,
we point out an important feature of our problem that we need to take into consideration when
choosing an appropriate preconditioner.

We write the saddle point matrix in (7) in a compact form as

A =
⎛
⎝ D 0 F−1

0 R H
F−T HT 0

⎞
⎠ =

(
A BT

B 0

)
, (8)



Optimization Methods & Software 7

with A ∈ R
(�+m)×(�+m) and B ∈ R

�×(�+m), respectively. The computational costs related to the
matrix–vector products with A in Equation (8) differ from most of the situations studied
in the literature, in the sense that performing matrix–vectors with B is expensive, while
computations involving A are relatively cheap. Therefore, many of the well-established precon-
ditioners [1,24,28] are not appropriate in our particular setting. Hence, we focus our attention on
the inexact constraint preconditioner P [2,3], that is,

P =
(

A B̃T

B̃ 0

)
=

⎛
⎝ D 0 F̃−1

0 R H̃
F̃−T H̃T 0

⎞
⎠ , (9)

where B̃ ∈ R
�×(�+m) is a full row rank approximation of B, F̃ ∈ R

�×�, H̃ ∈ R
m×�, approximations

of F and H, respectively. The simple choice

P1 =
⎛
⎝ D 0 F̃−1

0 R 0
F̃−T 0 0

⎞
⎠ with F̃−1 =

⎛
⎜⎜⎜⎜⎜⎝

In

−In In

−In In

. . .
. . .
−In In

⎞
⎟⎟⎟⎟⎟⎠ (10)

has been found in [14] to provide good results in terms of rate of convergence of preconditioned
Krylov subspace method.

Therefore, this inexact constraint preconditioner can be used as a preconditioner that we will
call a first-level preconditioner. Our next goal will be to improve it by updating techniques, that
will be called second-level preconditioning techniques in what follows.

3. Second-level preconditioning for the saddle point approach

In this section, we are interested in further improving an initial constraint preconditioner P1 so
that the linear system at the (j + 1)-th nonlinear iteration reads

P−1
j+1Aj+1uj+1 = P−1

j+1fj+1, with Aj+1 =
(

A BT
j+1

Bj+1 0

)
, Pj+1 =

(
A B̃T

j+1

B̃j+1 0

)
, (11)

with

δyj+1 =
(
λj+1

μj+1

)
, uj+1 =

(
δyj+1

δxj+1

)
, fj+1 =

⎛
⎝bj+1

dj+1

0

⎞
⎠ .

Pj+1 is built from pairs of vectors collected during the iterative solution of the linear systems
arising in the previous nonlinear iterations. This idea has been well explored on sequences of
symmetric positive definite linear systems coming from GN iterations and has proved effective
on large-scale applications [18,27]. While constructing a new preconditioner for the (j + 1)th
iteration, we must take into consideration the features of the saddle point system (8) as explained
above, that is, computations involving the matrix Bj+1 are expensive, while computations involv-
ing A are relatively cheap. Therefore, in Sections 3.2 and 3.3, we consider the class of inexact
constraint preconditioners and focus on specific updates of the form

Pj+1 = Pj +
(

0 �B̃T

�B̃ 0

)
,

with �B̃ ∈ R
�×(�+m).
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3.1 The direct and adjoint secant equations

Given a positive integer k and a set of vectors (δyi, δxi)
T (i = 1, . . . , k), respectively, we define

(
A BT

j+1

Bj+1 0

) (
δyi

δxi

)
=

(
gi

hi

)
, (i = 1, . . . , k). (12)

We impose that Pj+1 satisfies the k relations

(
A B̃T

j+1

B̃j+1 0

) (
δyi

δxi

)
=

(
gi

hi

)
, (i = 1, . . . , k). (13)

Relations (12) and (13) simply lead to

B̃T
j+1δxi = gi − Aδyi, (i = 1, . . . , k), (14)

B̃j+1δyi = hi, (i = 1, . . . , k). (15)

We call Equations (14) and (15) the adjoint secant equation and the direct secant equation,
respectively, in analogy with the corresponding notions in quasi-Newton methods. Since B̃j+1 =
B̃j +�B̃, we obtain from Equations (14) and (15) the set of 2k relations

�B̃Tδxi = gi − Aδyi − B̃j
Tδxi := p̃i, (16)

�B̃δyi = hi − B̃jδyi := q̃i. (17)

To satisfy all these relations at once, we consider the following multiple secant equations

�B̃TX = P, (18)

�B̃Y = Q, (19)

where X ∈ R
�×k , P ∈ R

(�+m)×k , Y ∈ R
(�+m)×k and Q ∈ R

�×k defined as

X = [δx1, . . . , δxk],

P = [p̃1, . . . , p̃k],

Y = [δy1, . . . , δyk],

Q = [q̃1, . . . , q̃k],

(20)

are supposed to be of full column rank. The consistency of these multiple secant equations
depends on a condition relating X,Y,P and Q, as stated in the next lemma.

Lemma 3.1 Suppose that X ∈ R
�×k, P ∈ R

(�+m)×k , Y ∈ R
(�+m)×k and Q ∈ R

�×k defined in (20)
are of full column rank. A necessary and sufficient condition for the linear systems defined in
Equations (18) and (19) to be consistent is

PTY = X TQ. (21)

Proof For sake of readability, the proof is postponed to the appendix. �

Finding the update �B̃, that is, solving the secant equations given by (18) and (19) simulta-
neously, is not a very well covered area in the literature. Most of the studies focus on the case
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of square matrices and use only one secant equation at a time. To the best of our knowledge,
two-sided equations are only considered in [19,20], to obtain an approximation of the Jacobian
matrix. In this study, we rather use the approximation for preconditioning, which we believe is
new. Throughout the paper, we aim at finding certain solutions of the two-sided equations given
by (18) and (19). We especially focus on the rank-k and rank-2k cases, giving a strong emphasis
on the following three properties:

• Hereditary: When the new update is repeatedly used in a sequence of consistent secant
equations, the new update still satisfies the previous secant equations.

• Transformation invariance: The update is invariant with respect to linear transformations. For
instance, in data assimilation, this can be a transformation of model variables to a set of control
variables that are assumed to be uncorrelated [23]. When such a transformation occurs, this
property ensures that the update maintains all the relations of the transformed problem that are
initially satisfied.

• Least-change: The update has a least change characterization in terms of a particular matrix
norm. In this study, we focus on the least change characterization in terms of a (possibly
weighted) Frobenius norm.

3.2 A rank-k update

The proof in the appendix has derived a general form of the update �B̃. Now, as in [19,20], we
specifically analyse the case of a rank-k update. Indeed, provided that PTY is non-singular and
PTY = X TQ , a solution of both the adjoint and direct secant equations can be written as a rank-k
update �B̃ of the form

�B̃ = QZPT, (22)

with Z ∈ R
k×k being non-singular. This is stated in the next theorem.

Theorem 3.2 Given X ∈ R
�×k , P ∈ R

(�+m)×k , Y ∈ R
(�+m)×k and Q ∈ R

�×k of full column rank
defined in (20), suppose that relationship (21) holds and that PTY is non-singular . Then the
rank-k matrix of the form (22) given by

�B̃ = Q(PTY )−1PT (23)

or

�B̃ = Q(X TQ)−1PT (24)

is a solution of the multiple secant equations (18) and (19).

Proof The necessary and sufficient condition for the direct secant equation in Z

QZPTY = Q (25)

to have a solution [26, Ch. 2, Theorem 13] reads

QQ†Q(PTY )†(PTY ) = Q,

where † denotes the Moore–Penrose pseudo-inverse. This relation effectively holds, since Q is
supposed to be of full column rank (the relation Q†Q = Ik is then satisfied) and PTY is non-
singular . Hence a possible solution of (25) can be obtained as [26, Ch. 2, Theorem 13]

Z = Q†Q(PTY )−1,

that is, Z = (PTY )−1, which completes the proof. We note that the adjoint secant equation
�B̃TX = P holds due to Equation (21). �
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Remark 1 When k = 1, we recover the rank-one update derived in [19,20].

Remark 2 If the equality PTY = X TQ does not hold, the update (23) obviously solves only the
direct multiple secant equations (19) exactly, whereas the update (24) solves only the adjoint
multiple secant equations (18) exactly.

We have derived the rank-k block formula, when k pairs satisfy the multiple secant equations.
Block formulas ensure that the secant equations do hold at once. Therefore, by construction,
these updates satisfy the hereditary property. As an alternative to the block formula, one can
recursively use the rank-1 update1 as

B̃i+1 = B̃i + (hi − B̃iδyi)(gi − Aδyi − B̃T
i δxi)

T

(hi − B̃iδyi)
Tδxi

, B̃1 = B̃(j=0) (26)

to obtain B̃j+1 = B̃k+1, where we have assumed that (hi − B̃iδyi)
Tδxi �= 0 for i = 1, . . . , k. This

rank-1 update is actually used in [19] to update the Jacobian matrix in the framework of the
full quasi-Newton method. It is referred as to the two-sided rank one update (TR1) update. A
similar rank-1 update is also used in [20]. The properties of the TR1 update can be summarized
as follows:

• The TR1 update generalizes the classical symmetric rank one (SR1) update [7, 11], in the
sense that this update reduces to the SR1 update, when B̃j+1 is symmetric.

• When the secant equations are consistent, it is shown in [19] that the TR1 recursive formula
satisfies the hereditary property, (i.e. it maintains the validity of all previous secant equations),
and is invariant under linear transformations.

• The TR1 update has no obvious least change characterization.

We note that, in general, the updates obtained from the recursive formula and the block formula
are not necessarily equivalent [8]. However, concerning the TR1 update, when the secant equa-
tions are consistent, both block and recursive formulas become equivalent. In practice, since it is
easier to monitor the values of the denominator (to avoid blow up of the update) from the recur-
sive formula involving vectors rather than matrices as in the block formula, recursive formula
are often preferred to the block ones.

3.3 A rank-2k update

3.3.1 Least-Frobenius norm update.

In this section, as an alternative to the TR1 update proposed in Section 3.2, we present a new
update �B̃, which satisfies a least change characterization in terms of the Frobenius norm.

Theorem 3.3 Given X ∈ R
�×k, P ∈ R

(�+m)×k, Y ∈ R
(�+m)×k and Q ∈ R

�×k of full column rank
defined in (20) , suppose that relationship (21) holds. Then the solution of the minimization
problem

min
�B̃∈R�×(�+m)

‖�B̃‖F

subject to �B̃TX = P,

�B̃Y = Q,

(27)
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is given by

�B̃∗ = X T†PT + (I − XX †)QY †, (28)

or equivalently

�B̃∗ = (YT†QT + (I − YY †)PX †)T. (29)

Proof Any rank-2k solution �B̃ satisfying Equation (18) (the first constraint of the minimiza-
tion problem (27)) can be written as [38, Lemma 2.1]

�B̃ = X T†
PT + (I − XX †)C, (30)

where C ∈ R
�×(�+m). Inserting the relation (30) into the second constraint (Equation (19)) yields

X T†PTY + (I − XX †)CY = Q.

The least Frobenius norm solution of the minimization problem

min
C∈R�×(�+m)

‖(Q − X T†PTY )− (I − XX †)CY‖F

is then given by [38, Lemma 2.3]

C∗ = (I − XX †)†(Q − X T†PTY )Y †,

or equivalently

C∗ = (I − XX †)†QY †. (31)

Since (I − XX †) defines an orthogonal projection, substituting Equation (31) into Equation (30)
yields the solution of the minimization problem as

�B̃∗ = X T†PT + (I − XX †)QY †.

This rank-2k update can be also written as

�B̃∗ = X T†PT + QY † − X (X TX )−1X TQY †.

Using Equation (21), we deduce

�B̃∗ = X T†PT + QY † − X (X TX )−1PTYY †,

= X T†PT + QY † − X T†PTYY †,

= QY † + X T†PT(I − YY †),

= (YT†QT + (I − YY †)PX †)T,

which completes the proof. �

Remark 3 In the case of a single secant equation, Equation (30) simplifies into the following
rank-2 update

�B̃∗ = δxT†pT + (I − δxδx†)C, (32)

where C is a rank-2 matrix. Let us now investigate the role of C in the geometrical proper-
ties of the update �B̃. To do so, we denote u = δx/‖δx‖2 and choose U⊥ ∈ R

�×(�−1) such that
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U = [u, U⊥] is an orthogonal matrix. Then Equation (32) can be written as

�B̃∗ = upT

‖δx‖2
+ U⊥U⊥TC.

Therefore, a matrix–vector multiplication with �B̃∗ leads to a vector in the column space of
U. When C is chosen as the zero matrix, the resulting vector has no components in the direc-
tion of the column vectors of U⊥, that is, �B̃T

∗v = 0 for any vector v orthogonal to u and the
rank-one Broyden update is recovered. When C = (I − δxδx†)αqpT , this yields the TR1 update.
As shown in Theorem 3.3, choosing C = (I − δxδx†)†qδy† results in a rank-two least-change
update. Therefore, different choices of C define the information to be included from the directions
orthogonal to the vector u.

We name the new update given in Theorem 3.3 as the least-Frobenius two-sided rank-2k
update (FTR2). As an alternative to the block formulas, the FTR2 update can be recursively
obtained from Equation (28) (with k = 1 and B̃1 = B̃(j=0)) as

B̃i+1 = B̃i + δxi(gi − Aδyi − B̃T
i δyi)

T

δxT
i δxi

+ (hi − B̃iδyi)δyT
i

δyT
i δyi

− δxiδxT
i (hi − B̃iδyi)δyT

i

δxT
i δxiδyT

i δyi
. (33)

The properties of the FTR2 update can be summarized as follows:

• The FTR2 update generalizes the Powell-symmetric-Broyden (PSB) update [33], in the sense
that the PSB update is recovered, when B̃j+1 is symmetric.

• As outlined before, the block FTR2 update satisfies the hereditary property. However, the
recursive FTR2 (similar to the PSB update) does not satisfy the hereditary property. Hence, it
satisfies only the last direct and adjoint secant equations. When using new pairs, the previous
secant equations do not hold any longer.

• The FTR2 update is affected by linear transformations on the variable domain.
• It is shown in Theorem 3.3 that the FTR2 update satisfies a least-change property with respect

to the Frobenius norm.

3.3.2 The weighted least-Frobenius norm update.

In this section, we are interested in solving the minimization problem (27) in a weighted Frobe-
nius norm, such that the update enjoys a transformation invariance property. The next theorem
provides such an update.

Theorem 3.4 Given X ∈ R
�×k , P ∈ R

(�+m)×k , Y ∈ R
(�+m)×k and Q ∈ R

�×k of full column rank
defined in (20) suppose that relationship (21) holds. Let S ∈ R

�×k and T ∈ R
(�+m)×k be such

that X TS and YTT are symmetric and positive definite matrices, respectively. Let W1 ∈ R
�×�

and W2 ∈ R
(�+m)×(�+m) be non-singular matrices such that the relations W1WT

1 X = S and
WT

2 W2Y = T hold. Then the solution of the minimization problem

min
�B̃∈R�×(�+m)

‖W−1
1 �B̃W−1

2 ‖F

subject to �B̃TX = P,

�B̃Y = Q,

(34)

is given by

�B̃∗ = S(X TS)−1PT + (Q − S(X TS)−1X TQ)(YTT)−1TT, (35)
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or equivalently

�B̃∗ = (T(YTT)−1QT + (P − T(YTT)−1YTP)(X TS)−1ST)T. (36)

Proof We define �̂B̃ ∈ R
�×(�+m) as �̂B̃ = W−1

1 �B̃W−1
2 . Then the minimization problem (34)

can be written as

min
�̂B̃∈R�×(�+m)

‖�̂B̃‖F

subjectto �̂B̃TW1
TX = W−T

2 P,

�̂B̃W2Y = W−1
1 Q.

This problem is structurally identical to the minimization problem (27). Hence, using the update
formula (28) in this context yields

�̂B̃∗ = (X TW1)
†(W−T

2 P)T + (I − W1
TX (W1

TX )†)W−1
1 Q(W2Y )†,

= W1
TX (X TW1W1

TX )−1PTW−1
2

+ (I − W1
TX (X TW1W1

TX )−1X TW1)W
−1
1 Q(YTWT

2 W2Y )−1YTWT
2 . (37)

Substituting the relations

W1
TX = W−1

1 S, (38)

W2Y = W−T
2 T , (39)

into Equation (37), we obtain

�̂B̃∗ = W−1
1 S(X TS)−1PTW−1

2 + (W−1
1 Q − W−1

1 S(X TS)−1X TQ)(YTT)−1TTW−1
2 ,

= W−1
1 [S(X TS)−1PT + (Q − S(X TS)−1X TQ)(YTT)−1TT]W−1

2 .

From Equation (29), the solution of the minimization problem (34) can be written as

�̂B̃∗ = ((YTWT
2 )

†(W−1
1 Q)T + (I − W2Y (W2Y )†)W−T

2 P(W1
TX )†)T,

= (W2Y (YTWT
2 W2Y )−1QTW−T

1

+ (I − W2Y (YTW2
TW2Y )−1YTW2

T)W−T
2 P(X TW1W1

TX )−1X TW1)
T. (40)

Substituting Equations (38) and (39) into Equation (40), we obtain

�̂B̃∗ = (W−T
2 T(YTT)−1QTW−T

1 ,

+ (W−T
2 P − W−T

2 T(YTT)−1YTP)(X TS)−1STW−T
1 )T,

= (W−T
2 [T(YTT)−1QT + (P − T(YTT)−1YTP)(X TS)−1ST]W−T

1 )T,

which completes the proof. Due to Lemma 3.1, the formulas (35) and (36) are equivalent. �

Remark 4 We note that X TS and YTT may not be necessarily symmetric and positive definite
for some given pairs S and T. However, the strategy proposed in [36] can be applied in order
to find least-change perturbations �S and �T such that X T(S +�S) and YT(T +�T) become
symmetric and positive definite. Theorem 3.4 can then be applied straightforwardly.
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We name the update given by formulas (35) or (36) as the weighted least Frobenius norm two-
sided rank-(2k) (WFTR2) update. We note that different choices of S and T (meaning different
weighted Frobenius norms) lead to different updates.

As a special case (with k = 1 and B̃1 = B̃(j=0)) of the block WFTR2 update, the recursive
update can be obtained as

B̃i+1 = B̃i + si(gi − Aδyi − B̃T
i δxi)

T

δxT
i si

+ (hi − B̃iδyi)tT
i

δyT
i ti

− siδxT
i (hi − B̃iδyi)tiT

δxT
i siδyT

i ti
. (41)

The properties of the WFTR2 update can be summarized as follows

• The block WFTR2 update satisfies the hereditary property, whereas the recursive formula does
not.

• Let us assume that we have applied the following change of variables

X̄ = G−1X and Ȳ = V−TY

where G and V are non-singular matrices of order � and (�+ m), respectively. Provided that
the relations

S̄ = GTS and T̄ = VT

hold, it can be simply shown by induction that the WFTR2 update is transformation-invariant.
• It is shown in Theorem 3.4 that the WFTR2 update satisfies a least-change property.

In this section, we are left with the choice of S and of T in the WFTR2 update. We note that
when

S = [h1, . . . , hk], (42)

T = [g1 − Aδy1, . . . , gk − Aδyk], (43)

with hi and gi (i = 1, . . . , k) defined in (13) and B̃j+1 is a symmetric and positive definite matrix,
the WFTR2 update reduces to the Davidon–Fletcher–Powell update [11,17]. Choosing S =Q and
T =P leads to the TR1 update.

In our experiments, since the column vector matrices given by (42) are available as by-
products of the Krylov subspace method, we consider to choose these pairs for the WFTR2
update.

So far, we have introduced different update formulas detailed in Section 3.2 and 3.3 whose
properties for the recursive formulas are summarized in Table 1. Concerning the block formu-
las, the hereditary property holds whatever the update, whereas the other two properties remain
similar to those given in Table 1.

Table 1. Properties of the different recursive updates of Sections 3.2 and 3.3.

Update type Rank Hereditary Trans. invariance Least-change

TR1 (Equation (26)) rank-1 yes yes no
FTR2 (Equation (33)) rank-2 no no yes
WFTR2 (Equation (41)) rank-2 no yes yes
with pairs defined as (42)
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3.4 The inverse of the second-level preconditioner

In this section, we derive a practical formula concerning the inverse of the updated precon-
ditioner to be used when solving the saddle point system (11). The block update formulas of
Theorems 3.2–3.4 can be written in the following generic form

�B̃∗ = VZUT, (44)

with V ∈ R
�×p, Z ∈ R

p×p and U ∈ R
(�+m)×p, where p is equal to either k or 2k, respectively. For

instance, the update (35) of Theorem 3.4 reads

�B̃∗ = [
S Q

] [−(X TS)−1(X TQ)(YTT)−1 (X TS)−1

(YTT)−1 0

] [
TT

PT

]
. (45)

Using Equation (44), the inexact constraint preconditioner P2 at the second nonlinear iteration
can be thus updated as

P2 = P1 +
(

0 UZTVT

VZUT 0

)
,

= P1 +
(

0 U
V 0

)
︸ ︷︷ ︸

T

(
ZUT 0

0 ZTVT

)
︸ ︷︷ ︸

G

, (46)

where T ∈ R
(2�+m)×(2p) and G ∈ R

(2p)×(2�+m), respectively. Using the Sherman–Morrison–
Woodbury formula, we obtain the inverse of the second-level preconditioner as

P−1
2 = P−1

1 − P−1
1 T (I + GP−1

1 T )−1GP−1
1 . (47)

We note that this formula involves the application of the inverse of the first-level preconditioner
P−1

1 , which is assumed to be easily tractable. This is indeed the case when considering the inexact
constraint preconditioner as detailed next.

3.5 Construction and application of the second-level preconditioner

Let us assume that the following set of vectors (δxi, δyi, gi, hi), (i = 1, . . . , k) satisfying
Equation (12) have been saved during the previous outer loop of the approximate sequence of
quadratic programming problems, and that a first-level preconditioner P1 in the form of (9) is
used. We present in Algorithm 1 both the setup phase and the application of the inverse of the
second-level preconditioner on a given vector of appropriate dimension.

We want to discuss next a few questions related to the computational cost of the applica-
tion of the first- and second-level preconditioners, respectively. The inverse of the first-level
preconditioner (10) is given by

P−1
1 =

⎛
⎝0 0 F̃T

0 R−1 0
F̃ 0 −F̃DF̃T

⎞
⎠ with F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

In

In In

In In In

In
. . .

. . .
. . .

In
. . . In In In

⎞
⎟⎟⎟⎟⎟⎟⎠

. (48)

Thus the action of P−1
1 requires one application of D, R−1, F̃ and F̃T in total. We note

that applying F̃ or F̃T is really cheap, since it only involves summations of vectors. Con-
cerning the second-level preconditioner, we have decided to compute and store G, P−1

1 T
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Algorithm 1 Setup and application of the inverse of the second-level preconditioner
# Setup phase

(1) Obtain P, Q, S and T from relations (16), (17), (42) and (43), respectively.
(2) Deduce T ∈ R

(2�+m)×(2p) and G ∈ R
(2p)×(2�+m) defined in (46) depending on the update

formula.
(3) Compute P−1

1 T and (I2p + GP−1
1 T )−1.

# Application of the inverse of the second-level preconditioner on r ∈ R
(2�+m)

(1) Apply the first-level preconditioner s = P−1
1 r.

(2) Compute

P−1
2 r = s − (P−1

1 T )(I2p + GP−1
1 T )−1(G s).

and (I + GP−1
1 T )−1 in memory, respectively. Consequently, the action of the inverse of the

second-level preconditioner in Equation (47) involves only a single application of the first-level
preconditioner P−1

1 and a matrix–vector product with G, (I + GP−1
1 T )−1 and P−1

1 T , respec-
tively (see Algorithm 1). By exploiting the structure of G and T , the total additional storage
corresponds to 3p vectors of length (2�+ m) and to 2p vectors of length 2p. This amount can be
considered as affordable, since p is assumed to be much smaller than � in this study. Comput-
ing P−1

1 T requires a single application of P−1
1 on a set of 2p vectors, while the computation of

GP−1
1 T involves 8p2(2�+ m) additional floating point operations. Both computations have to be

performed at each nonlinear iteration. Applying the second-level preconditioner is thus slightly
more expensive than the first-level preconditioner. Nevertheless, in our setting, we note that the
application of A is the most expensive task in the Krylov subspace method since it involves
multiple calculations of Jacobians. This will be illustrated in Section 4.

3.6 Spectrum of the preconditioned saddle point system

We briefly comment on the spectrum analysis of the saddle point system preconditioned by the
inexact constraint preconditioner (10). We have

P−1
1 A =

⎛
⎝ F̃TF−T F̃THT 0

0 I R−1H
F̃D(I − F̃TF−T) −F̃DF̃THT F̃F−1

⎞
⎠ .

A direct application of Corollary 2.2 of [3] reveals that the eigenvalues of P−1
1 A (denoted by

λ(P−1
1 A)) are either equal to one or bounded by

|λ(P−1
1 A)− 1| ≤

∥∥[
(F−T − F̃−T)D−1/2 HTR−1/2

]∥∥
2

σ1
([

F̃−TD−1/2 0
]) ,

where σ1(A) denotes the smallest singular value of A. The last inequality is then equivalent to

|λ(P−1
1 A)− 1|2 ≤ λmax((F−T − F̃−T)D−1(F−1 − F̃−1)+ HTR−1H)

λmin(F̃−TD−1F̃−1)
. (49)

When F̃ = F, the eigenvalues of P−1
1 A are constrained to lie on the line x= 1 in the complex

plane [16]. When F is approximated, numerical computations reveal that the eigenvalues do lie
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on this line or belong to a disc of centre (1, 0) in the complex plane. The bound (49) gives us an
insight on how the approximation F̃ influences the radius of this disc.

We note that the inequality (49) is mainly of theoretical interest since the exact computation
of the upper bound is out of reach for large-scale applications. In practice, we usually rely on the
computation of Ritz or harmonic Ritz values to cheaply investigate the convergence of GMRES
[43]. Numerical experiments in our setting have revealed that most of these values lie in the
right-half plane, which is often found to be beneficial to the convergence of GMRES. Finally, we
leave to a future study the spectral analysis of P−1

2 A, which we believe is outside the scope of
the paper.

4. Numerical experiments

Our numerical experiments are performed by using a simple two-layer quasi-geostrophic model
(QG-model) in the Object-Oriented Prediction System platform [34]. In this section, we first
describe the two layer QG-model, then explain the numerical set-up and finally present the
numerical results.

4.1 A two-layer quasi-geostrophic model

This section describes the simple two-layer quasi-geostrophic 2 (nearly geostrophic) channel
model which is widely used in theoretical atmospheric studies, since it is simple enough for
numerical calculations and adequately captures the most relevant large-scale dynamics in the
atmosphere.

The two-layer quasi-geostrophic model equations are based on the non-dimensional quasi-
geostrophic potential vorticity, whose evolution represents large-scale circulations of the atmo-
sphere. The quasi-geostrophic potential vorticity on the first (upper) and second (lower) layers
can be written, respectively, as

q1 = ∇2ψ1 − f 2
0 L2

g′H1
(ψ1 − ψ2)+ βy, (50)

q2 = ∇2ψ2 − f 2
0 L2

g′H2
(ψ2 − ψ1)+ βy + Rs, (51)

where ψ is the stream function, ∇2 is the two-dimensional Laplacian operator, Rs represents
orography or heating, β is the (non-dimensionalized) northward variation of the Coriolis param-
eter at the fixed latitude y, f0 is the Coriolis parameter at the southern boundary of the domain. L
is the typical length scale of the motion we wish to describe, H1 and H2 are the depths of the two
layers, g′ = g�θ/θ̄ is the reduced gravity where θ̄ is the mean potential temperature, and �θ
is the difference in potential temperature across the layer interface. Details of the derivation of
these non-dimensional equations can be found in [13, 32]. The conservation of potential vorticity
in each layer is thus described by

Diqi

Dt
= 0, i = 1, 2. (52)

This evolution equation is given in terms of the advective (total) derivative Di/Dt defined by

Di

Dt
= ∂

∂t
+ ui

∂

∂x
+ vi

∂

∂y
,
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where

ui = −∂ψi

∂y
and vi = ∂ψi

∂x
, (53)

are the horizontal velocity components at each layer. Therefore, the potential vorticity at each
time step is determined by using the conservation of potential vorticity given by Equation (52). In
this process, time stepping consists of a simple first order semi-Lagrangian advection of potential
vorticity. Given the potential vorticity at fixed time, Equations (50) and (51) can be solved for the
stream function at each grid point and then the velocity fields obtained through Equation (53).
Periodic boundary conditions in the west-east direction and Dirichlet boundary conditions in the
north-south direction are employed. For the experiments in this paper, we choose L = 106 m,
H1 = 6000 m, H2 = 4000 m, f0 = 10−4s−1 and β = 1.5. For more details on the model and its
solution, we refer the reader to [34].

The domain for the experiments is 12,000 km by 6300 km for both layers. The horizontal
discretization consists of 40 × 20 points, so that the east-west and the north-south resolution is
approximately 300 km. The dimension of the state vector of the model is 1600.

4.2 Experimental set-up

Our numerical experiments are performed by using a two-layer model as described above. A
reference stream function is generated from a model with layer depths of H1 = 6000 m and
H2 = 4000 m, and the time step is set to 300 s, whereas the assimilating model has layer depths
of H1 = 5500 m and H2 = 4500 m, and the time step is set to 3600 s. These differences in the
layer depths and the time step provide a source of model error.

For all the experiments presented here, observations of the non-dimensional stream function,
vector wind and wind speed were taken from the reference of the model at 100 points randomly
distributed over both levels. Observations were taken every 12 hours. Observation errors were
assumed to be independent from each others and uncorrelated in time, the standard deviations
were chosen to be 0.4 for the stream function observation error, 0.6 for the vector wind and 1.2
for the wind speed. The observation operator is the bi-linear interpolation of the model fields to
horizontal observation locations.

The background error covariance matrix (Bb matrix) and the model error covariances (matri-
ces Qi) used in these experiments correspond to vertical and horizontal correlations. The vertical
and horizontal structures are assumed to be separable. In the horizontal plane covariance
matrices correspond to isotropic, homogeneous correlations of stream function with Gaussian
spatial structure obtained from a Fast Fourier Transform approach [12,30]. For the back-
ground error covariance matrix Bb, the standard deviation and the horizontal correlation length
scale in this experiments are set to 0.8 and 106 m, respectively. For the model error covari-
ance matrices Qi, the standard deviation and the horizontal correlation length scale are set
to 0.2 and 2 × 106 m, respectively. The vertical correlation is assumed to be constant over
the horizontal grid and the correlation coefficient value between the two layers was taken
as 0.5.

The length of the assimilation window is set to 24 hours. The assimilation window is divided
into three sub-windows (sub-intervals). Thus, the length of the each subwindow is equal to 8
hours and the model is considered as sufficiently accurate within each subwindow. The con-
trol variable is defined as the initial state of each subwindow. We have performed 3 GN
iterations, and 10 inner loops at each GN iteration. Inner loops are solved by using full
GMRES [35].
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4.3 Numerical results

We aim at solving the equality constrained least squares problem (4) by using our two-level
preconditioning technique in which a sequence of saddle point systems (Equations (7)) is solved.
The least squares problem solves for the stream function of the two layer quasi-geostraphic model
as explained above by using a priori information xb and observations yi over the assimilation
window (24 hours). Figure 1(a) shows the reference stream function (the truth) used to generate
a priori information and observations, while Figure 1(b) shows a priori fields (forecast) for the
stream function and potential vorticity that we have used in our experiments.

The computational times (in milliseconds) needed to apply the operators appearing in the
saddle point system (7) are given in Table 2. These values have been obtained by running a
numerical simulation on a single core of a desktop computer.

As outlined in Table 2, applying the Jacobian matrix of the QG-model Mi (at time ti) is more
expensive by at least a factor of 70 than applying the covariance matrices D and R. Hence, this
shows that the computational cost related to the application of either the first- or second-level
preconditioner is significantly much lower than the cost of a matrix–vector product with the
saddle point matrix of (7).

We have performed numerical experiments by using both the two levels of preconditioning,
that is, the inexact preconditioner given by (10), and the second-level preconditioners obtained
from the TR1 and WFTR2 updates, respectively. When constructing the updates, the last 8 pairs
coming from the previous outer loop are used. Figure 2 shows the objective function values along
the iterations when using these preconditioners. As seen especially from Figure 2(b), the effect
of the second-level preconditioners can be remarked only at the third outer loop.

The improvement on large problems when using updates of Broyden type in nonlinear opti-
mization is strongly affected by an improved numerical stability. It is indeed shown in [37] that
if the initial update matrix is unscaled, or scaled without knowledge of the actual magnitude of
the elements of the true inverse Hessian, a severe loss of accuracy due to round-off errors can

Figure 1. Stream function (top) and potential vorticity (bottom) values of (a) truth and (b) forecast ( a priori ) fields.

Table 2. Computational time (ms) associated with the application of the different operators appearing in Equation (7).

Bb and Qi R Mi and M T
i Hi and HT

i

Time (ms) 0.11 0.017 7.9 0.19
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Figure 2. (a) Objective cost function values along iterations for the first- and second-level preconditioners updated by
using the TR1 or WFTR2 approaches. The first-level preconditioner is taken as the inexact constraint preconditioner
P1. (b) Ratios of the cost function values associated with the second-level preconditioners to the cost function value
associated with P1.

occur. Therefore, it is very common to use an initial scaling based on the inverse approximation
of the Hessian to possibly improve the convergence [29,31,37,39]. One of the most successful
choice for the initial scaling is shown to be an approximation of one of the eigenvalues of the
inverse Hessian [29,31]. This choice actually attempts to make the range of the entries of the
initial matrix similar to those of the inverse Hessian. With the same motivation in mind now for
the initial preconditioner P1, we choose a scaling factor as

α =

(
δyk

δxk

)T (
gk

hk

)
(

gk

hk

)T (
gk

hk

) ,

with pairs satisfying Equation (12) (k being the index of the last pair obtained from the previous
minimization). By using Equation (12) and defining δwk = ( gk

hk

)
, α can be simply rewritten as a

Figure 3. (a) Objective cost function values along iterations for the first- and second-level preconditioners updated
by using the TR1 or WFTR2 approaches. The first-level preconditioner is taken as the scaled P1. (b) Ratios of the
cost function values associated with the second-level preconditioners shown in (a) to the cost function value associated
with P1.
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Rayleigh quotient

α = δwT
kA−1

j+1δwk

δwk
Tδwk

.

Therefore, this scaling factor attempts to make the magnitude of entries of P1 closer to those
of A−1

j+1. Figure 3 shows the numerical results when the scaled preconditioner is used in our
experiments. In this setting, the second-level preconditioners constructed from the scaled initial
preconditioner accelerate the convergence also at the second outer loop. We stress that, for a
large-scale data assimilation system, this gain is very crucial (here approximately 30%), since
the cost of each iteration is very large (see Table 2). Thus, the role of the scaling factor for

Table 3. RSE values for the forecast field and solutions obtained by
using different preconditioners.

x RSE value

A priori ≈ 2.53
Solution with P1 ≈ 0.58
Solution with TR1 ≈ 0.51
Solution with WFTR2 ≈ 0.51

Figure 4. Difference between the true solution and a priori (a), solution obtained with P1 (b), solution obtained with
TR1 update (c), solution obtained with WFTR2 update (d), respectively.
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the initial preconditioner may be quite significant in practical applications, since the operational
4D-Var is typically performed only with two or three outer loops.

We want to mention that the performance of the second-level preconditioners is subject to
small changes arising in the sequence of saddle point systems. Taking larger steps in an approxi-
mate sequence of quadrating problems changes the information crucially in the next saddle point
system which prevents from using inherited information for the new system. Since in practical
applications, only a limited number of inner iterations can be performed, we usually face a slowly
varying sequence of saddle point systems which explains why these preconditioners are efficient
in our experiments.

Examining the root square error (RSE) from the truth at the initial time given by

RSE =
√

1

n
(truth − x∗

0)
T(truth − x∗

0),

we notice that all preconditioners are able to reduce the error for a given number of iterations,
the second-level preconditioners leading to a further reduction in the error (see Table 3). Finally,
the difference fields are shown in Figure 4. We observe that both second-level preconditioners
lead to very similar results for these experiments.

5. Conclusions

Geophysical inverse problems where a state vector is estimated using physical observations are
very common in the simulation of complex systems such as those arising from meteorology or
oceanography. In this study, we focus on the estimation of the state vectors at different times
over an assimilation window in which the observations are assimilated. This process is known
as a data assimilation problem. When perfect models are used for the dynamics, the estimation
process leads to a large-scale unconstrained problem where the constraints are directly inserted
into the objective function. The solution method is then based on a truncated GN technique.
When accounting for model errors, this approach is known to be difficult to parallelize in the
time dimension which makes it unsuitable for modern parallel computer architectures.

It has been recently shown that a saddle point formulation of the estimation process can intro-
duce highly parallel algorithms in the time dimension. In this paper, we present this formulation
that involves a sequence of QP problems, in which the constraints represent both the system
dynamics and the observation operator. Each QP results in a linear system where the matrix has
the usual saddle point structure.

Efficient iterative solution algorithms for saddle point systems strongly rely on the availability
of efficient preconditioners. The structure of the saddle point system arising in our applica-
tion is markedly different from those usually considered in the literature, in the sense that
the computational costs of matrix–vector products with the constraint blocks is much more
important than those related to the diagonal blocks. For our preconditioning strategy we pro-
posed in this paper to start with a low-cost first-level preconditioner for the first QP, and to
further improve this preconditioner along the minimization process by using inherited informa-
tion form earlier QP’s. Due to the particular nature of our problem, we focus on the limited
memory updates for such blocks. One interesting property of these blocks is that they are rect-
angular matrices, which is again a case that is less covered in the literature than the standard
square case.

It is shown that these updates can be derived as a solution of the two-sided secant equations,
namely adjoint and direct secant equations. We have also shown on numerical simulations that
these second-level preconditioners do improve the convergence and that they are promising when
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solving either the sequence of saddle point systems with multiple right-hand sides or the sequence
of slowly varying systems.

We are aware that open issues still need to be addressed. An important complementary aspect
is related to the analysis of the properties of the resulting preconditioned operator to character-
ize the convergence of the Krylov subspace method. Another aspect is to exploit globalization
strategies such as trust region methods or line searches strategies. Both issues are left as future
lines of research.
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Notes

1. Since the derivations related to the update formula (23) are quite similar, we omit the corresponding formula.
2. Quasi-geostrophic motion means that, in the horizontal direction of the atmospheric flow, the Coriolis force caused

by the rotation of the Earth, and the pressure gradient force are in approximate balance.
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Appendix . Proof of Lemma 3.1

Proof We note that Equations (18) and (19) are consistent since both X and Y are supposed to be of full column rank
[26, Chapter 2, Theorem 13]. We write the QR decompositions of the � by k matrix X and of the (�+ m) by k matrix
Y as

X = Q(1)R(1), (A.1)

Y = Q(2)R(2). (A.2)
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We note that both R(1) and R(2) are invertible k by k matrices, since X and Y are supposed to be of full column rank.
Equations (18) and (19) can then be recast as

�B̃TQ(1)R(1) = P,

�B̃Q(2)R(2) = Q,

or equivalently as

�B̃TQ(1) = P(R(1))−1, (A.3)

�B̃Q(2) = Q(R(2))−1. (A.4)

We refer to the � by �− k matrix Q(1)
⊥ as the orthogonal complement of Q(1) in R

�, whereas the (�+ m) by (�+ m − k)

matrix Q(2)
⊥ denotes the orthogonal complement of Q(2) in R

(�+m), respectively. �B̃ can then be written as

�B̃ = [Q(1) Q(1)
⊥ ]�B̃′

[
(Q(2))T

(Q(2)
⊥ )T

]
, (A.5)

where �B̃′ is a � by (�+ m) matrix of the form

�B̃′ =
[
�11 �12
�21 �22

]
.

Postmultiplying Equation (A.5) by Q(2) leads to

�B̃Q(2) = [Q(1) Q(1)
⊥ ] �B̃′

[
Ik
0

]
= Q(1)�11 + Q(1)

⊥ �21.

Using Equation (A.4), we obtain
Q(1)�11 + Q(1)

⊥ �21 = Q(R(2))−1, (A.6)
which leads to

�11 = (Q(1))TQ(R(2))−1. (A.7)

Similarly, by premultiplying Equation (A.5) by (Q(1))T, we obtain

(Q(1))T�B̃ = [Ik 0]�B̃′
[
(Q(2))T

(Q(2)
⊥ )T

]
= �11(Q(2))T +�12(Q(2)

⊥ )T.

Using Equation (A.3) then leads to

�11(Q(2))T +�12(Q(2)
⊥ )T = (R(1))−T PT. (A.8)

Finally, postmultiplying this last relation by Q(2) gives

�11 = (R(1))−T PTQ(2). (A.9)

From Equations (A.7) and (A.9), we conclude that

(Q(1))TQ(R(2))−1 = (R(1))−T PTQ(2),

(Q(1))TQ = (R(1))−T PTQ(2)R(2),

(R(1))T(Q(1))TQ = PTY ,

X TQ = PTY ,

which completes the proof. Finally, we note that the proof is based on the equivalence of Equations (A.8) and (A.6) to
Equations (A.3) and (A.4), respectively. Equations (A.8) and (A.6) helped us to determine specific blocks of rows or
columns of �B̃ in the given decomposition basis. More precisely, we have determined a possible solution of the direct
and adjoint secant equations as

�B̃ = Q(1)�11(Q(2))T + Q(1)�12(Q(2)
⊥ )T + Q(1)

⊥ �21(Q(2))T + Q(1)
⊥ �22(Q(2)

⊥ )T,

with �11 given in Equation (A.9),

�12 = (R(1))−T PTQ(2)
⊥ ,

�21 = (Q(1)
⊥ )TQ(R(2))−1,

and �22 a (�− k) by (�+ m − k) matrix that can be freely chosen. �
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