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A new preconditioner update strategy for the solution of sequences
of linear systems in structural mechanics: application to saddle
point problems in elasticity

Sylvain Mercier1,2 · Serge Gratton3 · Nicolas Tardieu1 · Xavier Vasseur4

Abstract Manyapplications in structuralmechanics require
the numerical solution of sequences of linear systems typ-
ically issued from a finite element discretization of the
governing equations onfinemeshes. ThemethodofLagrange
multipliers is often used to take into account mechanical con-
straints. The resulting matrices then exhibit a saddle point
structure and the iterative solution of such preconditioned lin-
ear systems is considered as challenging. A popular strategy
is then to combine preconditioning and deflation to yield an
efficient method.We propose an alternative that is applicable
to the general case andnot only tomatriceswith a saddle point
structure. In this approach, we consider to update an existing
algebraic or application-based preconditioner, using specific
available information exploiting the knowledge of an approx-
imate invariant subspace or of matrix-vector products. The
resulting preconditioner has the form of a limited memory
quasi-Newtonmatrix and requires a small number of linearly
independent vectors. Numerical experiments performed on
three large-scale applications in elasticity highlight the rel-
evance of the new approach. We show that the proposed
method outperforms the deflation method when considering
sequences of linear systems with varying matrices.
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1 Introduction

Finite element computations are well established strategies
for the numerical simulation of material behaviour in struc-
tural mechanics. Nowadays, advanced modelling strategies
are often considered to target realistic numerical simulations
related to the design or safety analysis of three-dimensional
geometries with heterogeneous material properties. Hence,
relying on robust and efficient numerical methods for the
solution of the resulting linear algebraic systems is of key
importance. In this context, we consider the solution of
sequences of linear systems of the form

Ai xi = bi , 1 ≤ i ≤ �, (1)

where Ai ∈ R
N×N are general nonsingular sparse matri-

ces, xi ∈ R
N and bi ∈ R

N . These sequences appear in
many applications in elasticity, e.g., when plasticity and/or
viscosity effects are taken into account in the modelling.
The resulting system of nonlinear equations is typically
solved by a Newton-type or a Broyden-type method [34,45],
leading to a sequence of the form (1). Sparse direct meth-
ods based on Gaussian elimination are usually employed
for small to medium-scale problems. When the coefficient
matrix is fixed, these methods are especially relevant since
the factorization can be performed once for all and reused
all along the sequence. When the matrices in the sequence
are changing with every load or time step, preconditioned
Krylov subspace methods are the methods of choice for
large-scale problems [9,55,68]. Indeed, the operators in
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subsequent linear systems have most often similar spectral
properties. Hence, a first possible approach to design effi-
cient numerical methods is to extract information generated
during the solution of a given linear system to improve the
convergence rate of the Krylov subspace method for the sub-
sequent solutions.Deflated and augmentedKrylov subspaces
[14,15,44,57] or Krylov subspace methods with recycling
[26,36,50,53,54,61,67] have been proposed in this setting.
Applications in structural mechanics have been provided in,
e.g., [32,33] in the symmetric positive definite case.We refer
the reader to [15,21,22,30,60] for a comprehensive theoreti-
cal overview on these methods and to references therein for a
summary of applications, where the relevance of these meth-
ods has been shown. An alternative consists in exploiting
information generated during the solution of a given linear
system to improve a given preconditioner when solving the
next linear systems in the sequence. This is the main subject
that we want to address in this manuscript.

Preconditioner update strategies used when solving
sequences of linear systems are usually based on modifi-
cations by matrices of small rank. The main idea behind is to
derive efficient preconditioners in a cheap way, thus avoid-
ing the expensive computation of a new preconditioner in
the sequence. Updates of incomplete LU based precondition-
ers have been considered in [7,8,16,17]. Another important
class of algebraically-motivated update strategies is based
on improving the preconditioner by adaptive spectral infor-
mation obtained directly from the Krylov subspace method,
see, e.g., [4,13,24,35]. Although effective, we note that both
update strategies are tailored either to a specific precondi-
tioner or to a specific Krylov subspace method.

The literature on preconditioning is extremely rich; see,
e.g., the survey papers [9,68] and references therein. In par-
ticular, many suggestions have been made concerning either
purely algebraic or application based preconditioners able to
exploit the structure of the matrix. Our approach markedly
differs from purely preconditioning, in the sense that we pro-
pose a strategy to update a given preconditionner exploiting
existing information. This existing information can be for
instance the knowledge of matrix-vector products or of an
approximate invariant subspace. This preconditioner update
strategy is later referred to as limitedmemory preconditioner.
In the numerical optimization literature, update strategies
have been provided in the context of the solution of non-
linear equations with quasi-Newton based methods [34,45].
When the coefficient matrices in the sequence are symmetric
positive definite, Morales and Nocedal [41] have proposed
a preconditioner to be used in combination with the con-
jugate gradient method, which has the form of a limited
memory quasi-Newton matrix; see, e.g., [42,47] for earlier
attempts. Gratton, Sartenaer and Tshimanga [28] have simi-
larly defined a class of limitedmemory preconditioners based
on limitedmemory quasi-Newton formulas that ensures good

spectral properties of the preconditioned matrix. These pre-
conditioners require a small number k of linearly independent
vectors. This family can be seen as a block variant of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) updating for-
mula for quadratic problems [45,58]. More recently, an
extension of this class of limited memory preconditioners
for the solution of sequences of linear systems with symmet-
ric indefinite matrices has been provided in [27]. Numerical
experiments in structural mechanics have highlighted the rel-
evance of the proposed limited memory preconditioner that
leads to a significant decrease in terms of computational oper-
ations. Nevertheless, to the best of our knowledge, we are not
aware of any formulation related to limited memory precon-
ditioners suited to the case of a sequence of nonsymmetric
linear systems. This formulation is highly relevant to improve
the convergence of Krylov subspace methods, when han-
dling sequences of linear systems, where either the original
matrix or the preconditioned operator is nonsymmetric. In
addition, we note that this would allow a broader class of
preconditioners to be considered when handling sequence
of linear systems with symmetric matrices, since the limited
memory preconditioner could be then applied to the (left-
or right-only) preconditioned linear system. Thus our main
objectives in the manuscript are threefold: to propose a class
of limited memory preconditioners adapted to the general
case (1), to provide basic theoretical properties and finally
to assess its performance on realistic engineering applica-
tions in structural mechanics. A detailed comparison with
the deflation strategy will be also provided to emphasize the
advantages of the new formulation. We emphasize that our
main aim is to show the relevance of the limited memory
preconditioner update strategy in combination with certain
application-based preconditioners to tackle realistic applica-
tions in structural mechanics. Hence a detailed comparative
performance study including advanced preconditioners of
multilevel type is out of the scope of this manuscript.

The manuscript is organized as follows. In Sect. 2, we
introduce the context of this study related to structural
mechanics. Here, sequences of linear systems with matri-
ces of saddle point structure have to be solved. We briefly
describe the current solutionmethodbasedonpreconditioned
Krylov subspace methods. In Sect. 3, we recall the strategy
based on deflation to further accelerate the convergence of
Krylov subspace methods. Then, in Sect. 4, we introduce the
limited memory preconditioner, i.e., the new preconditioner
update strategy. In Sect. 5, we discuss specific computational
aspects and the implementation of both strategies into an
existing finite element software package. Furthermore, in
Sect. 6, we present numerical experiments related to three
realistic applications in structural mechanics as case stud-
ies for the comparison of the different numerical methods.
Concluding remarks and perspectives are finally proposed in
Sect. 7.



2 Problem definition

In the context of structural mechanics, we briefly introduce
the sequence of saddle point linear systems to be solved and
describe the current numerical method that is used in prac-
tice. In the following, Ik ∈ R

k×k is the identity matrix of
dimension k and 0i, j ∈ R

i× j refers to the zero rectangular
matrix with i rows and j columns.

2.1 Sequence of saddle point systems

In many applications in structural mechanics, Lagrange mul-
tipliers are used to take into account specific modelling
features such as the incompressibility constraint in the case
of incompressible elasticity, multi-point constraints in the
case of linear relationships between degrees of freedom or
contact conditions between non-penetrating bodies, to name
a few [11,43]. Then, the linear system to be solved corre-
sponds to a saddle point system of the form

Ky = c ⇐⇒
(
G BT

B 0m,m

) (
u
λ

)
=

(
f
g

)
, (2)

where G ∈ R
n×n , B ∈ R

m×n , u ∈ R
n , λ ∈ R

m , f ∈ R
n and

g ∈ R
m , n and m being the dimensions of the discretized

subspaces for the displacement and the constraints, respec-
tively. In the case of multi-point constraints, the sparse and
symmetric positive semidefinite matrix G corresponds to the
stiffness matrix under the small displacement hypothesis, the
essential boundary conditions being not taken into account.
The dimension of the nullspace ofG is then equal to the num-
ber of rigid body motions [43]. Finally, the matrix B collects
the essential boundary conditions and all other constraints.
Here, we also consider nonlinear mechanical problems lead-
ing to sequences of the form (with i = 1, · · · , �)

Ki yi = ci ⇐⇒
(
Gi BT

B 0m,m

) (
ui
λi

)
=

(
fi
gi

)
, (3)

where Gi ∈ R
n×n may be symmetric or not depending on

the modelling. For instance, the nonsymmetric case occurs
when a large deformation formulation is used. We further
assume that Hi = 1/2(Gi +GT

i ) the symmetric part of Gi is
positive semidefinite, B is of full row rank (rank(B) = m)
and that N (Hi ) ∩ N (B) = {0}, ∀i ∈ {1, · · · , �} (where
N (B) denotes the nullspace of B). These assumptions make
sure the existence and uniqueness of the solution of each
linear system in the sequence [10, Theorem 3.4]. To obtain
an approximate solution of (3), we rely on Krylov subspace
methods [37,55,65]. In general, Krylov subspace methods
are only feasible in combination with a preconditioner when
considering large-scale problems [9,55,68]. We cover this
aspect in the next section.

2.2 Preconditioners for saddle point systems

We describe the two preconditioners that have been consid-
ered in the manuscript to handle the solution of saddle point
systems. Due to their robustness and efficiency, both pre-
conditioners have been retained in the application software
considered in Sect. 6. We note that many preconditioners for
saddle point matrices (such as augmented Lagrangian, block
diagonal, block triangular, constraint and splitting-based to
name a few) have been proposed in the literature. We refer
the reader to, e.g., [10,31,46,51] and to themonographs [19],
[48, Sec. 5.2], [64, Chap. 9], [66, Chap. 9] for an extensive
treatment of related preconditioning strategies.

2.2.1 A block upper triangular preconditioner

When the tangent stiffness matrices Gi are symmetric pos-
itive semidefinite, we consider the block upper triangular
preconditioner based on the augmented Lagrangian method
(see [25] and [48, Sections 5.2.11 and 5.2.12])

Mt,ex =
⎛
⎝G1 + γ BT B 2BT

0m,n − 1

γ
Im

⎞
⎠ , γ > 0. (4)

Mt,ex is related to the first matrix K1 in (3) and is fixed
all along the sequence. Since inverting exactly the symmet-
ric positive definite matrix G1 + γ BT B is too demanding in
terms of both computational operations andmemory require-
ments for large-scale problems, we consider a factorized
approximate preconditioner of the form Mt = LLT based
on the incomplete Cholesky factorization of G1 + γ BT B
written as G1 + γ BT B ≈ LLT [55]. Mt is used as a left
preconditioner1 leading to the following sequence of precon-
ditioned linear systems (with i = 1, · · · , �)

Ai xi = bi ⇐⇒ M−1
t Ki yi = M−1

t ci . (5)

In practice, the inverse of the preconditioner is applied using
the relation

M−1
t =

(
L−T L−1 0
0m,n −γ Im

)(
In 2γ BT

0m,n Im

)
.

2.2.2 A sparse Gaussian factorization based preconditioner

Next, we describe the default preconditioner inCode_Aster
[63], which consists of computing a Gaussian factorization
of the saddle point matrix K1 in single-precision arithmetic
using theMUMPS sparse direct solver [1–3]. This factorized

1 This is to be in agreement with all preconditioning strategies imple-
mented in the host finite element software Code_Aster .



approximation of K1, denoted as Msp, is used as a left pre-
conditioner leading to the sequence

Ai xi = bi ⇐⇒ M−1
sp Ki yi = M−1

sp ci , (6)

with i = 1, . . . , �. The application of M−1
sp is performed

through successive backward and forward substitutions and,
unless stated otherwise, Msp is kept fixed all along the
sequence (6).

Whatever the preconditioner (Mt or Msp), we do
obtain a sequence of preconditioned linear systems of the
form (1); see either Eqs. (5) or (6). In the following, we
select the restarted GMRES method [56] (later denoted
by GMRES(m)) as a Krylov subspace method to handle
this sequence of systems involving nonsymmetric matrices.
Even with the block upper triangular or the sparse Gaussian
factorization based preconditioners described above, the con-
vergence of preconditioned GMRES can be slow for specific
large-scale systems. Thus, we aim at proposing efficient and
robust solution strategies able to enhance the convergence
rate of restarted GMRES. We first consider a popular strat-
egy based on deflation in such a setting. Deflation will then
serve as a reference advanced numerical method through the
manuscript.

3 Strategy based on deflation

We first introduce notation used in Sects. 3 and 4, respec-
tively. Given a matrix subspace S of finite dimension, we
denote the range of S by R(S ), the null space of S by
N (S ) and the orthogonal complement of S by S ⊥. If V
and W are complementary subspaces of a vector space, we
denote by PV,W the projection operator onto V along W2.
Finally PV,V⊥ , the orthogonal projection operator onto V , is
denoted by PV .

3.1 Case of a single linear system

We first consider a single linear system denoted by Ax = b
with A ∈ R

N×N , x ∈ R
N and b ∈ R

N . The deflation
technique to accelerate the convergence of Krylov subspace
methods for the solution of a given linear system has been
known for a long time; see, e.g., [14,15,44] and the exten-
sive bibliography proposed in [29]. Applications to structural
mechanics have been provided in, e.g., [32,33] in the sym-
metric positive definite case. In the last decade, deflation
has been used and analyzed in combination with multigrid
and domain decomposition methods, which results in effi-
cient algorithms [32,62]. Extensions to nonsymmetric or

2 PV,W is the unique projection operator with range R(PV,W ) = V
and null space N (PV,W ) = W [39].

non-Hermitian problems have been provided in, e.g., [20–
22,30]. In the following, we assume that S ∈ R

N×k is of full
column rank k, with k ≤ N and we denote by S = R(S).
We introduce the orthogonal projection operator P(AS )⊥

P(AS )⊥ = IN − AS(ST AT AS)−1ST AT , (7)

and the oblique projection operator Q := P(AT AS )⊥,S

Q = IN − S(ST AT AS)−1ST AT A. (8)

We note that Q defined in Eq. (8) satisfies the relation

AQ = P(AS )⊥ A. (9)

In our setting, deflation consists of solving theprojectedprob-
lem

P(AS )⊥ Ax̃D = P(AS )⊥b, (10)

which is supposed to be much easier to solve by the restarted
GMRES method than the original linear system Ax = b.
Theorem 5.1 and Corollary 5.3 of [22] show that the GMRES
method applied to the singular linear system (10) is well
defined at each iteration step for every initial guess and
terminates with a solution of the system if and only if
S ∩ (AS )⊥ = {0}. We refer the reader to [22,30] for a the-
oretical analysis of the convergence of the deflated GMRES
method. We note that the solution of the original linear sys-
tem Ax = b is simply recovered by

xD = S(ST AT AS)−1ST AT b + Qx̃D.

Indeed, a direct calculation gives

b − AxD = P(AS )⊥b − P(AS )⊥ Ax̃D,

i.e., the true residual equals to the residual of the deflated
linear system (10).

3.2 Case of a sequence of linear systems

With the same matrix S as in Sect. 3.1, we consider the strat-
egy based on deflation to solve the sequence of linear systems
(5) or (6). In this setting, we note that the projection opera-
tors involved in deflation need to be defined for each linear
system of the sequence. Hence, we introduce the orthogonal
projection operators

P(Ai S)⊥ = IN − Ai S(ST AT
i Ai S)−1ST AT

i , (11)

and the oblique projection operators Qi := P(AT
i AiS )⊥,S

Qi = IN − S(ST AT
i Ai S)−1ST AT

i Ai . (12)



DeflatedGMRES(m) is thenused through thewhole sequence
as

P(Ai S)⊥ Ai x̃i = P(Ai S)⊥bi , (13)

the solution being given by

xi = S(ST AT
i Ai S)−1ST AT

i bi + Qi x̃i , (14)

with 2 ≤ i ≤ �. We assume that the conditions S ∩
(AiS )⊥ = {0} hold. This guarantees a breakdown-free
GMRES(m) computation when solving the sequence of
deflated linear systems.

4 Strategy based on preconditioner update

We introduce, in this section, the new strategy based on
preconditioner update to solve the given sequence of linear
systems (5) or (6).

4.1 Case of a single linear system

In this setting, we first define the class of limited memory
preconditioners (LMP).

Definition 1 Let A ∈ R
N×N be a nonsingular matrix and

assume that S ∈ R
N×k is of full column rank k, with k ≤ N .

The matrix H ∈ R
N×N defined as

H = (IN − AS(ST AT AS)−1ST AT )

+S(ST AT AS)−1ST AT (15)

is called the limited memory preconditioner.

When A corresponds to a preconditioned operator [as in (5)
or (6)], H defines a second level preconditioner aiming to
further improve the convergence rate of the Krylov subspace
method. The motivation behind this definition can be briefly
explained. In numerical optimization, the application of cer-
tain quasi-Newtonmethods [34,45] to the numerical solution
of F(x) = 0 with F(x) = Ax − b provides an approxima-
tion of the inverse of the Jacobian (here A−1). Hence, we aim
at using this approximation as a candidate preconditioner
for Krylov subspace methods when solving Ax = b. This
idea has been notably exploited in [69,70], where the con-
struction of the preconditioner was based on rank-1 updates
issued from either the Broyden’s method [12] or the Eirola
and Nevanlinna’s method [18]. The relation (15) in Defini-
tion 1 corresponds to a block rank-k extension of one of these
updates and has been derived in [38, Proposition 3.1.1]; see
also [38, Section 3.1] for further details. In the following, our
main purpose is to study and investigate the potential of the
matrix H when considered as a preconditioner of A.

In the framework ofKrylov subspacemethods, it is usually
important to first characterize the properties of the precon-
ditioner [55]. In our setting, the preconditioner H given in
Definition 1 is provably nonsingular if and only if

R
N = (AS )⊥ ⊕ S . (16)

This is stated in Theorem 1 given in “Appendix”. Later, we
will thus promote the selection of S ∈ R

N×k such that the
relation (16) holds. For example, this occurs when consider-
ing exact spectral information of A, i.e., when S = R(S)

spans the eigenspace of A associated with {λ1, · · · , λk}
which contains some real eigenvalues and possibly some
pairs of complex eigenvalues and their conjugate3. This leads
to the so called spectral LMP variant.

The next step is to analyze the spectral properties of the
preconditioned operator AH . In the following, we denote by
Λ(M) the set of eigenvalues of a given square matrix M ,
M ∈ R

N×N . Furthermore, we assume that the columns of
W ∈ R

N×k andW⊥ ∈ R
N×(N−k) form an orthonormal basis

for AS and (AS )⊥, respectively. Our central result can
then be stated as follows: the spectrum of the preconditioned
operator AH is given by

Λ(AH) = {1} ∪ Λ(WT⊥ AW⊥). (17)

This is shown in Theorem 2 given in “Appendix”.We deduce
fromTheorem 2 that 1 is an eigenvalue of AH of multiplicity
at least k, whereas the other eigenvalues belong to the spec-
trum ofWT⊥ AW⊥. When exact eigenvectors of A are selected
as columnsof S, a simpler formofTheorem2canbededuced;
see [38, Corollary 3.2.3]. However, the case of the spectral
limited memory preconditioner is only of limited interest. In
practice, for large-scale problems, computing exact spectral
information is considered as too computationally expensive.
We will thus have to rely on a different choice for the column
vectors of S as also proposed in the deflation literature. We
will later cover this aspect in Sect. 5.3.

4.2 Case of a sequence of linear systems

The same column vectors of S are used through the sequence,
unless stated otherwise. Hence, in this context, the limited
memory preconditioner is simply given by

3 We indeed use the property span{s, s̄} = span{Re(s), Im(s)} to jus-
tify the fact that the entries of S can be chosen as real-valued, as stated
in Definition 1; see Sect. 5.3 for a detailed discussion.



H = IN − A1S(ST AT
1 A1S)−1ST AT

1

+S(ST AT
1 A1S)−1ST AT

1 . (18)

GMRES(m) combined with this fixed right preconditioner is
then used through the whole sequence as

Ai H x̃i = bi , xi = Hx̃i , 2 ≤ i ≤ �. (19)

We point out here the main difference with the strategy
based on deflation: a fixed preconditioner is used through
the sequence, whereas the update of projection operators is
mandatory in the deflation approach (see Sect. 3.2).

5 Computational cost, memory requirements,
selection of S and implementation details

We now examine the computational cost and memory
requirements of the two strategies proposed in Sects. 3 and
4, respectively. We conclude this section by giving details
on the choice of S required in both approaches and on the
implementation.

5.1 Strategy based on preconditioning

In the following, we propose a possible implementation of
the limited memory preconditioner. Due to [38, Proposition
3.1.2], we know that H is invariant by right multiplication of
S with a nonsingular matrix. Hence, our approach consists of
replacing Swith Z such thatR(Z) = R(S) and ZT AT AZ =
IN . To do so,we apply aGram-Schmidt procedure to produce
a AT A-conjugate basis of R(S). With X = AZ and Y =
Z − X , H can then be simply written as

H = IN + Y XT . (20)

Algorithm 1 summarizes the construction of the limited
memory preconditioner, with Z = [z1, · · · , zk] and X =
[x1, · · · , xk], respectively. This algorithm requires, in terms
of computational cost, k matrix vector products with A and
4N +∑k−1

i=1 (6i N +6N )+kN = (3k2+4k−2)N additional
floating point operations. In terms of memory requirements,
2k vectors of length N are required to store both X and Z .
Each application of H on a vector of appropriate dimen-
sion can be directly performed in (4k + 1)N floating point
operations as shown in Eq. (20). Finally, we note that the
construction of the limited memory preconditioner can be
handled in a matrix-free environment, i.e., only matrix vec-
tor products with A are required as shown inAlgorithm 1.We
denote by ‖.‖2 the Euclidean norm and by S = [s1, . . . , sk]
the columns of S in Algorithm 1.

Algorithm 1 Computation of Y , X ∈ R
N×k such that H =

IN + Y XT .
1: z1 = s1
2: x1 = Az1
3: σ = ‖x1‖2
4: x1 = x1/σ
5: z1 = z1/σ
6: for i = 1 to k − 1 do
7: zi+1 = si+1
8: xi+1 = Azi+1
9: f = XT

i xi+1
10: zi = zi+1 − Zi f
11: xi = xi+1 − Xi f
12: σ = ‖xi+1‖2
13: xi+1 = xi+1/σ

14: zi+1 = zi+1/σ

15: end for
16: Y = X − Z

5.2 Strategy based on deflation

The implementation of the deflation method that we have
adopted is also based on the Gram-Schmidt procedure; see
[38, Section 3.4.3] for additional details. Table 1 summarizes
themain computational costs involved in both strategies. This
excludes the common cost related to the computation of the
column vectors of S. As pointed out in Sect. 4.2, the main
difference lies in the construction phase, since the limited
memory preconditioner is built only once.

5.3 Choice of S

In Sect. 4.2, the spectrum of the preconditioned operator AH
has been determined. As discussed above, in the context of
large-scale applications, computing exact spectral informa-
tion is usually considered as too expensive. It is thus common
to rely on approximate spectral information based on Ritz
vectors [49] as often proposed in the literature related to
eigenvalue computations [5]. For the sake of completeness,
we briefly define the notion of Ritz pairs.

Definition 2 Let A be a nonsingular matrix and assume that
l iterations of GMRES(m) have been performed so that the
relation V T

l AVl = Hl holds with Vl ∈ R
N×l and Hl ∈ R

l×l

(l ≤ m). A Ritz pair is defined as a pair (w = Vl y, θ) ∈
C

N × C where (y, θ) ∈ C
l × C is an eigenpair of Hl . w is

called the Ritz vector associated to the Ritz value θ .

In the case of a sequence of linear systems, we extract
the Ritz information during the last complete cycle of
GMRES(m) when solving the first linear system A1x1 = b1.
We then select k Ritz vectors associatedwith the k smallest in
modulus Ritz values (with k ≤ m). The same column vectors
of S are used through the sequence. We note that these Ritz
vectors can be complex-valued since Hl is nonsymmetric. In
case of a Ritz pair (y, θ) with a complex-valued Ritz value



Table 1 Computational cost
related to the construction and
application phases of the limited
memory preconditioner and
storage requirements

Construction Application Storage

LMP (3k2 + 4k − 2)N + k CA (4k + 1)N 2kN

Deflation (� − 1)(3k2 + 3k − 2)N + (� − 1) k CA (4k + 1)N 2kN

A similar information is provided for the deflation method. The computational cost of a matrix-vector product
with A is denoted by CA

θ , Hl being real-valued, we observe that (ȳ, θ̄ ) is also a Ritz
pair. Since the real and imaginary parts of the Ritz vector y
generate the same subspace as the two conjugate Ritz vec-
tors (i.e. span{Re(y), Im(y)} = span{y, ȳ}), we impose to
select both real and imaginary parts of the Ritz vector y as
columns of S. This allows us to keep real arithmetic in the
definition of the LMP preconditioner (see Definition 1). Fur-
thermore, depending on the value of k, we may in fact select
k + 1 columns in S to include both Re(y), Im(y) if neces-
sary. Finally, in case of any linearly dependent column(s) in
S4, we simply remove such column(s). This makes sure that
S is of full column rank as stated in Definition 1. We refer
the reader to [38, Section 3.4.1] for additional details. Since
ST AS = �, with � ∈ C

k×k being the diagonal matrix with
the k Ritz values as entries, we note that H is nonsingular
since relation (16) is satisfied.

5.4 Implementation details

The different strategies based on deflation and on precon-
ditioning have been implemented in the framework of the
open-source software Code_Aster5 (version 12.3.0), which
is a general purpose finite element code developed at EDF
(the French utility, Electricité de France) through the PETSc6

library (version 3.4.5). We refer the reader to [38, Appendix
A] for a complete description of the code and of the corre-
sponding data structure.

6 Numerical experiments

The purpose of this section is to illustrate the efficiency of
the limited memory preconditioner on various sequences of
linear systemswithmatrices of saddle point structure in struc-
tural mechanics. A large-scale problem with a fixed matrix
and multiple right-hand sides is first considered in Sect. 6.1,
while two sequences of linear systems will be analyzed later
in Sects. 6.2 and 6.3, respectively.

We use GMRES(30) to solve the sequence of linear sys-
tems. Selecting this large value of the restart parameter in

4 We emphasize that this situation did not occur in all our numerical
experiments.
5 http://www.code-aster.org.
6 http://www.mcs.anl.gov/petsc/.

GMRES(m) notably allows us to investigate the influence of
the number of Ritz vectors on the performance of the limited
memory preconditioner. We choose the following stopping
criterion

||bi − Ai xi ||2
||bi ||2 ≤ 10−8, 1 ≤ i ≤ �, (21)

with a zero initial guess x0i . Application of
GMRES(30) for the solution of either (5) or (6) is later
referred to as “Standard”. As explained in Section 2, Ai cor-
respond to preconditioned operators. This reference method
will be compared with the advanced “Deflation” and the
“Ritz-LMP” strategies, described in Sects. 3 and 4, respec-
tively.

The numerical results have been obtained on Aster5, a
IBM IDATAPLEX computer located at EDF R&D Data
Center (each node of Aster5 is equipped with 2 Intel Xeon
E5−2600, each running 12 cores at 2.7Ghz). Physical mem-
ory available on a givennode (24 cores) ofAster5 ranges from
64GB to 1 TB. The code has been compiled by the Intel com-
piler suite with the best optimization options and linked with
the Intel MKL BLAS and LAPACK subroutines. We report
both iteration counts and measure of computational effort
in seconds. We note that this numerical study has been per-
formed in a serial environment and we refer the reader to
[38, Section 3.4.5] for additional numerical experiments on
a parallel distributed memory computer, where the efficiency
of the proposed strategy has been shown as well.

6.1 Containment building of a nuclear reactor

In this section, we investigate the mechanical properties of
the containment building of a nuclear reactor of a Pressurized
Water Reactor power plant (see Fig. 1). This building protects
both the reactor from external aggressions and the environ-
ment if an internal accident occurs. Robust and accurate
numerical simulations are thus required for both design and
safety analysis. We consider an advanced mechanical mod-
elling that takes into account numerous prestressing tendons,
whose role is to improve the global resistance of the struc-
ture. The containment building is subject to gravity and to an
internal pressure. Thewhole loading is gradually applied into
4 successive steps. Each pitch of loading then corresponds
to a specific linear system in the sequence, where only the

http://www.code-aster.org
http://www.mcs.anl.gov/petsc/


Fig. 1 Containment building: three-dimensional mesh

right-hand side has changed (i.e. A1 = · · · = A4). The intro-
duction of Lagrangemultipliers stems from the imposition of
kinematic relations modelling perfect adhesion between the
prestressing tendons and the concrete [40] and to the dualiza-
tion of the essential boundary conditions. In this setting, B
admits either five or one nonzero entries per row, respectively.
This study is known to be complex for different reasons. First,
from a mechanical point of view, the modelling (which leads
to a symmetric positive semidefinite G1 matrix) is rather
advanced with a mixing of three-dimensional elements for
the concrete, two-dimensional elements for the metal shell
placed on the intern wall of the building (to ensure the seal-
ing if an accidental leak occurs), and of one-dimensional
elements for the tendons. Moreover, since the prestressing
tendons are attached to the concrete thanks to dualized lin-
ear relations, the number of Lagrange multipliers is really
large (m = 158,928 for a global size of N = 442,725).
The number of nonzero entries of G1 and G1 + γ BT B is
7,079,238 and 8,343,685, respectively. Secondly, the occur-
rence of a large number of prestressing tendons (more than
600 here) induces a nullspace of large dimension for the
stiffness matrix. Actually, it is known that this dimension is
related to the number of rigid body motions of the subbodies
of materials contained within the finite element mesh [43].
This numerical study is thus challenging and serves as a rel-
evant realistic test case in solid mechanics to investigate the
efficiency of preconditioners for Krylov subspace methods.

In this numerical experiment, we consider the block upper
triangular preconditionerMt described in Section 2.2.1. As
explained in [38, Section 1.3.2.2], we set γ to 2, 4684×1011

and consider a level of fill-in equal to 8 in the incomplete
Cholesky factorization of the (1, 1) block of Mt .

0 5 10 15 20 25 30 35 40 45
Number of iterations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
g1

0(
N

or
m

al
iz

ed
 re

si
du

al
)

Third linear system

Standard
Ritz-LMP (k=5)
Ritz-LMP (k=20)
Ritz-LMP (k=30)

Fig. 2 Containment building: convergence history of preconditioned
GMRES(30) for the third linear system in the sequence. Case of limited
memory preconditioners with k = 5, 20 or 30 Ritz vectors

Table 2 Containment building (sequence of three linear systems where
only the right-hand sides change): cumulative iteration count, compu-
tational time and memory requirements for different limited memory
preconditioners

Strategy Standard Ritz-LMP

k = 5 k = 20 k = 30

Total iteration count 135 74 66 64

CPU time (s) 75.6 42.9 40.2 36.9

CPU time decrease (%) × 43 47 51

Memory (Mo) 6895 6950 7071 7172

Memory increase (%) × 0.8 2.6 4

Case of k = 5, 20 or 30 Ritz vectors. “Standard” corresponds to the
solution of the linear system (5) with GMRES(30) combined with the
block triangular preconditioner Mt

We first consider the Ritz-LMP strategy with a growing
number of Ritz vectors (k = 5, 20, 30, respectively). Figure 2
shows the convergence history of GMRES(30) for the third
linear system in the sequence. A very similar behaviour is
found for the second and fourth linear systems. In addition,
we show in Table 2 the cumulative iteration count over the
three linear systems, the measure of computational effort in
seconds7 and the memory requirements provided by PETSc,
respectively. We note that the smallest number of iterations
is obtained when a large value of Ritz vectors (k = 30) is
selected. Whatever the value of k, the limited memory pre-
conditioner is found to significantly improve the convergence
of the preconditioned Krylov subspace method (Standard vs
Ritz-LMP); the computational timings are divided by a factor

7 The CPU time for the Ritz-LMP strategy does include the cost of
forming X, Y as required in (20).



Table 3 Containment building (sequence of three linear systemswhere
only the right-hand sides change): cumulative iteration count, compu-
tational time and memory requirements for different deflation methods

Strategy Standard Deflation

k = 5 k = 20 k = 30

Total iteration count 135 74 64 59

CPU time (s) 75.6 42.6 38 33.6

CPU time decrease (%) × 43 50 55.6

Memory (Mo) 6895 6950 7071 7172

Memory increase (%) × 0.8 2.6 4

Case of k = 5, 20 or 30 Ritz vectors. “Standard” corresponds to the
solution of the linear system (5) with GMRES(30) combined with the
block triangular preconditioner Mt

greater than 2 for k = 30, which is a very satisfactory result.
Moreover, this improvement comes at a price of a quite low
increase in memory requirements (at most 4%).

Table 3 shows the results related to the deflated
GMRES(30) method using exactly the same Ritz vectors
as in the previous numerical experiment. We note that the
deflation method leads to slightly better reductions in terms
of iterations or computational timings, whereas memory
requirements are found to be similar as expected.

Finally, we note that both strategies significantly improve
the results of [27]. In [27, Section 4.3], a symmetric positive
definite block diagonal preconditioner and a limited mem-
ory preconditioner tailored to symmetric indefinite matrices
were combined to tackle the same challenging problem. The
combination of GMRES(30) with the block diagonal precon-
ditioner required 509 iterations and 315 seconds to satisfy the
same stopping criterion (see Table 2.1 of [38] for the corre-
sponding timings). A huge acceleration factor (up to 8.5) is
thus obtained in our new setting. Indeed, the new class of
limited memory preconditioner offers the advantage to allow
a broader class of preconditioners to be considered, as nicely
illustrated here.

6.2 Shut down nuclear reactor cooling loop

In Sect. 6.1, we have considered the case of a sequence
with a fixed matrix. Next, we investigate the performance
of the Ritz-LMP strategy on sequences arising from New-
ton’s method with varying matrices. From now on, we use
the single-precision arithmetic sparse Gaussian factorization
based preconditioner Msp introduced in Sect. 2.2.2.

The selected problem is related to the modelling of the
thermal fatigue of a shut down nuclear reactor cooling loop.
The heat from the nuclear core is extracted by circulation
of pressurized water in the primary circuit. When the reac-
tor is shut down, the studied cooling loop allows to evacuate
the heat of the primary circuit and the residual power of the

Fig. 3 Mesh of the shut down nuclear reactor cooling loop

nuclear fuel, using cold waters. Some oscillations of the tem-
perature canoccur at locationswhere both cold andhotwaters
are in contact and it is necessary tomodel the resistance of the
component to the thermal fatigue. The computational mesh
is illustrated in Fig. 3.

The finite element discretization involves N = 571,281
unknowns, with less than 1% of Lagrange multipliers, cor-
responding to the essential dualized boundary conditions.
Newton’s method is employed because of the nonlinearity of
the constitutive law of the structure (Chaboche elasto-visco-
plastic law [52]), which leads to a sequence of the form (6)
with 67 linear systems (with Gi being symmetric positive
semidefinite). This problem is challenging due to the condi-
tion number of the saddle point matrix K1, which is of order
of 1010.8 Indeed, it is known that this value can be related to
the properties of the mesh; in particular, when strong spatial
variations in the size of the mesh elements occur, or when
some of them are flattened, the condition number is found
to increase [59]. The former case arises at the intersection
of both pipes (see Figure 3). In general, when the condition
number is moderate, GMRES(30) combined with the Msp

preconditioner requires a quite low number of iterations to
satisfy the stopping criterion (21). In the case of a large con-
dition number, this iteration count is often found to increase,
and we expect that the Ritz-LMP strategy may provide an
improvement.

We comment on the results related to the solution of the
complete sequence, including the sparse Gaussian factoriza-
tion phase. Table 4 collects the results obtained with three
different solution methods: the standard approach, the Ritz-
LMP strategy and the deflation method with k = 5 vectors.
Indeed, in this case, the value of k = 5 seems to be a rea-
sonable choice, since the number of GMRES(30) iterations
when combined with Msp usually remains relatively low
(i.e. less than the restart parameter m (30), see Fig. 4) and

8 This estimate has been obtained as a by-product of the application of
MUMPS (here in double-precision arithmetic) to the first matrix K1 in
the sequence.



Table 4 Shut down nuclear reactor cooling loop (sequence of 67 linear
systems): cumulative iteration count, computational time and memory
requirements for both the Ritz-LMP and the deflation methods with
k = 5 Ritz vectors, respectively

Strategy Standard Ritz-LMP Deflation

Total iteration count 983 460 410

CPU time (s) 961 578 873

CPU time decrease (%) × 39.9 9.2

Memory (Mo) 14074 14117 14117

Memory increase (%) × 0.03 0.03

“Standard” corresponds to the solution of the linear system (6) with
GMRES(30) combined with the sparse Gaussian factorization based
preconditioner Msp

Fig. 4 Shut down nuclear reactor cooling loop: number of Krylov sub-
space iterations versus index of the linear system in the sequence for
both the “Standard” and Ritz-LMP approaches

a larger value of k does not imply a significant additional
gain in terms of computational time. We first note that the
use of either the Ritz-LMP or the deflation approach is very
efficient in terms of reduction of Krylov subspace iterations.
Concerning the computational effort, the Ritz-LMP strategy
is much more efficient than the deflation method. This can
be explained by the fact that the deflation operator P(Ai S)⊥
as well as Qi [see Eqs. (11) and (12)], need to be updated at
each new linear system, using the newmatrix Ai ; see Table 1.
This numerical experiment clearly illustrates the interest of
the limited memory preconditioning strategy in this setting.

6.3 Tensile test

The previous numerical experiment has highlighted the effi-
ciency of the Ritz-LMP strategy. In particular, this strategy

Fig. 5 Mesh of the tensile

has been shown to be relevant compared to deflation in
terms of computational time, since the preconditioner is fixed
through the whole sequence. While, in Sects. 6.1 and 6.2,
the tangent stiffness matrices Gi were symmetric positive
semidefinite, we further investigate the performance of the
limited memory preconditioner, when the modelling leads to
original matrices Ki that are nonsymmetric.

The tensile test problem illustrates a tensing test on a cylin-
drical body. Due to axial and radial symmetries, the finite
element modelling considers only 1/8th of the structure, as
shown in Fig. 5. We employ a nonlinear constitutive law of
the material (elasto-plastic law of Von Mises with isotropic
hardening), written in the large deformation formulation pro-
posed by Simo andMiehe [6]. The total number of unknowns
is N = 977,365 including about 10% of Lagrange multipli-
ers corresponding to several symmetry essential boundary
conditions (i.e. a zero normal displacement). Here, the pre-
conditionner is based on a sparse Gaussian factorization of a
modified matrix deduced fromK1, where some entries ofK1

have been filtered out in order to reduce the computational
time related to the factorization and the solution phases. An
important feature has to be taken into account in this setting.
By default, in Code_Aster , the sparse Gaussian factoriza-
tion based preconditioner Msp is used during the complete
sequence. However, if the Krylov subspace method requires
too many iterations (more than 100 here) to satisfy the stop-
ping criterion (21) for a given system Ai xi = bi , a new sparse
Gaussian factorization of the next matrix in the sequence
Ki+1 is performed. In such a case, H is discarded after the
solution of the i-th linear system, and a new limited mem-
ory preconditioner is defined at the end of the solution of
Ai+1xi+1 = bi+1 with new Ritz vectors. We emphasize that
this situation did not happen in the previous two numerical
experiments.

The loading is incrementally applied on the structure and
one nonlinear problem is solvedwith theNewton’smethod at
each loading step to find the local equilibrium state. First, we
impose 14 increments, which leads to 61 cumulated Newton
iterations. Table 5 collects the results of this first numeri-
cal experiment. We note that the computational time also
includes the time spent in the factorization phases. Using the
Ritz-LMP strategy does lead to important savings in terms
of both iteration count (30%) and computational time (33%).
Indeed, the use of the limited memory preconditioner keeps
the number of Krylov iterations below 100 iterations most



Table 5 Tensile test with 14 loading increments: cumulative Newton
and Krylov iteration counts, number of sparse Gaussian factorizations,
computational time and memory requirements for the limited memory
preconditioner with k = 5 Ritz vectors

Strategy Standard Ritz-LMP

Loading steps 14 14

Newton iteration count 61 61

Total Krylov iteration count 3218 2259

Number of sparse Gaussian
factorizations

3 2

CPU time 5535 3717

CPU time decrease (%) × 33

Memory (Mo) 14982 15011

Memory increase (%) × 0.2

“Standard” corresponds to the solution of the linear system (6) with
GMRES(30) combined with the sparse Gaussian factorization based
preconditioner Msp

Table 6 Tensile test with at least 5 loading increments: cumulative
Newton and Krylov iteration counts, number of sparse Gaussian factor-
izations, computational time and memory requirements for the limited
memory preconditioner with k = 5 Ritz vectors

Strategy Standard Ritz-LMP

Loading steps 9 5

Newton iteration count 42 25

Total Krylov iteration count 2482 1383

Number of sparse Gaussian
factorizations

4 1

CPU time 4985 2185

CPU time decrease (%) × 56

Memory (Mo) 14877 15011

Memory increase (%) × 0.9

“Standard” corresponds to the solution of the linear system (6) with
GMRES(30) combined with the sparse Gaussian factorization based
preconditioner Msp

often, which allows to save one sparse Gaussian factoriza-
tion through the complete sequence.

Now, in order to minimize the total computational time,
we aim at decreasing the total number of loading steps before
reaching the complete loading. Therefore, we perform a new
simulation with at least 5 increments. The results related to
this second experiment are collected in Table 6. We note that
the standard solution with only the sparse Gaussian based
preconditionerMsp requires more than 5 loading steps. This
simply means that the Newton’s method does not converge
at some steps in the sequence. In such a case, the solution
algorithm proposed in Code_Aster automatically defines
new closer steps. When the Ritz-LMP strategy is used, only
a single sparse Gaussian factorization is used through the

whole sequence, since at each Newton iteration the number
of required iterations is kept below the threshold (here 100).
This satisfactory behaviour leads to important savings in
terms of computational time (56%). This second experiment
highlights the efficiency and the robustness of the Ritz-LMP
strategy. Finally, we further note that the overcost in terms
of memory requirements is again very moderate (at most
0.9%).

7 Conclusions

We have proposed a new preconditioner update strategy to
be used in combination with a Krylov subspace method for
the solution of sequences of large-scale linear systems with
nonsingular matrices. This preconditioner update strategy
extends earlier formulations [27,28] related to symmetric
positive definite and symmetric indefinite matrices, respec-
tively.

The limited memory preconditioner used in combination
with approximate spectral information based on Ritz vectors
(Ritz-LMP)has proved to be efficient in termsof both precon-
ditioner applications and computational operations on three
realistic large-scale problems in structural mechanics, where
sequences of saddle point linear systems have to be solved.
Numerical experiments have highlighted the relevance of the
proposed preconditioner that leads to a significant decrease
in terms of computational operations. A saving of up to 56%
in terms of computational time—at approximately the same
memory cost—is obtainedwith respect to the originalmethod
on one of these large-scale applications. A performance com-
parison with deflated GMRES has been also proposed on the
first two applications. Their performance is found to be quite
close, when considering a sequence with a fixedmatrix. Nev-
ertheless, in the case of a sequence with varying matrices,
the deflation method requires to update projection operators
for each new linear system. The limited memory precondi-
tioner (which is fixed through the sequence) has been shown
to be more efficient by a factor of 2 in this setting. This
shows the relevance of the proposed strategy and we expect
this algebraic preconditioner to be efficient in combination
with other preconditioners (such as domain decomposition
methods) and in other areas of computational science and
engineering as well.

To conclude, we mention two possible improvements.
First, when solving a sequence of linear systems, recycling
subspace information may further improve the convergence
rate of the Krylov subspace method for the subsequent lin-
ear systems. Hence, it may be worth combining the limited
memory preconditioner with such Krylov subspace methods
[36,50,61,67]. Secondly, the numerical experiments con-
ducted here have relied on a limited memory preconditioner
with columns of S selected asRitz vectors associatedwith the



smallest in modulus Ritz values. This heuristic has proved
numerically relevant. Nevertheless, selecting automatically
and cheaply how many appropriate column vectors for S are
required to improve the convergence rate of the Krylov sub-
space method would be certainly a major enhancement. First
attempts have been proposed in [21,23] in the framework of
deflation methods for the solution of sequences with sym-
metric indefinite matrices. We leave both topics for a future
study.
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Appendix

We give in this section the two theorems cited in Sect. 4.1.

Theorem 1 Let A ∈ R
N×N be a nonsingular matrix and

assume that S ∈ R
N×k is of full column rank k, with k ≤

N and denote S = R(S). The preconditioner H given in
Definition 1 is nonsingular if and only if

R
N = (AS )⊥ ⊕ S . (22)

Proof Using relation (7), the preconditioner given in Defini-
tion 1 can be written as

H = P(AS )⊥ + S(ST AT AS)−1ST AT . (23)

Hence, the preconditioned operator H A simply reads

H A = P(AS )⊥ A + IN − Q. (24)

Since R(P(AS )⊥ A) = (AS )⊥, N (P(AS )⊥ A) = S ,
N (IN − Q) = (AT AS )⊥ and R(IN − Q) = S , nec-
essary and sufficient conditions for H A to be invertible are
given by

R
N = (AS )⊥ ⊕ S and R

N = (AT AS )⊥ ⊕ S .

We note that the condition R
N = (AT AS )⊥ ⊕ S holds

since AT A is symmetric positive definite. This completes
the proof, since A is supposed to be nonsingular. �
Theorem 2 Let A ∈ R

N×N be a nonsingular matrix and H
be given by (15) in Definition 1. Assume that the columns
of W ∈ R

N×k and W⊥ ∈ R
N×(N−k) form an orthonormal

basis for AS and (AS )⊥, respectively. The spectrum of the
preconditioned operator AH is then given by

Λ(AH) = {1} ∪ Λ(WT⊥ AW⊥).

Proof Using relations (7) and (23) leads to

AH = AP(AS )⊥ + IN − P(AS )⊥ . (25)

Since the columns of [W,W⊥] form an orthonormal basis of
R

N , we have
Λ(AH) = Λ([W,W⊥]T AH [W,W⊥]) and

[W,W⊥]T AH [W,W⊥] =
(
WT AHW WT AHW⊥
WT⊥ AHW WT⊥ AHW⊥

)
.

Using relation (25) and basic properties of the orthogonal
projection P(AS )⊥ , we finally obtain

[W,W⊥]T AH [W,W⊥] =
(

Ik WT AW⊥
0N−k,k WT⊥ AW⊥

)
,

which completes the proof. �
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