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Abstract

In this paper, we present two new representations of the alternating Zeta function. We show that for any s ∈ C this
function can be computed as a limit of a series of determinant. We then express these determinants as the expectation
of a functional of a random vector with Dixon-Anderson density. The generalization of this representation to more
general alternating series allows us to evaluate a Selberg-type integral with a generalized Vandermonde determinant.

1 Introduction
The Dirichlet eta function is de�ned by the following Dirichlet series, which converges for any complex number having
real part greater than 0

η(s) =

∞∑
n=1

(−1)n−1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+ · · · (1)

This Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta
function ζ(s) and for this reason the Dirichlet eta function is also known as the alternating zeta function. The following
relation holds:

η(s) =
(
1− 21−s

)
ζ(s).
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The starting point of our work is a result from [2] (p. 456). In their paper, they show that the sum (1) can be
approximated using an array of coe�cients (an,N , 1 ≤ n ≤ N). Let

an,N
def
=

1

2

N∏
j=1, j 6=n

j2

j2 − n2
= (−1)n−1

(
2N

N − n

)
(

2N

N

) . (2)

then

Theorem 1 (Biane and al.). For εi, 1 ≤ i ≤ N independent standard exponential variables, and <(s) > −2N

E

( N∑
n=1

εn
n2

) s
2

 = sΓ
(s

2

) N∑
n=1

an,N
ns

(3)

where the an,N are de�ned by (2), and

ηN (s)
def
=

N∑
n=1

an,N
ns
−→ η(s) as N →∞ (4)

uniformly on every compact subset of C.

Remark 1. The signs of the coe�cients an,N have been modi�ed with respect to those given in the previously cited article,
in order to obtain convergence in equation (4) towards η(s) rather than −η(s).

The second part of the theorem shows that, for any s ∈ C the alternating Zeta function can be obtained by weighting
the �rstN terms of the original series which is de�ned only for <(s) > 0. In this paper, we will show that the weighted
�nite series ηN (s) de�ned in (4) can be written as a determinant (section 2.1, proposition 2). We will then show that this
determinant can be written as the expectation of a functional of a Dixon-Anderson random vector (section 2.2, theorem
3). This result is new (up to our knowledge) and seems to show that there is a relation between the Zeta function and
the theory of random matrices.

In section 3 we give a generalization of the representations given in section 2 for general series and, by computing
the expectation of these representations, we obtain the evaluation of two Selberg integrals involving a generalized
Vandermonde determinant (theorem 6).

2 New Representations of the Alternating Zeta Function

2.1 Determinant Representation
We start with the following result

Proposition 2. With the notations and conditions given in theorem (1) we have

ηN (s) =
1

2

∣∣∣∣∣∣∣∣∣∣

1 1
3! . . . 1

(2N−1)!

21−s 23

3! . . . 22N−1

(2N−1)!
...

...
...

N1−s N3

3! . . . N2N−1

(2N−1)!

∣∣∣∣∣∣∣∣∣∣
.

2



Proof. Let an = n2,QN (x) =
∏N
n=1 (1− x/an), and PN a polynomial of degreeN−1 over C[X], with the convention

PN (x) =
∑N
n=1 cn,Nx

n−1. An adaptation of the arguments given in annex A shows that

PN (x)

QN (x)
=

N∑
n=1

PN (an)

N∏
j=1
j 6=n

 1(
1− an

aj

) 1

1− x
aj

 .

Setting x = 0, we have QN (0) = 1 and we get

PN (0) = 2

N∑
n=1

an,NPN
(
n2
)
.

We choose PN as the polynomial of degreeN−1 such that PN (an) = n−s for n = 1, . . . N . The coe�cients (cn,N )Nn=1

of PN are solutions of the Vandermonde system
1 1 . . . 1
1 22 . . . 22(N−1)

...
...

...
1 N2 . . . N2(N−1)



c1,N
c2,N

...
cN,N

 =


1

2−s

...
N−s

 . (5)

The Vandermonde matrix is invertible (see annex B) showing that the polynomial PN is uniquely determined. We are
only interested in c1,N = PN (0). Let us denote VN the Vandermonde matrix in (5) and V (s)

N the matrix obtained by
replacing the �rst column of VN by the right-end term.

Using Cramer’s rule, we get

c1,N =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

2−s 22 . . . 22(N−1)

...
...

...
N−s N2 . . . N2(N−1)

∣∣∣∣∣∣∣∣∣
det (VN )

=
det
(
V

(s)
N

)
det (VN )

. (6)

The Vandermonde Determinant of VN is

det (VN ) =
∏

1≤ i < j≤N

(
j2 − i2

)
=

∏
1≤ i < j≤N

(j − i) (j + i) =

N∏
j=2

(j − 1)!
(2j − 1)!

j!
=

1

N !

N−1∏
n=1

(2n+ 1)! (7)

and thus, we have

c1,N =

∣∣∣∣∣∣∣∣∣∣

1 1
3! . . . 1

(2N−1)!
2
2s

23

3! . . . 22N−1

(2N−1)!
...

...
...

N
Ns

N3

3! . . . N2N−1

(2N−1)!

∣∣∣∣∣∣∣∣∣∣
.

ending the proof.

Remark 2. Observe that using the expression (6), it is immediate that ηN (s) = 1
2 if s = 0 and ηN (s) = 0 if s =

−2,−4, . . . ,−2(N − 1).

Remark 3. An alternative (and more direct) proof could have be used using the representation of the generalized Vander-
monde determinant given in lemma 3.1.
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2.2 Probabilistic Representation

We observe that det
(
V

(s)
N

)
(equation 6) is a generalized Vandermonde determinant. Using the argument used in ([8]),

we get the following lemma

Lemma 2.1. For N > 1, let

ΓN−1

(s
2

)
def
=

2

s

N−1∏
n=1

(
1 + 1

n

)s/2
1 + s

2n

, s 6= 0,−2,−4, . . .

then for all s ∈ C, s 6= −2,−4, . . . ,−2(N − 1) we have

det
(
V

(s)
N

)
=

2(N − 1)!

sΓN−1
(
s
2

) ∫ 22

1

dx1

∫ 32

22
dx2 . . .

∫ N2

(N−1)2
dxN−1

∏
1≤i<j≤N−1

(xj − xi)
N−1∏
n=1

(
xn

n(n+ 1)

)s/2
. (8)

Proof. Observe �rst that
(
sΓN−1

(
s
2

))−1 is de�ned for all N > 1 and all s ∈ C. Next, we have

det
(
V

(s)
N

)
=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
2−s 22 . . . 22(N−1)

3−s 32 . . . 32(N−1)

...
...

...
N−s N2 . . . N2(N−1)

∣∣∣∣∣∣∣∣∣∣∣
=

N∏
n=2

1

ns
×

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
1 22(1+s/2) . . . 22(N−1+s/2)

1 32(1+s/2) . . . 32(N−1+s/2)

...
...

...
1 N2(1+s/2) . . . N2(N−1+s/2)

∣∣∣∣∣∣∣∣∣∣∣
=

N∏
n=2

1

ns
×

∣∣∣∣∣∣∣∣∣
22(1+s/2) − 1 . . . 22(N−1+s/2) − 1

32(1+s/2) − 22(1+s/2) . . . 32(N−1+s/2) − 22(N−1+s/2)

...
...

...
N2(1+s/2) − (N − 1)2(1+s/2) . . . N2(N−1+s/2) − (N − 1)2(N−1+s/2)

∣∣∣∣∣∣∣∣∣

=

N−1∏
n=1

n+ s/2

(n+ 1)s
×

∣∣∣∣∣∣∣∣∣∣∣

∫ 22

1
x
s/2
1 dx1 . . .

∫ 22

1
x
N−2+s/2
1 dx1∫ 32

22
x
s/2
2 dx2 . . .

∫ 32

22
x
N−2+s/2
2 dx2

...
...

...∫ N2

(N−1)2 x
s/2
N−1dxN−1 . . .

∫ N2

(N−1)2 x
N−2+s/2
N−1 dxN−1

∣∣∣∣∣∣∣∣∣∣∣
=

N−1∏
n=1

n+ s/2

(n+ 1)s

∫ 22

1

dx1

∫ 32

22
dx2 . . .

∫ N2

(N−1)2
dxN−1

∣∣∣∣∣∣∣∣
x
s/2
1 . . . x

N−2+s/2
1

...
...

...
x
s/2
N−1 . . . x

N−2+s/2
N−1

∣∣∣∣∣∣∣∣
=

N−1∏
n=1

n+ s/2

(n+ 1)s

∫ 22

1

dx1

∫ 32

22
dx2 . . .

∫ N2

(N−1)2
dxN−1

∣∣∣∣∣∣∣
1 x1 . . . xN−21
...

...
...

...
1 xN−1 . . . xN−2N−1

∣∣∣∣∣∣∣
N−1∏
n=1

xs/2n

=
2(N − 1)!

sΓN−1
(
s
2

) ∫ 22

1

dx1

∫ 32

22
dx2 . . .

∫ N2

(N−1)2
dxN−1

∏
1≤i<j≤N−1

(xj − xi)
N−1∏
n=1

(
xn

n(n+ 1)

)s/2
.

LetDN−1(x;α,a), withα = (α1, α2, . . . , αN ), αn > 0 and a = (a1, a2, . . . , aN ) with a1 < a2 < . . . < aN , denote
the Dixon-Anderson probability density function (pdf) over the domainXN−1 = {a1 < x1 < a2 < . . . < xN−1 < aN}

4



(see [3] page 138)

DN−1(x;α,a) =
Γ
(∑N

n=1 αn

)
∏N
n=1 Γ(αn)

∏
1≤i<j≤N−1(xj − xi)∏

1≤i<j≤N (aj − ai)αj+αi−1

N−1∏
n=1

N∏
i=1

|xn − ai|αi−1. (9)

Taking α = 1N (i.e. α1 = α2 = . . . = αN = 1) and an = n2, n = 1, . . . , N , we get that

DN−1(x;α,a) = (N − 1)!

∏
1≤i<j≤N−1(xj − xi)∏
1≤i<j≤N (j2 − i2)

(10)

is a pdf overXN−1 =
{

1 < x1 < 22 < . . . < xN−1 < N2
}

. From the previous lemma, we obtain the following theorem

Theorem 3. Let X = (X1, . . . , XN−1) be a random vector with Dixon-Anderson distribution given by (10), then

1

s

1

ΓN−1
(
s
2

)E[N−1∏
n=1

(
Xn

n(n+ 1)

)s/2]
−→ η(s) as N →∞ (11)

uniformly on every compact subset of C.

Proof. Using the expression of det (VN ) given in equation (7) we �nd the expectation given in (11) for N �xed.
The Gamma function can be de�ned as an in�nite product for all complex numbers z except the non-positive integers

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

and for any s ∈ C (the case s = 0 is handled by continuity)

2

sΓN−1
(
s
2

) −−−−→
N→∞

1

Γ
(
1 + s

2

)
uniformly on every compact of C. For any s ∈ C, we have

ηN (s) =
1

2

det
(
V

(s)
N

)
det (VN )

=
1

s

1

ΓN−1
(
s
2

)E[N−1∏
n=1

(
Xn

n(n+ 1)

)s/2]

and thus the conclusion of theorem 1 occurs as well.

2.3 A Result Related to Theorem 3
One interesting fact about the Dixon-Anderson distribution given in (10) is that it is invariant under some linear trans-
formations. More precisely if X is a Dixon-Anderson random vector with pdf DN (x;α,a) and (u, v) ∈ R? × R then
Y = uX+ v1N is a Dixon-Anderson random vector with pdf DN (x;α, ua+ v1N ). Using this property we can renor-
malize the random vector X over [0, 1] by using the change of variable Y = (X − 1N−1)/(N2 − 1) giving us the
identity

ηN (s) =
1

sΓN−1
(
s
2

) ( (N2 − 1)(N−1)

N !(N − 1)!

) s
2

E

[
N−1∏
n=1

(
Yn +

1

N2 − 1

) s
2

]
.

We have the following theorem
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Theorem 4. Let ψN (x; s) denote the application

ψN (x; s) =
2

Γ
(
1 + s

2

) ( (N2 − 1)(N−1)

N !(N − 1)!

) s
2

E

[
N−1∏
n=1

∣∣∣∣Yn − x2 − 1

N2 − 1

∣∣∣∣ s2
]
.

Then for all n ∈ N?

ψN (n; s) −−−−→
N→∞

1

ns

and for n = 0
ψN (0; s) −−−−→

N→∞
η(s).

Proof. The case n = 0 is a consequences of the theorem 3. Let bn,N = n2−1
N2−1 for n = 1, . . . , N and YN−1 =

{0 = b1,N < y1 < b2,N < y2 < . . . < yN−1 < bN,N = 1}. Taking x = n we can compute the value of ψN (x; s). We
have

E

[
N−1∏
n=1

|Yn − bn,N |
s
2

]
=

(N − 1)!∏
1≤i<j≤N

(bj,N − bi,N )

∫
YN−1

dy
∏

1≤i<j≤N−1

(yj − yi)
N−1∏
k=1

|yk − bn,N |s/2.

The integral of the right hand side is (Consider the pdf given in (9) with αk = 1 if k 6= n and αk = 1 + s/2 otherwise)

∫
YN−1

dy
∏

1≤i<j≤N−1

(yj − yi)
N−1∏
k=1

(yk − bn,N )s/2

=
Γ
(
1 + s

2

)
Γ
(
N + s

2

) ∏
1≤i<j≤N

(bj,N − bi,N )

n−1∏
k=1

(bn,N − bk,N )
s/2

N∏
k=n+1

(bk,N − bn,N )
s/2

From this we deduce that when n 6= 1 we have

ψN (n; s) =

(∏n−1
k=1

(
n2 − k2

)∏N
k=n+1

(
k2 − n2

)
N !(N − 1)!

)s/2
Γ(N)

Γ
(
N + s

2

)
=

(
(N − n)!(N + n)!

n2N !(N − 1)!

)s/2
Γ(N)

Γ
(
N + s

2

)
=

(
1

|an,N |n2

)s/2
Ns/2 Γ(N)

Γ
(
N + s

2

)
with an,N de�ned in (2). In the case n = 1 we �nd directly

ψN (1; s) = N
s
2

Γ(N)

Γ
(
N + s

2

)
Taking the limit and observing that Γ

(
N + s

2

)
∼ Γ (N)Ns/2 as N → +∞ end the proof.
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3 Averaged Alternating Random Series

3.1 A generalization of proposition 2 and theorem 3
let s ∈ C with s 6= −2,−4, . . . ,−2(N − 1) and let u1 < u2 < . . . < uN be an increasing sequence of real numbers in
R?. From this sequence, we de�ne the N ×N generalized Vandermonde determinant

V
(s/2)
N (u) =

∣∣∣∣∣∣∣∣∣∣
u
−s/2
1 u1 u21 · · · uN−11

u
−s/2
2 u2 u22 · · · uN−12

...
...

. . .
...

...
u
−s/2
N uN u2N · · · uN−1N

∣∣∣∣∣∣∣∣∣∣
with u denoting the ordered vector (u1, . . . , uN )1.

Lemma 3.1. let u1 < u2 < . . . < uN be an increasing sequence of real numbers in R?. The following hold

V
(s/2)
N (u)

V
(0)
N (u)

=

N∑
n=1

(−1)n−1
1

u
s/2
n

∏
1≤j≤N
j 6=n

uj
|uj − un|

. (12)

Proof. Observe that V (0)
N (u) denotes the usual determinant of a Vandermonde matrix. Let us denote by V −nN the fol-

lowing determinant

V −nN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u21 · · · uN−11

u2 u22 · · · uN−12
...

...
...

...
un−1 u2n−1 · · · uN−1n−1
un+1 u2n+1 · · · uN−1n+1

...
...

...
...

uN u2N · · · uN−1N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, . . . , N.

Then, it is obvious that

V −nN =

 ∏
1≤j≤N
j 6=n

uj

V
(0)
N−1(u1, . . . , un−1, un+1, . . . , uN ).

By looking closely at the missing products, we obtain that

V −nN =

 ∏
1≤j≤N
j 6=n

uj

 V
(0)
N (u)∏n−1

j=1 (un − uj)
∏N
l=n+1(ul − un)

= (−1)n−1V
(0)
N (u)

∏
1≤j≤N
j 6=n

uj
uj − un

.

We have thus
V

(s/2)
N (u)

V
(0)
N (u)

=

N∑
n=1

(−1)n+1 1

u
s/2
n

V −nN

V
(0)
N (u)

=

N∑
n=1

1

u
s/2
n

∏
1≤j≤N
j 6=n

uj
uj − un

.

As the sequence (un, n = 1, . . . N) is strictly increasing, the sum (12) is alternating as announced.

1The reader will be aware that in section 2, V (s/2)
N represented a matrix, whereas from now the notation V

(s/2)
N (u) represents a determinant
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We have the following result which generalize theorem 3

Proposition 5. Let 0 < u1 < u2 < . . . < uN be an arbitrary increasing sequence of positive real number, let s ∈ C
with s 6= −2,−4, . . . ,−2(N − 1) and let X = (X1, . . . , XN−1) denote a random vector with Dixon-Anderson density
DN−1(x;1N−1,u) then

2

sΓN−1
(
s
2

)Ns/2E

[∏N−1
n=1 X

s/2
n∏N

n=1 u
s/2
n

]
=
V

(s/2)
N (u)

V
(0)
N (u)

=

N∑
n=1

(−1)n−1
1

u
s/2
n

∏
1≤j≤N
j 6=n

uj
|uj − un|

(13)

The proof follows the same steps as in lemma 2.1 and is left to the reader. The reader can also note that taking
un = n2 we get the expression obtained in section 2.2.

Remark 4. It is clear that if the left hand side of the equation (13) converges in some sense as N → ∞ to a well de�ned
function in s, then this function will be equal to 1 when s = 0 and equal to 0 when s = −2k, k ∈ N?.

Finally we note that a similar lemma have been proved in [2] using exponential random variables

Lemma 3.2. For (εn, 1 ≤ n ≤ N) independent standard exponential variables, and u1, u2, . . . , uN an arbitrary sequence
of numbers all distincts and strictly positive, if <(s/2) > −N

E

( N∑
n=1

εn
un

)s/2 = Γ
(

1 +
s

2

) N∑
n=1

(
1

un

)s/2 ∏
1≤j≤N
j 6=n

uj
uj − un

.

3.2 A family of joint density probability
Let u ∈ RN and x ∈ RN−1 be two interlacing vectors in the sense that they lie in the region X ′N de�ned as

X ′N = {0 < u1 < x1 < u2 < . . . < uN−1 < xN−1 < uN} .

Let g denote a positive function over R+ to be precised hereafter. We de�ne a joint density probability over X ′N by
putting

fX,U(x,u) =
(N − 1)!N !

ZN
V

(0)
N−1(x) V

(0)
N (u)

N∏
n=1

g(un)

= DN−1(x;1N−1,u)
N !

ZN

(
V

(0)
N (u)

)2 N∏
n=1

g(un). (14)

It is quite evident that if (X,U) are two random interlacing vectors with such distribution, then the distribution of X
conditional to U = u is a Dixon-Anderson random vector of density DN−1(x;1N−1,u). The marginal distributions
of X and U are obtained by integrating the probability density function (14) with respect to u and x respectively.
Integrating with respect to x, we �nd that the density of U is

fU(u) =
N !

ZN

(
V

(0)
N (u)

)2 N∏
n=1

g(un). (15)

over the domain UN = {0 < u1 < u2 < . . . < uN}. Note that, as fU is invariant under permutation, we have

Zn =

∫ ∞
0

du1 . . .

∫ ∞
0

dun

(
V

(0)
N (u)

)2 N∏
n=1

g(un)

8



assuming the integral exists. Thus if (X,U) are random vectors with joint probability density function (14) and s 6=
−2,−4, . . . ,−2(N − 1) then it follows from identity given in (13) that

2

sΓN−1
(
s
2

)Ns/2E

[∏N−1
n=1 X

s/2
n∏N

n=1 U
s/2
n

]
= E

[
V

(s/2)
N (U)

V
(0)
N (U)

]
(16)

assuming again that the expectations involved in this equality exist and are �nite.
There is two obvious choices for g allowing us to compute theses expectations: the Jacobi ensemble and the Laguerre

ensemble.

3.2.1 The Jacobi Ensemble

We set g(u) = ua−1(1 − u)b−11(0,1)(u) with a, b > 0. In this case, the distribution of U conditional to X = x is a
Dixon-Anderson random vector of densityDN (u; (a,1N−1, b), (0,x, 1)) and the marginal distribution of U is a Selberg
density SN (u; a, b, 1) (see [4]) with SN (u; a, b, λ) given by

SN (u; a, b, λ) =
N !

SN (a, b, λ)

(
V

(0)
N (u)

)2λ N∏
n=1

ua−1n (1− un)b−1 (17)

when supported on UN = {0 < u1 < u2 < . . . < uN < 1}. SN (a, b, λ) denotes the Selberg’s integral formula (see [1],
chapitre 8. We choose the de�nition given in this reference rather than the one given in [4]). We have thus

ZN = SN (a, b, 1) =

N−1∏
n=0

Γ(a+ n)Γ(b+ n)Γ(2 + n)

Γ(a+ b− 1 +N + n)

Integrating (14) with respect to u gives the marginal density of X

fX(x; a, b) =
(N − 1)!N !

SN (a, b, 1)

Γ(a)Γ(b)

Γ(a+ b− 1 +N)

(
V

(0)
N−1(x)

)2 N−1∏
n=1

xan(1− xn)b

=
(N − 1)!

SN−1(a+ 1, b+ 1, 1)

(
V

(0)
N−1(x)

)2 N−1∏
n=1

xan(1− xn)b (18)

i.e. the marginal density of X is the Selberg density SN−1(x; a+ 1, b+ 1, 1) supported over

XN−1 = {0 < x1 < x2 < . . . < xN−1 < 1} .

3.2.2 The Laguerre Ensemble

We set now g(u) = ua−1e−u/b1(0,+∞)(u) with a, b > 0. The joint density of (X,U) can be obtained as a limit of the
Jacobi ensemble case by changing variables un = vn/L, xn = yn/L, replacing b − 1 by L/θ and by taking the limit
L→∞. We have in this case

ZN = WN (a, θ) = lim
L→∞

SN (a, L/θ + 1, 1)

L(a+N)N
= θ(a+N)N

N−1∏
n=0

Γ(a+ n)Γ(2 + n).

The marginal distribution of U is a Laguerre density

L(u; a, θ) =
N !

WN (a, θ)

(
V

(0)
N (u)

)2 N∏
n=1

uane
−un/θ

9



supported on UN = {0 < u1 < u2 < . . . < uN < 1}. Integrating (14) with respect to u gives the marginal density of
X

fX(x; a, θ) =
(N − 1)!N !

WN (a, θ)
θa+NΓ(a)

(
V

(0)
N−1(x)

)2 N−1∏
n=1

xane
−xn/θ

=
(N − 1)!

WN−1(a+ 1, θ)

(
V

(0)
N−1(x)

)2 N−1∏
n=1

xane
−xn/θ (19)

i.e. the marginal density of X is a Laguerre density LN−1(x; a+ 1, θ).

3.3 Main Result
Theorem 6. Let a, b, θ > 0 and <(a − s/2) > 0 and let U be a random vector of RN . If the distribution of U is the
Selberg density SN (u; a, b, 1) supported on UN = {0 < u1 < u2 < . . . < uN < 1} then

E

[
V

(s/2)
N (U)

V
(0)
N (U)

]
=

2Ns/2

sΓN−1(s)

Γ (a+ b− 1 +N)

Γ
(
a− s

2 + b− 1 +N
) Γ
(
a− s

2

)
Γ(a)

.

If the distribution of U is the Laguerre ensemble density L(u; a, θ) supported on U ′N = {0 < u1 < u2 < . . . < uN} then

E

[
V

(s/2)
N (U)

V
(0)
N (U)

]
=

2

sΓN−1(s)

(
N

θ

)s/2 Γ
(
a− s

2

)
Γ(a)

.

Proof. We have

E

[
V

(s/2)
N (U)

V
(0)
N (U)

]
=

2

sΓN−1
(
s
2

)Ns/2E

[∏N−1
n=1 X

s/2
n∏N

n=1 U
s/2
n

]

=
2Ns/2

sΓN−1
(
s
2

)N !(N − 1)!

ZN

∫
X ′N

∏N−1
n=1 x

s/2
n∏N

n=1 u
s/2
n

V
(0)
N−1(x) V

(0)
N (u)

N∏
n=1

g(un)dudx.

We integrate with respect to u. In the Jacobi ensemble case, we get

E

[
V

(s/2)
N (U)

V
(0)
N (U)

]
=

2Ns/2

sΓN−1
(
s
2

)N !(N − 1)!

SN (a, b, 1)

Γ
(
a− s

2

)
Γ(b)

Γ
(
a− s

2 + b− 1 +N
) ∫
XN

(
V

(0)
N−1(x)

)2 N∏
n=1

xan(1− xn)bdx

=
2Ns/2

sΓN−1
(
s
2

) N !

SN (a, b, 1)

Γ
(
a− s

2

)
Γ(b)

Γ
(
a− s

2 + b− 1 +N
)SN−1(a+ 1, b+ 1, 1)

giving after some elementary simpli�cations the announced result. The Laguerre ensemble case can be obtain either by
integration, or by replacing b− 1 by L/θ and by taking the limit L→∞. We let the details to the reader.

Finally, we have the following corollary

Corollary 7. Let a, b, θ > 0 and <(a− s/2) > 0. Then

∫ 1

0

du1 . . .

∫ 1

0

dunV
(s/2)
N (u)V

(0)
N (u)

N∏
n=1

ua−1n (1− un)b−1

=
2Ns/2SN (a, b, 1)

sΓN−1(s)

Γ (a+ b− 1 +N)

Γ
(
a− s

2 + b− 1 +N
) Γ
(
a− s

2

)
Γ(a)
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and

∫ ∞
0

du1 . . .

∫ ∞
0

dunV
(s/2)
N (u)V

(0)
N (u)

N∏
n=1

ua−1n e−un/θ

=

N−1∏
n=0

Γ(a+ n)Γ(2 + n)
2θ(a+N)N

sΓN−1(s)

(
N

θ

)s/2 Γ
(
a− s

2

)
Γ(a)

.

4 Conclusion
It is well-known, even if it is not well understood, that there is a connection between the random matrix theory and the
Zeta function. For example, Keating and its co-authors ([5]) successfully use the characteristic polynomials Z(U, θ) of
matrices U in the Circular Unitary Ensemble (CUE) to study the behavior of the correctly renormalized integral∫ T

0

|ζ(1/2 + it)|2λdt

Our work seems to be a �rst step in explaining this connection. The Selberg integral plays a fundamental role in the
theory of the various β-ensembles (see [3]) and the Dixon-Anderson probability distribution function is an intermediate
step to the Selberg’s integral evaluation.

We hope that the results presented in this article will pave the way for a deeper understanding of the links between
these two �elds.
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A Partial fraction decomposition

Let Q be a polynomial of degree N such that Q(x) =
∏N
n=1(x− xn) with xi 6= xj if i 6= j and let Ln(x), n = 1, . . . N

denote the Lagrange’s polynomials

Ln(x) =

N∏
j=1, j 6=n

x− xj
xn − xj

.

If P is a polynomial of degree strictly less than N then by the Lagrange interpolation formula, it can be written as

P (x) =

N∑
n=1

P (xn)Ln(x).

From this, we deduce the partial fraction expansion of P/Q

P (x)

Q(x)
=

N∑
n=1

P (xn)
Ln(x)

Q(x)
=

N∑
n=1

cn
x− xn

with
cn =

P (xn)∏N
j=1, j 6=n(xn − xj)

=
P (xn)

Q′(xn)
.

B Inverse of the Vandermonde’s matrix
The proof of this formula can be found athttps://proofwiki.org/wiki/Inverse_of_Vandermonde_
Matrix and is proposed as Exercise 40 from section 1.2.3 in [6]. Consider the Vandermonde’s matrix

VN (x1, . . . , xN ) =


1 x1 x21 · · · xN−11

1 x2 x22 · · · xN−12
...

...
. . .

...
...

1 xN x2N · · · xN−1N

 (20)

Assume xi 6= xj if i 6= j, then the Vandermonde Determinant of VN is

det (VN (x1, . . . , xN )) =
∏

1≤ i < j≤N

(xj − xi) 6= 0.

Since this is non-zero, the inverse matrix, denotedWN = [wij ], is guaranteed to exist. Using the de�nition of the matrix
product and the inverse matrix

N∑
k=1

xk−1i wkj = δij .

For 1 ≤ n ≤ N , if Pn (x) is the polynomial

Pn (x) :=

N∑
k=1

wknx
k−1

then Pn (x1) = 0, . . . , Pn (xn−1) = 0, Pn (xn) = 1, Pn (xn+1) = 0, . . . , Pn (xN ) = 0. By the Lagrange’s interpolation
formula, the nth column of WN is composed of the coe�cients of the nth Lagrange basis polynomial

12
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Pn (x) =

N∑
k=1

wknx
k−1 =

∏
1≤ j≤N
j 6=n

x− xj
xn − xj

.

We can identify the terms wij by expanding the product. In particular, setting x = 0, we get that the constant of the
polynomials are

w1n =
∏

1≤ j≤N
j 6=n

−xj
xn − xj

=
∏

1≤ j≤N
j 6=n

xj
xj − xn

, n = 1, . . . , N.

C An other determinant representation
In this part we will show the following result:

Proposition 8. if s 6= 0, then

ηN (s) =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + 1
λ2,N

−1 0 . . . 0

−λ2,N

λ3,N
1 +

λ2,N

λ3,N

. . . 0

0
...

...
. . . . . . . . . 0

0
. . . 1 +

λN−2,N

λN−1,N
−1

0 . . . 0 −λN−1,N

λN,N
1 +

λN−1,N

λN,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(21)

with λ−1n,N = 2an,N (n−s − 1).

Proof. Let WN denote V −1N , then |V (s)
N WN | = |V (s)

N | × |WN | = |V (s)
N |/|VN |. Some elementary algebra shows that

V
(s)
N WN is equal to the matrix

V
(s)
N WN =


1 0 0 . . . 0

w11(2−s − 1) 1 + w12(2−s − 1) w13(2−s − 1) . . . w1N (2−s − 1)
w11(3−s − 1) w12(3−s − 1) 1 + w13(3−s − 1) . . . w1N (3−s − 1)

...
...

...
w11(N−s − 1) w12(N−s − 1) w13(N−s − 1) . . . 1 + w1N (N−s − 1)

 .

Appendix B reveals that w1,n = 2an,N for n = 1, . . . , N . If s = 0, we get the identity matrix as expected, otherwise if
s 6= 0, ηN (s) can be written as

ηN (s) =
1

2

N∏
n=2

2an,N (n−s − 1)

∣∣∣∣∣∣∣∣∣∣
1 + 1

2a2,N (2−s−1) 1 . . . 1

1 1 + 1
2a3,N (3−s−1) . . . 1

...
. . .

...
1 1 . . . 1 + 1

2aN,N (N−s−1)

∣∣∣∣∣∣∣∣∣∣
. (22)
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Setting λ−1n,N = 2an,N (n−s − 1) and using Gaussian elimination method2 we get

ηN (s) =
1

2

N∏
n=2

λ−1n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λ2,N −λ2,N 0 . . . . . . 0

−λ2,N λ2,N + λ3,N
. . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . λN−1,N + λN−2,N −λN−1,N

0 . . . 0 −λN−1,N λN−1,N + λN,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

ending the proof.

Remark 5. It is tempting to �nd a condition on the coe�cients of the determinant (22) in order to �nd when it is zero.
Lemma D.1 is equivalent to ηN (s) = 0 if and only if 2

∑N
n=2 an,N (n−s − 1) = −1. As

∑N
n=1 an,N = 1/2, this equality

can be rewritten
∑N
n=2 an,Nn

−s = −a1,N which is not really helpful !

Assume s 6= 0, then, setting ∆0,N = 0, ∆1,N = 1, the determinant appearing in equation (21) can be computed
using the recurrence relation

∆n,N =

(
1 +

λn−1,N
λn,N

)
∆n−1,N −

λn−1,N
λn,N

∆n−2,N , n = 2, . . . , N (D)

with the convention λ1,N = 1.

Proposition 9. Let

β2,N =
1

λ2,N
and βn,N =

λn−1,N
λn,N

, n = 3, . . . , N

and let ∆̃n,N denote the solution of the recurrence equation (D) with initial conditions ∆̃0,N = 1 and ∆̃1,N = 0. Then (see
[7], p. 15 for the continued fraction representation) for n = 2, . . . , N , we have

∆n,N = 1 +

n−2∑
k=0

βn−k . . . β2 = 1 +

n∑
k=2

λ−1k,N , n = 2, . . . , N,

and

∆̃n,N = −
n−2∑
k=0

βn−k . . . β2 = −
n∑
k=2

λ−1k,N , n = 2, . . . , N.

Thus ∆N,N = 2ηN (s), ∆̃N,N = 1− 2ηN (s) and

1

2ηN (s)
= 1 +

1− β2,N
β2,N+

1− β3,N
β3,N+

. . .
1− βN−1,N

βN,N
.

D About the rank of a class of matrix
Lemma D.1. If A is a K × K matrix with coe�cients aij = 1 if i 6= j and aii = 1 + λi with λi 6= 0 otherwise, then
|A| = 0 if and only if

∑K
i=1 λi

−1 = −1.
2From last rows/columns to bottom: (cN−1 − cN−2, lN−1 − lN−2, cN−2 − cN−3,..., c1 − c2, l1 − l2)
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Proof. |A| = 0 if and only if there exists K numbers (α1, . . . , αN ) such that for some i, αi 6= 0 and such that∑N
j=1 αjA

j = 0, where Aj denotes the jth column of A. Thus we have

αiλi = −
K∑
j=1

αj , i = 1, . . . ,K.

By assumption, all λi are di�erent from zero and for some i ∈ {1, . . . ,K} there exists αi 6= 0. This implies �rst that∑K
j=1 αj 6= 0 and second that in fact all αi are di�erent from 0. We get the identity

−αi∑K
j=1 αj

=
1

λi
, i = 1, . . . ,K.

Summing we obtain the announced result.

Lemma D.2. Let A is a K × K matrix with coe�cients aij = 1 if i 6= j and aii = 1 + λi with λi 6= 0 otherwise. If
S = 1 +

∑K
i=1 λi

−1 6= 0 then B = A−1 exists with coe�cients bij = − 1
Sλiλj

if i 6= j and bii = 1
λi
− 1

Sλ2
i
otherwise.

Proof. Let Sj =
∑K
i=1 bij , if Bj denotes the jth column of B, identity ABj = ej show that{

Sj + λibij = 0 if i 6= j
Sj + λjbjj = 1 otherwise.

Thus bij = −Sj/λi if i 6= j and bjj = (1 − Sj)/λj . Summing and equating, we �nd that Sj = 1/(Sλj) giving the
announced result.
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