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ABSTRACT 

Merheb, A. R., Noura, H., & Bateman, F. (2021). Mathematical Modeling of Ecological 

Systems Algorithm. Lebanese Science Journal, 22(2), 209 - 231. 

 

In this paper, the mathematical modeling of a new bio-inspired evolutionary search 

algorithm called Ecological Systems Algorithm (ESA) is presented. ESA imitates ecological 

rules to find iteratively the optimum of a given function through interaction between predator 

and prey search species. ESA is then compared to the well-known Genetic Algorithm which is a 

powerful bio-inspired stochastic search/optimization algorithm used for decades. Simulation 

results of the two algorithms optimizing ten different benchmark functions are used to 

investigate and compare both algorithms based on their speed, performance, reliability, and 

efficiency. 

Keywords: Ecological Systems Algorithm, Genetic Algorithms, Benchmark functions, 

Swarm Intelligence, Bio-Inspired Algorithms. 

 

INTRODUCTION 

Swarm intelligence is an evolutionary computation scientific discipline inspired by 

insect colonies where a single individual has simple and naive behavior that takes trivial 

actions based on the processing of many sensor inputs. However, the interaction between the 

individuals produces an intelligent collective behavior that allows insect societies to find 

optimal solutions for their daily life problems. Scientists imitate social behavior of insects, 

and form decentralized systems of many autonomous individuals with naive actions 

distributed in the environment. The result was intelligent systems that are able to solve 
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different problems with remarkable flexibility, efficiency, and robustness (Garnier et al., 

2007). 

In (Zuo et al., 2017), the fruit Fly Optimization Algorithm (FOA), which is a global 

optimization algorithm that mimics the foraging behavior of a fruit fly swarm, is improved 

for multiobjective optimization problems. The new algorithm, called Stochastic Fractal based 

Multiobjective fruit Fly Optimization Algorithm (SFMOFOA), improves the convergence 

performance of classic FOA algorithm by the introduction of a food source generating 

method using a stochastic fractal with an adaptive parameter updating strategy. The selection 

process of FOA is updated with the Pareto domination concept in order to deal with 

multiobjective optimization problems. The performance of the new algorithm is tested 

through its application to eighteen different benchmark functions, and results are used to 

compare the new algorithm with four state of the art search methods. Numerical results show 

that the new algorithm has competitive performance, and that it is able to converge, with 

good distributions, to the Pareto fronts of the benchmark functions. In (Lamy, 2018), authors 

propose a new biologically inspired metaheuristic called Artificial Feeding Birds (AFB). The 

new algorithm is inspired by the simple behavior of birds searching for food. The new 

algorithm is compared with four well established biologically inspired search algorithms 

based on their results in optimizing several benchmark functions and the training of artificial 

neural networks. AFB is shown to give equivalent or better results produced with Artificial 

Bee Colony (ABC), Firefly Algorithm (FA), Genetic Algorithm (GA) and Ant Colony 

Optimization (ACO). The relationship between predator and prey individuals is used to 

update the well-known Particle Swarm Optimization (PSO) algorithm in (Zhang et al., 2018). 

Two search groups are generated in the new algorithm where three strategies are added to the 

properties of search particles: catch, escape and breeding.  Moreover, a proportional-integral 

(PI) control is used to control the number of population so it fluctuates but stays within a 

relative stability, enhancing population diversity. Testing the new algorithm on 40 benchmark 

functions with different dimensions shows the superior performance of the new algorithm in 

comparison with ten other search algorithms.  

The interaction between two predator-prey or more species in an ecosystem is 

described by the Lotka-Volterra equations, also known as the predator-prey equations. Lotka-

Volterra equations are a set of two nonlinear, first order differential equations that explain the 

population change or the dynamics of biological systems. These equations are used not only 

in biological, ecological and environmental literature, but also in other fields such as 

atmospheric chemistry, urban growth studies, tourist industry, and economics. In economics, 

prey-predator equations based economic models are used to study the complex relations 

between economy, population, labor and capital (Puliafito et al., 2008). 

In this paper, the Ecological Systems Algorithm (ESA) is modeled mathematically. 

Equations needed to update the positions and the health of search individuals is presented in 

detail. Moreover, a primitive comparison between ESA and the Genetic Algorithm using ten 

different benchmark functions is also presented. ESA was first developed in 2012 as an 

intelligent tool to tune the fault tolerant controllers of quadrotor Unmanned Aerial Vehicles 

(UAVs). Several papers have been published using ESA as tuning tool for different Active 
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and Passive Fault tolerant Controllers for quadrotor and octorotor UAVs. However, this is the 

first paper that models ESA mathematically and explains it in detail. The algorithm modeled 

here differs from the work presented in (Zhang et al., 2018) in many aspects. First, ESA is an 

independent algorithm that has its own strategies and steps and is not an improvement of an 

existing algorithm. ESA presents an algorithm that resembles to interacting animals in an 

environment, where each search individual moves in naive steps but the interaction among 

different individuals and between the individuals and their environment produces the 

intelligent behavior of the algorithm. Moreover, ESA has a simple position update technique 

that does not depend on the velocity vector as in PSO.  

The rest of the paper is organized as follows: Section 2 explains the Ecological 

Systems Algorithm and models it mathematically. In Section 3, ten benchmark functions used 

in global optimization problems are defined and used to evaluate ESA and compare it with 

the Genetic Algorithms (GA). The two algorithms are compared regarding speed, reliability, 

and efficiency. Finally, a summary of the work with some future ideas is stated in the 

conclusion.   

MATERIAL AND METHODS 

In this section, the Ecological Systems Algorithm is explained and modeled mathematically. 

Next, ten benchmark functions used in global optimization problems are defined and used to 

evaluate ESA and compare it with the Genetic Algorithms (GA).  

Ecological systems algorithm  

Ecological Systems Algorithm is a biologically inspired algorithm that uses natural 

selection applied on larger scale. Search individuals of ESA are neither genes like in Genetic 

Algorithms nor bacteria like in Bacterial Foraging Algorithm (Passino and Liu, 2002), but 

larger creatures like mammals and birds. Moreover, the search here is realized using two 

search individual species, predators (predator in Latin) and preys (Litatio in Latin) 

(Beauchamp et al., 2007). The fitness function is optimized by the interaction between these 

two species.  

Equation (1) defines the search species in ESA which are predator and prey (or litatio) 

species. 

𝑷𝒋
𝒊(𝒙𝒋

𝒊, 𝒚𝒋
𝒊, 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

𝑳𝒋
𝒊(𝒙𝒋

𝒊, 𝒚𝒋
𝒊, 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

 (1) 

Where 𝑃𝑗
𝑖 denotes the predator 𝑗 at iteration 𝑖, and 𝐿𝑗

𝑖  denotes the prey 𝑗 at iteration 𝑖. 

Each individual has its own variables that define its location, health, and age situation. 𝑥𝑗
𝑖, 𝑦𝑗

𝑖 

are the coordinates of individual 𝑗 in iteration 𝑖, while 𝐻𝑗
𝑖 and 𝐴𝑗

𝑖 are respectively the health 

and age of individual 𝑗 in iteration 𝑖.  
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ESA Initialization 

The algorithm starts by the generation of the two search species with random 

positions and health values and an age value equal to zero as presented is equation (2). 

 

𝑷𝒋
𝟎(𝒙𝒋

𝟎, 𝒚𝒋
𝟎, 𝑯𝒋

𝟎, 𝑨𝒋
𝟎 = 𝟎)

𝑳𝒋
𝟎(𝒙𝒋

𝟎, 𝒚𝒋
𝟎, 𝑯𝒋

𝟎, 𝑨𝒋
𝟎 = 𝟎)

    (2) 

 

Here, 𝑗 = 1, 2, … . , 𝑆𝑝 for the predator species, and 𝑗 = 1, 2, … . , 𝑆𝑙 for the prey 

species. 𝑆𝑝 and 𝑆𝑙 are respectively the number of predators and preys in their species. 

Equation (3) shows the random generation of the initial coordinates of each individual along 

with its initial health. The initial coordinates of each individual as well as its initial health 

value are chosen randomly but within the search boundaries and the maximum allowed health 

value. 

𝒙𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝑿)

𝒚𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝒀)

𝑯𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝑯)

  (3) 

Where 𝑚𝑎𝑥𝑋, 𝑚𝑎𝑥𝑌, and 𝑚𝑎𝑥𝐻 are respectively the maximum allowed 𝑥 and 𝑦 

coordinate values, and maximum allowed health value. After the generation of the initial 

search species, ESA starts its iterations to search for an optimal solution to the problem. Each 

iteration in ESA applies five different steps -which denote the five ecological rules- in its 

struggling to solve the optimization problem. Each iteration starts with the age update step, 

continues with the position update step, the health update step, and the reproduction step, and 

ends with the demise step. Several search variables are initialized before ESA ecological 

steps are repeated iteratively. The maximum individual age, the individual step sizes, the 

rates at which the health of an individual increases or decreases, the minimum health value 

that allows an individual to breed, the minimum health for an individual to survive, and the 

effective nutrient density thresholds are all initialized before the search starts. These variables 

will be defined in some details in the ESA ecological steps. 

ESA ecological steps 

The nutrient density at the prey location is directly related to the function under test. If 

ESA is used to optimize a two-dimensional function𝑓(𝑥, 𝑦) for example, the nutrient density 

that a prey individual 𝐿𝑗
𝑖(𝑥𝑗

𝑖 , 𝑦𝑗
𝑖, 𝐻𝑗

𝑖 , 𝐴𝑗
𝑖) examines is the value of the optimized function at its 

location or 𝑓(𝑥𝑗
𝑖 , 𝑦𝑗

𝑖). To weight an iteration, the nutrient density values of all existing prey 

individuals are used to evaluate a given fitness value. A suitable fitness function is the 

average nutrient density of all existing prey individuals. The fitness value of an iteration can 

be used to stop the search. If the fitness value of a given iteration is high, it means that most 
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of the prey search individuals are located in a high nutrient value location and thus optimal 

solution is found.  

 Age update step 

At each iteration, the age of each individual in both search species is increased by 

one. Equation (4) depicts the increase in age for individual 𝑗 at iteration 𝑖 + 1. 

𝑨𝒋
𝒊+𝟏 = 𝑨𝒋

𝒊 + 𝟏  (4) 

The age update step of individual 𝑗 continues until 𝐴𝑗
𝑖 = 𝑁 where 𝑁 is a variable 

chosen at the beginning of the search and defines the maximum age allowed for an 

individual. When the age of an individual reaches 𝑁, the individual expires after the 

application of the demise step. 

 Position update step 

At each iteration, individuals in the two search species change their positions in a 

random manner (Beauchamp et al., 2007). Any search individual 𝑗 updates its coordinates 

based on its previous position and a random number related to the maximum allowed step 

size in 𝑥 and 𝑦 directions as shown in equation (5). 

𝒙𝒋
𝒊+𝟏 = 𝒙𝒋

𝒊 + 𝑹𝒂𝒏𝒅𝒙𝒋 × 𝑺𝒕𝒆𝒑𝒙

𝒚𝒋
𝒊+𝟏 = 𝒚𝒋

𝒊 + 𝑹𝒂𝒏𝒅𝒚𝒋 × 𝑺𝒕𝒆𝒑𝒚
    (5) 

Where 𝑅𝑎𝑛𝑑𝑥𝑗 and 𝑅𝑎𝑛𝑑𝑦𝑗 are random numbers between 0 and 1 from a standard 

uniform distribution function generated for individual 𝑗 before applying the position update 

step, and 𝑆𝑡𝑒𝑝𝑥  and 𝑆𝑡𝑒𝑝𝑦 are the step size of the individuals. Note that the step sizes of the 

predator and prey species could be chosen equal or different. Thus, it is more appropriate to 

choose 𝑆𝑡𝑒𝑝𝑥𝑝, 𝑆𝑡𝑒𝑝𝑦𝑝 as step size of the predator individuals, and 𝑆𝑡𝑒𝑝𝑥𝑙, 𝑆𝑡𝑒𝑝𝑦𝑙  as the step 

size of the prey individuals.  

 Health update step 

The health variable of each individual is updated based on the interaction between the 

individual with its environment. The first effective agent on the health of a prey is its 

position. If the new position of a prey has higher nutrient density value compared with its 

previous position, the health of the individual increases with a predefined scale. On the other 

hand, if the new position has worse nutrient density value the prey health decreases. The 

health update step for a prey individual is presented in equation (6). 

 

            

𝑯𝒋
𝒊+𝟏 = 𝑪𝒋

𝒊+𝟏 × 𝑯𝒋
𝒊

𝒘𝒊𝒕𝒉 {
𝑪𝒋
𝒊+𝟏 > 𝟏, 𝒊𝒇𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊+𝟏 > 𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊

𝑪𝒋
𝒊+𝟏 < 𝟏, 𝒊𝒇𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊+𝟏 < 𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊

 (6) 
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Where 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖 is the nutrient density at the prey location in the previous iteration. 

The value of 𝐶𝑗
𝑖+1 should be chosen before the start of the search, and it indicates the rate at 

which the health of a prey individual increases or decreases related to its new position. In 

order to add the swarm effect to the health update step for a prey individual, the variables 

𝐸𝑝𝑠𝑛 and 𝐺𝑛 are added. If the nutrient density in the prey location is less than the threshold 

𝐸𝑝𝑠𝑛 (nutrient is scarce), the prey health decreases even if it comes from a location with less 

nutrient density. This situation indicates that the nutrient is not enough for the whole swarm, 

which results in famine. On the other hand, if the nutrient density in the prey location is more 

than 𝐺𝑛 (nutrient is plenty), the prey health increases even if it comes from a better location. 

This situation indicates that the nutrient is plenty for the whole swarm, and all the preys 

forage and increase their health. The prey health update in (6) is applied when the individual 

does not exist in the vicinity of a predator. If a predator is very close to the prey individual, 

the predator will attack the prey which will affect the health of the prey individual. If the 

health of the prey is less than the health of the predator, the latter one manages to eat the 

prey. This means that the health of the prey individual is decreased to zero which results in 

the prey death in the demise step. On the other hand, if the prey has greater health value, it 

manages to escape but with some injuries that decrease its health.  Note that in case more 

than one predator exist at the vicinity of a prey, the closest predator is the one eligible for 

prey attack. Equation (7) shows the health update step for a prey individual in the vicinity of 

a predator individual. 

𝑯𝒋
𝒊+𝟏 = 𝑪𝒋

𝒊+𝟏 × 𝑲𝒋
𝒊+𝟏 × 𝑯𝒋

𝒊

𝒘𝒊𝒕𝒉 {

𝑲𝒋
𝒊+𝟏 = 𝟎, 𝒊𝒇𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒅

𝒊 >𝑯𝒋
𝒊

𝑲𝒋
𝒊+𝟏 = 𝟏, 𝒊𝒇𝒏𝒐𝒄𝒍𝒐𝒔𝒆𝒑𝒓𝒆𝒅𝒂𝒕𝒐𝒓𝒆𝒙𝒊𝒔𝒕𝒔

𝑲𝒋
𝒊+𝟏 < 𝟏, 𝒊𝒇𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒅

𝒊 <𝑯𝒋
𝒊

 (7) 

Where 𝐶𝑗
𝑖+1 is chosen according to the criteria in the previous set of equations, and 

𝐾𝑗
𝑖+1 ≠ 0 indicates the rate at which the health of the prey decreases when it manages to 

escape from the predator attack. Needless to state that 𝐾𝑗
𝑖+1 should be chosen at the 

initialization stage.  

For the predator individuals, the health update step is simple and straight forward as 

shown in equation (8).  

 

𝑯𝒋
𝒊+𝟏 = 𝑴𝒋

𝒊+𝟏 × 𝑯𝒋
𝒊

𝒘𝒊𝒕𝒉 {
𝑴𝒋

𝒊+𝟏 < 𝟏, 𝒊𝒇𝑯𝒋
𝒊 <𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒚

𝒊 𝒐𝒓𝒏𝒐𝒄𝒍𝒐𝒔𝒆𝒑𝒓𝒆𝒚𝒆𝒙𝒊𝒔𝒕𝒔

𝑴𝒋
𝒊+𝟏 > 𝟏, 𝒊𝒇𝑯𝒋

𝒊 >𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒚
𝒊

  (8) 

 

The equation above means that at a given iteration, if no prey is close to a predator 

individual the health of the predator decreases severely as a result of famine. In addition, if 
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there is a very healthy prey close to the predator individual, the prey is able to escape and the 

predator does not forage resulting in a decrease in its health. On the other hand, if there is a 

weak prey close to the predator, the predator manages to eat the prey and increases its health 

by a factor of 𝑀𝑗
𝑖+1 > 1.  

Reproduction step 

The reproduction step is responsible for increasing the number of individuals in a 

search species. A prey individual breeds in a new iteration if its health is higher than a given 

threshold, and if it moves to a better location with higher nutrient density. On the other hand, 

a predator individual breeds in an iteration if it manages to eat a prey and if its health is 

higher than a given threshold. For a prey individual, the reproduction step is as follows 

Algorithm 1 Prey Reproduction 

 

1. while not all prey individuals are visited do 

2. for individual j, if  𝐶𝑗
𝑖 > 1 and 𝐻𝑗

𝑖 > 𝐵𝑟𝑒𝑒𝑑𝐻𝑙  

3. Breed a prey baby 𝑥𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑥𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑦𝑗

𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗
0 = 𝑟𝑎𝑛𝑑 

4. 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖 (𝑥𝑏𝑎𝑏𝑦𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗

0 , 0) 

5. Return 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖  

6. end while  

Where 𝐶𝑗
𝑖 > 1  indicates that the prey individual j moves to a new nutrient rich 

location in step i, and 𝐵𝑟𝑒𝑒𝑑𝐻𝑙 is the health value that allows a prey to breed and is chosen at 

the beginning of the search. The algorithms in this paper are inspired by the work done by 

Parpinelli (Parpinelli and Lopes, 2011) and Neumann (Neumann and Witt, 2010). Similarly, 

the reproduction step of a predator individual is summarized as follows (Zeigler et al., 1978) 

Algorithm 2 Predator Reproduction 

 

1. while not all predator individuals are visited do 

2. for individual j, if  𝑀𝑗
𝑖 > 1 and 𝐻𝑗

𝑖 > 𝐵𝑟𝑒𝑒𝑑𝐻𝑝  

3. Breed a predator baby 𝑥𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑥𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑦𝑗

𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗
0 = 𝑟𝑎𝑛𝑑 

4. 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖 (𝑥𝑏𝑎𝑏𝑦𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗

0 , 0) 

5. Return 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖  

6. end while 

Here 𝑀𝑗
𝑖 > 1 means that the predator j has foraged in iteration i, and 𝐵𝑟𝑒𝑒𝑑𝐻𝑝 is the 

minimum health value that allows the predator to breed. Needless to say that if a species 

reaches its maximum allowed number of individuals, the reproduction step is not applied. 

This can be seen in the conditions PredatorIndividualnumber < 𝑆𝑝 and 

PreyIndividualnumber < 𝑆𝑙 in Algorithms 1 and 2.  

Demise step 

The demise step is very important in the Ecological Systems Algorithm since it 

ensures the elimination of weak individuals in both search species. After several iterations, 
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the prey individuals that have moved from bad to better locations (locations with higher 

nutrient density) get their health values increased. On the other hand, prey individuals that 

have moved to worse locations experience a decrease in their health values. In the demise 

step, individuals with health values less than a given threshold or that have reached their 

maximum iteration age vanish. This ensures that only individuals that have found optimal 

locations survive for the next set of iterations. After enough number of iterations, all prey 

individuals will be gathered in the optimal location since individuals in bad locations are not 

allowed to breed and vanish with iterations. The demise step for prey individuals can be 

summarized as in Algorithm 3.  

Algorithm 3 Demise Step 

 

1. while not all prey individuals are visited do 

2. for individual j, if  𝐴𝑗
𝑖 ≥ 𝑁 or 𝐻𝑗

𝑖 < 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙  

3. Prey j is eliminated 𝐿𝑗
𝑖+1(0,0,0,0) 

4. Return 𝐿𝑗
𝑖+1 

5. end while 

Where 𝐴𝑗
𝑖 is the age of individual 𝑗 at iteration 𝑖, 𝐻𝑗

𝑖 is its health, and 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙is the 

minimum health for prey individuals to be alive. For predator species, Algorithm 3 is also 

applied but with 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙 is replaced by 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑝. 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙 and 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑝 are design 

values chosen at the beginning of the optimization process.  

Note that ESA for two-dimensional problem search is explained here since it is more 

conventional and resembles to the real search of animal species in their environments. For 

ESA searching a space of dimension 𝐷, the initial search species are 

𝑷𝒋
𝒊(𝒙𝟏𝒋

𝒊 , 𝒙𝟐𝒋
𝒊 , 𝒙𝟑𝒋

𝒊 , … . . , 𝒙𝑫𝒋
𝒊 , 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

𝑳𝒋
𝒊(𝒙𝟏𝒋

𝒊 , 𝒙𝟐𝒋
𝒊 , 𝒙𝟑𝒋

𝒊 , … . . , 𝒙𝑫𝒋
𝒊 , 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

 (9) 

Where 𝑥1, 𝑥2,..., 𝑥𝐷 are the coordinates of the predator and prey search individuals in 

𝐷 dimensions. 

In addition to the regular ecological steps, dispersal property could be added to the 

algorithm by changing the health update step for prey individuals. The dispersal property 

gives the algorithm more chance to discover new regions in the search space that were 

initially far from being tested. Moreover, the dispersal property helps avoiding the local 

minima problem in ESA with prey individuals, located in local optimal locations, escape their 

locations and start exploring new scopes. The dispersal property can be summarized as 

follows: whenever a prey individual is attacked and survived the attack, it is made to move 

with greater speed and in a random position. The health update step with dispersal property is 

summarized by Algorithm 4.  
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Algorithm 4 Updated Health Step 

 

1. while not all prey individuals are visited do 

2. if no close predator exists  

3.      if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 >𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖  

4.     𝐶𝑗
𝑖+1 > 1  

5.      else 𝐶𝑗
𝑖+1 < 1 

6.      𝐻𝑗
𝑖+1 = 𝐶𝑗

𝑖+1 ×𝐻𝑗
𝑖 

7.      Return 𝐻𝑗
𝑖+1 

8. else a close predator exists 

9.      if 𝐻𝑝𝑟𝑒𝑑
𝑖 ≤𝐻𝑗

𝑖 

10.      𝐻𝑗
𝑖+1 = 𝐶𝑗

𝑖+1 × 𝐾𝑗
𝑖+1 × 𝐻𝑗

𝑖 

11.    𝑥𝑗
𝑖+1 = 𝑥𝑗

𝑖 + 𝑅𝑎𝑛𝑑𝑥𝑗 × 2 × 𝑆𝑡𝑒𝑝𝑥 

12.    𝑦𝑗
𝑖+1 = 𝑦𝑗

𝑖 + 𝑅𝑎𝑛𝑑𝑦𝑗 × 2 × 𝑆𝑡𝑒𝑝𝑦 

13.    Return 𝐿𝑗
𝑖+1(𝑥𝑗

𝑖+1, 𝑦𝑗
𝑖+1, 𝐻𝑗

𝑖+1, 𝐴𝑗
𝑖+1) 

14.    else prey is eliminated 𝐿𝑗
𝑖+1(0,0,0,0) 

15.    Return 𝐿𝑗
𝑖+1 

16. end while 

 

ESA resembles to real animals in nature where each individual performs primitive 

actions with no intelligent moves or calculations. The actions taken by different individuals 

are naive and made without intelligence, but the interaction between different individuals and 

between the individuals and their environment produces an intelligent behavior for the 

algorithm. This makes ESA a Swarm Intelligence algorithm. It is important to emphasize that 

if extinction of the whole predator species occurs, ESA will still be able to search the space 

and find the optimal solutions. However, the search becomes slower and its ability to explore 

new regions is diminished. On the other hand, it is impossible for the algorithm to complete a 

search with only a predator species.  Figure 1 shows the flowchart of Ecological Systems 

Algorithm.   
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Figure 1: Flowchart of Ecological Systems Algorithm. 

 

Tuning ESA parameters 

Tuning the search algorithm for its parameters is a serious problem: the performance 

of the algorithm is influenced by these parameters as well as by the initial solutions suggested 

randomly at the beginning of the search. This means that the search algorithm requires 

another search algorithm to tune its parameters and find the best values to start the search! 
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The new search algorithm has also some parameters that need to be chosen carefully, and the 

tuning of its parameters will be a new problem. In the following, a guideline on the selection 

of the parameter set for ESA is provided. First, one has to choose roughly the dimensions of 

the search where the optimum is expected to be found. The dimension can be extended if the 

optimum detected by the algorithm is found to be insufficient. 𝐸𝑝𝑠𝑛 and 𝐺𝑛 values define the 

quality of the optimum point that the algorithm is trying to find. By choosing these values 

carefully, one can set the accepted range of the optimum which is greater than 𝐸𝑝𝑠𝑛 and less 

than 𝐺𝑛 values. The factors by which the health of predators and preys increase or decrease 

(𝐶𝑗
𝑖+1, 𝐾𝑗

𝑖+1, 𝑀𝑗
𝑖+1) affect the search speed and can be chosen by trial and error. The step size 

a search individual makes in the environment should be chosen influenced by the shape of the 

environment itself. If the environment has multiple optima with narrow minima and maxima 

for example, short step size is chosen to ensure that narrow locations are tested with multiple 

search individuals.  

ESA belongs to metaheuristic algorithm family which has no guaranteed global 

convergence (Yang, 2014). It is thus essential to emphasize the importance of a detailed 

theoretical study of the convergence of ESA using probabilistic analysis (Liu et al., 2009; Liu 

and Liu, 2013) or Markov chain theory analysis (Song et al., 2009; He et al., 2018). Such 

studies are beyond the scope of this introductory paper. 

Comparison of ESA and GA  

In this section, ESA and GA algorithms will be compared based on several benchmark 

functions optimization results. GA is one of the first evolutionary search algorithms. It is a 

well-established, fast, powerful, and efficient algorithm (Kar, 2016). Authors believe that 

comparing a new biologically inspired algorithm to one of the pioneer bio-inspired 

algorithms that has been under development and in use in several scopes for decades will 

reveal the importance and effectiveness of the newly developed algorithm (Karaboga and 

Basturk, 2007; Lamy, 2018). In this paper, the traditional base-10 single point crossover GA 

algorithm presented by Kevin Passino in (Passino, 2005) is used. To be able to compare 

different search algorithms in a benchmark test, it is essential to perform multiple runs of 

each algorithm on each benchmark function. This is because the search path taken by each 

algorithm depends on the starting conditions and will be different at each run. Moreover, the 

effectiveness and performance of the algorithms is expected to be different from a function to 

another. A robust algorithm is an algorithm that has similar performance regardless of the 

starting conditions and different benchmark functions. In this section, ESA and GA are used 

to optimize ten different benchmark functions (Wu et al., 2016). The performance and 

effectiveness of the two algorithms are compared by performing multiple runs for each 

algorithm with each benchmark function. The change in the best, worst, average, and mean 

fitness values, as well as the standard deviation of the fitness values through 100 iterations 

(Shareef et al., 2015; Karaboga and Basturk, 2007; Margaritis and Digalakis, 2001) are used 

to compare the two algorithms. The variation in the global optimization results found by both 

algorithms in 20 different runs of 100 iterations is also used to evaluate the two algorithms. 
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This number of runs is seen to be sufficient to obtain a general comparative picture of the two 

algorithms (Dieterich and Hartke, 2012). 

Benchmark functions 

The benchmark functions used in this paper are non-linear, continuous/discontinuous, 

unimodal/multimodal, convex/non-convex, and separable/non-separable. The modality of a 

function is the number of vague peaks in the surface of that function; and a function is 

multimodal if it has more than one vague peak. This means that a multimodal function has 

multiple local optima that might disguise the search algorithm. The separability of a function 

affects the difficulty level of this function. In separable functions, each variable is 

independent of the other variables which make such functions easier to solve compared to 

non-separable functions (Shareef et al., 2015). The dimension of benchmark functions affects 

the optimization difficulty level, and is taken to be two for all functions.  

The Ackley function is continuous, differentiable, non-separable, scalable, and 

multimodal that is widely used to test optimization algorithms. This function has moderate 

complexity with many local optima spread in its surface. An optimization algorithm 

searching Ackley function risks of being trapped in one of these optima. The Cross In Tray 

function is continuous, non-differentiable, and multimodal with multiple global optima. 

Griewank function is another continuous, differentiable, non-separable, scalable, and strongly 

multimodal function. The variables in this function are interdependent, and local optima are 

widespread but distributed regularly. Similar to the previous functions, the Holder Table 

function is continuous, differentiable, separable, non-scalable, and multimodal. This function 

has many local optima, but only four global optima. Levi function is continuous and 

differentiable, and has many local optima. Like the other functions, Matyas function is 

continuous, differentiable, non-separable, but non-scalable and unimodal. This function has 

only one global optimum with no local optima that hardens the search. The Perm function is 

continuous and differentiable function with four global optima. Rastrigin function is highly 

multimodal and has many local optima that are regularly distributed in the environment. A 

search algorithm optimizing this function can be trapped in its local optima and fail to find 

the global optima. Schaffer function is continuous, differentiable, non-separable, scalable, 

and highly multimodal function. Schwefel function has many peaks and valleys. It is a 

complex, continuous, differentiable, non-separable, scalable, but unimodal function. This 

function has a second best optima which drives search algorithms to converge in the wrong 

direction. The reader is directed to (Jamil and Yang, 2013; Suganthan et al., 2005), and 

(Finck et al., 2010) for more information about benchmark functions used in this paper. The 

benchmark functions used to evaluate and compare ESA and GA algorithms are shown in 

Table 1. Note that these functions are used in two dimensional searches within the search 

space {(-10, -10), (10,10)} except the Rastrigin and the Shcwefel functions with respectively 

{(-20, -20), (20,20)} and {(-50, -50), (0,0)} as search spaces. 
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Table 1: Benchmark functions 

Function General expression Global optima 

Ackley 

 

12.64 at [0, 0] 

Cross In 

Tray 

 

2.058, at [1.5, 1.5], 

[1.5, -1.5], [-1.5, 1.5], 

[-1.5, -1.5] 

Griewank 

 

2.004, 18 global 

optima 

Holder 

Table 
 

19.18, at [8.1, 9.7],  

[-8.1, 9.7], [8.1, -9.7], 

[-8.1, -9.7] 

Levi 

 

2, at [1, 1] 

Matyas 
 

100, at [0, 0] 

Perm 

 

6.634e4, at [10, 10],  

[-10, 10], [10, -10],  

[-10, -10] 

Rastrigin 
 

800, at [20, 20],  

[-20, 20], [20, -20],  

[-20, -20] 

Schaffer 

 

1, at [0, 0] 

Schwefel 
 

908. 9, at [-50, -50] 

 

Genetic Algorithm applied to benchmark functions   

Genetic Algorithm is a biologically inspired stochastic search algorithm based on 

natural selection used to solve complicated optimization problems. GA algorithm is a very 

practical tool where no reformulation of the problem or special mathematical treatment is 

needed. Moreover, this algorithm which is not subjected to local optimization problem 

common in conventional search algorithms, is easy to apply to nonlinear search spaces, and 

can be used in discontinuous and noisy search problems. GA starts by assigning randomly a 

group of solutions and testing their fitness. The best solution values are then used to generate 

new solutions using three random methods. Each search individual in the GA algorithm used 

to optimize the benchmark functions has two traits. This allows GA to search two 

dimensional environments. Each trait has six genes that are digitized, so that search 

individuals are changed by toggling digital bits. The probability of mutation process is chosen 

to be 0.05, while the crossover probability is chosen as 0.8. A total number of 100 individuals 

in the population is chosen to perform the search. These values were inspired by the extensive 

study made by Digalakis and Margaritis in (Margaritis and Digalakis, 2001) and (Margaritis 

and Digalakis, 2002). From the various population size, mutation probability, and crossover 
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probability values tested in these works, suitable values giving acceptable results for most of 

the benchmark functions were chosen.  

ESA applied to benchmark functions 

To search the two-dimensional benchmark functions using ESA, one prey and one 

predator species are assigned randomly in the environment. The search species are created in 

the plane, each individual with an age of zero and with random 𝑥 and 𝑦 coordinates and 

health value. By changing their coordinates randomly, search individuals move in the 

environment to explore new locations. A prey checks the nutrient density in its location by 

feeding its coordinates to the benchmark function being optimized. High fitness value in a 

location indicates high nutrient density at that location. After the creation of initial 

population, the nutrient density at the location of each prey individual is calculated. Prey 

individuals then move randomly in the environment, and nutrient densities are calculated in 

their new locations. The prey that had moved from worse to better location increases its 

health, and a new search individual is created at the same location. Prey individual that had 

moved to a worse location decreases its health as result of famine. Note that the random steps 

taken by prey and predator individuals are insured to be within the search boundaries. 

For predator individuals, they detect prey individuals found in close locations and 

attack them. If the health of the prey individual is more than that of the predator individual, 

the prey manages to escape but with some injuries that decrease its health. On the other hand, 

if the predator is healthier, it eats the prey, increases its own health, and breed a new baby 

predator at its location. The predator individual then moves to a new location randomly 

looking for a new prey. Table 2 and Table 3 show ESA parameters used to tune the 

benchmark functions. Values in Table 2 are chosen by trial and error, but with careful 

analysis of the outputs of several algorithm runs. It is found that if the prey health change rate 

𝐶𝑗
𝑖+1 is chosen less than the suggested value, the prey species perishes quickly before the 

algorithm converges to an optimum. On the other hand, if 𝐶𝑗
𝑖+1 is chosen more than the 

suggested value, prey individuals found in local optima survive multiple iterations, the search 

slows down, and the predator species is rendered ineffective. This will result in the inability 

of the algorithm to discover new locations. Similarly, the predator health change rate was set 

following the same observations. It is important to emphasize that ideally, different health 

change rates would be chosen for each environment.  

However, the values given in Table 2 give acceptable results for all the benchmark functions 

used in this paper. The individual step size, the prey detection distance, along with the fitness 

boundaries 𝐸𝑝𝑠𝑛 and 𝐺𝑛in Table 3 are chosen by trial and error but regarding the search 

environment. The step size of an individual is chosen small to ensure precise search of 

environments with several local minima such as Rastrigin and Griewank functions. This 

results in much slower but more effective search. For more homogeneous environments such 

as Perm and Matyas functions, the individual step size is chosen bigger to ensure fast search. 

Concerning 𝐸𝑝𝑠𝑛 and 𝐺𝑛, a previous knowledge of the expected optimum helps in setting 

their values. These values allow the algorithm to avoid local minima by ignoring locations 

with fitness values far less than the optimum (set by 𝐸𝑝𝑠𝑛), and focusing the search around 
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locations with fitness values close to the optimum (set by 𝐺𝑛). The values of 𝐸𝑝𝑠𝑛 and 𝐺𝑛 are 

chosen based on the global optima values of the functions in Table 1. For the Rastrigin 

function for example its global optima is 200, so locations with fitness values less than 120 

(𝐸𝑝𝑠𝑛) are made less appealing for search, and locations with fitness values equal and more 

than 160 (𝐺𝑛) are made popular. More babies will be born here, and individuals searching 

these locations will have longer life span. 

Table 2: Parameters of ESA 

Prey individuals Predator individuals 

𝐶𝑗
𝑖+1 1.8, 

if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 >𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖  

𝑀𝑗
𝑖+1 1.1, 

if predator forages 

𝐶𝑗
𝑖+1 × 𝐾𝑗

𝑖+1 0.8, 

if prey is attacked 
𝑀𝑗

𝑖+1 0.9, 

if no close prey exists 

𝐶𝑗
𝑖+1 1.3, 

if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 <𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖  

Predator step 

size 

0.8 

𝑆𝑙 100 𝑆𝑝 10 

 

Table 3: Parameters of ESA searching the test functions 

Function Individual 

step size 

Prey 

detection 

distance 

𝑫𝒆𝒎𝒊𝒔𝒆𝑯𝒍 = 𝑫𝒆𝒎𝒊𝒔𝒆𝑯𝒑 𝑬𝒑𝒔𝒏 𝑮𝒏 

Ackley 0.5 0.3 0.8 6 10 

Cross In Tray 1 0.8 0.8 0.5 1.7 

Griewank 0.5 0.8 0.8 0.5 0.9 

Holder Table 0.5 0.3 0.8 10 18 

Levi 0.5 0.5 0.8 0.2 1.5 

Matyas 1 1 0.8 20 95 

Perm 1 0.8 0.8 20000 65000 

Rastrigin 0.5 0.5 0.8 120 160 

Schaffer 1 0.3 0.8 0.7 0.8 

Schwefel 5 5 0.8 700 850 

 

RESULTS AND DISCUSSION 

Results show that GA possesses superior convergence characteristics compared with 

ESA, and reaches the global optima in shorter time. However, the comparative results shown 

in Figure 2 to Figure 4 show that ESA has satisfactory performance, and its results are 

comparable to those of GA. ESA performed better than GA when optimizing Griewank, 

Holder table, and Rastrigin functions, which shows the ability of ESA to escape from local 

optima. 
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Figure 2 to Figure 4 show the convergence characteristic curves of GA and ESA 

algorithms obtained while optimizing the benchmark functions. ESA finds the best global 

optimum or near global optimum in less than 20 iterations on average for all functions except 

Rastrigin and Schwefel functions as shown in Figure 2. ESA needs some 60 additional 

iterations to optimize the Rastrigin function. For the Schwefel function, ESA can find the best 

near-optimum solution in 40 iterations. GA outperformed ESA in finding the best global 

optimum for Ackley, Rastrigin, and Schwefel functions. On the other hand, ESA 

outperformed GA in finding the global optimum for Griewank, Holder table, Perm, and 

Rastrigin functions. The performance of the two algorithms is similar for the remaining 

functions.  

 

Figure 2: Best fitness values for ESA and GA in optimizing benchmark functions at Table 1 

through 100 iterations, Ackley, Cross In Tray, Griewank, Matyas, Perm, and Rastrigin 

functions in (a), and Holder Table, Levi, Schaffer, and Schwefel in (b). 
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Figure 3 shows the mean fitness value curves found while optimizing the benchmark 

functions using ESA and GA through 100 iterations. This figure shows that the performance 

of GA and ESA is acceptable because their means are close to the optimal solutions for most 

of the benchmark functions.  

 

Figure 3: Mean fitness for ESA and GA in optimizing benchmark functions at Table 1 through 

100 iterations, Ackley, Cross In Tray, Griewank, Matyas, Perm, and Rastrigin functions in (a), 

and Holder Table, Levi, Schaffer, and Schwefel in (b). 
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Figure 4 shows the standard deviation of the search performed by ESA and GA in 100 

iterations. It is clear that the standard deviation of ESA exceeds that of GA in most of the 

functions, and oscillates around a constant value. This is related to the nature of the 

algorithms. In GA, best genes survive and perform the search resulting in a small standard 

deviation. In ESA, search individuals are spread in the environment searching for high 

nutrient density, and their number is defined by Lotka-Volterra equations. The number of 

predators and preys oscillates according to these equations, which explains the oscillation of 

the standard deviation. However, ESA performance is still acceptable because it has an 

overall low standard deviation.  

 

Figure 4. Standard deviation of the fitness function for ESA and GA in optimizing 

benchmark functions at Table 1 through 100 iterations, Ackley, Cross In Tray, Griewank, 

Matyas, Perm, and Rastrigin functions in (a), and Holder Table, Levi, Schaffer, and Schwefel in 

(b). 
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Experiments have shown that GA have found better global optima for Ackley, Cross 

In tray, and Levi functions, while ESA shows better performance with higher global 

optimum. This is related to the manner GA perform the search. In GA, digitized 

chromosomes perform the search by toggling some bits. This gives GA the opportunity to 

reach different and very far locations in two consecutive steps (by changing the third bit of 

1001101 (77), the number becomes 109). Very large steps could be done between two 

iterations rather than being bounded with constant step sizes like in ESA. However, 

chromosomes close to optima may not be able to perform small changes and reach closer 

values to the optima. On the other hand, ESA search individuals have small step sizes that 

allow them to approach gradually to the optima. In other words, the fast convergence of GA 

is done with the sacrifice of more accurate solutions. 

Table 4 shows the global optimization results of GA and ESA for the ten different 

benchmark functions. In many cases, ESA found better solution than GA but takes more time 

to converge for all benchmark functions except for the Holder Table function. It is important 

to emphasize that -like all stochastic search algorithms- the results of GA and ESA are tightly 

related to the initial population created at the beginning of the search as well as to the stop 

criteria responsible for ending the search. For example, optimizing the Griewank function 

using ESA may be achieved in 6 iterations or in 60 iterations (Table 5). Moreover, the speed 

of the search is also related to the situation of the computer processor. In two consecutive 

search trials for the same function, the computer takes 49 iterations in 7.44 seconds, and 51 

iterations in 3.146 seconds.  

Table 4: Global optimization results 

Function Optimum Average Average conversion time Average iteration-

generation 

Ackley ESA 

GA 

12.3738 

12.6014 

6.9564 

9.5292 

0.81075 seconds 

0.521 seconds 

13.6 

135 

Cross In Tray ESA 

GA 

2.0594 

2.0626 

1.7312 

1.6210 

0.6275 seconds 

0.4150 seconds 

10.3 

106.5 

Griewank ESA 

GA 

2.0405 

1.8641 

1.5350 

1.6363 

3.364 seconds 

0.0934 seconds 

47.8 

20.8 

Holder Table ESA 

GA 

18.8895 

20.1402 

9.4581 

19.9338 

0.50466 seconds 

0.927 seconds 

6.6 

241.4 

Levi ESA 

GA 

1.9324 

1.9946 

1.5354 

1.6 

0.941 seconds 

0.5682 seconds 

18.2 

166.4 

Matyas ESA 

GA 

99.9748 

99.9534 

96.3292 

95.3332 

1.328 seconds 

0.0934 second 

26 

21.4 

Perm ESA 

GA 

5.9214e4 

6.6785e4 

2.8104e4 

6.5889e4 

0.692 seconds 

0.0616 seconds 

11.4 

6.2 

Rastrigin ESA 

GA 

870.3864 

800 

694.3641 

768.9209 

2.049 seconds 

0.0891 seconds 

40 

18.4 

Schaffer ESA 

GA 

0.9999 

1 

0.6325 

0.7338 

0.638 seconds 

0.4366 seconds 

11.2 

129 

Schwefel ESA 

GA 

884.8125 

908.8519 

862.4745 

861.0567 

1.754 seconds 

0.1308 seconds 

34.2 

31.4 
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Table 5: Results of speed tests of ESA optimizing Griewank function 

 Age = 5 iterations Age = 10 iterations Age = 15 iterations 

Average iterations 24.2 36.8 143.3 

Average time 1.33 seconds 2.01 seconds 8.2 seconds 

Minimum iterations 6 3 45 

Minimum time 0.409719 seconds 0.897217 seconds 6.916340 seconds 

Maximum iterations 60 103 279 

Maximum time 2.942206 seconds 5.053009 seconds 15.469319 seconds 

 

Experiments have shown that the maximum age of individuals affects directly ESA 

conversion speed. Results of 10 speed tests conducted on Griewank function with three 

different ages are shown in Table 5. When the maximum age is 5 iterations, all the initial 

search individuals created at the beginning of the search die in 5 iterations leaving the 

environment for fresh individuals created as a result of a successful step. This allows the 

algorithm to find the optimum in average 25 iterations and 1.33 seconds. When the maximum 

age is increased to 10 iterations, the number of iterations needed for the algorithm to find the 

optimum is increased to 37. Increasing the maximum age to 15 iterations results in an 

exponential increase in iteration number and in the time needed for the algorithm to 

converge.  

CONCLUSION 

In this paper a novel bio-inspired evolutionary search algorithm based on ecological 

rules is proposed. The new algorithm -called Ecological Systems Algorithm (ESA)- uses a 

population of two search individual species to perform the search. Each individual in the 

predator and prey species has very naive decision making, but the interaction of these 

individuals with their environment as well as with each other produces an intelligent behavior 

that is able to solve optimization problems. Seeking comparison, Ecological Systems and 

Genetic algorithms are used to optimize ten different benchmark functions. 

MATLAB/SIMULINK results show that ESA was able to compete with GA and find more 

accurate optima for many benchmark functions. However, the convergence speed of ESA is 

shown to be lower compared with GA convergence speed. Future work should focus on the 

improvement of ESA algorithm. The introduction of inter-individual forces that ensure 

flocking of close individuals of the same species, the introduction of elitism among 

individuals, and the use of average fitness dependent step size are possible ideas that are 

expected to fasten and refine the ESA search. Perspectives of this work include the use of 

ESA to different optimization problems like clustering, and the optimization of multi-

objective problems and travelling salesman problem, and its use in real engineering 

applications such as adaptive controller tuning, path planning for mobile robots, medical 

image analysis, network routing, and smart energy management.  
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