
HAL Id: hal-03612585
https://hal.science/hal-03612585

Submitted on 17 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MATHEMATICAL MODELING OF ECOLOGICAL
SYSTEMS ALGORITHM

Abdel-Razzak Merheb, Hassan Noura, Francois Bateman

To cite this version:
Abdel-Razzak Merheb, Hassan Noura, Francois Bateman. MATHEMATICAL MODELING OF
ECOLOGICAL SYSTEMS ALGORITHM. Lebanese Science Journal, 2021, 22 (2), pp.209-230.
�10.22453/LSJ-022.2.209-231�. �hal-03612585�

https://hal.science/hal-03612585
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358962272

Mathematical Modeling of Ecological Systems Algorithm

Article · June 2021

DOI: 10.22453/LSJ-022.2.209-231

CITATIONS

0
READS

14

3 authors:

Some of the authors of this publication are also working on these related projects:

Applications of control techniques in MPPT View project

Quadrotor Project View project

Abdel-Razzak Merheb

Lebanese International University

34 PUBLICATIONS 326 CITATIONS

SEE PROFILE

Hassan Noura

Aix-Marseille Université

176 PUBLICATIONS 2,805 CITATIONS

SEE PROFILE

François Bateman

École de l’Air

27 PUBLICATIONS 442 CITATIONS

SEE PROFILE

All content following this page was uploaded by Abdel-Razzak Merheb on 02 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/358962272_Mathematical_Modeling_of_Ecological_Systems_Algorithm?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/358962272_Mathematical_Modeling_of_Ecological_Systems_Algorithm?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Applications-of-control-techniques-in-MPPT?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Quadrotor-Project?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdel-Razzak-Merheb?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdel-Razzak-Merheb?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lebanese_International_University?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdel-Razzak-Merheb?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hassan-Noura?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hassan-Noura?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aix-Marseille_Universite?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hassan-Noura?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francois-Bateman?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francois-Bateman?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_lAir?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francois-Bateman?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdel-Razzak-Merheb?enrichId=rgreq-609431cec13c91b26b9363cc752ecb50-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk2MjI3MjtBUzoxMTI5MTY1MTY0MTU0ODgwQDE2NDYyMjUzNjIxMzA%3D&el=1_x_10&_esc=publicationCoverPdf

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 209

 http://dx.doi.org/10.22453/LSJ-022.2.209-231

National Council for Scientific Research – Lebanon 2018©

lsj.cnrs.edu.lb/vol-22-no-2-2021/

MATHEMATICAL MODELING OF ECOLOGICAL SYSTEMS

ALGORITHM

Abdel-Razzak Merheb1, Hassan Noura2, and François Bateman3

1Lebanese International University, Lebanon

abdelrazzak.merheb@liu.edu.lb
2Laboratoire d’Informatique et Système, Aix Marseille University, France

hassan.noura@univ-amu.fr
3Centre de Recherche de l'École de l'Air, France

francois.bateman@ecole-air.fr

(Received March 2020 – Accepted June 2021)

ABSTRACT

Merheb, A. R., Noura, H., & Bateman, F. (2021). Mathematical Modeling of Ecological

Systems Algorithm. Lebanese Science Journal, 22(2), 209 - 231.

In this paper, the mathematical modeling of a new bio-inspired evolutionary search

algorithm called Ecological Systems Algorithm (ESA) is presented. ESA imitates ecological

rules to find iteratively the optimum of a given function through interaction between predator

and prey search species. ESA is then compared to the well-known Genetic Algorithm which is a

powerful bio-inspired stochastic search/optimization algorithm used for decades. Simulation

results of the two algorithms optimizing ten different benchmark functions are used to

investigate and compare both algorithms based on their speed, performance, reliability, and

efficiency.

Keywords: Ecological Systems Algorithm, Genetic Algorithms, Benchmark functions,

Swarm Intelligence, Bio-Inspired Algorithms.

INTRODUCTION

Swarm intelligence is an evolutionary computation scientific discipline inspired by

insect colonies where a single individual has simple and naive behavior that takes trivial

actions based on the processing of many sensor inputs. However, the interaction between the

individuals produces an intelligent collective behavior that allows insect societies to find

optimal solutions for their daily life problems. Scientists imitate social behavior of insects,

and form decentralized systems of many autonomous individuals with naive actions

distributed in the environment. The result was intelligent systems that are able to solve

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 210

different problems with remarkable flexibility, efficiency, and robustness (Garnier et al.,

2007).

In (Zuo et al., 2017), the fruit Fly Optimization Algorithm (FOA), which is a global

optimization algorithm that mimics the foraging behavior of a fruit fly swarm, is improved

for multiobjective optimization problems. The new algorithm, called Stochastic Fractal based

Multiobjective fruit Fly Optimization Algorithm (SFMOFOA), improves the convergence

performance of classic FOA algorithm by the introduction of a food source generating

method using a stochastic fractal with an adaptive parameter updating strategy. The selection

process of FOA is updated with the Pareto domination concept in order to deal with

multiobjective optimization problems. The performance of the new algorithm is tested

through its application to eighteen different benchmark functions, and results are used to

compare the new algorithm with four state of the art search methods. Numerical results show

that the new algorithm has competitive performance, and that it is able to converge, with

good distributions, to the Pareto fronts of the benchmark functions. In (Lamy, 2018), authors

propose a new biologically inspired metaheuristic called Artificial Feeding Birds (AFB). The

new algorithm is inspired by the simple behavior of birds searching for food. The new

algorithm is compared with four well established biologically inspired search algorithms

based on their results in optimizing several benchmark functions and the training of artificial

neural networks. AFB is shown to give equivalent or better results produced with Artificial

Bee Colony (ABC), Firefly Algorithm (FA), Genetic Algorithm (GA) and Ant Colony

Optimization (ACO). The relationship between predator and prey individuals is used to

update the well-known Particle Swarm Optimization (PSO) algorithm in (Zhang et al., 2018).

Two search groups are generated in the new algorithm where three strategies are added to the

properties of search particles: catch, escape and breeding. Moreover, a proportional-integral

(PI) control is used to control the number of population so it fluctuates but stays within a

relative stability, enhancing population diversity. Testing the new algorithm on 40 benchmark

functions with different dimensions shows the superior performance of the new algorithm in

comparison with ten other search algorithms.

The interaction between two predator-prey or more species in an ecosystem is

described by the Lotka-Volterra equations, also known as the predator-prey equations. Lotka-

Volterra equations are a set of two nonlinear, first order differential equations that explain the

population change or the dynamics of biological systems. These equations are used not only

in biological, ecological and environmental literature, but also in other fields such as

atmospheric chemistry, urban growth studies, tourist industry, and economics. In economics,

prey-predator equations based economic models are used to study the complex relations

between economy, population, labor and capital (Puliafito et al., 2008).

In this paper, the Ecological Systems Algorithm (ESA) is modeled mathematically.

Equations needed to update the positions and the health of search individuals is presented in

detail. Moreover, a primitive comparison between ESA and the Genetic Algorithm using ten

different benchmark functions is also presented. ESA was first developed in 2012 as an

intelligent tool to tune the fault tolerant controllers of quadrotor Unmanned Aerial Vehicles

(UAVs). Several papers have been published using ESA as tuning tool for different Active

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 211

and Passive Fault tolerant Controllers for quadrotor and octorotor UAVs. However, this is the

first paper that models ESA mathematically and explains it in detail. The algorithm modeled

here differs from the work presented in (Zhang et al., 2018) in many aspects. First, ESA is an

independent algorithm that has its own strategies and steps and is not an improvement of an

existing algorithm. ESA presents an algorithm that resembles to interacting animals in an

environment, where each search individual moves in naive steps but the interaction among

different individuals and between the individuals and their environment produces the

intelligent behavior of the algorithm. Moreover, ESA has a simple position update technique

that does not depend on the velocity vector as in PSO.

The rest of the paper is organized as follows: Section 2 explains the Ecological

Systems Algorithm and models it mathematically. In Section 3, ten benchmark functions used

in global optimization problems are defined and used to evaluate ESA and compare it with

the Genetic Algorithms (GA). The two algorithms are compared regarding speed, reliability,

and efficiency. Finally, a summary of the work with some future ideas is stated in the

conclusion.

MATERIAL AND METHODS

In this section, the Ecological Systems Algorithm is explained and modeled mathematically.

Next, ten benchmark functions used in global optimization problems are defined and used to

evaluate ESA and compare it with the Genetic Algorithms (GA).

Ecological systems algorithm

Ecological Systems Algorithm is a biologically inspired algorithm that uses natural

selection applied on larger scale. Search individuals of ESA are neither genes like in Genetic

Algorithms nor bacteria like in Bacterial Foraging Algorithm (Passino and Liu, 2002), but

larger creatures like mammals and birds. Moreover, the search here is realized using two

search individual species, predators (predator in Latin) and preys (Litatio in Latin)

(Beauchamp et al., 2007). The fitness function is optimized by the interaction between these

two species.

Equation (1) defines the search species in ESA which are predator and prey (or litatio)

species.

𝑷𝒋
𝒊(𝒙𝒋

𝒊, 𝒚𝒋
𝒊, 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

𝑳𝒋
𝒊(𝒙𝒋

𝒊, 𝒚𝒋
𝒊, 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

 (1)

Where 𝑃𝑗
𝑖 denotes the predator 𝑗 at iteration 𝑖, and 𝐿𝑗

𝑖 denotes the prey 𝑗 at iteration 𝑖.

Each individual has its own variables that define its location, health, and age situation. 𝑥𝑗
𝑖, 𝑦𝑗

𝑖

are the coordinates of individual 𝑗 in iteration 𝑖, while 𝐻𝑗
𝑖 and 𝐴𝑗

𝑖 are respectively the health

and age of individual 𝑗 in iteration 𝑖.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 212

ESA Initialization

The algorithm starts by the generation of the two search species with random

positions and health values and an age value equal to zero as presented is equation (2).

𝑷𝒋
𝟎(𝒙𝒋

𝟎, 𝒚𝒋
𝟎, 𝑯𝒋

𝟎, 𝑨𝒋
𝟎 = 𝟎)

𝑳𝒋
𝟎(𝒙𝒋

𝟎, 𝒚𝒋
𝟎, 𝑯𝒋

𝟎, 𝑨𝒋
𝟎 = 𝟎)

 (2)

Here, 𝑗 = 1, 2, … . , 𝑆𝑝 for the predator species, and 𝑗 = 1, 2, … . , 𝑆𝑙 for the prey

species. 𝑆𝑝 and 𝑆𝑙 are respectively the number of predators and preys in their species.

Equation (3) shows the random generation of the initial coordinates of each individual along

with its initial health. The initial coordinates of each individual as well as its initial health

value are chosen randomly but within the search boundaries and the maximum allowed health

value.

𝒙𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝑿)

𝒚𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝒀)

𝑯𝒋
𝟎 = 𝒎𝒊𝒏(𝒓𝒂𝒏𝒅,𝒎𝒂𝒙𝑯)

 (3)

Where 𝑚𝑎𝑥𝑋, 𝑚𝑎𝑥𝑌, and 𝑚𝑎𝑥𝐻 are respectively the maximum allowed 𝑥 and 𝑦

coordinate values, and maximum allowed health value. After the generation of the initial

search species, ESA starts its iterations to search for an optimal solution to the problem. Each

iteration in ESA applies five different steps -which denote the five ecological rules- in its

struggling to solve the optimization problem. Each iteration starts with the age update step,

continues with the position update step, the health update step, and the reproduction step, and

ends with the demise step. Several search variables are initialized before ESA ecological

steps are repeated iteratively. The maximum individual age, the individual step sizes, the

rates at which the health of an individual increases or decreases, the minimum health value

that allows an individual to breed, the minimum health for an individual to survive, and the

effective nutrient density thresholds are all initialized before the search starts. These variables

will be defined in some details in the ESA ecological steps.

ESA ecological steps

The nutrient density at the prey location is directly related to the function under test. If

ESA is used to optimize a two-dimensional function𝑓(𝑥, 𝑦) for example, the nutrient density

that a prey individual 𝐿𝑗
𝑖(𝑥𝑗

𝑖 , 𝑦𝑗
𝑖, 𝐻𝑗

𝑖 , 𝐴𝑗
𝑖) examines is the value of the optimized function at its

location or 𝑓(𝑥𝑗
𝑖 , 𝑦𝑗

𝑖). To weight an iteration, the nutrient density values of all existing prey

individuals are used to evaluate a given fitness value. A suitable fitness function is the

average nutrient density of all existing prey individuals. The fitness value of an iteration can

be used to stop the search. If the fitness value of a given iteration is high, it means that most

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 213

of the prey search individuals are located in a high nutrient value location and thus optimal

solution is found.

 Age update step

At each iteration, the age of each individual in both search species is increased by

one. Equation (4) depicts the increase in age for individual 𝑗 at iteration 𝑖 + 1.

𝑨𝒋
𝒊+𝟏 = 𝑨𝒋

𝒊 + 𝟏 (4)

The age update step of individual 𝑗 continues until 𝐴𝑗
𝑖 = 𝑁 where 𝑁 is a variable

chosen at the beginning of the search and defines the maximum age allowed for an

individual. When the age of an individual reaches 𝑁, the individual expires after the

application of the demise step.

 Position update step

At each iteration, individuals in the two search species change their positions in a

random manner (Beauchamp et al., 2007). Any search individual 𝑗 updates its coordinates

based on its previous position and a random number related to the maximum allowed step

size in 𝑥 and 𝑦 directions as shown in equation (5).

𝒙𝒋
𝒊+𝟏 = 𝒙𝒋

𝒊 + 𝑹𝒂𝒏𝒅𝒙𝒋 × 𝑺𝒕𝒆𝒑𝒙

𝒚𝒋
𝒊+𝟏 = 𝒚𝒋

𝒊 + 𝑹𝒂𝒏𝒅𝒚𝒋 × 𝑺𝒕𝒆𝒑𝒚
 (5)

Where 𝑅𝑎𝑛𝑑𝑥𝑗 and 𝑅𝑎𝑛𝑑𝑦𝑗 are random numbers between 0 and 1 from a standard

uniform distribution function generated for individual 𝑗 before applying the position update

step, and 𝑆𝑡𝑒𝑝𝑥 and 𝑆𝑡𝑒𝑝𝑦 are the step size of the individuals. Note that the step sizes of the

predator and prey species could be chosen equal or different. Thus, it is more appropriate to

choose 𝑆𝑡𝑒𝑝𝑥𝑝, 𝑆𝑡𝑒𝑝𝑦𝑝 as step size of the predator individuals, and 𝑆𝑡𝑒𝑝𝑥𝑙, 𝑆𝑡𝑒𝑝𝑦𝑙 as the step

size of the prey individuals.

 Health update step

The health variable of each individual is updated based on the interaction between the

individual with its environment. The first effective agent on the health of a prey is its

position. If the new position of a prey has higher nutrient density value compared with its

previous position, the health of the individual increases with a predefined scale. On the other

hand, if the new position has worse nutrient density value the prey health decreases. The

health update step for a prey individual is presented in equation (6).

𝑯𝒋
𝒊+𝟏 = 𝑪𝒋

𝒊+𝟏 × 𝑯𝒋
𝒊

𝒘𝒊𝒕𝒉 {
𝑪𝒋
𝒊+𝟏 > 𝟏, 𝒊𝒇𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊+𝟏 > 𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊

𝑪𝒋
𝒊+𝟏 < 𝟏, 𝒊𝒇𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊+𝟏 < 𝑵𝒖𝒕𝒓𝒊𝒆𝒏𝒕𝒊

 (6)

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 214

Where 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖 is the nutrient density at the prey location in the previous iteration.

The value of 𝐶𝑗
𝑖+1 should be chosen before the start of the search, and it indicates the rate at

which the health of a prey individual increases or decreases related to its new position. In

order to add the swarm effect to the health update step for a prey individual, the variables

𝐸𝑝𝑠𝑛 and 𝐺𝑛 are added. If the nutrient density in the prey location is less than the threshold

𝐸𝑝𝑠𝑛 (nutrient is scarce), the prey health decreases even if it comes from a location with less

nutrient density. This situation indicates that the nutrient is not enough for the whole swarm,

which results in famine. On the other hand, if the nutrient density in the prey location is more

than 𝐺𝑛 (nutrient is plenty), the prey health increases even if it comes from a better location.

This situation indicates that the nutrient is plenty for the whole swarm, and all the preys

forage and increase their health. The prey health update in (6) is applied when the individual

does not exist in the vicinity of a predator. If a predator is very close to the prey individual,

the predator will attack the prey which will affect the health of the prey individual. If the

health of the prey is less than the health of the predator, the latter one manages to eat the

prey. This means that the health of the prey individual is decreased to zero which results in

the prey death in the demise step. On the other hand, if the prey has greater health value, it

manages to escape but with some injuries that decrease its health. Note that in case more

than one predator exist at the vicinity of a prey, the closest predator is the one eligible for

prey attack. Equation (7) shows the health update step for a prey individual in the vicinity of

a predator individual.

𝑯𝒋
𝒊+𝟏 = 𝑪𝒋

𝒊+𝟏 × 𝑲𝒋
𝒊+𝟏 × 𝑯𝒋

𝒊

𝒘𝒊𝒕𝒉 {

𝑲𝒋
𝒊+𝟏 = 𝟎, 𝒊𝒇𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒅

𝒊 >𝑯𝒋
𝒊

𝑲𝒋
𝒊+𝟏 = 𝟏, 𝒊𝒇𝒏𝒐𝒄𝒍𝒐𝒔𝒆𝒑𝒓𝒆𝒅𝒂𝒕𝒐𝒓𝒆𝒙𝒊𝒔𝒕𝒔

𝑲𝒋
𝒊+𝟏 < 𝟏, 𝒊𝒇𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒅

𝒊 <𝑯𝒋
𝒊

 (7)

Where 𝐶𝑗
𝑖+1 is chosen according to the criteria in the previous set of equations, and

𝐾𝑗
𝑖+1 ≠ 0 indicates the rate at which the health of the prey decreases when it manages to

escape from the predator attack. Needless to state that 𝐾𝑗
𝑖+1 should be chosen at the

initialization stage.

For the predator individuals, the health update step is simple and straight forward as

shown in equation (8).

𝑯𝒋
𝒊+𝟏 = 𝑴𝒋

𝒊+𝟏 × 𝑯𝒋
𝒊

𝒘𝒊𝒕𝒉 {
𝑴𝒋

𝒊+𝟏 < 𝟏, 𝒊𝒇𝑯𝒋
𝒊 <𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒚

𝒊 𝒐𝒓𝒏𝒐𝒄𝒍𝒐𝒔𝒆𝒑𝒓𝒆𝒚𝒆𝒙𝒊𝒔𝒕𝒔

𝑴𝒋
𝒊+𝟏 > 𝟏, 𝒊𝒇𝑯𝒋

𝒊 >𝑯𝒄𝒍𝒐𝒔𝒆𝒔𝒕_𝒑𝒓𝒆𝒚
𝒊

 (8)

The equation above means that at a given iteration, if no prey is close to a predator

individual the health of the predator decreases severely as a result of famine. In addition, if

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 215

there is a very healthy prey close to the predator individual, the prey is able to escape and the

predator does not forage resulting in a decrease in its health. On the other hand, if there is a

weak prey close to the predator, the predator manages to eat the prey and increases its health

by a factor of 𝑀𝑗
𝑖+1 > 1.

Reproduction step

The reproduction step is responsible for increasing the number of individuals in a

search species. A prey individual breeds in a new iteration if its health is higher than a given

threshold, and if it moves to a better location with higher nutrient density. On the other hand,

a predator individual breeds in an iteration if it manages to eat a prey and if its health is

higher than a given threshold. For a prey individual, the reproduction step is as follows

Algorithm 1 Prey Reproduction

1. while not all prey individuals are visited do

2. for individual j, if 𝐶𝑗
𝑖 > 1 and 𝐻𝑗

𝑖 > 𝐵𝑟𝑒𝑒𝑑𝐻𝑙

3. Breed a prey baby 𝑥𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑥𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑦𝑗

𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗
0 = 𝑟𝑎𝑛𝑑

4. 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖 (𝑥𝑏𝑎𝑏𝑦𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗

0 , 0)

5. Return 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖

6. end while

Where 𝐶𝑗
𝑖 > 1 indicates that the prey individual j moves to a new nutrient rich

location in step i, and 𝐵𝑟𝑒𝑒𝑑𝐻𝑙 is the health value that allows a prey to breed and is chosen at

the beginning of the search. The algorithms in this paper are inspired by the work done by

Parpinelli (Parpinelli and Lopes, 2011) and Neumann (Neumann and Witt, 2010). Similarly,

the reproduction step of a predator individual is summarized as follows (Zeigler et al., 1978)

Algorithm 2 Predator Reproduction

1. while not all predator individuals are visited do

2. for individual j, if 𝑀𝑗
𝑖 > 1 and 𝐻𝑗

𝑖 > 𝐵𝑟𝑒𝑒𝑑𝐻𝑝

3. Breed a predator baby 𝑥𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑥𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 =𝑦𝑗

𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗
0 = 𝑟𝑎𝑛𝑑

4. 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖 (𝑥𝑏𝑎𝑏𝑦𝑗

𝑖 , 𝑦𝑏𝑎𝑏𝑦𝑗
𝑖 , 𝐻𝑏𝑎𝑏𝑦𝑗

0 , 0)

5. Return 𝐿𝑏𝑎𝑏𝑦𝑗
𝑖

6. end while

Here 𝑀𝑗
𝑖 > 1 means that the predator j has foraged in iteration i, and 𝐵𝑟𝑒𝑒𝑑𝐻𝑝 is the

minimum health value that allows the predator to breed. Needless to say that if a species

reaches its maximum allowed number of individuals, the reproduction step is not applied.

This can be seen in the conditions PredatorIndividualnumber < 𝑆𝑝 and

PreyIndividualnumber < 𝑆𝑙 in Algorithms 1 and 2.

Demise step

The demise step is very important in the Ecological Systems Algorithm since it

ensures the elimination of weak individuals in both search species. After several iterations,

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 216

the prey individuals that have moved from bad to better locations (locations with higher

nutrient density) get their health values increased. On the other hand, prey individuals that

have moved to worse locations experience a decrease in their health values. In the demise

step, individuals with health values less than a given threshold or that have reached their

maximum iteration age vanish. This ensures that only individuals that have found optimal

locations survive for the next set of iterations. After enough number of iterations, all prey

individuals will be gathered in the optimal location since individuals in bad locations are not

allowed to breed and vanish with iterations. The demise step for prey individuals can be

summarized as in Algorithm 3.

Algorithm 3 Demise Step

1. while not all prey individuals are visited do

2. for individual j, if 𝐴𝑗
𝑖 ≥ 𝑁 or 𝐻𝑗

𝑖 < 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙

3. Prey j is eliminated 𝐿𝑗
𝑖+1(0,0,0,0)

4. Return 𝐿𝑗
𝑖+1

5. end while

Where 𝐴𝑗
𝑖 is the age of individual 𝑗 at iteration 𝑖, 𝐻𝑗

𝑖 is its health, and 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙is the

minimum health for prey individuals to be alive. For predator species, Algorithm 3 is also

applied but with 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙 is replaced by 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑝. 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑙 and 𝐷𝑒𝑚𝑖𝑠𝑒𝐻𝑝 are design

values chosen at the beginning of the optimization process.

Note that ESA for two-dimensional problem search is explained here since it is more

conventional and resembles to the real search of animal species in their environments. For

ESA searching a space of dimension 𝐷, the initial search species are

𝑷𝒋
𝒊(𝒙𝟏𝒋

𝒊 , 𝒙𝟐𝒋
𝒊 , 𝒙𝟑𝒋

𝒊 , … . . , 𝒙𝑫𝒋
𝒊 , 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

𝑳𝒋
𝒊(𝒙𝟏𝒋

𝒊 , 𝒙𝟐𝒋
𝒊 , 𝒙𝟑𝒋

𝒊 , … . . , 𝒙𝑫𝒋
𝒊 , 𝑯𝒋

𝒊, 𝑨𝒋
𝒊)

 (9)

Where 𝑥1, 𝑥2,..., 𝑥𝐷 are the coordinates of the predator and prey search individuals in

𝐷 dimensions.

In addition to the regular ecological steps, dispersal property could be added to the

algorithm by changing the health update step for prey individuals. The dispersal property

gives the algorithm more chance to discover new regions in the search space that were

initially far from being tested. Moreover, the dispersal property helps avoiding the local

minima problem in ESA with prey individuals, located in local optimal locations, escape their

locations and start exploring new scopes. The dispersal property can be summarized as

follows: whenever a prey individual is attacked and survived the attack, it is made to move

with greater speed and in a random position. The health update step with dispersal property is

summarized by Algorithm 4.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 217

Algorithm 4 Updated Health Step

1. while not all prey individuals are visited do

2. if no close predator exists

3. if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 >𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖

4. 𝐶𝑗
𝑖+1 > 1

5. else 𝐶𝑗
𝑖+1 < 1

6. 𝐻𝑗
𝑖+1 = 𝐶𝑗

𝑖+1 ×𝐻𝑗
𝑖

7. Return 𝐻𝑗
𝑖+1

8. else a close predator exists

9. if 𝐻𝑝𝑟𝑒𝑑
𝑖 ≤𝐻𝑗

𝑖

10. 𝐻𝑗
𝑖+1 = 𝐶𝑗

𝑖+1 × 𝐾𝑗
𝑖+1 × 𝐻𝑗

𝑖

11. 𝑥𝑗
𝑖+1 = 𝑥𝑗

𝑖 + 𝑅𝑎𝑛𝑑𝑥𝑗 × 2 × 𝑆𝑡𝑒𝑝𝑥

12. 𝑦𝑗
𝑖+1 = 𝑦𝑗

𝑖 + 𝑅𝑎𝑛𝑑𝑦𝑗 × 2 × 𝑆𝑡𝑒𝑝𝑦

13. Return 𝐿𝑗
𝑖+1(𝑥𝑗

𝑖+1, 𝑦𝑗
𝑖+1, 𝐻𝑗

𝑖+1, 𝐴𝑗
𝑖+1)

14. else prey is eliminated 𝐿𝑗
𝑖+1(0,0,0,0)

15. Return 𝐿𝑗
𝑖+1

16. end while

ESA resembles to real animals in nature where each individual performs primitive

actions with no intelligent moves or calculations. The actions taken by different individuals

are naive and made without intelligence, but the interaction between different individuals and

between the individuals and their environment produces an intelligent behavior for the

algorithm. This makes ESA a Swarm Intelligence algorithm. It is important to emphasize that

if extinction of the whole predator species occurs, ESA will still be able to search the space

and find the optimal solutions. However, the search becomes slower and its ability to explore

new regions is diminished. On the other hand, it is impossible for the algorithm to complete a

search with only a predator species. Figure 1 shows the flowchart of Ecological Systems

Algorithm.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 218

Figure 1: Flowchart of Ecological Systems Algorithm.

Tuning ESA parameters

Tuning the search algorithm for its parameters is a serious problem: the performance

of the algorithm is influenced by these parameters as well as by the initial solutions suggested

randomly at the beginning of the search. This means that the search algorithm requires

another search algorithm to tune its parameters and find the best values to start the search!

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 219

The new search algorithm has also some parameters that need to be chosen carefully, and the

tuning of its parameters will be a new problem. In the following, a guideline on the selection

of the parameter set for ESA is provided. First, one has to choose roughly the dimensions of

the search where the optimum is expected to be found. The dimension can be extended if the

optimum detected by the algorithm is found to be insufficient. 𝐸𝑝𝑠𝑛 and 𝐺𝑛 values define the

quality of the optimum point that the algorithm is trying to find. By choosing these values

carefully, one can set the accepted range of the optimum which is greater than 𝐸𝑝𝑠𝑛 and less

than 𝐺𝑛 values. The factors by which the health of predators and preys increase or decrease

(𝐶𝑗
𝑖+1, 𝐾𝑗

𝑖+1, 𝑀𝑗
𝑖+1) affect the search speed and can be chosen by trial and error. The step size

a search individual makes in the environment should be chosen influenced by the shape of the

environment itself. If the environment has multiple optima with narrow minima and maxima

for example, short step size is chosen to ensure that narrow locations are tested with multiple

search individuals.

ESA belongs to metaheuristic algorithm family which has no guaranteed global

convergence (Yang, 2014). It is thus essential to emphasize the importance of a detailed

theoretical study of the convergence of ESA using probabilistic analysis (Liu et al., 2009; Liu

and Liu, 2013) or Markov chain theory analysis (Song et al., 2009; He et al., 2018). Such

studies are beyond the scope of this introductory paper.

Comparison of ESA and GA

In this section, ESA and GA algorithms will be compared based on several benchmark

functions optimization results. GA is one of the first evolutionary search algorithms. It is a

well-established, fast, powerful, and efficient algorithm (Kar, 2016). Authors believe that

comparing a new biologically inspired algorithm to one of the pioneer bio-inspired

algorithms that has been under development and in use in several scopes for decades will

reveal the importance and effectiveness of the newly developed algorithm (Karaboga and

Basturk, 2007; Lamy, 2018). In this paper, the traditional base-10 single point crossover GA

algorithm presented by Kevin Passino in (Passino, 2005) is used. To be able to compare

different search algorithms in a benchmark test, it is essential to perform multiple runs of

each algorithm on each benchmark function. This is because the search path taken by each

algorithm depends on the starting conditions and will be different at each run. Moreover, the

effectiveness and performance of the algorithms is expected to be different from a function to

another. A robust algorithm is an algorithm that has similar performance regardless of the

starting conditions and different benchmark functions. In this section, ESA and GA are used

to optimize ten different benchmark functions (Wu et al., 2016). The performance and

effectiveness of the two algorithms are compared by performing multiple runs for each

algorithm with each benchmark function. The change in the best, worst, average, and mean

fitness values, as well as the standard deviation of the fitness values through 100 iterations

(Shareef et al., 2015; Karaboga and Basturk, 2007; Margaritis and Digalakis, 2001) are used

to compare the two algorithms. The variation in the global optimization results found by both

algorithms in 20 different runs of 100 iterations is also used to evaluate the two algorithms.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 220

This number of runs is seen to be sufficient to obtain a general comparative picture of the two

algorithms (Dieterich and Hartke, 2012).

Benchmark functions

The benchmark functions used in this paper are non-linear, continuous/discontinuous,

unimodal/multimodal, convex/non-convex, and separable/non-separable. The modality of a

function is the number of vague peaks in the surface of that function; and a function is

multimodal if it has more than one vague peak. This means that a multimodal function has

multiple local optima that might disguise the search algorithm. The separability of a function

affects the difficulty level of this function. In separable functions, each variable is

independent of the other variables which make such functions easier to solve compared to

non-separable functions (Shareef et al., 2015). The dimension of benchmark functions affects

the optimization difficulty level, and is taken to be two for all functions.

The Ackley function is continuous, differentiable, non-separable, scalable, and

multimodal that is widely used to test optimization algorithms. This function has moderate

complexity with many local optima spread in its surface. An optimization algorithm

searching Ackley function risks of being trapped in one of these optima. The Cross In Tray

function is continuous, non-differentiable, and multimodal with multiple global optima.

Griewank function is another continuous, differentiable, non-separable, scalable, and strongly

multimodal function. The variables in this function are interdependent, and local optima are

widespread but distributed regularly. Similar to the previous functions, the Holder Table

function is continuous, differentiable, separable, non-scalable, and multimodal. This function

has many local optima, but only four global optima. Levi function is continuous and

differentiable, and has many local optima. Like the other functions, Matyas function is

continuous, differentiable, non-separable, but non-scalable and unimodal. This function has

only one global optimum with no local optima that hardens the search. The Perm function is

continuous and differentiable function with four global optima. Rastrigin function is highly

multimodal and has many local optima that are regularly distributed in the environment. A

search algorithm optimizing this function can be trapped in its local optima and fail to find

the global optima. Schaffer function is continuous, differentiable, non-separable, scalable,

and highly multimodal function. Schwefel function has many peaks and valleys. It is a

complex, continuous, differentiable, non-separable, scalable, but unimodal function. This

function has a second best optima which drives search algorithms to converge in the wrong

direction. The reader is directed to (Jamil and Yang, 2013; Suganthan et al., 2005), and

(Finck et al., 2010) for more information about benchmark functions used in this paper. The

benchmark functions used to evaluate and compare ESA and GA algorithms are shown in

Table 1. Note that these functions are used in two dimensional searches within the search

space {(-10, -10), (10,10)} except the Rastrigin and the Shcwefel functions with respectively

{(-20, -20), (20,20)} and {(-50, -50), (0,0)} as search spaces.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 221

Table 1: Benchmark functions

Function General expression Global optima

Ackley

12.64 at [0, 0]

Cross In

Tray

2.058, at [1.5, 1.5],

[1.5, -1.5], [-1.5, 1.5],

[-1.5, -1.5]

Griewank

2.004, 18 global

optima

Holder

Table

19.18, at [8.1, 9.7],

[-8.1, 9.7], [8.1, -9.7],

[-8.1, -9.7]

Levi

2, at [1, 1]

Matyas

100, at [0, 0]

Perm

6.634e4, at [10, 10],

[-10, 10], [10, -10],

[-10, -10]

Rastrigin

800, at [20, 20],

[-20, 20], [20, -20],

[-20, -20]

Schaffer

1, at [0, 0]

Schwefel

908. 9, at [-50, -50]

Genetic Algorithm applied to benchmark functions

Genetic Algorithm is a biologically inspired stochastic search algorithm based on

natural selection used to solve complicated optimization problems. GA algorithm is a very

practical tool where no reformulation of the problem or special mathematical treatment is

needed. Moreover, this algorithm which is not subjected to local optimization problem

common in conventional search algorithms, is easy to apply to nonlinear search spaces, and

can be used in discontinuous and noisy search problems. GA starts by assigning randomly a

group of solutions and testing their fitness. The best solution values are then used to generate

new solutions using three random methods. Each search individual in the GA algorithm used

to optimize the benchmark functions has two traits. This allows GA to search two

dimensional environments. Each trait has six genes that are digitized, so that search

individuals are changed by toggling digital bits. The probability of mutation process is chosen

to be 0.05, while the crossover probability is chosen as 0.8. A total number of 100 individuals

in the population is chosen to perform the search. These values were inspired by the extensive

study made by Digalakis and Margaritis in (Margaritis and Digalakis, 2001) and (Margaritis

and Digalakis, 2002). From the various population size, mutation probability, and crossover

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 222

probability values tested in these works, suitable values giving acceptable results for most of

the benchmark functions were chosen.

ESA applied to benchmark functions

To search the two-dimensional benchmark functions using ESA, one prey and one

predator species are assigned randomly in the environment. The search species are created in

the plane, each individual with an age of zero and with random 𝑥 and 𝑦 coordinates and

health value. By changing their coordinates randomly, search individuals move in the

environment to explore new locations. A prey checks the nutrient density in its location by

feeding its coordinates to the benchmark function being optimized. High fitness value in a

location indicates high nutrient density at that location. After the creation of initial

population, the nutrient density at the location of each prey individual is calculated. Prey

individuals then move randomly in the environment, and nutrient densities are calculated in

their new locations. The prey that had moved from worse to better location increases its

health, and a new search individual is created at the same location. Prey individual that had

moved to a worse location decreases its health as result of famine. Note that the random steps

taken by prey and predator individuals are insured to be within the search boundaries.

For predator individuals, they detect prey individuals found in close locations and

attack them. If the health of the prey individual is more than that of the predator individual,

the prey manages to escape but with some injuries that decrease its health. On the other hand,

if the predator is healthier, it eats the prey, increases its own health, and breed a new baby

predator at its location. The predator individual then moves to a new location randomly

looking for a new prey. Table 2 and Table 3 show ESA parameters used to tune the

benchmark functions. Values in Table 2 are chosen by trial and error, but with careful

analysis of the outputs of several algorithm runs. It is found that if the prey health change rate

𝐶𝑗
𝑖+1 is chosen less than the suggested value, the prey species perishes quickly before the

algorithm converges to an optimum. On the other hand, if 𝐶𝑗
𝑖+1 is chosen more than the

suggested value, prey individuals found in local optima survive multiple iterations, the search

slows down, and the predator species is rendered ineffective. This will result in the inability

of the algorithm to discover new locations. Similarly, the predator health change rate was set

following the same observations. It is important to emphasize that ideally, different health

change rates would be chosen for each environment.

However, the values given in Table 2 give acceptable results for all the benchmark functions

used in this paper. The individual step size, the prey detection distance, along with the fitness

boundaries 𝐸𝑝𝑠𝑛 and 𝐺𝑛in Table 3 are chosen by trial and error but regarding the search

environment. The step size of an individual is chosen small to ensure precise search of

environments with several local minima such as Rastrigin and Griewank functions. This

results in much slower but more effective search. For more homogeneous environments such

as Perm and Matyas functions, the individual step size is chosen bigger to ensure fast search.

Concerning 𝐸𝑝𝑠𝑛 and 𝐺𝑛, a previous knowledge of the expected optimum helps in setting

their values. These values allow the algorithm to avoid local minima by ignoring locations

with fitness values far less than the optimum (set by 𝐸𝑝𝑠𝑛), and focusing the search around

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 223

locations with fitness values close to the optimum (set by 𝐺𝑛). The values of 𝐸𝑝𝑠𝑛 and 𝐺𝑛 are

chosen based on the global optima values of the functions in Table 1. For the Rastrigin

function for example its global optima is 200, so locations with fitness values less than 120

(𝐸𝑝𝑠𝑛) are made less appealing for search, and locations with fitness values equal and more

than 160 (𝐺𝑛) are made popular. More babies will be born here, and individuals searching

these locations will have longer life span.

Table 2: Parameters of ESA

Prey individuals Predator individuals

𝐶𝑗
𝑖+1 1.8,

if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 >𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖

𝑀𝑗
𝑖+1 1.1,

if predator forages

𝐶𝑗
𝑖+1 × 𝐾𝑗

𝑖+1 0.8,

if prey is attacked
𝑀𝑗

𝑖+1 0.9,

if no close prey exists

𝐶𝑗
𝑖+1 1.3,

if 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗
𝑖+1 <𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗

𝑖

Predator step

size

0.8

𝑆𝑙 100 𝑆𝑝 10

Table 3: Parameters of ESA searching the test functions

Function Individual

step size

Prey

detection

distance

𝑫𝒆𝒎𝒊𝒔𝒆𝑯𝒍 = 𝑫𝒆𝒎𝒊𝒔𝒆𝑯𝒑 𝑬𝒑𝒔𝒏 𝑮𝒏

Ackley 0.5 0.3 0.8 6 10

Cross In Tray 1 0.8 0.8 0.5 1.7

Griewank 0.5 0.8 0.8 0.5 0.9

Holder Table 0.5 0.3 0.8 10 18

Levi 0.5 0.5 0.8 0.2 1.5

Matyas 1 1 0.8 20 95

Perm 1 0.8 0.8 20000 65000

Rastrigin 0.5 0.5 0.8 120 160

Schaffer 1 0.3 0.8 0.7 0.8

Schwefel 5 5 0.8 700 850

RESULTS AND DISCUSSION

Results show that GA possesses superior convergence characteristics compared with

ESA, and reaches the global optima in shorter time. However, the comparative results shown

in Figure 2 to Figure 4 show that ESA has satisfactory performance, and its results are

comparable to those of GA. ESA performed better than GA when optimizing Griewank,

Holder table, and Rastrigin functions, which shows the ability of ESA to escape from local

optima.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 224

Figure 2 to Figure 4 show the convergence characteristic curves of GA and ESA

algorithms obtained while optimizing the benchmark functions. ESA finds the best global

optimum or near global optimum in less than 20 iterations on average for all functions except

Rastrigin and Schwefel functions as shown in Figure 2. ESA needs some 60 additional

iterations to optimize the Rastrigin function. For the Schwefel function, ESA can find the best

near-optimum solution in 40 iterations. GA outperformed ESA in finding the best global

optimum for Ackley, Rastrigin, and Schwefel functions. On the other hand, ESA

outperformed GA in finding the global optimum for Griewank, Holder table, Perm, and

Rastrigin functions. The performance of the two algorithms is similar for the remaining

functions.

Figure 2: Best fitness values for ESA and GA in optimizing benchmark functions at Table 1

through 100 iterations, Ackley, Cross In Tray, Griewank, Matyas, Perm, and Rastrigin

functions in (a), and Holder Table, Levi, Schaffer, and Schwefel in (b).

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 225

Figure 3 shows the mean fitness value curves found while optimizing the benchmark

functions using ESA and GA through 100 iterations. This figure shows that the performance

of GA and ESA is acceptable because their means are close to the optimal solutions for most

of the benchmark functions.

Figure 3: Mean fitness for ESA and GA in optimizing benchmark functions at Table 1 through

100 iterations, Ackley, Cross In Tray, Griewank, Matyas, Perm, and Rastrigin functions in (a),

and Holder Table, Levi, Schaffer, and Schwefel in (b).

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 226

Figure 4 shows the standard deviation of the search performed by ESA and GA in 100

iterations. It is clear that the standard deviation of ESA exceeds that of GA in most of the

functions, and oscillates around a constant value. This is related to the nature of the

algorithms. In GA, best genes survive and perform the search resulting in a small standard

deviation. In ESA, search individuals are spread in the environment searching for high

nutrient density, and their number is defined by Lotka-Volterra equations. The number of

predators and preys oscillates according to these equations, which explains the oscillation of

the standard deviation. However, ESA performance is still acceptable because it has an

overall low standard deviation.

Figure 4. Standard deviation of the fitness function for ESA and GA in optimizing

benchmark functions at Table 1 through 100 iterations, Ackley, Cross In Tray, Griewank,

Matyas, Perm, and Rastrigin functions in (a), and Holder Table, Levi, Schaffer, and Schwefel in

(b).

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 227

Experiments have shown that GA have found better global optima for Ackley, Cross

In tray, and Levi functions, while ESA shows better performance with higher global

optimum. This is related to the manner GA perform the search. In GA, digitized

chromosomes perform the search by toggling some bits. This gives GA the opportunity to

reach different and very far locations in two consecutive steps (by changing the third bit of

1001101 (77), the number becomes 109). Very large steps could be done between two

iterations rather than being bounded with constant step sizes like in ESA. However,

chromosomes close to optima may not be able to perform small changes and reach closer

values to the optima. On the other hand, ESA search individuals have small step sizes that

allow them to approach gradually to the optima. In other words, the fast convergence of GA

is done with the sacrifice of more accurate solutions.

Table 4 shows the global optimization results of GA and ESA for the ten different

benchmark functions. In many cases, ESA found better solution than GA but takes more time

to converge for all benchmark functions except for the Holder Table function. It is important

to emphasize that -like all stochastic search algorithms- the results of GA and ESA are tightly

related to the initial population created at the beginning of the search as well as to the stop

criteria responsible for ending the search. For example, optimizing the Griewank function

using ESA may be achieved in 6 iterations or in 60 iterations (Table 5). Moreover, the speed

of the search is also related to the situation of the computer processor. In two consecutive

search trials for the same function, the computer takes 49 iterations in 7.44 seconds, and 51

iterations in 3.146 seconds.

Table 4: Global optimization results

Function Optimum Average Average conversion time Average iteration-

generation

Ackley ESA

GA

12.3738

12.6014

6.9564

9.5292

0.81075 seconds

0.521 seconds

13.6

135

Cross In Tray ESA

GA

2.0594

2.0626

1.7312

1.6210

0.6275 seconds

0.4150 seconds

10.3

106.5

Griewank ESA

GA

2.0405

1.8641

1.5350

1.6363

3.364 seconds

0.0934 seconds

47.8

20.8

Holder Table ESA

GA

18.8895

20.1402

9.4581

19.9338

0.50466 seconds

0.927 seconds

6.6

241.4

Levi ESA

GA

1.9324

1.9946

1.5354

1.6

0.941 seconds

0.5682 seconds

18.2

166.4

Matyas ESA

GA

99.9748

99.9534

96.3292

95.3332

1.328 seconds

0.0934 second

26

21.4

Perm ESA

GA

5.9214e4

6.6785e4

2.8104e4

6.5889e4

0.692 seconds

0.0616 seconds

11.4

6.2

Rastrigin ESA

GA

870.3864

800

694.3641

768.9209

2.049 seconds

0.0891 seconds

40

18.4

Schaffer ESA

GA

0.9999

1

0.6325

0.7338

0.638 seconds

0.4366 seconds

11.2

129

Schwefel ESA

GA

884.8125

908.8519

862.4745

861.0567

1.754 seconds

0.1308 seconds

34.2

31.4

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 228

Table 5: Results of speed tests of ESA optimizing Griewank function

 Age = 5 iterations Age = 10 iterations Age = 15 iterations

Average iterations 24.2 36.8 143.3

Average time 1.33 seconds 2.01 seconds 8.2 seconds

Minimum iterations 6 3 45

Minimum time 0.409719 seconds 0.897217 seconds 6.916340 seconds

Maximum iterations 60 103 279

Maximum time 2.942206 seconds 5.053009 seconds 15.469319 seconds

Experiments have shown that the maximum age of individuals affects directly ESA

conversion speed. Results of 10 speed tests conducted on Griewank function with three

different ages are shown in Table 5. When the maximum age is 5 iterations, all the initial

search individuals created at the beginning of the search die in 5 iterations leaving the

environment for fresh individuals created as a result of a successful step. This allows the

algorithm to find the optimum in average 25 iterations and 1.33 seconds. When the maximum

age is increased to 10 iterations, the number of iterations needed for the algorithm to find the

optimum is increased to 37. Increasing the maximum age to 15 iterations results in an

exponential increase in iteration number and in the time needed for the algorithm to

converge.

CONCLUSION

In this paper a novel bio-inspired evolutionary search algorithm based on ecological

rules is proposed. The new algorithm -called Ecological Systems Algorithm (ESA)- uses a

population of two search individual species to perform the search. Each individual in the

predator and prey species has very naive decision making, but the interaction of these

individuals with their environment as well as with each other produces an intelligent behavior

that is able to solve optimization problems. Seeking comparison, Ecological Systems and

Genetic algorithms are used to optimize ten different benchmark functions.

MATLAB/SIMULINK results show that ESA was able to compete with GA and find more

accurate optima for many benchmark functions. However, the convergence speed of ESA is

shown to be lower compared with GA convergence speed. Future work should focus on the

improvement of ESA algorithm. The introduction of inter-individual forces that ensure

flocking of close individuals of the same species, the introduction of elitism among

individuals, and the use of average fitness dependent step size are possible ideas that are

expected to fasten and refine the ESA search. Perspectives of this work include the use of

ESA to different optimization problems like clustering, and the optimization of multi-

objective problems and travelling salesman problem, and its use in real engineering

applications such as adaptive controller tuning, path planning for mobile robots, medical

image analysis, network routing, and smart energy management.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 229

REFERENCES

Beauchamp, D. and Johnson, B. and Wahl, D. 2007. Predator-Prey Interactions. In C. G.

Brown (Ed.), Analysis and interpretation of inland fisheries data (1 ed.). American

Fisheries Society.

Dieterich, J. and Hartke, B. 2012. Empirical Review of Standard Benchmark Functions Using

Evolutionary Global Optimization. Applied Mathematics, 3(10), 1552-1564.

Finck, S. and Hansen, N. and Ros, R. and Auger, A. 2010. Real-Parameter Black-Box

Optimization Benchmarking: Presentation of the Noiseless Functions. Institut

National de Recherche en Informatique et en Automatique (INRIA).

Garnier, S. and Gautrais, J. and Theraulaz, G. 2007. The biological principles of swarm

intelligence. Swarm Intelligence(1), 3-31.

He, X. S. and Wang, F. and Wang, Y. and Yang, X. S. and Yang, X. S. 2018. Global

Convergence Analysis of Cuckoo Search Using Markov Theory. In X.-S. Yang (Ed.),

Nature-Inspired Algorithms and Applied Optimization. Springer, Cham.

Jamil, M. and Yang, X. S. 2013. A literature survey of benchmark functions for global

optimization problems. International Journal of Mathematical Modelling and

Numerical Optimisation, 4(2), 150 - 194.

Kar, A. K. 2016. Bio inspired computing – A review of algorithms and scope of algorithms

and scope of applications. Expert Systems With Applications, 59(1), 20-32.

Karaboga, D. and Basturk, D. 2007. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (abc) algorithm. Journal of Global

Optimization, 39(1), 459–471.

Lamy, J. B. 2018. Artificial Feeding Birds (AFB): a new metaheuristic inspired by the

behavior. In S. S. Shandilya S. (Ed.), Advances in Nature-Inspired Computing and

Applications (pp. 43-60). Springer.

Liu, H. and Abraham, A. and Snášel, V. 2009. Convergence Analysis of Swarm Algorithm.

World Congress on Nature & Biologically Inspired Computing (pp. 1714-1719).

Coimbatore, India: NaBIC.

Liu, S. and Liu, H. 2013. Particle Swarm Algorithm: Convergence and Applications. In Z. C.

Xin-She Yang (Ed.), Swarm Intelligence and Bio-inspried Computation: Theory and

Applications (pp. 137-168). Elsevier.

Margaritis, K. and Digalakis, J. G. 2002. An Experimental Study of Benchmarking functions

for Genetic Algorithms. International Journal of Computer Mathematics, 79(4), 403–

416.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 230

Margaritis, K. G. and J. G. Digalakis 2001, January. On Benchmarking Functions for Genetic

Algorithms. International Journal of Computer Mathematics, 1 - 27.

Merheb, A. and Noura, H. and Bateman, F. 2014. Active fault tolerant control of quadrotor

uav using sliding mode control. 2014 International Conference on Unmanned Aircraft

Systems (ICUAS14), (pp. 156 – 166). Orlando, FL, USA.

Merheb, A. and Noura, H. and Bateman, F. 2015. Active fault tolerant control of an octorotor

uav. In F. Miranda (Ed.), Control Theory: Perspectives, Applications and

Developments. NY, USA: Nova science publishers.

Merheb, A. and Noura, H. and Bateman, F. 2015. Design of passive fault tolerant controller

of a quadrotor based on sliding mode theory. International Journal of Applied

Mathematics and Computer Science, 25(3), 561–576.

Neumann, F. and Witt, C. 2010. Bioinspired Computation in Combinatorial Optimization,

Algorithms and Their Computational Complexity (1 ed., Vol. Natural Computing

Series). Springer-Verlag Berlin Heidelberg.

Parpinelli, R. and Lopes, H. 2011. An eco-inspired evolutionary algorithm applied to

numerical optimization. Third World Congress on Nature and Biologically Inspired

Computing. Salamanca, Spain.

Passino, K. M. 2002. Biomimicry of social foraging bacteria for distributed optimization:

Models, principles, and emergent behaviors. Journal Of Optimization Theory And

Applications, 115(3), 603–628.

Passino, K.M. and Y. Liu 2005. Biomimicry for Optimization, Control, and Automation.

London: Springer.

Puliafito, S. and Puliafito, J. and Grand, M. 2008. Modeling population dynamics and

economic growth as competing species: An application to co2 global emissions.

Ecological Economics, 65(3), 602 – 615.

Shareef, H. and Ibrahim, A. and Mutlag, A. 2015. Lightning search algorithm. Applied Soft

Computing, 36(1), 315–333.

Song, X. and Sun, L. and Chang, C. 2009. A Hybrid Particle Swarm Algorithm for Job Shop

Scheduling Problems and its Convergence Analysis. 2009 International Conference

on Artificial Intelligence and Computational Intelligence, (pp. 99-103). Shanghai,

China.

Suganthan, P. and Hansen, N. and Liang, J. and Deb, K. and Chen, Y. and Auger, A. and

Tiwari, S. 2005. Problem Definitions and Evaluation Criteria for the CEC 2005

Special Session on Real-Parameter Optimization. Natural Computing, 1(1), 341-357.

Wu, T. Q. and Yao, M. and Yang, J. H. 2016. Dolphin swarm algorithm. Frontiers of

Information Technology & Electronic Engineering, 17(8), 717-729.

Lebanese Science Journal, Vol. 22, No. 2, 2021 P a g e | 231

Yang, X. S. 2014. Swarm intelligence based algorithms: a critical analysis. Evolutionary

Intelligence, 7, 17-28.

Zeigler, M. V. and Bernard, P. 1978. Bacterial Predator-Prey Interaction at Low Prey

Density. Applied and Environmental Microbiology, 36(1), 11–17.

Zhang, H. and Yuan, M. and Liang, Y. and Liao, Q. 2018. A novel particle swam

optimization based on prey-predator relationship. Applied Soft Computing, 68(1),

202–218.

Zuo, C. and Wu, L. and Zeng, Z. and Wei, H. 2017. Stochastic fractal based multiobjective

fruit fly optimization. International Journal of Applied Mathematics and Computer

Science, 27(2), 417–433.

View publication statsView publication stats

https://www.researchgate.net/publication/358962272

