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Bayesian rationality revisited: integrating order effects 

 

Abstract 

Bayes’ inference cannot reliably account for uncertainty in mental processes. The 

reason is that Bayes’ inference is based on the assumption that the order in which the relevant 

features are evaluated is indifferent, which is not the case in most of mental processes. Instead 

of Bayes’ rule, a more general, probabilistic rule of inference capable of accounting for these 

order effects is established. This new rule of inference can be used to improve the current 

Bayesian models of cognition. Moreover, it should play an essential role in the search for 

artificial emotional intelligence.       

 

Keywords: Bayesian inference; Order effects; Decision-Making; Emotions; Emotional 

Intelligence 

 

Introduction 

It has already been shown that the paradigm of Bayesian rationality in cognitive science is 

faced with some general challenges, like the problem of connecting its probabilistic models to 

psychological mechanisms or that of justifying the priors used in Bayesian inference 

(Oaksford & Chater 2007) (Griffiths et al. 2008). However, beyond these challenges, 

Bayesian rationalism suffers from an even more fundamental problem: Bayes’ inference 

cannot account for mental processes because the latter give rise to order effects. Order effects 

in mental processes denote the fact that the order in which the relevant mental features are 
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evaluated is not indifferent. Being understood as contextual or as subjective effects, these 

order effects cannot be accounted by the classical, set theoretical, Kolmogorov probability 

calculus from which Bayes’ rule is derived. These non-classical effects are actually quite 

similar to those encountered in the quantum realm when measuring non-compatible 

observables, which means that they can be accounted for within the mathematical framework 

of quantum theory. In quantum theory, the measurable properties of any system, its 

“observables”, are represented by Hermitian operators of a non-commutative C* algebra 

acting on the vector space of the possible states of this system. The only probability measure 

that can be assigned to their possible values is a measure over the subspaces of this vector 

space (Gleason 1957) and not as a measure over subsets of the set of possible states –like in 

classical probability theory.  On the basis of the quantum probability calculus so defined, a 

new paradigm of cognition, called “quantum cognition”, has been developed for a few 

decades by several authors, including Aerts, Sozzo, Busemeyer, Bruza, Wang, Atmanspacher, 

Römer and Pothos (Aerts et al. 2011) (Aerts and Sozzo 2013) (Busemeyer and Bruza 2012) 

(Wang and Busemeyer (2013) (Atmanspacher and Römer 2012) (Pothos and Busemeyer 

2019) (Busemeyer and Wang 2017). Quantum cognition can deal with the non-classical 

effects that are inherent to cognition and decision making, namely, order effects and 

interference effects, and then with all manifestations of these effects, like the “and fallacy”, 

the “or fallacy” or Ellsberg paradox that regards decision making in uncertain situation (Bruza 

and Busemeyer 2012). For our purpose, the essential point is that the study of cognitive 

processes requires accounting for the non-commutativity of mental observables, which thus 

requires working within the paradigm of quantum cognition where Bayes’ rule is no more 

valid.   

However, insofar as Bayes’ rule plays an essential role in the current models of cognition 

and decision making, it would be rather problematic to drop this mathematical tool definitely 
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instead of trying to generalize it in order to make it also applicable to non-commutative 

observables.  This article proposes such a solution: the general idea of Bayesian rationality is 

kept, namely the idea of modeling cognitive processes in probabilistic terms, by updating the 

prior distribution when a new event occurs, while Bayes’ classical rule is replaced by a more 

general probabilistic rule capable of dealing with these non-classical effects. This change is 

absolutely required as soon as subjective experience is involved in the mental processes 

considered, that is, quite in all of them as soon as their reduction to pure mechanical reasoning 

is inappropriate. This change is all the more necessary insofar as Bayes’ rule plays a 

fundamental role in the current research in artificial intelligence, for categorization tasks, and 

in the simulation of emotional intelligence.  

We will first recall, in section 1, what is Bayesian rationality and emphasize the fact that 

Bayes’ rule on which it presently relies does not hold in the case the considered mental 

processes give rise to order effects. Two paradigmatic successful applications of Bayes’ 

inference will also be presented in order to analyze the reason of this success. In section 2, we 

will present the order effects inherent to decision making and to all mental processes 

involving emotional experience. In section 3 we will evaluate some currently proposed 

Bayesian models of cognition: are these models really successful, as too easily claimed by the 

supporters of the “all-Bayesian” rationality? We will explain that this apparent success has to 

be questioned when the commutativity of the considered observables is not satisfied. Section 

4 will present the theoretical framework of quantum cognition, an alternative approach to 

cognition and decision making capable of accounting for these non-classical effects, which 

are indeed inherent to all mental processes. Within this generalized framework, we will 

propose an alternative to Bayes’ rule where the conditional probabilities P(Ai/Ej) are not 

linearly related to the “inverse” conditional probabilities P(Ej/Ai), like in Bayes’ rule. This 

new probabilistic rule of inference, whose classical limit, when there is no order effects, is 
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Bayes’ rule, requires to compute the commutator of the couples of observables respectively 

defined from the series of events {Ai} and {Ej} in order to take into account their degree of 

non-commutativity. Section 5 will illustrate the fertility of this alternative, probabilistic rule 

of inference for modelling cognitive processes. It will discuss the way of improving the 

current models of visual perception and those of emotion recognition from the subject’s face 

expression. Section 6 will explain why such a generalized, probabilistic rule of inference 

should play an essential role in the field of artificial intelligence, in particular for simulating 

the emotional aspect of intelligence.  

    

1. Bayesian rationality and its limitations 

1.1. Bayesian rationality  

Bayesian rationality is an approach to cognition based on the idea that cognitive 

processes, and in particular reasoning, can be rationally modeled by appealing to probabilities, 

used as a tool to make predictions, rather than by logical rules (Griffiths, Kemp and 

Tenenbaum 2008) (Oaksford and Chater 2007). Many works have been developed in order to 

model high-level cognitive processes in probabilistic terms, in the range of perception (Knill 

and Pouget 2004) (Mamassian et al. 2002), categorization (Ashby and Alfonso-Reese 1995), 

(Griffiths et al. 2008) (Perfors and Tenenbaum 2009) or language processing (Xu and 

Tenenbaum 2007), among others. It is moreover assumed that the good probabilistic calculus 

to use is the classical one, from which Bayes’ rule is derived. Bayes’ rule extends the too 

narrow framework of binary classical logic by taking into account the uncertainty in the 

knowledge of premises and the acquisition of information, which is evaluated in terms of 

probabilities. Even when probabilities are interpreted subjectively, as degrees of belief (de 

Finetti 1970), Bayesian reasoning still satisfies the rules of the classical probability calculus, 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Thomas%20L.%20Griffiths&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Charles%20Kemp&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Joshua%20B.%20Tenenbaum&eventCode=SE-AU
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as shown by Cox-Jaynes theorem (Cox 1946), which strengthens the idea that Bayesian 

inference is appropriate for modeling mental (or even brain) processes.  

In the literature about cognition, Bayes’ rule is thus regarded as the key ingredient 

used for integrating uncertainty in cognition and decision-making (Griffiths et al. 2008) 

(Oaksford & Chater 2007) (Evans et al. 2015) (Cruz et al. 2015) (Mamassian et al. 2002). It is 

used to model many areas of human activities, like finance (for modelling risk), medicine (for 

diagnostic and decision making) or meteorology (for weather forecasting), and the success of 

Bayesian models of cognition seems certain, as well in reasoning, learning or making 

decision. Accordingly, Bayesian networks, based on Bayes’ rule, are used in machine learning 

whose applications have been developed in image processing (Simonyan and Zisserman 

2015), neuroscience1 (Poggio 2016) (Mamassian et al. 2002) and medical diagnostics (Kubota 

2017), among other domains. Bayes’ inference is supposed to correctly represent the way we 

reason, we learn and make decision in uncertain situation, and therefore to be a key-ingredient 

for developing artificial intelligence. Let us now examine accurately the presumed success of 

Bayes’ inference and show that its application to mental processes suffers from important 

bias.     

 

1.2. Bayes’ inference and its domain of validity  

Bayes’ inference allows to calculate how a priori probabilities are updated when new 

information is gathered (Hossein 2014): the posteriori probability P (A/E) of the event A 

given the evidence E, which can denote in particular the observation of some feature or some 

                                                           
1 Reducing mental processes to brain’s activity leads to the idea that Bayesian inference “takes part of the 

automatic and unconscious, elementary operations of our brain” (Dehaene 2012). According to a growing trend 

in theoretical neuroscience, the human perceptual system could thus be modeled as a Bayesian machine. The 

brain is supposed to represent sensory information probabilistically, in the form of probability distributions. This 

hypothesis, which presently lacks of experimental confirmation (Knill and Pouget 2004), is only an over-

interpretation of Bayesian rationalism within a reductionist materialism. It will not be examined further in this 

article, which focuses on the rationality of mental processes.   

 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Thomas%20L.%20Griffiths&eventCode=SE-AU
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property of the situation under consideration, is calculated from the prior probability P (A), 

estimated before the occurrence (or the knowledge of the occurrence) of E, and the 

“likelihood” P (E/A), which is the conditional probability of observing E when A is realized:  

(1)                                            P (A/E) = [P (A). P (E/A)] / P (E), 

where P(E), which appears in the denominator of this expression, is the probability of 

occurrence of the event E, which can for example denote the observation of a property and is 

a priori computed independently of A.  

Bayes’ rule is derived from the definition of conditional probability in the classical 

probability calculus: 

P (A/E) = P (A and E) / P (E), 

where “A and E” has no temporal connotation, meaning that A and E can occur in any 

temporal order or be simultaneous. This order-independent definition gives rise to the “rule of 

multiplication” of the classical probability calculus:  

(2)                                     P (A and E) = P (A/E) . P (E) = P (E/A). P (A), 

and Bayes’rule (1) is then straightforwardly obtained by dividing the two terms of the second 

equality of (2) by P(E).  

However, it is essential to notice that (2) is valid on the condition that the value of the 

joint probability P (A and E) is independent from the order of occurrence of A and E. If P (A 

and E) depends on the order of occurrence of A and E, we must clearly distinguish the 

calculation of  

P (A and then E) = P (E/A). P (A), 

from that of  

P (E and then A) = P (A/E). P (E), 

and in this case Bayes’ rule (1) is not verified since (2) is no more valid. This means that 

Bayes’ inference is valid only if the condition of commutativity of events is satisfied.  
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1.3. Two paradigmatic applications of Bayes’ inference 

In order to check the latter condition of commutativity in the use of Baye’s 

probabilistic inference, let us mention two paradigmatic applications of it. The first one, 

presented in any text-book as an illustration of Bayes’ rule, describes the drawing of balls in 

two urns. The second application of Bayes’ rule, which is widely used in the medical field, 

regards diagnostic testing.    

 

1.3.1. Drawing of balls in two urns 

We have two urns I and II that respectively contain 2 yellow balls and 6 blue balls (for 

urn I) and 3 yellow balls and 9 blue balls (for urn II). A blue ball is drawn from one of these 

two urns but we do not know which one it is2. The problem is to evaluate the possibility that 

this ball was drawn from urn I or from urn II. Bayes’ rule allows us to calculate these 

probabilities. The probability that this ball was drawn from urn I is: 

P (I/Blue) = P (I).[P(Blue/I) / P(Blue)], 

and, interpreting here probabilities as proportions (for example, P(I) = proportion of balls in 

urn I = 8/20 = 0.4), leads to the result P(I/Blue) = 0.4.  

This result can be checked by merely counting the proportion of blue balls in urn I, 

which are in number of 6 for a total of 15 blue balls in urns I and II. This proportion is exactly 

0,4 –which confirms the previous result. A quite similar reasoning can be done for evaluating 

P(II/Blue). No dispute can be made to this reasoning based on Bayes’ rule (1) since the 

variables that are measured, called “observables” in the following of this article, are purely 

objective data, contextually independent and completely independent from any subjective 

interpretation and any judgment. These observables are intrinsically defined as proportions of 

                                                           
2 It is supposed that the drawings are equiprobable.  
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yellow and blue balls in urn I and II, that is, as objective properties of the physical world. As 

a consequence, the order in which they are evaluated does not matter and Bayes’ rule can be 

successfully applied.  

 

1.3.2. Contamination screening  

The second example of successful application of Bayes’ rule is the classic case of 

diagnostic testing (Broemeling 2011) (Klement and Bandyopadhyay 2020). We want to know 

if someone is infected by a virus or not by performing a test whose response is positive or 

negative. The events “to be infected” and “not to be infected” are respectively noted as (V+) 

and (V-).  The positive and negative results of the test are respectively noted as (T+) and (T-).  

Suppose that we know the sensitivity of the test P(T+/V+), which is the probability that the 

test is positive for an infected person, its specificity P(T-/V-), which measures the reliability 

of the negative tests, and the contamination prevalence P(V+), which estimates the proportion 

of persons infected in the population. If a person has obtained a positive test, what is the 

probability P(V+/T+) that this person is contaminated?  

Bayes' rule allows us to calculate this probability: 

P (V+/T+) = P(V+).[ P(T+/V+) / P(T+)], 

where P(T+) can be computed as: 

P(T+) = P(T+/V+).P(V+) + P(T+/V-).P(V-), 

with P(V-) = 1 - P(V+) and P(T+/V-) = 1 - P(T-/V-). 

 For example, if the reliability of the diagnostic test is 0.8 for the sensibility P(T+/V+) 

and 0,7 for the specificity P(T-/V-), while the prior probability of contaminated people 

(defined as a frequency) is known to be 0.01, Bayes’ rule computes that P(V+/T+) = 0,026.  

This result (which shows that the test is not very significant) can be considered as 

valid because: 
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 (i) the two observables that respectively measure the existence or the absence of the 

contamination (V = V+ or V-) and the positivity or the negativity of the test (T = T+ or T-) 

are supposed to measure purely objective data or states of the world, like in the previous 

example (for the number of yellow and blue balls) and that, consequently,  

 (ii) the act of observing the state of contamination of a subject (for example, by 

referring to clinical signs, medical imaging or biological anomaly) has no influence on the 

result of the test performed on her, and, reciprocally, it is granted that performing this test and 

stating its result does not change the state of contamination of the patient, which is regarded 

as an intrinsic attribute. Hence the commutativity of the observables that respectively measure 

the state of health of a patient (responding to the question: is this patient infected or not by 

the virus?) and its contamination rate (is this patient positive or negative to the test?).  

However, as will be emphasized in the next section it is not the case for cognitive 

processes: the condition of commutativity of cognitive observables is generally not fulfilled –

which seriously questions the reliability of the current Bayesian models of cognition.    

 

2. Order effects 

As explained above, the commutativity of observables that are involved in the 

previous examples (section 1.3) relies on the assumption that the measured properties are 

intrinsically possessed by the entities considered (objects, animals, patients, …). However, as 

will be explained below, it is generally not the case of mental observables whose values are 

highly contextual and subject-dependent. Let us investigate this essential characteristic of 

mental activity on two paradigmatic examples.  
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2.1. Non-commutativity in decision-making 

In a survey realized in 1997 (September 6-7) and involving 1002 respondents, half of 

the participants were asked the two questions ‘is Clinton honest and trustworthy?’, noted as A 

hereafter, and then ‘is Gore honest and trustworthy?‘, noted as B hereafter,  while the other 

half were asked the same pair of questions in the opposite order. As reported by Moore 

(2002), the list of answers for the two groups shows that Clinton received 50% agreement 

when asked first (which defines the "non-comparative" context) but 57% when asked second 

(which defines the "comparative" context because this answer can be influenced by the first 

one). It also shows that Gore received 68% when asked first and 60% when asked second. 

This difference in the frequencies of the respondents’ answers shows that the order in which 

the questions are asked is significant since the frequency of the positive answers to the same 

question depends on whether this question is asked first or second. Focusing for example on 

positive answers for both questions A and B, respectively noted as Ay and By,  this question 

order effect can be expressed by the following difference: 

P (Ay By) ≠ P (By Ay), 

where P (Ay By) is the probability of responding “yes” to question A followed by “yes” to 

question B, and P (By Ay) is the probability of obtaining the same answer to these questions 

asked in the inverse order. Moore calls this type of question order effect “consistency effect” 

to denote the fact that the difference between the probabilities of positive answers for 

questions A and B decreases from the non-comparative context to the comparative context, 

which is here the case since in the non-comparative context p(By) – p(Ay) = 18% while in the 

comparative context p(Ay/n By) – p(By/n Ay) = 3%. Note that other types of order effects in 

decision making have been observed in other similar survey experiments, for example a 

“contrast” order effect showing that, unlike the previous consistency effect, the difference 

between these probabilities is amplified in the comparative context.  
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2.2. Non-commutativity of emotional observables 

Order effects do not only occur in decision making but in all mental activity where 

subjective experience is involved. In particular, significant order effects can be observed and 

quantified in the domain of emotions, which should then be taken into account in the cutting-

edge research in artificial intelligence (see section 6). As can be observed in daily life, felt 

emotions cannot be regarded as intrinsic features of a person since they are continuously 

changing according to our life experience. Their nature and their intensity is highly contextual 

since they strongly depends on our personal past and present experience of life, on our social 

environment and even on what we felt just a moment before (Stolorow 2005). For example, 

asking a subject about her degree of happiness and asking the same question after reminding 

her of a sad event in her life generally provides different results. As was the case for the 

previous example of surveys with two successive questions, the order effects relative to 

emotions can be evaluated from data on successive measurements of the intensities of 

emotions felt by subjects. These intensities can be collected by asking them to report discrete 

values on a graduate scale (Bachorowski and Braaten 1994) or to report them continuously, 

using a continuous response digital interface on which the subject moves a stylus or finger 

(Geringer et al. 2004).  

For illustration, consider the following table, drawn from an article by Prkachin and 

team (1999). This table reports the average intensity of five emotions experienced by subjects 

conditioned in target emotional states3 by Lang’s method (Lang 1979).  

                                                           
3 The numbers between brackets are the standard deviations.  
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(from Prkachin et al. 1999) 

 

Let us for example focus on the couple of emotions Anger and Fear. From this table 

the probabilities of the sequence of evaluation “Fear and then Anger” and of the reverse 

sequence can be evaluated as follows: 1) from the first line (neutral target), the prior 

probabilities P(A) and P(F) of respectively experiencing Anger and Fear, can be computed as 

the ratio of the average intensity of each of these emotions (respectively 0.03 and 0.09) to the 

sum of all the five average intensities (0.54); 2) from the third line (Anger conditioning), the 

conditional probability P(F/WA) of experiencing Fear for a subject conditioned in Anger state 

WA can be computed. In first approximation, which can here be done in order to show the 

existence of order effects, WA will be identified to the target emotional state4 A. The 

conditional probability P(F/WA) ≈ P (F/A) can then be evaluated as the ratio of the average 

intensity of Fear (0.39) to the sum of the five average intensities on this line (7.56); 3) 

similarly, from the fourth line, the conditional probability P(A/WF) of experiencing Anger for 

a subject conditioned in Fear state can be evaluated as the ratio of the average intensity of 

Anger (0.73) on the sum of the five numbers of this line (7). The resulting probabilities are  

                                                           
4 Indeed, the target emotional state is not totally reached by the subject. The distinction between the latter 
state and her real emotional state is considered in the more precise calculations of section 5 and Appendix 1.     
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P (A F) = P(A) x P(F/A) = (0.03/0.54) x (0.39/7.56) = 2.87 10-3 

P (F A) = P(F) x P(A/F) = (0.09/0.54) x (0.73/7) = 1.74 10-2 

This clearly shows a net difference (of a factor of about 6) between the sequential 

probabilities P (A F) and P (F A).  

 

It can also be shown that emotional observables do not commute neither with their 

physiological correlates nor with their behavioral correlates. This point can be established 

from data about the joint measurement of emotional observables and their physiological or 

behavioral correlates reported in the literature (Barrett et al. 2019) (Kassam and Mendes 

2013) (Kreibig et al. 2007) (Prkachin et al. 1999) (Sinha et al. 1992). For example, as shown 

by Kassam and Mendes (2013) on experimental basis, the very act of reporting one’s own 

emotional state generally changes one’s physiological and behavioral “responses”, this effect 

being particularly significant for subjects conditioned in angry state. In this experiment, the 

subjects are conditioned in such an angry state by delivering them a negative feedback to a 

difficult task they have done -for example by telling them that they are incompetent. The 

observed physiological responses are here evaluated by the values of cardiovascular 

observables, like heart rate and pre-ejection period5, which can be measured almost 

continuously. The behavioral responses are evaluated by external experimenters through 

videos showing the participants performing the required tasks, by noting for example their 

facial expression and their body movements. Kassam’s and Mendes’ study clearly shows that 

for these subjects, conditioned in angry state, the changes in the values of the cardiovascular 

and behavioral observables are significantly different depending on whether or not they report 

their emotional state (of anger, in this example). This tells us that the successive measurement 

of emotional and physiological or behavioral observables gives rise to order effects since if 

                                                           
5 The pre-ejection period is the time elapsed between the depolarization of the left ventricle and the beginning of 

ventricular ejection. Its value is strongly dependent on that of the volume of blood ejected by the left ventricle at 

each cardiac cycle.  
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these observables were commuting their values would not be inter-dependent, as is actually 

the case.  

A more precise characterization of these order effects in emotional life requires a 

mathematical representation of the non-commutativity of the emotional observables with each 

other and with their physiological and behavioral correlates. This representation will be 

proposed in section 5 and Appendices 1 and 2.   

 

3. Are current Bayesian models of cognition reliable?   

As shown in section 2, mental processes can give rise to order effects. However, as 

emphasized in section 1, Bayes’ rule is valid only under the assumption of commutativity of 

the observables involved in this probabilistic inference, which means that order effects cannot 

be taken into account. So, we can be suspicious about the validity of the current Bayesian 

models of cognition. Are these models reliable? Let us examine some of them.  

 

3.1. Bayesian models of categorization   

The ability to classify objects (or concepts) into categories is a fundamental cognitive 

task realized by humans in order to organize their mental representation of the world they live 

in and thus to cope with it. “Categories” form the basic cognitive mental representations in 

which and by which humans can organize their knowledge and make inferences about the 

world (Murphy and Medin 1985) (Rosch 1978).  They group concepts which share similar 

properties, like their form, their color or their behavior. Categorization is the act of classifying 

a new object according to these categories. A Bayesian model of categorization computes the 

probability of classifying it into each of the categories, given the properties of this object, and 

determines the most probable category label it can be assigned to.  
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Category learning models aim to explain how category labels can be learned, for 

example by children. They are based on the same Bayesian method of classification of objects 

or concepts into appropriate categories and aim to explain that the acquired knowledge is used 

to make decisions about how to categorize new stimuli. Several rational analyses of category 

learning have been proposed (Perfors et al. 2011) (Ashby and Alfonso-Reese, 1995) 

(Nosofsky 1986). All these models compute via Bayes’ rule the probability distributions 

associated with different category labels and select the most probable result.  

However, like for any Bayesian model, these categorization models require defining 

the set of “primitive” properties for which the prior probability distribution and the likehood 

function are provided. This is where the crucial question arises: can these properties be 

intrinsically defined, and therefore commute with each other, or not? In the current Bayesian 

models of categorization or category learning this condition is satisfied only if these 

“primitive”  properties can be regarded as purely objective ones on which anyone agrees, 

being of physical, biological or behavioral order. This is actually the case in most of the 

current Bayesian models of categorization. For example, in the model of category learning 

presented by Perfors et al. (2011), classifying a new item in the categories “dog”, “fish”, 

“bird”, “tree”, flower”, fruit” involves the observation of some of its physical properties on 

which anyone agrees, like its size, its color, its hairiness or skin appearance (a crucial property 

to classify animals), or the fact it has leaves (a property of trees).  

However, this kind of categorization based on intrinsically defined (and then 

commuting) properties covers only a small part of the real human’s experience of 

categorization. As can be observed in everyday life, and as emphasized in section 2, mental 

activity generally involves contextual and subject-dependent observables, which do not 

commute with each other. Think about our very selective ability to perceive the world around 

us, this selective perception of the world being a form of subjective bias in the interpretation 
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of information in order to fit with our values and our beliefs (Pronin 2007). This subjective 

tonality of cognitive processes has been observed for a long time by psychologists for 

“normal” as well as for pathological subjects (Cattell 1930) (Roiser and Sahakian 2013). 

Psychoanalysts go even so far as to talk about “resistance” to accessing memories, which is a 

form of cognition, when the latter are associated to traumatic feelings (Freud 1909). It seems 

then difficult to ignore the role of emotions in cognitive processes. As a consequence, the 

observables involved in categorization tasks do not generally commute.  

An important example of such non-classicality is provided by the task of assigning 

emotional states (which play the role of categories) to human subjects from the observation of 

their facial expression. Computing the probability that a subject be labeled as “sad”, “happy” 

or “angry” given the observation of some features of her face expression must take into 

account the non-commutativity of the relevant (emotional and behavioral) observables, which 

gives rise to some unavoidable uncertainty in the correspondence between a subject’s facial 

expression and the nature (and/or the intensity) of the experienced emotion –uncertainty 

which has been noticed by several authors (Barrett et al. 2017) (Duran and Fernandez-Dols 

2019). This paradigmatic example will be developed in section 4 with the appropriate 

mathematical tools.  

 

3.2. Bayesian models of visual perception 

The quasi-impossibility to separate subjective experience from the idealized 

“cognition” of intrinsic properties of the world has also been observed in visual perception, 

even if this subjective component relies on less personal features. In the current Bayesian 

models of visual perception (Knill and Pouget 2004) (Kersten and Yuille, A., 2003 ) 

(Mamassian et al. 2002), the task to accomplish is to predict the most probable perceived 

image given the prior probability distribution of physical properties, like reflectances, shape 
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and orientation of surfaces, object size or wavelength, and the likelihood function that a given 

set of values of these physical properties generate a particular image. The “primary” 

properties are then defined as intrinsic features of the physical world, as can be checked for 

example in the 3-D model of visual perception proposed by Mamassian and team (2002).  

However, as noted by Owe, Lotto and Purves (2006), visual perception (like any 

perception, indeed) cannot be exclusively based on intrinsic features of the physical world. 

Visual illusions show that what we see is not the “objective” reality, exclusively describable 

in terms of physical properties of the world. For example, in White’s optical illusion the same 

target luminance can elicit different perceptions of color and brightness in different contexts 

(see figure 1). This figure shows that black and white horizontal bars alternate and that shorter 

grey bars cover the white bars at left (A) and the black bars on right (B). Though the shorter 

grey bars have the same color and the same opacity in (A) and (B) and therefore reflect the 

same amount of light, the grey bars in (B), surrounded by white stripes appear lighter and 

brighter than the grey bars in (A), which is surrounded by black stripes. This means that how 

a subject perceives the shorter grey bars is not exclusively determined by their intrinsic, 

physical properties but it strongly depends on the subject taking into account the background 

on which they are perceived. Visual perception, like any perception, is highly contextual and 

subject-dependent.       

                                       

Figure 1. White’s illusion 
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A few solutions for tackling this problem has been proposed. Mamassian et al. (2002) 

suggest to allow the components of Bayes’ inference, in particular the likelihood function and 

the prior distribution, to vary from trial to trial, that is, to be stimulus-dependent, in contrast 

with the strict Bayesian method where the latter are supposed to be intrinsically defined (see 

section 1). How et al. (2006) have suggested to explicitly take into account the context of 

perception, which can be illustrated by the mention of the white surrounding or the black 

surrounding in the previous example. Taking into account the context could be implemented 

by trying to compute the posterior conditional probability distribution for the target and the 

surround, which, as emphasized by How (How et al. 2006, section 7), seems rather 

complicated to implement for complex contexts. These authors have proposed to take into 

account the contextual effect within their “empirical ranking approach”, by computing the 

probability distribution associated to the values of the considered properties (the target 

luminance, for example) that have co-occurred with each of the possible contexts. 

 However, these interesting attempts to improve Bayesian models of visual perception 

ultimately result in models that are not any more strictly “Bayesian” since the properties on 

which the Bayesian inference bears cannot be defined intrinsically, as properties of the 

physical, objective world -like in the paradigmatic uses of Bayes’ rule presented in section 

1.3. The resulting models actually deal with non-commutative observables, this non-

commutativity being nothing but the very expression of the fact that the relevant properties to 

consider in visual perception (being understood as contextual, stimulus-dependent or subject-

dependent) cannot be intrinsically defined.   

 

As shown by the previous developments, the Bayesian models of cognition, which rely 

on categorization tasks, must be revisited in order to account for the order effects inherent to 

any mental process. This change can be done elegantly by deriving an appropriate 
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probabilistic rule that generalizes Bayes’ rule. This new rule will be derived in the next 

section within the mathematical framework of quantum cognition, which will be first 

presented.   

   

4. Integrating order effects in Bayesian models of cognition 

4.1. Theoretical framework 

Integrating order effects in Bayesian models of cognition requires leaving the classical 

probability calculus since the latter cannot account for them. It requires appealing to a 

generalized probability calculus where the probability of a sequence of events P(A and then 

B) can be distinguished from that of the reverse sequence P(B and then A). Such a generalized 

probability calculus already exists, it has been built by physicists in order to deal with 

quantum phenomena, which generally give rise to order effects, and it has already been 

applied in the field of cognition and decision-making. “Quantum cognition” thus deals with 

cognitive processes within the same mathematical framework than that of quantum theory. It 

has been developed for a few decades by several authors, including Aerts, Sozzo, Busemeyer, 

Bruza, Wang, Atmanspacher, Filk, Pothos and Wang (Aerts et al. 2011) (Aerts and Sozzo 

2013) (Busemeyer, Bruza 2012) (Wang and Busemeyer (2013) (Atmanspacher and Filk 

2013), (Pothos and Busemeyer 2019) (Busemeyer and Wang 2017). Its basic idea is to 

represent geometrically the observation of a mental feature of a subject by the action of a 

projector on the vector-state representing her mental state (or her belief state). The latter is 

defined as an element of the Hilbert vector space H of all possible mental states (or belief 

states) and, like in quantum theory, the observables are represented by Hermitian operators 

forming a non-commutative algebra and whose (real) eigenvalues are the possible results of 

their measurement. Within this geometrical representation, measuring the observable A and 
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obtaining the outcome Ai is represented by the projection PAi|ψ〉, where, in Dirac notation, 

│> is the state of the subject, PAi  the projector on the eigenspace associated to Ai, which, for 

sake of simplicity, has been assumed to be one-dimensional, spanned by the vector │Ai> of 

H. This projection can be illustrated as follows:  

 

 

 

                                                                                          || PAi|ψ〉|| 

 

    Fig 1. A simplified representation of the measurement of the observable A with result Ai 

By Born rule, which defines the only probability measure in such a state space 

according to Gleason’s theorem (Gleason 1957), the probability P(Ai) of occurrence of Ai can 

be computed from the projection PAi|ψ〉 of │>, as P(Ai)  = || PAi|ψ〉||2  <ψ|PAi|ψ>. 

In this geometrical representation, the order effects relative to the successive 

measurement of the observables A and B with respective results Ai and Bj are thus captured 

by the non-commutativity of the projectors PAi and PBj :  

PAi  PBj ≠ PBj PAi. 

Many “fallacies” in cognition and decision-making can be explained within this 

quantum-like approach (Busemeyer and Bruza 2012) (Aerts et al. 2011). For example, the 

“conjunction fallacy” is the fact that, in contrast with the classical probability calculus, the 

probability of occurrence of the conjunction of two events reported by human subjects is often 

greater than the probability of the occurrence of each of them. This phenomenon finds an 

explanation within this quantum-like framework. The probability of a sequence of events “A 

and then B”, noted as P (A B), can be computed as || PB PA |ψ〉||2, where PB and PA are, 

respectively, the projector on the subspace of the Hilbert space spanned by the eigenstates of 

A
i
> 

> 
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B and A, and |ψ〉 is the mental state of the subject. However, as shown by the following 

diagram, where, for sake of simplicity of presentation, the eigenspaces associated with the 

measurements of A and B are again supposed to be one-dimensional subspaces, the 

probability P (A B) = || PB PA |ψ〉||2 can be bigger than the probability P(B) of occurrence of 

B, which is || PB|ψ〉||2:  

 

 

 

 

 

 Fig 2. P (B) can be smaller than P (A and B) in contrast with the classical probability calculus 

This generalized probabilistic framework has also been applied to deal with decision 

making in uncertain situation. For example, the famous Elsberg’s paradox (Ellsberg 1961) 

bearing on the behavior of economic agents in a situation of uncertain knowledge can also be 

solved within this mathematical framework. Elsberg‘s paradox puts into question the law of 

total probabilities of the classical probability calculus. According to the quantum-like 

approach to cognition and decision making presented here, the paradoxal difference between 

the probability of the agent’s choice provided by the classical probability calculus and the 

experimental result comes from the interference term between the possible belief states of a 

participant (Aerts and Sozzo 2013) (Busemeyer and Bruza 2012) (Uzan 2014).  

Also note that Wang and Busemeyer (2013) have represented the question order 

effects presented in section 2.1 above within this quantum-like framework. If the sequence of 

questions A and then B asked in the Clinton/Gore survey obtains the positive answers Ay and 

By, the corresponding construction in the vector space of all possible mental sates consists in 

> 

  

 A> 

  

 
B> 

  

 

P(A et B) 
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first applying to the subject’s mental state |ψ〉 the projector PAy onto the eigenspace associated 

to the answer Ay and then by applying to the result PAy |ψ〉 of this first operation the projector 

PBy onto the eigenspace associated with the value By. The probability of the sequence of 

answer Ay By is then calculated (by Born rule) as: 

P (Ay By) = ||PByPAy|ψ〉||2 = <ψ|PAyPByPAy |ψ>, 

while the probability of the inverse sequence (By and then Ay) is calculated as: 

P (By Ay) = ||PAyPBy|ψ〉||2 = <ψ|PByPAyPBy |ψ>. 

If the projectors PAy and PBy are non-commuting, which means that the commutator 

[PAy, PBy] = PAy PBy - PBy PAy is different from the null operator, P (Ay By) and P (By Ay) are 

different6. Order effects are then nicely and successfully represented in this geometrical 

construction.7  

 

4.2. A new probabilistic rule of inference 

Within this quantum-like framework, Bayes’ rule can be generalized in order to take 

into account the non-commutativity of mental observables which, as seen above, is involved 

in most of the mental processes. As explained in Introduction, the derivation of this new rule 

is justified by the will to continue working in the paradigm of Bayesian rationality, while 

making it capable to deal with order effects. This generalization of Bayes’ rule will thus 

greatly improve the current Bayesian models of cognition where the role of subjective 

experience cannot be ignored and thus paves the way to a new, more realistic, implementation 

of emotional intelligence.  

                                                           
6 The precise calculation of the relevant commutators and probabilities for this survey will not be presented here 

since we essentially focus on the order effects involved in cognitive processes (and not in decision making).  
7 Also note that another characterization of this order effect has been proposed more recently by Busemeyer and 

Wang (2017), by referring to a so-called “ABA experiment”, where a measurement of B is inserted between two 

measurements of A. It shows that the second measurement of A can be different from the initial one and the 

degree of incompatibility of A and B can thus be evaluated from this difference. This order effect has been 

checked on the sequence ABA with a population of 325 participants on a wide range of 12 different set of issues.  
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To compute the conditional probability P (E / F) for the mental events ot the mental 

properties E and F, let us first compute the difference of the sequential probabilities P(E F) - P 

(F E) within this quantum-like framework: 

(3)                       P (E F) - P (F E) = <ψ|PE PF PE |ψ> - <ψ|PF PE PF |ψ> 

                                                                    = <ψ|PE PF PE – PF PE PF |ψ> 

                                                                    = <ψ|[PE, PF] (PE+PF – I) |ψ>, 

where the last equality has been obtained by factorizing the expression between the bra <ψ|and 

the ket|ψ>, and by using the definition of the commutator [PE, PF] = PE PF – PF PE.  Defining the 

operator Q as: 

Q =df   [PE, PF] (PE+PF – I), 

the difference of sequential probabilities P (E F) - P (F E) can be written as the expectation 

value of Q in the mental state |ψ>:  

(4)                                        P (E F) – P (F E) = <ψ| Q |ψ>  <Q >ψ. 

Consequently, by the definition of the conditional probability of the occurrence of the event F 

given that of the event E (or given the knowledge of E), which is here supposed to occur before F:  

P (F/E) = P (E F) / P (E), 

by the symmetrical definition of the conditional probability of the occurrence of the event E given that 

of F, which is here supposed to occur before E: 

P (E/F) = P (F E) / P (F) 

and by using equation (4) above we obtain the following new rule of probabilistic inference:  

(5)                                       P (F/E) = [P (E/F) x P (F) + <Q >ψ] / P (E). 

This new generalized probabilistic rule of inference computes the conditional 

probability of occurrence of the event F given the occurrence (or the knowledge of the 

occurrence) of the event E for a subject in the mental state |ψ>. Its classical limit, when the 
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projectors associated to the event E and F are commuting, and then when <Q >ψ = 0, is 

nothing but Bayes’ rule (1): P (F/E) = [P (E/F) x P (F)] / P (E). 

 

5. Bayesian models of cognition revisited 

 As noted above, the current Bayesian models of cognitive processes are based on 

categorization tasks, which are modelled on the basis of Bayes’ inference. In order to take into 

account the order effects inherent to most of mental processes, these models should then be 

revisited. Still keeping the Bayesian approach to cognition (see section 1.1), this change only 

regards the inference rule that must be used to update the probabilities of realization of some 

assumption when new information is gathered. These models must use the general 

probabilistic rule (5) instead of Bayes’ rule (1) insofar as the latter cannot account for order 

effects. Such a change thus requires to first compute the commutators of the couples of 

observables involved in these models.  

The Bayesian models of perception involve two types of observables that do not 

commute: those characterizing the subject’s perception and those characterizing the physical 

situation. A typical example of observable of the first type is the observable “Luminosity”, 

noted as L in the following, which measures the perceived luminosity of an object by the 

subject. The observables of the second type measure the relevant physical features of the 

object or those of the context in which this object is perceived, noted as i. The commutator 

of the couples of observables (L, i) can be computed from data relating the change of the 

perceived luminosity of an object to the change of its physical features, which allows us to 

compute the likehood function. However, such data, which could be easily gathered by asking 

subjects to report on a scale the perceived luminosity corresponding to different values of the 

physical observables i seem to be missing for now. Consequently, we will not deepen here 
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these calculations for models of perception but this method will be applied below to other 

categorization models for which more data are available. Moreover, we would like to focus on 

the Bayesian models of cognition that explicitly involve experienced emotions for their 

central role in the search of emotional intelligence. The widely spread (mis)use of algorithms 

supposed to detect the experienced emotions of subjects from their behavior, in particular 

from their facial expression, deserves some priority.  

Assigning an emotional state to a subject requires finding the greatest conditional 

probability that the subject could be classified in this emotional state given the knowledge of 

some of her behavioral or physiological features. In more technical language, this task 

requires computing the conditional probabilities P (Ek / {i } and {Bj}) that the emotional 

observable takes the value Ek given the knowledge of the values of a set of physiological 

observables {i} and those of a set of behavioral observables {Bj}. However, as shown above 

(sections 2.2), emotional observables do not commute with each other and do not commute 

neither with their physiological nor with their behavioral observables. Classifying emotions 

from the knowledge of behavioral and/or physiological features thus requires to take into 

account these order effects, which means that the generalized probabilistic rule (5) must be 

used instead of Bayes’ classical inference rule. This can be done by first computing the 

relevant commutators. Within the quantum-like model presented in section 4, an emotional 

observable, which is formally defined as a projector acting on the vector-space of all possible 

mental states, measures the intensity of a specified emotion experienced by the subject. As 

mentioned in section 2.2, this measurement can be realized by asking the subject to report 

discrete values on a rating scale or to report them continuously, for example by using a 

continuous response digital interface.  

The commutators of couples of emotional observables measure their degree of 

incompatibility. A method of computation of these commutators from the data collected by 
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Pkachin et al. (1999) has been proposed by Uzan in reference (Uzan 2016). In the case 

analysed in (Uzan 2016) the experimenter tells the subjects stories that are directly related to 

these specific incidents, but other methods based on the projection of films have also been 

shown reliable (Kassam and Mendes 2013). The five considered emotional contents are here 

“happiness” (noted as H), “sadness” (S), “anger” (A), “fear” (F) and “disgust” (D). The 

commutator of a couple of emotional observables (A, B), which are projectors, can be 

computed if the conditional probabilities that an individual be “observed” (through a 

questionnaire or other means) in the emotional state A if she/he has been conditioned or 

“prepared” in some specified emotional state B. The way these conditional probabilities can 

be computed for the table of data drawn from Prkachin’s and team’s article have been 

explained in section 2.2: the conditional probability P (A/WB) that a subject conditioned in the 

emotional state WB experiences the emotion A can be assimilated with the rate of the reported 

average intensity of A with respect to the sum of all the reported average intensities of 

emotions for subjects prepared in the same target emotional state B. This computation has 

been done from Prkachin’s data that report these average intensity for each emotion. 

Appendix 1 computes the commutator of the emotional observables Anger (A) and Disgust 

(D), which are interpreted in this model as projectors acting on the same 2-dimensional 

complex Hilbert space.   

The degree of non-commutativity of emotional observables and their physiological 

correlates can be evaluated from data reporting the outcomes of joint measurements of 

intensity of emotions and physiological variables. This computation can be done from the data 

provided by Pkachin et al. (1999), Kassam and Mendes (2013), Pauls and Stemmler (2003) 

and Sinha et al. (1992). These articles report the changes in the values of several 

cardiovascular variables of subjects experiencing emotional states induced by stimuli 

designed according to reliable procedures, like for example the one proposed by Lang (1979). 
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In the case analysed in (Uzan 2016) the experimenter tells the subjects stories that are directly 

related to these specific incidents, but other methods based on the projection of films have 

also been shown reliable (Kassam and Mendes 2013). From the data provided by the latter 

article it is possible to first compute the components of a subject’s cardiovascular state 

(specified by her heart rate, for example, and noted as |HR>) in the 2-dimensional basis of 

the eigenstates |An>, for n = 1 or 2, of an observable A which notifies whether or not the 

subject has reported her emotion of Anger. These components can be computed by the 

respective variations HR in heart rate when this subject respectively reports her emotional 

state (of Anger) and does not report it –these data are provided on page 3 of the previously 

mentioned article by Kassam and Mendes (2013), in the section “Cardiovascular reactivity”. 

The commutator of the two projectors respectively associated with the measure of HR and 

that of Anger can then be easily computed. This commutator, which is different from the null 

operator, is computed in Appendix 2.  

Finally, an estimation of the degree of non-commutativity between emotional and 

behavioral observables can be done from the very comprehensive data presented in the 

articles by Duran and Fernandez-Dols (2010) and by Barrett et al. (2019). These data question 

the common view according to which there would exist a well-established and universal 

correspondence between a subject’s experienced emotion and her facial expression. Roughly 

speaking, these articles show that if subjects smile when they are happy and scowl when they 

are angry more often than would be expected by chance, significant variations of these 

correspondences exist across subjects, contexts and cultures (Barrett et al. 2019). The 

common-view correspondences between the nature of experienced emotions and the 
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expressive facial configurations of the Facial Action Coding System8 (FACS) are tested by 

referring to meta-analysis of experimental data and they are shown to actually be rather weak.  

For our purpose, which is to evaluate the degree of non-commutativity between the 

observables involved in these correspondences, we will focus on the conditional probabilities 

to detect the nature (and/or the intensity) of a subject’s experienced emotion from her facial 

expression. Figure 8B of the article by Barrett et al. (2019), which refers to the article by 

Duran, Reisenzein and Fernandez-Dols (2017), reports the proportion of successful 

correspondences between emotions (induced by presenting objects or events to the subjects) 

and the common view facial expression of these emotions. For example, the tested subjects 

assign the emotional experience of Anger to the common view facial expression of Anger 

(which is characterized by brows furrowed, eyes wide, lips tightened and pressed together –

see figure 2 A of Barrett et al. 2019) with a (weak) proportion of .28 with regard to the six 

considered main emotions of the experiment. This means that the conditional probability of 

detecting Anger given its common view facial expression, noted as FA, can be evaluated as 

P(A/FA) = .28. The commutator of the observables A and FA, which respectively evaluate the 

intensity of Anger and the degree of resemblance of the subject’s facial expression with the 

common view facial expression of Anger, can then be computed within the theoretical 

framework presented in section 4. This computation is explicitly done in Appendix 3.   

Generally speaking, the task of assigning emotions to facial expressions have to take 

into account the degree of non-commutativity between the relevant emotional observables and 

the observables that measure the subject’s facial expressions.    

 

6. Implementing emotional intelligence  

                                                           
8 The Facial Action Coding System has been developed by the psychologists Paul Ekman and Wallace Friesen in 

1978. It is now the standard tool used in psycho-physiological studies of facial expression.  
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As is well known, human intelligence is not reduced only to the intellectual 

performance (or the IQ) but it has an important emotional part. Emotions play a crucial role in 

any aspect of life (Wang and Ross 2007) (Elfenbein and Ambady 2002) and emotional 

intelligence is the way we deal with them. Salovey and Mayer defined emotional intelligence 

as (Salovey and Mayer 1990): 

"…the ability to perceive and express emotions, to integrate them to facilitate 

thought, to understand and to reason with emotions, as well as to regulate emotions in 

oneself and in others”.  

For doing that, the human uses verbal communication, that is, speaking and writing, 

but also, consciously or not, non-verbal communication, like reading persons’ face 

expression, observing body movements and postures, and also physiological manifestations. 

By giving us access to our own emotions and to those of other persons, emotional intelligence 

allows us to develop empathy and to find the appropriate behavior in real time. Emotional 

intelligence thus has a fundamental social aspect since it helps us to connect our internal 

world to social reality by making decision based on the knowledge of the emotional tone of 

our social environment.  

Simulating emotional intelligence algorithmically is now an important subject of 

research in the field of artificial intelligence, namely for improving human-machine 

interaction. It first requires emotion recognition, which can be assimilated to a classification 

task from multimodal sensory, behavioral or physiological data (Poria et al. 2017). Human 

emotions are “recognized” by using several types of sensors that detect speech signal, voice 

tone, facial expressions and body language, and by appealing to data on previously observed 

correlations (called above “the common-view correspondence”) between the nature and 

intensities of emotions, on the one hand, and the nature of values of physiological and 

behavioral observables, on the other hand. Actual results based on facial expression or 
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bodily movement recognition utilize statistical techniques, namely the use of supervised 

machine learning algorithms. Several deep learning algorithms compute the most probable 

emotional state which can be assigned to a subject by analyzing her behavior, like her facial 

expression (Li and Deng 2018) or her body language and posture, which seems the most 

informative observations even realized from afar and from any angle of view (Santhoshkumar 

and Geetha 2019).  

However, in the learning phase of these algorithms, the primitive properties that are 

observed on a huge number of images (like a collection of facial expressions, of postures or 

body gestures) are presently regarded as objective properties that could be observed 

independently of the possible subject’s emotional state. Similarly, the likehood function, 

which relates them, through conditional probabilities, to the emotional categories to recognize 

(generally, five or seven “primary” emotions) are regarded as objective relationships, always 

carried out, independently of any other relevant parameter. However, as explained above 

(sections 2.2 and 5.2), this classical approach to cognitive processes involving emotional 

experience cannot be held anymore because there are significant order effects in the 

successive measurement of the intensity of emotions and their behavioral or physiological 

correlates.  

Moreover, the emotion recognition task is only the first step to achieve in order to 

simulate emotional intelligence. Similar to the case of a physician whose diagnosis is not 

only based on medical imaging and blood analysis but also on thinking about the history of 

the patient, the best interpretation of her symptoms and their possible link, emotional 

intelligence requires much more capabilities than only detecting emotions . In addition to 

understanding our own emotions and those of our social environment, emotional 

intelligence requires the ability to make probabilistic inferences from these data. In 

particular, in order to respond appropriately to a situation, emotional intelligence requires to 
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make predictions about the emotional state of a subject and her behavior given her present 

emotional state and new data, like information about the change of her face expression and 

her voice tone. This requires again the use of a probabilistic rule capable of accounting for 

the non-commutativity of emotional observables with each other and with their behavioral 

and physiological correlates.  

Consequently, we need to use the generalized probabilistic rule (5) instead of Bayes’ 

classical inference rule (1) in order to compute the required conditional probabilities 

P(Ek/{i}), P(Ei/{Bj}), or even P(Ek /{i} and {Bj}) that the presented item can be classified 

as being in the emotional state Ek given the values, respectively indexed by i and j, of the  

physiological and the behavioral observables. The deep learning algorithms that realize the 

task of classifying face expressions in various emotional categories and predicting emotion 

from emotional, sensory, behavioral or physiological data, which involve measuring non-

commutative observables (Singh, Majumber and Behera 2014) (Cohen et al. 2003) can thus 

be improved by using the generalized probabilistic rule (5) for probability computations 

instead of Bayes’ inference (1). This can be done the same way as in the developments 

presented in section 5.2, by first computing the relevant commutators.    

We have to notice that the previous conclusion on the simulation of emotional 

intelligence indeed applies for the simulation of all aspects of mental activity, not only 

because this non-commutativity also holds for various other aspects of cognitive activity but 

also because emotions are involved in them to varying degrees. As shown by Wang and 

Ross (2007) and as reported by well-known studies in the field of psychoanalysis (Van Der 

Linden et d’Argembeau 1999), the emotions felt during life situations connect its different 

aspects in our mind and thus play an essential role in their memorization. In daily life, 

“negative” emotions, like anger or sadness, can disturb our concentration and make it difficult 
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remembering a telephone number or performing a simple mental calculus, while “positive” 

emotions, like a feeling of happiness, can improve our ability to perform these tasks. More 

generally, we can say that emotions play an essential role in all human activities, being of 

psychological, social or cultural order (Hwang and Matsumoto 2021).    

Thus, it seems that the generalized probabilistic inference rule (5), which, in contrast 

with Bayes’ rule, accounts for order effects, must be used for realistically modeling all aspects 

of human activity and for improving the algorithms that simulate these activities. Future 

research in the field of artificial intelligence and robotic should integrate this new 

probabilistic rule.    

 

Conclusion 

This article has questioned the “all-Bayesian” dogma defended by most researchers in 

cognitive science and artificial intelligence. Its central rule, namely Bayes’ rule, is derived 

from the classical probability calculus, which, as shown in this article, cannot reliably deal 

with mental processes. The reason is that mental processes give rise to order effects which 

cannot be accounted by the classical probability calculus –and then by Bayes’ rule. Keeping 

the general idea of Bayesianism, according to which cognitive processes can be rationally 

modeled by using probabilities rather than rigid rules of inference, a new, probabilistic rule 

generalizing Bayes’ rule and capable of accounting for order effects has been proposed in 

section 4. The application of this new rule requires to compute the commutators of the 

observables involved in the studied situation, which can be done within the generalized 

probability theory developed by physicists to deal with quantum phenomena and briefly 

presented in this same section. As explained in sections 5 and 6, the use of this generalized 

probabilistic rule instead of the classical Bayes’ rule will make the current models of 

cognition and the algorithms of artificial intelligence more reliable.    
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