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Abstract. Interactive systems are complex systems that allow operators to control and monitor other 

systems. The interactive systems offer one or several user interfaces, composed of hardware and 

software components, which are used by the operators to perform their tasks. The complexity of 

interactive systems lays in its nature (hardware and software integration) but also in the rapidly evolv-

ing technology (new input and output devices, new interaction techniques …). This paper argues that 

these interactive systems are the very place where human-system integration takes place. It is thus 

important to design, develop, test, certify and deploy them very carefully. Unfortunately, methods, 

techniques and tools from software and system engineering need deep tuning to be adapted to their 

characteristics. The paper presents a generic, customizable interactive system architecture and high-

lights how its components relate to the human operator. It also presents a taxonomy of possible faults 

that may degrade the behavior of the various components. We demonstrate that these two contribu-

tions can be jointly used to systematically identify possible faults (both in the operator and in the 

system) and proposes mechanisms to prevent, remove or tolerate them.  

Introduction 

 

Interactive systems are complex systems that allow operators to control and monitor other systems. 

The interactive systems offer one or several user interfaces, composed of hardware and software 

components, which are used by the operators to perform their tasks. The complexity of interactive 

systems lays in its nature (hardware and software integration) but also in the rapidly evolving tech-

nology (new input and output devices, new interaction techniques …).  

The diversification of technological platforms on which interactive systems are designed, developed 

and deployed significantly increases the complexity of designers and developers’ tasks. At the same 

time, such an ever-changing context has made it very difficult for researchers belonging to the engi-

neering community on interactive systems, to provide generic approaches to support those tasks. 

Designers need to go beyond the interactive application design by providing new interaction tech-

niques that encompass new input and output devices, which can be very cumbersome to design and 

evaluate (as, for instance, multimodal interactions involving multi-touch gestures (Hamon et al. 

2013)). Developers of these systems are repetitively facing the same issues of: i) new devices inte-

gration, software redesign (due to device drivers’ evolution) and above all poor reliability of the 
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resulting system due to the low level of maturity of the various components to integrate. Such con-

straints are even stronger in the area of critical systems where a failure may lead to catastrophic 

consequences 

This paper argues that these interactive systems are the very place where human-system integration 

can take place. It is thus important to design, develop, test, certify and deploy them very carefully. 

Unfortunately, methods, techniques and tools from software and system engineering need deep tun-

ing to be adapted to their characteristics. The paper presents a generic tunable interactive system 

architecture that exhibits its software and hardware components but also how these components relate 

to the human operator. We demonstrate that this architecture can be also used in order to systemati-

cally identify possible faults (both in the operator and in the system) and proposes mechanisms to 

prevent, remove or tolerate them.  

Next section presents a generic tunable hardware and software architecture encompassing the human 

operator. The following section presents an integrated taxonomy of faults that can occur in the system 

as well as in the operator. We then present concrete examples of such faults and where these faults 

are located on the generic architecture. We then highlight some known solutions to address these 

faults as well as open challenges. The last section concludes the paper. 

Architectural view on Human Hardware Software Integration in an 
Interactive System 

Figure 1 presents an architectural view (from left to right) of the operator, the interactive command 

and control system, and the underlying cyber-physical system (e.g., an aircraft engine). This archi-

tecture is a simplified version of MIODMIT (Multiple Input and Out-put Devices and Multiple In-

teraction Techniques), a generic architecture for multi-modal interactive systems (Cronel et al. 2019) 

highlighting functions (rounded box) and information flow (arrows). The top part of the figure dif-

ferentiate the hardware and software components of an interactive system. Interaction with the oper-

ator takes place only through manipulation of hardware input devices and perception of information 

from hardware output devices (which includes the cyber-physical system).  

 

Figure 1. H-MIODMIT architecture (adapted from (Cronel et al. 2019)) 

The System side. The right side of the Software section of the architecture (starting with Dialog box) 

corresponds to what is usually called interactive applications. This is where HCI methods such as 

task analysis are needed for building usable application that fit the operators’ work (Diaper and Stan-

ton 2003). In the context of command and control systems, this interactive application is connected 

to the so-called Cyber-Physical System to operate (which is also most of the time composed of hard-

ware and software components).  



 

The Human side. The left side of Figure 1 represents the operator’s side. The drawing is based on 

work that models the human as an information processor (Card et al 1983), based on previous re-

search in psychology. In that model, the human is presented as a system composed of three intercon-

nected processors. The perceptive system senses information from the environment – primarily the 

visual, auditory and tactile systems as these are the most commonly used for interacting with com-

puters. The motor system allows operators to act on the real world. Target selection (a key interaction 

mechanism) has been deeply studied (Soukoreff & MacKenzie 2004); for example, Fitts’ Law pro-

vides a formula for predicting the difficulty for an operator to select a target, based on its size and 

distance (Fitts 1954). The cognitive system is in charge of processing information gathered by the 

perceptual system, storing that information in memory, analyzing the information and deciding on 

actions performed using the motor system. The sequential (sometimes parallel) use of these systems 

(perceptive, cognitive and motoric) while interacting with computers is called the Human-Computer 

Interaction Loop (HCIL). The operator’s memory (decomposed into short term and long-term 

memory) is known for being subject to alteration and decay (Murre & Dross 2015).  

The specificities of the Interaction. The top left of the Software section corresponds to the interac-

tion technique that uses information from the input devices. Interaction techniques have a tremendous 

impact on operator performance. Standard interaction techniques encompass complex mechanisms 

(e.g. modification of the cursor’s movement on the screen according to the acceleration of the phys-

ical mouse on the desk). This design space is of prime importance and HCI research has explored 

multiple possibilities for improving performance, such as enlarging the target area for selection on 

touch screens (Olwal & Feiner 2003) and providing on-screen widgets to facilitate selection (Albins-

son, P.A. & Zhai 2003).  

The interaction mainly takes place though the manipulation of input devices (e.g., keyboard or 

mouse) and the perception of information from the output devices (e.g., a computer screen or 

speaker). Another channel usually overlooked is the direct perception by the operator of information 

produced (usually as a side effect and not on purpose) of the underlying cyber-physical systems (e.g., 

noise or vibrations from an aircraft engine (represented by the dotted line at the bottom of Figure 1)).  

Integrated classification of faults that may occur in interactive systems 

(Avizienis et al. 2004) proposed a classification of faults according to their root cause (phenomeno-

logical cause also called genotype), the part they affect (dimension) and the phase of the life cycle 

when then may occur (phase). Faults may be caused by human actions or by natural phenomena 

without human participation (“due to natural processes that cause physical deterioration”). They 

may affect the software part of the system (SW) or the hardware part of the system (HW). They may 

occur during the development of the system or during operations, when users use it to perform their 

tasks (top of the taxonomy on Figure 2).  

 

Figure 2. Taxonomy of faults that may affect the behavior of the computing systems (adapted from 

(Avizienis et al. 2004) 



 

More recently, (Palanque et al. 2020) proposed a classification of faults affecting the behavior of the 

operator. This classification follows the same decomposition pattern as the one from (Avizienis et al. 

2004) but adapts it to the inner behavior of operators. First, it extends the System boundary dimension 

to separate human faults from external causes. Second, it adds new levels to the Phenomenological 

cause dimension to distinguish between faults arising 1) from the operator, 2) from another person, 

and 3) from the natural world (including the system itself). Third, it introduces the Human capability 

dimension to differentiate faults in the operator’s perceptual, cognitive, and motor abilities. Fourth, 

it adds specific fault categories that derive from these dimensions usually not accounted for such as 

cognitive biases, for which a collection can be found in (Benson 2016). 

As the Human Computer Interaction Loop (HCIL) is the location of integration between operators 

and computing systems there is a need to integrate both classifications to identify, in a single frame-

work, faults induced in the system and faults induced in the operator. Figure 3 presents such an inte-

grated view on both classifications.  

 

Figure 3. Integration of the HCI Loop classification (Palanque et al. 2020) within the Avizienis et 

al. fault classification (Avizienis et al. 2004) 

Both classifications enable to characterize a fault according to its objective (malicious or non-mali-

cious) and intent (deliberate or non-deliberate). In the case where the objective is malicious, the hu-

man deliberately causes the fault. Natural faults are non-malicious and non-deliberate. Due to space 

constraints, this paper do not present this refinement of the classifications in the presented integrated 

view. 

Illustrative examples within a commercial aircraft cockpit 

We propose to use the H-MIODMIT architecture and the integrated view on fault classifications to 

identify exhaustively the faults that may possibly occur at development time and at operation time 

and this for the whole Human Computer Interaction Loop. To illustrate this proposal, we present nine 

illustrative examples of concrete possible faults that may occur in an aircraft cockpit. Each of them 

belongs to a main branch of the integrated view on classifications (highlighted in Figure 4), and each 

of them affects a part of the H-MIODMIT architecture (highlighted in Figure 5). 

In the following paragraphs, we use a common description template for presenting the examples. 

First, we introduce the example of fault, its dimension (affected part according to the classification) 

and the corresponding affected part in the H-MIODMIT architecture. We then present the main ad-

ditional characteristics of the presented fault: boundary, phenomenological cause and phase of the 

system life cycle when it may occur. In the case where the example of fault is specifically malicious 

and/or deliberate, we explicitly indicate it. At last, we describe the possible failures that may occur 

because of this fault, as well as the possible ways of dealing with this fault.  

Fault labelled 1 in Figure 5 is a warning sound missing some music notes. This is a software fault 

that affects the rendering function (audio). It is internal to the system and a developer may cause it 

during development, by not writing a line of code that was supposed to command the production of 



 

a subset of notes of the warning sound. It is possible to avoid such fault by applying fault removal 

techniques at development time, such as peer review of the software and code inspection meetings.  

Fault labelled 2 in Figure 5 is a weak button. This is a hardware fault that affects an input device. It 

is internal to the system and a natural phenomenon may cause it during development. For example, 

in the factory, due to a micro earthquake, a production bench may malfunction and release a button 

which material is weak and more fragile than expected. Such a button may break before planned 

maintenance in the cockpit. It is possible to remove this fault (if it is known) by testing buttons and 

removing the weak ones.  

 

Figure 4. Integrated classification with references to examples of faults highlighted in each branch 

Fault labelled 3 in Figure 5 is a broken button. This is a hardware fault that affects an input device. 

It is internal to the system and a natural phenomenon may cause it during operations. A broken button 

may prevent the crewmembers to trigger a command. It is possible to remove this fault by planning 

regular maintenance activities during operations.  

Fault labelled 4 in Figure 5 is the weather radar application being in an unexpected state. This is a 

software fault that affects the dialog of the weather radar application. It is external to the system and 

human-made during operations. It may occur if the pilot inputs an invalid tilt angle value for the 

configuration of the weather radar. Such invalid value may put the weather radar in an unexpected 

state and freeze the dialog. It is possible to remove such fault by applying verification technique at 

development time to check that whatever the input made by the operator, the data will not put the 

application dialog in an unexpected state.  

 

Figure 5. H-MIODMITT architecture with references to examples of faults 



 

Fault labelled 5 in Figure 5 is a bit flip in a register of the graphical processing unit of the system 

display (in charge of presenting the information about the aircraft systems). This is a hardware fault 

that affects an output device. It is external to the system and a natural phenomenon may cause it 

during operations. External radiations may modify the content of one of the registers of the graphical 

processing unit of the system display. Such modification may trigger the display of an inaccurate 

value of the current pressure in the cabin, which may cause the crewmembers to take inappropriate 

actions to reach a target cabin pressure. It is possible to cope with such fault by applying redundancy 

mechanisms to present the information on two different output devices.  

Fault labelled 6 in Figure 5 is the anchoring effect of a crew member focusing on a subset of situa-

tional information. This is a human fault that affects the cognitive processor. It is internal to the 

human and may happen during operations. A crewmember who focuses on the first perceived warn-

ing information and do not notice incoming new information may make a wrong analysis of the 

situation, which may lead the crew to apply inappropriate actions. This cognitive fault is a bias ref-

erenced as the anchoring effect (Benson 2016). It is possible to cope with such fault by making the 

displays stop presenting information for a while if the crewmember did not acknowledged new in-

coming information.  

Fault labelled 7 in Figure 5 is the reduced sight of a crew member. This is a fault affecting the human 

in the perceptual processor. It is internal to the human and may happen during operations. Because 

of aging, a crewmember may not able to see correctly the displayed information. It is possible to cope 

with such fault by assigning recurrent medical examination to crewmembers in order to ensure that 

their vision is accurate with respect to their missions.  

Fault labelled 8 in Figure 5 is the temporary blocked sight of a crew member. This is a human fault 

that affects the perceptual processor. It is external to the human and may happen during operations. 

A crewmember may be not able to perceive visually the cockpit displays and controls, at least par-

tially, if this crewmember is victim of a laser attack from a person on the ground (malicious and 

deliberate in the case of this example). It is possible to cope with such fault by equipping crewmem-

bers with laser proof goggles.  

Fault labelled 9 in Figure 5 is the involuntary movement of a crew member. This is a human fault 

that affects the motor processor. It is external to the human and may happen during operations. Vi-

brations may occur suddenly while flying and may make the fingers of a crewmember slip, causing 

the trigger of an erroneous command. It is possible to cope with such fault by providing interaction 

techniques that are tolerant to vibrations, e.g. Brace Touch for tactile screens in a cockpit (Palanque 

et al. 2019).  

Currently Known Solutions and Challenges  

In the domain of dependable systems, fault-related issues have been studied and current state of the 

art identifies four different ways of dealing with them, as presented in (Avizienis et al. 2004): 

• Fault prevention: avoiding as much as possible the introduction of faults during the de-

velopment of the system. It is usually performed by following rigorous development pro-

cesses (e.g. (DO-178C 2012), the use of formal description techniques (Bowen & Stav-

ridou 1993) and (Hamon et al. 2013), proving properties over models, as well as intro-

ducing barriers in the designs as proposed in (Hollnagel 2004) and (Basnyat et al. 2007).  

• Fault removal: reducing the number of faults that can occur. It can be performed i) during 

system development, usually using verification of properties (Pnueli 1986), theorem prov-

ing, model-checking, testing, fault injection, … or ii) during the use of the system via 

corrective maintenance or fault removal techniques (e.g. starting a redundant system). 



 

• Fault tolerance: avoiding service failure in the presence of faults via fault detection and 

fault recovery. Fault detection corresponds to the identification of the presence of faults, 

their type and possibly their source. Fault recovery aims at transforming the system state 

that contains one or more faults into a state without fault so that the service can still be 

delivered. Fault recovery and fault detection are usually achieved by adding redundancy, 

diversity and segregation thus using multiple versions of the same software in parallel. 

Fault mitigation is another aspect of fault tolerance, which targets at reducing the impact 

of faults (when they cannot be removed or prevented).  

• Fault forecasting: estimating the number, future incidence and likely consequences of 

faults (usually by statistical evaluation of the occurrence and consequences of faults). This 

is based on the gathering of real data (both during tests and usage of the system).  

One key element with the identification of faults is to make explicit their relationship with failures. 

Figure 6 describes this relationship. When a fault occurs, it may set a given service of the system in 

an error state. The system (and its associated service) may come back to a nominal state if the fault 

is removed. If the fault is not removed and the service is requested, then the failure will occur and it 

will be noticed that the service is faulty. This failure may, in turn, trigger other faults to other services 

of the system.  

 

Figure 6. Propagation of faults into error states and possibly failures (from (Avizienis et al. 2004))  

 

In the Psychology and Human-Computer Interaction (HCI) domain, this description of faults, errors 

and failure is not used to describe human errors. Psychology studies human behavior in order to 

understand the genotype (i.e. the root cause) of human error and to categorize them as, for instance, 

Reason’s classification on slips, lapses and mistakes (Reason 1990). HCI focusses on designing and 

engineering solutions to prevent and remove them. Previous paragraphs have been presenting some 

methods and techniques to address faults induced in the system. We give below some techniques and 

methods to address faults induced in the human.  

 

Figure 7. A poka yoke to prevent human-made operational faults induced in the system 

Figure 7 presents a hardware barrier to prevent human-made faults to occur when an operator con-

nects a device using the cable and connectors in Figure 7. The red cable is made up of seven inner 

cables that must be connected in the correct order. The plastic connector aligns the seven cables in 

such a way that the order cannot be changed (by slip (inattention) or by mistake (incorrect 

knowledge). However, the entire order could be wrong if the operator uses the connector in an upside 

down manner. To prevent this, the plastic cover of the connector exhibits a small hole (on its right-



 

hand side only) that will be filled by a small pic on the connector on the device side. This will prevent 

such human-made faults and ensure the correct ordering of the inner cable during the connection.  

Clearly, this solution is a generic pattern (called Poka Yoke) that should be integrated in a design 

each time a human-made fault may occur. However, the solution presented requires fine-tuning of 

this generic pattern to the specific problem.  

The fault number 6 in previous section refers to a large category of faults in the human behavior 

called Cognitive Biases (see (Benson 2016) for structured list of them. According to (Haselton et al. 

2005) a cognitive bias can be defined as “Cases in which human cognition reliably produces repre-

sentations that are systematically distorted compared to some aspect of objective reality”. This defi-

nition highlights the fact that such behavior is reliable, meaning that human cognition will systemat-

ically function (some might say dysfunction) in the same way. The main characteristic of cognitive 

biases is that they correspond to unconscious behavior of people (usually reacting intuitively to a 

problem or a situation). The best way to debunk cognitive biases is to make people aware of it. This 

is the generic solution to the processing of these faults. However, like in the system side faults, to 

avoid the occurrence of a given cognitive bias requires the design and the implementation of a dedi-

cated solution. In the fault number 6, the solution to debunk the anchoring effect bias is to add in the 

system a function switching off all the information display. In the field of HCI some specific biases 

have been studied (e.g. peak-end effect (Cockburn et al. 2019)) and their use for design (e.g. organ-

izing work over multiple pages taking into account peak-end effect) has been proposed. Similarly, 

work reported in (Saint-Lot et al. 2020), proposes a graphical countermeasure to cognitive tunneling 

bias (an orange-red flash of 300 milliseconds with a 15% opacity) to improve reaction time of air 

traffic controller to alarms. 

Conclusion 

This paper argues that interactive systems are a specific and complex kind of systems that require 

dedicated processes, methods and tools for their design, development and validation. With this com-

plexity in mind, we presented a generic hardware-software-operator architecture (called H-

MIODMIT) describing the components of interactive systems and their interactions. This paper also 

presented a generic taxonomy of faults encompassing both faults that affect the operator and faults 

that affect the interactive system.  

We have presented some concrete examples of faults in various components of the interactive sys-

tems architecture together with some mechanisms to prevent, remove and tolerate them. While some 

of these mechanisms are recent (e.g. interaction techniques to remove cognitive biases) other ones 

are very recent and dedicated to the interaction level of the architecture (e.g. (Cockburn et al. 2017).  

Future work will target at addressing the multiplayer perspective. First, the notion of collaborative 

work, teams and work distribution is not addressed neither in the architecture nor in the taxonomy of 

faults. Beyond, failures related to combinations of faults are not addressed either. Recent work on 

fault trees can provide a starting point to this but more work in indeed required.  
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