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ABSTRACT13

How does the spread of behavior affect consensus-based collective decision-making among animals,
humans or swarming robots? In prior research, such propagation of behavior on social networks has
been found to exhibit a transition from simple contagion—i.e, based on pairwise interactions—to a
complex one—i.e., involving social influence and reinforcement. However, this rich phenomenology
appears so far limited to threshold-based decision-making processes with binary options. Here, we
show theoretically, and experimentally with a multi-robot system, that such a transition from simple
to complex contagion can also bed observed in an archetypal model of distributed decision-making
devoid of any thresholds or nonlinearities. Specifically, we uncover two key results: (i) the nature of the
contagion—simple or complex—is tightly related to the intrinsic pace of the behavior that is spreading,
and (ii) the network topology strongly influences the effectiveness of the behavioral transmission in ways
that are reminiscent of threshold-based models. These results offer new directions for the empirical
exploration of behavioral contagions in groups, and have significant ramifications for the design of
cooperative and networked robot systems.

14

Introduction15

Complex systems, be them natural or artificial, operate on the basis of a particular connectivity between16

constituting elements, which orchestrates the execution of specific dynamical processes. Such a high-level17

abstraction encompasses wildly different systems giving rise to a range of emergent behaviors, such as fish18

schooling1–3, social opinion formation4, disease spreading5, cascading failures in power grids6, 7, target19

tracking by swarm robotic systems8, 9, etc. Such collective dynamics have been found to be crucially20

dependent on the underlying network topology2, 3, 5, 10–15, which conditions the efficient transmission of21

behavioral change.22

The propagation of state changes within a social system—or an engineered networked one—has been23

acknowledged to be akin to a contagion process, which can be either ‘simple’ or ‘complex’13, 16–19. With24

a simple contagion, the behavior propagates through a single exposure or interaction. On the other hand, if25

social reinforcement is required—following Centola and Macy’s definition13: “if its transmission requires26

an individual to have contact with two or more sources of activation”—the contagion is said to be complex.27

Numerous models of behavioral propagation in networked systems (including social ones) have been28



considered over the years. Threshold models have been the predominant modeling framework used to29

characterize a wide range of complex contagion processes, such as the adoption of technological innova-30

tions4 or preventative health measures20, and the spread of misinformation on social media19, 21 (Note that31

complex-like contagions are also observed with stochastic models of epidemic-like processes22–25). The32

growing interest in threshold models can be traced to their mathematical simplicity, their paradigmatic33

nature and their success in modeling the spread of behaviors in various social settings4, 13, 16, 26. These34

deterministic models assume that agents can be in two states (inert or activated), and that a particular agent35

becomes activated if a fraction of its neighbors (in the network sense) larger than a given threshold are36

themselves activated17, 27. These threshold models fit perfectly Centola & Macy’s original definition of a37

complex contagion, whereby a transition from simple to complex contagion takes place when increasing38

the threshold beyond a value corresponding to having more than one activated neighbor13, 16, 17. However,39

the key concept of activation may not be as straightforward when considering models lacking a threshold,40

which can become an issue when trying to use the existing definition of a complex contagion.41

Here, we show theoretically and experimentally that such a transition from simple to complex contagion,42

as originally identified in threshold-based models, can also be exhibited by another general class of43

collective decision-making processes; specifically, a class of models based on consensus and devoid of44

any thresholds or nonlinearities. Using a new way of characterizing complex contagions, we uncover45

their existence in consensus-based dynamics. Specifically, we shed a new light on some fundamental46

mechanisms underpinning networked systems, which may support the study of a vast range of collective47

behaviors in both the animal and social worlds.48

Unsurprisingly, the network topology plays a pivotal role in this study2, 3, 10–13, 15, 16. It is known that it49

strongly affects both spreading types in threshold models, albeit in fundamentally different ways. While50

simple contagions are enhanced by short network distances5, complex ones are amplified by high levels of51

clustering4, 5, 14, 16. Within the framework of threshold models, the behavior or state being transmitted is52

of a binary nature: ‘active’ or ‘inactive’. This simplification clearly facilitates the tracking of behavioral53

cascades from a source (or multiple sources) to the entire system (or parts of the system). This feature54

serves well the purpose of studying collective decision-making processes involving two options, such as55

voting, adoption of innovations, binary opinion dynamics4, 20. However, numerous collective decisions are56

more complex and involve a continuum of options rather than just a binary set28–30. A full understanding57

of the influence of network metrics on consensus-based decision-making involving behavioral propagation58

and/or external perturbations to the consensus is lacking. Such knowledge would help gain insight into the59

disturbed collective dynamics of social and animal groups, e.g., when responding to a predator’s attack or60

to misleading information on social networks.61

Biologists have indeed recently acknowledged the profound similarities between human and animal62

social behaviors. For instance, Sosna et al. recently reported a study on the “fear response” of a school63

of fish collectively making fast decisions under risky conditions3. They found that the properties of64

the network (their “social connectivity”) are the primary factors responsible for the high collective65

responsiveness of the school in terms of number of behavioral cascades and their sizes. Furthermore,66

Firth18 has made the case that complex contagions might be key to explaining some specific collective67

animal dynamics, especially those with socially transmittable behaviors. In the case of direct behavioral68

transmission in mobile animal groups—schooling fish, flocking birds, swarming insects31–34—a full69

understanding of the nature of the propagation is still lacking2, 3. The markedly fast spread of behaviors70

within animal groups—such as waves of response, evasive maneuvers in schools of fish2, 3, 11, 35, and71

collective turns in flocks of starlings36—has been a source of inquiry for a long time35. Recent large-72

scale empirical evidence with fish and birds have revealed the intricate patterns of interaction among73

individuals2, 3, 36–39, which underpin the behavioral cascades throughout the group. A key element to these74
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inter-agent interactions is alignment—metric or topological—that introduces a consensus component to75

the collective decision-making process. Unlike binary threshold-based models, such orientation-consensus-76

based ones do not lend themselves well to the tracking of behavioral cascades given the non-binary77

nature of the state-variable. Moreover, as with all ethological results, even if it is possible to modify the78

interaction among agents in some ways3, it is virtually impossible to fully control all aspects of it.79

However, biologists have started using robotic agents in place of animals to be able to measure and80

quantify some features of interest40, 41. Hence, by following a similar approach with a multi-robot system,81

one could compare the effectiveness of the social transmission of information when changing the local82

interaction rule, i.e. when changing the topology of the interaction network.83

Here, we specifically consider a collective decision-making process reminiscent of a group escape84

response. Using the leader-follower consensus (LFC) dynamics—a particular instance of the general85

control-theoretic framework of the Taylor model30, 42, 43—we are able to study the behavioral contagion86

within a group of networked agents driven by a single leader acting as a stimulus of tunable frequency11, 12.87

With this linear-time invariant (LTI) dynamics, by varying the network topology—specifically the cluster-88

ing coefficient, average shortest path and Kirchhoff index—we observe that slow-paced (resp. fast-paced)89

stimuli propagate in ways reminiscent of a simple (resp. complex) contagion. Furthermore, we uncover a90

transition from simple to complex contagion when varying the pace of the stimulus—i.e, its frequency.91

This transition is made apparent by measuring the effectiveness of the behavioral propagation—quantified92

here by means of the concept of collective frequency response12—when varying the topological features93

of the interaction networks (e.g., clustering coefficient, average shortest path, etc.). In addition, using a94

robotic experimental test-bed comprising 10 networked agents performing an angular heading consensus95

similar to those observed in collective turns of flocking starlings39, we unambiguously confirm that the96

behavioral propagation has the features of a complex contagion when driven by fast-paced stimuli.97

These results have far-reaching implications for several reasons. First, they extend the concept of98

transition from simple to complex contagion—heretofore limited to binary threshold-based models16, 17—99

to the continuous class of consensus-based models. It is worth highlighting that the original linear threshold100

model (LTM) with binary options has been extended to a continuous threshold model (CTM) of cascade101

dynamics, which involves nonlinearities and a threshold44. However, no evidence of a transition from102

simple to complex contagion has been reported for the CTM. Second, these results reveal that the nature103

of the contagion—simple or complex—is directly related to the type of behavior spreading, and more104

specifically to the pace of its intrinsic dynamics—e.g., slow external perturbations vs. collective startle105

response. Lastly, the insights gained from this study could offer new directions for biologists and social106

scientists to explore and experiment with animal and human groups respectively. They could also be107

harnessed to improve the design and robustness of engineered networked systems (e.g. Internet of Things,108

sensor networks, swarm robotics).109

Results110

Polarization speed in threshold models111

Complex contagions have been originally uncovered and studied using the archetypal LTM13, 16, 17, 27,
where nodes become active when the fraction of their active neighbors crosses a certain threshold θ .
Specifically, the LTM dictates that for any agent i, the binary state-variable si(t) is updated according to

si(t +1) =
{

1 if〈s j(t)〉 j∼i > θ ,
0 otherwise, (1)
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where 〈·〉 j∼i is the average over all neighbors of i (Methods). Significant attention has been dedicated to112

understanding the interplay between θ and network topology for global cascades to occur (i.e. yielding113

an activation of 99% of nodes)13. It has been repeatedly reported that complex contagions spread “faster114

and further”16, 20 on highly clustered networks, as compared to simple contagions13, 16, 45. It is worth115

stressing that the investigation of this important statement remains limited to the long-term dynamics of116

global cascades46. On the other hand, the early dynamics of contagion affecting a smaller fraction of117

nodes—say cascades of 30% activated nodes, which is still macroscopic—has been relatively overlooked.118

There has been no attempt to relate the actual speed of contagion with the transition from simple to119

complex contagion for incomplete—i.e., non-global—cascades. This speed of contagion, also known120

as diffusion speed, is the number of infected nodes per unit time and is increasingly recognized as an121

important indicator of the contagion dynamics11, 46–49.122

A useful metric to analyze this is given by the so-called polarization speed v = (P(t)−P(0))/t at123

instant t, where P(t) measures the polarization of the system (Methods). This quantity gives an indication124

of the speed at which a random activator node and its neighbors can activate a given fraction of nodes125

(here 30%; Methods and Supplementary Fig. S1 for other fractions)11, 17, 22, 27. Here, we consider this126

polarization speed, which is identical to the average speed of diffusion considered in Ref.46 and is also127

somehow related to the concepts of spreading speed, half prevalence time, or time until half the network is128

infected48, 50, 51, and we study how it relates to some network descriptors used for the study of the spread129

of misinformation in temporal network epidemiology52.130

Following in the footsteps of Centola & Macy, we use their version of the LTM16 to study the transition131

from simple to complex contagion. Simple contagions are observed in LTMs with low thresholds θ , which132

lead to an increased spreading rate on networks with smaller values of the average shortest path `5, 45.133

As θ increases, the contagion becomes complex and for the spreading process to endure, the network134

must possess a sufficiently high value of the clustering coefficient C13, 17. Here, we consider the classical135

small-world Watts–Strogatz (WS) networks5, which are constructed on the basis of a single free parameter,136

namely the rewiring probability p. By varying p, we can effectively tune C, `, or the Kirchhoff index137

Rg of the network (Methods). The Kirchhoff index Rg = N ∑
N
i=2 λ

−1
i , is a distance metric based on the138

eigenvalues 0 = λ1 < λ2 < · · ·< λN of the Laplacian matrix59 (Methods).139

The variations of the polarization speed v with θ are reported in Fig. 1. At low threshold, the140

polarization speed increases when ` decreases (and C decreases as well), which is characteristic of simple141

contagions (Fig. 1(a)). At higher θ values, this trend is inverted and we retrieve the well-known complex142

contagion phenomenology in which v increases with C (and also with `). These trends can also be143

appreciated by observing the particular network topology corresponding to the purple curve (high C, ` and144

Rg) in Fig. 1(a). It goes from producing the worst performing simple contagion (out of the 4 topologies145

considered here) at low θ , to generating the best performing complex contagion at higher threshold values.146

As expected, the transition region corresponds to intermediate values of the threshold such that the ordering147

of the different networks does not reveal an unambiguous simple or complex contagion. It is worth noting148

that highly clustered networks can sustain a complex contagion at higher thresholds compared to the more149

rewired networks, which lack ample clustering to sustain spreading13.150

To analyze this transition, we calculate the Spearman’s correlation coefficient rs between the po-151

larization speed v and each network metric χ ∈ {C, `,Rg}, for each threshold value θ (Methods and152

Supplementary Fig. S2). There is a marked transition from rs ≈−1 for θ < 0.1, to rs ≈+1 when θ > 0.28153

(Fig. 1b). These thresholds mark the cutoff of purely simple and complex contagion—used to draw the154

shaded regions in Fig. 1a—with the transition region in between experiencing a more complex interplay155

of the network parameters and the resulting polarization speed. Note that the correlation between the three156

network parameters and the polarization speed are extremely similar, owing to the well-known fact that the157
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WS network model has only one free parameter (the rewiring probability p; see Ref.5). These results are in158

good agreement with other observations of this transition5, 16, 17, 45, thereby suggesting that v, characteristic159

of the early contagion dynamics, is both an adequate and effective indicator of the nature—simple or160

complex—of the behavioral propagation.161
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Figure 1. Linear threshold model on WS networks of N = 10,000 nodes, with fixed average degree
〈k〉= 16 and uniform threshold θ . Initially a single randomly selected seed node and its neighbors are
activated. (a) Average polarization speed v when the cascade size is 30% active nodes on the network,
with lines stopping prematurely if the fraction is never reached, shown for a representative set of network
metrics (Supplementary Fig. S1 for other cascade sizes). The WS rewiring probability p is used to
generate network samples having specific values of χ ∈ {C, `,Rg}. (b) Spearman’s correlation coefficients
rs between the polarization speed v and each network property χ ∈ {C, `,Rg}.

Transition from simple to complex contagion in consensus models162

In the previous section, we showed that with the classical LTM, the transition from simple to complex163

contagion can be analyzed and understood from a new angle—the speed of contagion—using v as an164

indicator of such speed. The question now is whether such a transition can be observed with other165

collective decision-making processes that do not involve binary state-variables with cascades of changes,166

nor nonlinear mechanisms /thresholds. Specifically, we consider the canonical linear time-invariant167

Taylor model30, 42, 43, which has been widely used to characterize a vast breadth of collective behav-168

iors1, 11, 37, 38, 53, 54 and decision making30, 55. In the Taylor model, the agents (nodes) seek to reach a169

consensus by performing some average of their own state along with those of their neighbors in the170

network sense. However, flocking birds and schooling fish in the wild seldom reach a complete consensus171

given their incessant collective maneuvering: the convergence to a stationary state clearly does not apply172

to their dynamics. This is even more true when these animal groups are dealing with predator attacks173

or other external perturbations. Indeed, accumulating empirical evidence shows that swift behavioral174

propagation is the true hallmark of collective behavior, rather than high consensus or polarization37. It can175

therefore be said that although consensus is at the root of their collective actions, these systems effectively176

tend to operate away from consensus11, 12.177

Considering the particular Taylor model corresponding to the LFC dynamics, one can drive the system
away from consensus by imposing a given dynamics to the “leader” (also known as “stubborn”, “zealot”,
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“informed” agent in some contexts30). The leader’s behavior then propagates to the neighboring agents,
and further to the entire system, thereby determining the emergent collective response. From the control-
theoretic perspective, this leader introduces a time-varying input signal into the system. However, this
behavioral propagation intricately depends on the network topology, as well as on the leader-follower
consensus dynamics considered. Here, we consider N agents with state-variable xi(t) seeking to follow
the arbitrary trajectory x0(t) = u(t) = sinωt of the leader agent i = 0, by means of the following linear
distributed consensus:

dxi

dt
=

N

∑
j=1

wi jx j(t)+wi0u(t), (2)

where wi j is a weight related to the interaction between agents i and j (Methods). The collective frequency178

response of the system, H2(ω) (Eq. (7) in Methods), can be interpreted as the number of agents that are179

able to respond or follow the leader’s behavior, as a function of its frequency ω11, 56.180

The LFC dynamics at low frequency (ω → 0) has been comprehensively studied. For instance, it is181

well known that the collective response increases as ` decreases14, 43, 57. This phenomenology is analogous182

to that of a simple contagion (cf. the increase of the polarization speed v as ` decreases for the LTM at low183

threshold θ , Fig. 1(a)). Given the transition from a simple to a complex contagion when increasing θ in184

the LTM, one is naturally led to consider the possible existence of a transition in the LFC when increasing185

the frequency ω of the leader’s dynamics.186

To investigate if the LFC indeed exhibits such a transition, we follow the same approach as for the LTM.187

We analyze the collective response on networked systems having 240 nodes with a fixed average degree188

of 〈k〉 = 16. Using the same family of small-world WS networks5 (Methods), we are able to compute189

analytically H2(ω) (Fig. 2(a)) for the same values of the clustering C as the ones previously used for the190

LTM (Fig. 1). It is worth adding that similar results are obtained with a family of scale-free networks191

(Supplementary Fig. S4). Unsurprisingly, at low frequency (ω . 10−2) we observe a phenomenology192

consistent with a simple contagion, namely H2 increases as ` decreases. Upon increasing ω , this trend is193

reversed and H2 grows with C in ways that are reminiscent of a complex contagion. However, to ascertain194

that this phenomenology is indeed a transition from a simple to a complex contagion, one has to verify195

that the simple contagion at low frequency is driven by ` or Rg, while the complex one at high frequency196

is controlled by C. To this aim, we calculate the Spearman’s correlation coefficient rs between H2 and197

χ ∈ {C, `,Rg} (Fig. 2(b)). For these three network metrics, rs exhibits a clear sigmoidal trend from −1 at198

low frequency to +1 at high frequency. This trend echoes the one observed with the LTM when varying199

θ (Fig. 1(b)), with a transition region in the middle. Let us note that the important element here is the200

presence of a transition regardless of the actual values of the upper (resp. lower) bound of the simple (resp.201

complex) contagion region. Although beyond the scope of this study, a thorough analysis of the profound202

nature of this transition—e.g., cross-over, phase transition—might help in systematically defining the203

extent of this transition region.204

However, we are still unable to conclude that C is fully responsible for the observed trend at high205

frequency with the LFC, although this fact is well known for the LTM at high θ . To reach this conclusion,206

we have to address a well-known structural constraint with the WS networks, namely the fact that they are207

constructed by means of a single parameter—the rewiring probability p5, 58, 58. This is clearly visible in208

the insert of Fig. 2(b), where C monotonically increases with Rg and ` (see Supplementary Fig. S9). To209

overcome this issue, we include additional WS networks—with different values of the average degree—and210

select a subsample of these networks having uncorrelated network metrics (Methods and insert of Fig. 2(c)).211

Given this extended network sampling, we need to account for the effects of degree variations12, 59, 60,212
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and as such we impose a normalization procedure (overbar notation) for all quantities of interest: H̄2,213

C̄, ¯̀ and R̄g (Methods). Using this methodology, we obtain the following key result: at low frequency,214

H̄2 is highly (negatively) correlated with R̄g and practically uncorrelated with C̄, while the opposite is215

true at high frequency. This unambiguously confirms our hypothesis that the consensus-based behavioral216

propagation at low (resp. high) frequency is of the simple (resp. complex) contagion type.217

It is worth emphasizing that the only commonality between the LTM and the LFC is that both constitute218

a collective decision-making protocol exhibiting a transition from simple to complex contagion. Although219

there are obvious similarities between the phenomenology of this transition in both cases—as illustrated220

by the behaviour respectively of the polarization speed (Fig. 1) and of the collective response (Fig. 2), we221

do not seek here to establish any formal equivalence between their respective control parameters (θ for the222

LTM and ω for the LFC).223

Complex contagion with networked robots governed by nonlinear heading consensus224

The theoretical result described above, concerning the canonical LFC, is compelling in several ways. First,225

it reveals the existence of a transition from simple to complex contagion in the absence of threshold-based226

mechanisms. This transition in the behaviour of consensus-based decision-making processes occurs227

when varying the inherent pace of the behavior that is propagated through the system. Second, it has228

significant ramifications for the understanding of some collective behaviors subjected to external fast-pace229

perturbations, e.g., following a predator’s attack leading to collective evasive maneuvers by schools of230

fish or flocks of birds. As recently stressed by Firth18, the profound nature of these socially transmittable231

behaviors has yet to be fully understood. Firth makes clear that the concept of complex contagion has232

been relatively overlooked by biologists, although it might help explain a vast breadth of collective animal233

behaviors18. In addition, there has been emerging evidence of complex contagion in some schooling234

behaviors of golden shiners exhibiting highly clustered interaction networks2. As already mentioned,235

dealing with wild animal groups is not only challenging from the practical standpoint, but it also restricts236

the ability to analyze the influence of the deeply-ingrained nature of the interaction among agents.237

The use of robotic systems—in lieu of biological ones—has been considered to overcome some of238

these challenges and to offer a new toolkit to deepen our understanding of collective animal behaviors40, 41.239

Although simulations offer unique ways to systematically analyze algorithms of collective dynamics, they240

inevitably reduce the fidelity of the model to achieve computational tractability. Indeed, the simulation-241

reality gap in robotics is known to be exacerbated with multi-robot systems61. For instance, simulations242

can fail to adequately capture: (1) the complex physical interactions among agents, (2) the inherent243

variability among units forming the group, and (3) the fine details of real-world settings in which the244

agents are embedded. As a matter of fact, achieving high-fidelity simulations often requires the input or245

feedback from physical experiments.246

Data gathered in robotico, with a highly controllable and controlled environment, enable a rapid inves-247

tigation of a number of hypotheses about collective behaviors. In turn, the outcome of such investigations248

can serve biologists to identify new directions to explore, test and validate with empirical data. Following249

this strategy, we use a networked robotic system to assess various socially transmittable behaviors when250

changing the topology of the interaction network in the presence of a collective decision-making with a251

nonlinear component. It is worth stressing that the results obtained with the LFC (Fig. 2) are for a linear252

system dynamics, yet they reveal a surprisingly complex phenomenology. Nonetheless, some collective253

decision-making processes among moving animals are based on a consensus associated with the direction254

of travel, and are inherently nonlinear. Such nonlinear interactions among conspecifics have recently been255

shown to be responsible for sudden directional switches in groups of pigeons62.256

Therefore, we carried out a series of experiments on nonlinear leader-follower heading consensus with257
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a collective of ground robots where each one aligns its direction of travel with that of their neighbors in258

the network sense (Methods). As a consequence, changing the structure of the interaction network—and259

in particular its properties such as χ ∈ {C, `,Rg}— modifies the nature of the neighborhoods involved in260

the nonlinear heading consensus. This type of collective decision-making—closely related to Vicsek’s261

canonical model of collective motion63—bears some resemblance with the Taylor model analyzed previ-262

ously. However, a physical embodiment of such a complex system involves significant deviations from263

the ideal scenario corresponding to the theoretical calculations obtained for the LFC. For instance, while264

the dynamics of the robots are ultimately governed by physical processes that are continuous in time, the265

units sense each other’s state using asynchronous, discrete communications with stochastic delays and266

communications dropouts12.267

The networked robotic system comprises 10 robots (1 leader and 9 followers, Methods) equipped with268

a “swarm-enabling” unit—providing on-board data-processing, computing and distributed communication269

capabilities—that allows the system to perform a collection of decentralized cooperative control strate-270

gies64. The leader continuously rotates at a fixed frequency ω in the range 0.03 Hz < ω ≤ 0.3 Hz. Each271

robot, including the leader, periodically transmits its heading information to its direct neighbors as per the272

specific network topology considered. Three distinct topologies (“Random”, “Ring” and “Caveman” as273

shown at the bottom of Fig. 3) are selected on the basis that they have the same average degree 〈k〉= 4,274

yet notably different clustering coefficients C (Methods).275
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Figure 3. Experimental analysis with a leader-follower networked robotic system networked by means
of three topologies: “Random”, “Ring” and “Caveman” with 〈k〉= 4 and 9+1 agents (Methods). The
graphs represent the network topologies used in the series of experiments, with the selected leader node
depicted in yellow: (a) Experimental results of angular consensus dynamics (mean value and associated
standard deviation; Methods), (b) simulation results of the nonlinear angular consensus dynamics.

It is worth highlighting that this experimental setup and methodology are identical to the one reported276
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in Ref.12, except for the fact that different network topologies are considered here. According to the277

analysis of the LFC, the collective response of this networked robotic system is expected to go down when278

increasing the frequency ω of the leader agent. This appears clearly in Fig. 3(a) for all three networks279

considered. The decrease in the collective response is essentially the same at low frequency (ω ≤ 0.06 Hz)280

for all cases. Above that frequency however, we observe a strong difference between all 3 topologies in281

the range 0.06 Hz≤ ω ≤ 0.2 Hz. This intermediate range of frequencies shows a rich collective behavior282

since the dynamics of the leader is rather “fast” thereby preventing any form of heading consensus to be283

achieved. This places us in a regime similar to that of animal groups dealing with fast-pace perturbations.284

Beyond 0.2 Hz, the highest collective response, achieved with the “Caveman” network, experiences a285

sharper decline, which we suspect would go down to the same low level as for the “Random” and “Ring”286

networks at higher frequencies. Unfortunately, increasing the frequency above 0.3 Hz is not possible in287

practice due to a limit in the achievable rotation frequency of the leader.288

To compensate for this experimental limitation, we perform simulations of the leader-follower non-289

linear heading consensus dynamics with 9+1 agents by integrating the system of Eqs. (15) (Fig. 3(b)).290

Unsurprisingly, these simulations show higher levels of collective response at low frequency, compared to291

the experimental ones, as they correspond to an idealized communication between agents. In addition,292

the frequency at which the differences between the different networks become apparent is higher in the293

simulation case with respect to the experimental one. Finally, we can reach higher frequency in the294

simulations than in the experiments, and the results do show the expected merging of the three collective295

responses at the highest frequency values (that were not reached in Fig. 3(a)).296

Following the analytical results with the LFC (Fig. 4), we are able to further analyze the robotic297

experiments. The complex contagion induced by the leader unit to the 9 followers is clearly visible in the298

intermediate frequency range 0.06 Hz≤ ω ≤ 0.2 Hz. The results are indeed in excellent agreement with299

the complex contagion phenomenology studied previously in much larger networks (“complex” hatched300

region of Fig. 4(a)). When the robotic units are interconnected by means of the most clustered network301

(“Caveman”), the behavioral spread is the most effective and the collective response the highest. On302

the other hand, when decreasing the clustering between robotic units—from “Caveman” to “Ring” and303

ultimately to “Random”—the effectiveness of the spread of the leader’s behavior is reduced, and so is the304

ensuing collective response at the group level.305

We note on the other hand that, given that the experiment is limited to 10 robotic units with an average306

degree 〈k〉= 4, the diameters and Kirchhoff indices for all 3 networks are small. Therefore, the simple307

contagion process at low frequency (ω ≤ 0.06 Hz) is simply too rapid and no meaningful distinction308

between the considered topologies can be observed experimentally (Fig. 3(a)).309

Discussion310

In summary, we have shown theoretically and experimentally that complex contagions are more general311

and prevalent than originally thought, and that transitions from simple to complex contagion are not312

limited to threshold-based models. Instead, our results suggest that such a transition might be a general313

feature in some classes of collective decision-making processes.314

Network science has been instrumental in uncovering the existence of complex contagions by Centola315

& Macy13, 16 in the social sciences. Since these seminal works, complex contagions have been observed316

in other spreading dynamics over complex networks, including epidemic-like stochastic models22–25.317

However, and as already mentioned, the study of the transition from simple to complex contagion has318

still been limited to the original LTM used by Centola & Macy, as well as social network experiments319

with binary options in decision-making. Hence, our discovery of this very transition within a fully linear320
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decision-making protocol devoid of any thresholds greatly expands the relevance of this phenomenon to a321

vast breadth of collective decision-making processes beyond the social sciences, and including collective322

animal behavior and collective robotics.323

At this point, it is critical to realize that ascertaining the exact nature of a contagion—simple or324

complex—remains challenging. Because of that, some scientists still cautiously use the term “complex325

contagion” or even refer to it obliquely: e.g., “complex contagion flavor”65. Even with the full details of:326

(1) a given collective dynamics—e.g, linear threshold dynamics for a given value of θ , or a leader-follower327

consensus dynamics for a given value of ω—as well as (2) the interaction network topology among328

agents, one is lacking a definite way of characterizing the behavioral contagion. This work offers a key329

conceptual advance in overcoming this challenge. Indeed, the network-based classification proposes to330

vary the topology with the goal of either increasing or reducing both the clustering coefficient C and331

the Kirchhoff index Rg. In the event that the effectiveness of the behavioral propagation is found to be332

positively correlated with C and uncorrelated with Rg, then the contagion is complex. Conversely, if a333

behavioral propagation is negatively correlated with Rg and uncorrelated with C, then it can be classified as334

a simple contagion (Fig. 2(c)). It is therefore worth stressing that this complex networks characterization335

of simple/complex contagions is agnostic to the actual details of the collective decision-making process.336

In all cases investigated here, the simple or complex nature of a behavioral propagation is determined by337

the value of a control parameter of the dynamical process taking place at the node level: e.g., the threshold338

θ for the LTM and the inherent pace of the behavior ω for the LFC. The proposed characterization allows339

us to identify the intervals of the control parameter associated with simple or complex contagions, with a340

transition region in between (Figs. 1 & 2).341

Despite the apparent relative simplicity of this complex networks characterization of contagions, one342

should not underestimate the associated practical challenges for scientists studying a specific collective343

decision-making dynamics among humans, within animal groups, or with networked robots. Varying344

the network topology might not always be achievable as previously stressed in the case of flocks of345

birds or schools of fish. This approach was central to Centola’s study of humans involved in an online346

social experiment, in which the topology of the social network was controlled and manipulated20. This347

groundbreaking experiment has been made possible thanks to the emergence of online social networks and348

the related technology. Clearly, such an approach could not be considered and implemented with animal349

groups. However, as our networked robotic experiment shows, the use of artificial agents mimicking350

animal behaviors offers a new toolkit to analyze and gain insight into collective animal behavior. With this351

approach, one can carry out the proposed complex networks characterization and ascertain the nature—352

simple or complex—of the behavioral propagation. Last but not least, one can also modify the triggering353

behavior—in our experiment the stimulus associated with the frequency of the leader—to possibly uncover354

a transition from simple to complex contagion. Such an approach opens new doors toward understanding355

the mechanisms underpinning such collective behaviors.356

Given how ubiquitous collective decision-making is in human societies, animal groups and networked357

multi-agent systems, these new results will have profound ramifications for our understanding of numerous358

phenomena in these fields. The importance of these results goes beyond the class of consensus-based proto-359

cols considered here, although studying a second-order leader-follower consensus66 with an underdamped360

dynamics seems like a natural extension to this work given its acknowledged relevance to collective361

information transfer in flocks of birds36, 37. The novelty of these results effectively has implications for a362

vast breadth of collective decision-making protocols involving a continuum of options to choose from.363

Firth18 recently speculated the importance of complex contagions in animal social networks and behavioral364

contagions. Interestingly, Rosenthal et al.2 had the intuition that complex contagions occur in schools of365

golden shiners owing to the high levels of clustering exhibited by their network of interaction. This led366
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them to consider a (fractional) threshold-based model—generating complex contagions—to characterize367

behavioral cascades in this particular schooling setting2. While Rosenthal et al. limited their work to368

threshold-based models to analyze this phenomenon, our results would allow their study to be expanded369

upon, as the decision-making process in golden shiners is clearly based on a continuum of options. From370

the same research group and with the same animal groups, Sosna et al. provided additional empirical371

evidence about the importance of the topology of the interaction network on collective responsiveness3.372

They also speculate that the fish might actively control their interactions to achieve a higher collective373

responsiveness3. Our results offer a theoretical backing to this idea, and it might provide biologists with374

new directions to explore and experiment.375

Besides shedding a new light on our understanding of collective behaviors, these results have also clear376

implications for the design of man-made networked systems: e.g., Internet of Things, multi-robot systems,377

dynamic sensor networks. Finally, we hope the present analysis of these rich phenomena of transition378

from simple to complex contagion will be extended to more complex networks, including heterogeneous,379

temporal and/or multi-layer networks.380

Methods381

Linear threshold model382

The LTM is a binary-option model of collective decision-making widely used in the study of complex
contagion13, 16. As described in Refs.16, 17, 27, it consists of a connected network of N nodes, with each node
i characterized by a state-variable with two possible discrete values si(t) ∈ {0,1}—inactive or active—and
a fixed threshold value θi ∈ [0,1]. At t = 0, all nodes start in the inactive state except for a random seed
node l and its neighbors, denoted by { j | j ∼ l}, whose state is set to active. Whenever the fraction of
an agent’s neighbors that are in the active state is larger than or equal to the agent’s threshold θi, that
node will switch to the active state, i.e. si(t +1) = 1 when 〈s j∼i(t)〉 ≥ θi. The LTM dynamics on a given
network can be characterized by the average polarization or activity, defined as P(t) = 〈si(t)〉{i=1,...,N},
and the associated polarization speed11, 46

v(t) =
P(t)−P(0)

t
, (3)

which effectively is the average propagation speed until instant t.383

Note that when P(t) = 1, all nodes are in the active state and a global cascade has taken place.384

Particular emphasis has been put on characterizing which network topologies lead to global cascades for385

certain values of θi
13, 16, 17, and the realisation that complex contagions spread faster on networks with386

high levels of clustering16, 20, 45. However, numerous empirical observations attest that behavioral cascades387

are rarely global: evasive maneuvers in schooling golden shiners involve 10∼ 30% of the individuals2
388

and the adoption of new health behavior in an online social network experiment only reached 30∼ 60% of389

participants20. Since complex contagions exhibit faster spreading in their early stage of propagation20, 45
390

that in their late near-global stage, we focus here on the early dynamics of the cascade and therefore391

consider the polarization speed v(t f ) for which 30% of the nodes are activated, i.e. for the smallest time t f392

where P(t f )> 0.3 (Supplementary Fig. S1 for other cascade sizes).393

To study the transition from simple to complex contagion with the LTM, we consider fairly large394

networks of N = 104 nodes, with identical thresholds θi = θ ∀ i, in order to ensure that the active state395

propagates for long enough at low values of θ . We let the active state propagate from a randomly selected396

seed node and its neighbors until the system reaches equilibrium where P(tend + 1) = P(tend). In our397

analysis we only consider networks where P(tend) is at least as large as the desired cascade size, and we398

omit from our analysis the simulations where the active state failed to propagate.399
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Leader-follower consensus model400

The leader-follower consensus model (LFC)11, 12, 42—a particular version of the Taylor model30— is
commonly used by the control community to study opinion dynamics and formation control. Here, N
identical agents perform a distributed consensus protocol on their state-variable xi(t), and one particular
agent i = 0—the leader—follows an arbitrary trajectory x0(t) = u(t) instead. The dynamics of this linear
system is governed by the following set of first-order ODEs:

dxi

dt
=

N

∑
j=1

wi jx j(t)+wi0u(t), (4)

where wi j = ω0(ai j/ki− δi j) is the inter-agent consensus protocol weight for the interaction between
agents i and j. The natural response frequency ω0 is assumed to be the same for all agents. The degree of
agent i is given by ki = ∑

N
j=0 ai j, and the adjacency matrix entry is ai j = 1 if agent i is connected to j and

0 otherwise—classically δi j is the Kronecker delta. The solution to Eq. (4) in the frequency domain can
be expressed in matrix form as12

X(ω) = ( jωI−WF)
−1WLu(ω), (5)

with I the appropriately sized identity matrix, WF = (wi j)N×N = ω0LG where LG is the grounded
Laplacian matrix42 and WL = (wi0){i=1,...,N} is the consensus protocol between the N followers and the
leader i = 0. The frequency response of the multi-agent system measures the ability of the agents to follow
the leader’s trajectory, u(t), and can be expressed in the frequency domain as the transfer function along
the jω axis in the s-plane12, 67

H(ω) =

(
δX
δu

)
(ω) = ( jωI−WF)

−1WL, (6)

with the entries of the vector H = (hi){i=1,··· ,N} corresponding to the individual agent’s frequency response.
It is clear from Eq. (6) that the response function has a nontrivial dependency on the topology of the
agents’ connectivity through the adjacency matrix, and therefore the entries of WF and WL. We define the
collective frequency response of the system as12

H2(ω) = H†(ω)H(ω) = σ
2(ω), (7)

with † being the adjoint matrix operator and σ being the singular value of the system with a single401

leader—classically used in the analysis of multiple-input and multiple-output (MIMO) systems. When402

all agents in the system perfectly follow the leader’s behavior the response reaches its maximum value,403

H2 = N. Thus the quantity H2/N can be interpreted as the fraction of agents in the system following the404

leader. It is worth stressing that since H2 is not constant under leader selection, the results we present in405

this paper are obtained by averaging over all possible leader placements in the network.406

To study the transition from simple to complex contagion in the LFC, we consider networks of407

N +1 = 240 agents. This is significantly smaller than for the LTM, but the LFC shows a much higher408

sensitivity to variations in the network metrics, which yields a range of H2 large enough to perform our409

analysis, even with relatively small network sizes.410

Networks and metrics411

To study the influence of the network topology on the behavioral propagation in the LTM and the LFC, we412

use the small-world Watts–Strogatz (WS) network model5. These networks enable us to vary key network413
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metrics by changing a single parameter, namely the rewiring probability5 p. To quantify the generated414

network topologies, we use the following metrics: the clustering coefficient C, the average shortest path `415

and the Kirchhoff Index Rg defined below. We use an average degree 〈k〉= 16 for Fig. 1 and Fig. 2(a–b)416

to ensure high levels of C before rewiring60 and a large range in ` and Rg.417

Clustering coefficient418

To measure the level of community structure, and thus the potential for reinforcement of the behavior that419

is propagating, we use the average of the local clustering coefficient as defined in Ref.5, and we simply420

refer to it as “clustering coefficient” or C throughout the paper.421

Average shortest path422

The shortest path between a given pair of nodes is the minimum number of hops needed to connect the423

two. The average shortest path is the average between all pairs of nodes. It is well known that for WS424

networks, decreasing the distance between nodes both increases the effectiveness of simple contagion5, 16
425

and the time it takes to reach consensus14.426

Kirchhoff index427

The Kirchhoff index Rg—also known as the resistance distance—is a distance metric obtained by replacing
every connection with a 1Ω resistor and averaging the resistance between all node pairs59, thus considering
all paths on thep network. Further, Rg is directly related to the eigenvalues 0 = λ1 < λ2 < · · ·< λN of the
Laplacian matrix59 and can be expressed as

Rg = N
N

∑
i=2

1
λi
. (8)

The cohesion of the follower states—under a white noise disturbance—can be measured by the H∞-norm428

of the dynamics of Eq. (4)—which is H2(ω = 0)—and it has been proven that maximizing the cohesion is429

done by minimizing the Kirchhoff index Rg
42, 43.430

Correlations431

We consider the Spearman’s rank correlation rs to investigate the impact of network metrics on a given
collective behavior. We use the rank correlation due to the expected nonlinear relationship between the
performance of the collective behavior and network metrics for both the LTM and LFC12, 14 (Supplementary
Figs. S2, S5 & S6 for point distributions). The Spearman’s correlation is defined by

rs =
cov(rgX , rgY )

std(rgX)std(rgY )
, (9)

with rgX being the rank of the metric, cov(X) and std(X) the covariance and standard deviation respectively.432

Given the fact that the WS networks are generated by varying one single free parameter (the rewiring
probability p), the associated network metrics are inevitably correlated. As a consequence, we are unable
to distinguish the individual effects of each network metric for a given average degree 〈k〉 (insert of
Fig. 2(b)). To overcome this, we generate networks of different average degrees k ∈ {4,6, . . . ,32}, and
consider a sampled set of these networks for which C and Rg vary independently of each other (insert of
Fig. 2(c)). However, as shown in Refs.11, 12, the collective frequency response H2 is notably influenced by
the degree distribution, and so are the network metrics considered χ ∈ {C, `,Rg}14, 59, 60. To account for
that degree dependency, we normalize all quantities involved, with the normalized quantity denoted by an
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overbar. First, the normalized collective frequency response is given by

H̄2(ω,k, p) =
H2(ω,k, p)

H2(ω,k, pmax)
, (10)

in which pmax(ω,k) is the rewiring probability that yields the largest H2(ω,k, p). Note that H̄2(ω)≤ 1.
Second, the normalized clustering coefficient is defined as

C̄(k, p) =
C(k, p)

C(k, p = 0)
, (11)

such that for any k the most clustered networks, obtained for p = 0, have C̄ = 1 (Supplementary Fig. S5)
Third, since the distance metrics also change with 〈k〉14, 59, we introduce the following normalized distance
metrics

¯̀(k, p) =
`(k, p)

`(k, p = 1)
, (12)

R̄g(k, p) =
Rg(k, p)

Rg(k, p = 1)
, (13)

which are based on the smallest distances, obtained with p = 1.433

From all the networks generated with different p and 〈k〉, we construct a sample that almost fully434

decorrelates the clustering coefficient and the Kirchhoff index: i.e., such that rs(C̄, R̄g) ≈ 0 (insert of435

Fig. 2(c), and Supplementary Fig. S3 for other subsamples of networks).436

Nonlinear heading consensus experiments437

To empirically measure the collective response—with differently paced leaders—we use the same experi-438

mental multi-robot setup as Ref.12 with N = 10 robotic units (called ‘eBots’) communicating by means of439

their so-called “swarm enabling unit”64. These ground differential-drive robots are collectively moving440

about a two-dimensional domain (Supplementary Fig. S10). The motion of the units is the superposition of441

a translational motion and a rotational one. In this setup, the leader agent undergoes a constant rotational442

motion such that its heading αL(t) is governed by dαL(t)
dt = ω , with ω denoting the frequency of the leader.443

Its ‘leader’ status comes from the fact that its behavior does not depend on the follower agents. Note that444

the agents have no way of distinguishing the leader from any other agent in the system.445

The robot’s heading is the only state-variable driven by the robot’s controller regardless of the speed.
Specifically, the NF = 9 follower eBots seek to align their heading αi(t) with that of their neighbors
α j∼i(t). The nonlinear heading consensus algorithm determines a target heading α for each unit according
to

α i = 〈α〉 j∼i = arctan
(

∑ j∼i sinα j

∑ j∼i cosα j

)
, (14)

where j∼ i denotes the set of topological neighbors of i in the network sense, and 〈·〉 is an angular average.
The nonlinear heading consensus (14) is identical to the one considered in Vicsek’s model63 except for the
fact that we use a static topological neighborhood while a metric one was originally considered in Ref.63.
Each follower unit updates its target heading α i asynchronously every ∆T = 0.1 s. The nonlinear heading
consensus algorithm used in the experiments is a discrete-time equivalent of

dαi

dt
= ω0

(
〈α〉 j∼i−αi

)
, (15)
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with ω0∆T � 1 and for times t� ∆T . Here, ω0 is the natural frequency of angular rotation of the eBots.446

The information of each neighbor’s state is also updated with the same sampling rate, but not necessarily447

concurrently with each other or with the update of Eq. (14).448

The robots are interconnected according to three fixed network topologies with 〈k〉= 4 due to size449

limitations of the network N = 10, namely: the connected caveman network58 (for maximal clustering450

coefficient), a k-regular random network (for low values of C), and the 1D ring lattice (WS networks with451

p = 0 offering an intermediate level of C). These three fixed network topologies provide a wide range of452

values for the clustering coefficient as shown in Fig. 3.453

Each run of the experiment starts at t = 0 with all eBots aligned with the leader: i.e., αi(0) = αL(0) =
0∀ i. Each run lasts for a duration of T = 10 minutes to make sure the leader performs a meaningful
number of rotations for all frequencies considered. The capacity of the NF followers to maintain their
heading aligned with that of the leader is measured by the empirical collective response12

H=
NF

∑
i=1

1
T

∫ T

0
cos(αi(t)−αL(t))dt, (16)

which is averaged over three repeated runs, for each angular speed of the leader considered.454
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