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Abstract. Nonparametric inference on tail conditional quantiles and their least
squares analogs, expectiles, remains limited to i.i.d. data. Expectiles are themselves quan-
tiles of a transformation of the underlying distribution. We develop a fully operational
kernel-based inferential theory for extreme conditional quantiles and expectiles in the chal-
lenging framework of ↵�mixing, conditional heavy-tailed data whose tail index may vary
with covariate values. This extreme value problem requires a dedicated treatment to deal
with data sparsity in the far tail of the response, in addition to handling di�culties inher-
ent to mixing, smoothing, and sparsity associated to covariate localization. We prove the
pointwise asymptotic normality of our estimators and obtain optimal rates of convergence
reminiscent of those found in the i.i.d. regression setting, but which had not been estab-
lished in the conditional extreme value literature so far. Our mathematical assumptions
are satisfied in location-scale models with possible temporal misspecification, nonlinear
regression models, and autoregressive models, among others. We propose full bias and
variance reduction procedures, and simple but e↵ective data-based rules for selecting tun-
ing hyperparameters. Our inference strategy is shown to perform well in finite samples
and is showcased in applications to stock returns and tornado loss data.

Keywords. Conditional quantiles, conditional expectiles, extreme value analysis,
heavy tails, inference, mixing, nonparametric regression.
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1 Introduction

1.1 Background and motivation

Quantile regression is a well-established statistical tool for the assessment of the impact of
a vector of covariatesX 2 Rp upon a response variable Y . It fully describes the conditional
distribution of Y given X by considering the family of conditional quantiles

q(⌧ |x) = argmin
✓2R

E ([%⌧ (Y � ✓)� %⌧ (Y )] |X = x) , ⌧ 2 (0, 1),

where %⌧ (y) = |⌧ � {y0}| |y| denotes the quantile check function (throughout, A stands
for the indicator function of A). However, regression quantile estimators at the tails typi-
cally su↵er from instability and inconsistency due to data sparseness, especially when the
underlying conditional distributions are heavy-tailed. This class of distributions is ubiq-
uitous in numerous fields, such as insurance (large losses due to large claims), financial
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economics (large drops in market or stock indices, potentially leading to systemic risk),
public health (high pollution levels) and natural sciences (large earthquake magnitudes,
flood intensity, extreme rainfall). Existing approaches to extremal quantile regression in
the challenging heavy-tailed setting fall in two main categories: linear quantile regression
approaches, such as those of Chernozhukov and Fernández-Val (2011) and Wang et al.
(2012), and at the opposite, nonparametric approaches such as those of Daouia et al.
(2011) and Daouia et al. (2013). Yet, a major hurdle for the application of tail quantile
regression in practice is that the theory in this literature generally hinges on the assump-
tion of independent and identically distributed (i.i.d.) data. To the best of our knowledge,
only Chernozhukov and Fernández-Val (2011) provide feasible inference tools for geomet-
rically fast strong mixing (or ↵�mixing) data, but they assume that conditional quantiles
q(⌧ |x) are linear in x, they impose a constant extreme value index, and they appeal
to self-normalized quantile regression statistics rather than to conceptually simpler and
more intuitive asymptotic Gaussian confidence intervals. More broadly, the problem of
inference on nonlinear extremal quantile regression remains untouched under serial depen-
dence, even though heavy tails and dependence across time and space are commonplace
in applications in insurance, finance and the natural sciences, see for example (Beirlant
et al., 2004, Chapter 1.3) and (Resnick, 2007, p.1).

There are applications where certain features of quantile regression are disadvantages.
In actuarial and financial risk management, robustness of quantiles may constitute a weak-
ness as they are not sensitive and hence not alert to the severity of extreme losses. Their
failure to satisfy the fundamental axiomatic coherence property (introduced in Artzner
et al., 1999) in general is also a serious drawback. A better alternative in these respects is
expectile regression (Newey and Powell, 1987), which focuses on the conditional expectiles

e(⌧ |x) = argmin
✓2R

E ([⌘⌧ (Y � ✓)� ⌘⌧ (Y )] |X = x) , ⌧ 2 (0, 1), (1.1)

where ⌘⌧ (y) = |⌧ � {y0}| y
2 is an asymmetric quadratic loss function, in the same way

%⌧ (y) defines an asymmetric absolute loss function. Expectiles similarly fully describe the
conditional distribution of Y given X, by extending the mean as quantiles extend the
median. They induce the only coherent risk measure that is also elicitable (Ziegel, 2016),
meaning that they come endowed with a natural methodology for backtesting and forecast
verification. Besides, the ⌧th expectile is in fact precisely the ⌧th quantile of a transformed
conditional distribution function defined by Jones (1994), in the sense that

e(⌧ |x) = inf{y 2 R |E(y|x) � ⌧} with E(y|x) =
E[|Y � y| {Yy}|X = x]

E[|Y � y||X = x]
. (1.2)

Regression expectiles thus make an e�cient use of the data, since they rely on the distance
to all observations and not only on their probability, and they benefit from a transparent
financial meaning in terms of their acceptance sets and the gain-loss ratio (Bellini and
Di Bernardino, 2017). These properties and others (see e.g. Ehm et al., 2016, for an
interpretation in investment problems with fixed costs and di↵erential tax rates) have
sparked much renewed interest in expectiles over the last decade for their unquestionable
potential in defining an e�cient instrument of risk protection. Only Usseglio-Carleve
(2018) and Girard et al. (2021a, 2022) have initiated the development of extremal expectile
regression. The pioneering contribution of Usseglio-Carleve (2018) is limited to elliptical
heavy-tailed distributions, and the nonparametric approach of Girard et al. (2022) hinges
on the i.i.d. assumption. The approach of Girard et al. (2021a) can handle time series
location-scale models, but is highly sensitive to model misspecification, makes the strong
assumption of a constant tail index, and their bootstrap scheme is di�cult to calibrate.
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1.2 Contribution and outline of the paper

We propose a general and fully operational nonparametric inferential theory for conditional
tail quantiles and expectiles under the ↵�mixing dependence framework, which is one of
the weakest and widely used serial dependence conditions in the literature. The tail index
of the conditional heavy-tailed distributions is allowed to depend on covariate values. Our
overarching strategy is that a quantile can be estimated by inverting an estimator of the
associated distribution function. This is of course also relevant to expectile estimation in
view of (1.2), and it is in fact very beneficial theoretically as the investigation of properties
of nonparametric tail conditional expectile estimators directly via (1.1) would be quite
technically involved (see Daouia et al., 2018, in the unconditional setting). When the
level ⌧ is intermediate (“extreme, but not too much”) in the sense that ⌧ = ⌧n " 1 slowly
enough as the sample size n ! 1, so that the population quantile or expectile curve at
X = x remains inside the data cloud, an asymptotically normal estimator is then obtained
by inverting a kernel smoother of the associated conditional distribution function. The
intermediate level ⌧n is assumed to satisfy nhpn(1 � ⌧n) ! 1 as n ! 1, where hn > 0
is the bandwidth sequence featuring in the kernel estimator. At more extreme levels
⌧ = ⌧ 0n > ⌧n such that nhpn(1 � ⌧ 0n) = O(1), the intermediate regression estimators are
extrapolated following a technique of Weissman (1978) by making use of the heavy right
tail assumption. The resulting extrapolated estimator hinges upon a conditional tail index
estimator that can be constructed based on quantiles or expectiles.

Our asymptotic theory is obtained, on the one hand, under traditional assumptions
in nonparametric statistics on the marginal density of X and kernel function, and on the
other hand, under reasonable regularity assumptions on the variation of the conditional
distribution across the covariate space to control locally the oscillation of marginal con-
ditional extremes and the degree of clustering in joint conditional extremes and covariate
values. Under these assumptions, we derive the asymptotic normality of our estimators at
rates of convergence reminiscent of the optimal rates obtained in classical nonparametric
statistics under twice di↵erentiability of the estimated function, which had not been found
so far in the conditional extreme value literature. Our conditions are shown to be satisfied
in a number of important regression models, including location-scale models with possible
temporal misspecification, nonlinear regression models and autoregressive models. Sur-
prisingly perhaps, the asymptotic distribution of the intermediate estimators is exactly
the same as in the nonparametric i.i.d. setting (Daouia et al., 2011; Girard et al., 2022),
which is however not the case for empirical intermediate quantiles and expectiles in the
absence of covariates (Drees, 2003; Davison et al., 2021). The simple structure of the
Weissman-type estimators at extreme levels, meanwhile, makes it possible to investigate
very accurate bias-corrected versions and precise approximations to the actual variance
of the estimators in finite samples, thus enabling the construction of asymptotic Gaus-
sian confidence intervals. This had been observed to be very di�cult for unconditional
tail expectile inference (see a partial solution in Padoan and Stupfler, 2022). The bias
correction methodology revolves upon identifying bias sources due to the extrapolation
procedure, while the variance correction relies on evaluating the correlation between in-
termediate estimators and tail index estimators, and (for expectiles) eliminating variance
distorsions incurred as part of the linearizations necessary to obtain our asymptotic re-
sults. Of course, inherent to any extreme value kernel estimators are the choices of the
bandwidth hn which controls their smoothness and of the sample fraction 1�⌧n of the top
local observations needed for tail extrapolation. We address this issue by proposing inno-
vative rules-of-thumb, with the resulting confidence intervals achieving excellent coverage
already for moderately large sample sizes, in both regression modes.
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The outline of our paper is the following. Sections 2 and 3 focus on nonparametric
extremal quantile and expectile regression, respectively. Section 4 investigates examples
of regression models where our assumptions are satisfied. Section 5 develops a fully op-
erational inferential methodology, showcased in a simulation study in Section 6 and on
real data in Section 7. Our methods and data have been incorporated into the R package
Expectrem

1. Throughout we denote by x+ = max(x, 0) and x� = max(�x, 0) the positive
and negative parts of a real number x. For a function f on Rp, rf(x), Jf(x) and Hf(x)
stand respectively for its gradient vector, Jacobian matrix, and Hessian matrix at the
point x. For a function f = f(x, y) on Rp

⇥ Rq, let rxf and Hxf be its partial gradient
vector and Jacobian matrix with respect to x (i.e. its first p components). The symbols
0p and 1p denote vectors in Rp with all components equal to 0 and 1 respectively.

2 Nonparametric extremal quantile regression

2.1 Framework and estimation method

Let ((Xt, Yt))t�1 be a strictly stationary sequence of copies of a random vector (X, Y ) 2
Rp+1. Let F (·|x) denote the distribution function of Y given X = x, that is, F (y|x) =
P(Y  y|X = x). Assume that X has a probability density function (p.d.f.) g on Rp and
fix x 2 Rp with g(x) > 0. Consider the following kernel estimator of F (·|x):

bFn(y|x) =
1

bgn(x)
⇥

1

nhpn

nX

t=1

{Yty}K

✓
x�Xt

hn

◆

with bgn(x) =
1

nhpn

nX

t=1

K

✓
x�Xt

hn

◆
.

Hereafter K is a kernel p.d.f. on Rp and hn ! 0 is a (positive) bandwidth sequence, with
bgn being the associated classical Parzen-Rosenblatt estimator of g. A conditional quantile
q(⌧ |x) ⌘ inf {y 2 R |F (y|x) � ⌧} can then be estimated by its empirical counterpart

bqn(⌧ |x) = inf
n
y 2 R | bFn(y|x) � ⌧

o
.

Our main objective is to estimate extreme conditional quantiles at a high level ⌧ = ⌧n
converging to 1 at any possible rate, as n ! 1. The standard roadmap for solving such
an extreme value problem is to consider first the so-called intermediate (“extreme, but not
too much”) levels ⌧n, for which bqn(⌧n|x) is a (relatively) consistent estimator of q(⌧n|x).
Then, for the estimation of properly extreme quantiles q(⌧ 0n|x) without any restriction on
the rate of convergence of ⌧ 0n > ⌧n to 1, one extrapolates such intermediate estimators to
the right place using the shape of the tail of the underlying conditional distribution.

In the challenging maximum domain of attraction of conditional heavy-tailed distri-
butions, the expressions of the intermediate and extrapolated estimators crucially depend
on estimators of the tail index �(x) > 0 of the survival function F (·|x) = 1 � F (·|x) of
Y at X = x, which in its most general formulation is assumed to be regularly varying
at infinity with index �1/�(x). The quantity �(x) controls the tail heaviness of Y given
X = x: the higher �(x), the heavier the conditional upper tail of the response variable Y .
Second-order refinements of this assumption are inevitable whenever one is interested in
convergence rates or limiting distributions involving tail index estimators, see Beirlant

1
Available on GitHub at https://github.com/AntoineUC/Expectrem
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et al. (2004) and de Haan and Ferreira (2006). Our conditional second-order regularly
varying tails assumption has the following general formulation:

Condition C2(�(x), ⇢(x), A(·|x)) There exist �(x) > 0, ⇢(x)  0 and a positive or negative
measurable function A(·|x) converging to 0 at infinity such that for any y > 0,

lim
s!1

1

A(1/F (s|x)|x)

✓
F (sy|x)

F (s|x)
� y�1/�(x)

◆
=

8
>>><

>>>:

y�1/�(x) y
⇢(x)/�(x)

� 1

�(x)⇢(x)
if ⇢(x) < 0,

y�1/�(x) log(y)

�2(x)
if ⇢(x) = 0.

This standard condition, wherein A(·|x) is regularly varying with index ⇢(x) (see de Haan
and Ferreira, 2006, Theorem 2.3.3 p.44), controls the proximity between the extremes of
the underlying conditional distribution and those of the ideal Pareto distribution with
extreme value index �(x). We therefore make the fundamental modeling assumption that

ConditionM ((Xt, Yt))t�1 is a stationary ↵�mixing sequence of copies of a random vector
(X, Y ) satisfying the second-order regularly varying tails assumption C2(�(x), ⇢(x), A(·|x)).

The ↵�mixing (or strong mixing) assumption is one of the weakest dependence conditions
in the literature. More restrictive assumptions that will be employed below to relax certain
regularity conditions involve the ��, ⇢�, �� and  �mixing coe�cients, see Section A.1
for definitions and relationships between the di↵erent kinds of mixing. We make the
following assumption on the ↵�mixing coe�cients (↵(n))n�1 of the data ((Xt, Yt))t�1:

Condition A(ln, rn) There exist sequences (ln) and (rn) such that ln ! 1, rn ! 1,
ln/rn ! 0, rn/n ! 0 and n↵(ln)/rn ! 0 as n ! 1.

The sequences (ln) and (rn) formalize the intuitive notion of small-block and big-block
sequences used to develop a “big blocks separated by small blocks” argument of the kind
successfully used in the time series literature so as to derive asymptotic normality results.

Our extreme value analysis also requires reasonable regularity assumptions on the
kernel function and the probabilistic behavior of the covariates. Let k · k denote the
Euclidean norm on Rp and denote by B(x, r) the open Euclidean ball with center x and
radius r > 0. Full details for the rationale behind our conditions, their interpretation and
position with respect to assumptions in the literature are given in Section A.2.

Condition K The p.d.f.K is bounded with a support contained in the unit closed Euclidean
ball.

Condition Lg The p.d.f. g satisfies g(x) > 0 and is Lipschitz continuous at x: there exist
c, r > 0 such that for any x0

2 B(x, r), |g(x)� g(x0)|  c kx� x0
k.

Condition Bp There exists an integer t0 � 1 such that

1  t < t0 ) lim
r!0

r�p P(X1 2 B(x, r),Xt+1 2 B(x, r)) = 0

and lim sup
r!0

sup
t�t0

r�2p P(X1 2 B(x, r),Xt+1 2 B(x, r)) < 1.

Assumptions K, Lg and Bp (whose first half is trivially true if t0 can be chosen equal to
1) are in particular imposed to control the asymptotic behavior of bgn(x). To control the
variation in conditional extreme value behavior across the covariate space, we introduce a
Lipschitz-type assumption on the log-conditional survival function at extreme levels.

5



Condition L! There exists r > 0 such that

lim sup
y!1

sup
x02B(x,r)

x0 6=x

1

kx0 � xk

����
1

log(y)
log

F (y|x0)

F (y|x)

���� < 1.

We also impose an anti-clustering condition that translates into assuming that a joint
conditional extreme value of (Y1, Yt+1) cannot be much more likely than a marginal con-
ditional extreme of Y1, uniformly across time and locally uniformly across the covariate
space. Let

⌦h(z|x) = sup
t�1

sup
y,y0�z

sup
x0,x002B(x,h)

P(Y1 > y, Yt+1 > y0|X1 = x0,Xt+1 = x00)q
F (y|x0)F (y0|x00)

.

Condition B⌦ There exist h, z > 0 such that ⌦h(z|x) < 1.

The aforementioned conditions will ensure the pointwise asymptotic normality of our esti-
mators at rates of convergence that have hitherto been standard in the conditional extreme
value framework. Achieving optimal rates of convergence requires, similarly to classical
nonparametric estimation, stronger regularity conditions: when estimating, for instance,
the p.d.f. g in Rp with bgn(x) using a symmetric kernel p.d.f. K, it is well-known that the
optimal rate of convergence n�2/(p+4) is obtained by solving the bias-variance tradeo↵ if
g is twice di↵erentiable at x. This motivates the following additional assumptions.

Condition KS The p.d.f. K is bounded and symmetric (i.e. K(u) = K(�u)) with a
support contained in the unit closed Euclidean ball.

Condition Dg The p.d.f. g satisfies g(x) > 0, is continuously di↵erentiable in a neighbor-
hood of x and its gradient is Lipschitz continuous at x.

Condition D! For y large enough, the function F (y|·) is di↵erentiable at x, the function
y 7! rx logF (y|x)/ log(y) has a limit µ(x) 2 Rp as y ! 1, and there exists r > 0 with

lim sup
y!1

sup
x02B(x,r)

x0 6=x

1

kx0 � xk2

����
1

log(y)
log

F (y|x0)

F (y|x)
� (x0

� x)>
rx logF (y|x)

log(y)

���� < 1.

In condition D!, the assumption that rx logF (y|x)/ log(y) converges as y ! 1 is moti-
vated by the fact that, in the setup of conditional heavy tails,

logF (y|x)

log(y)
= �

1

�(x)
+

logL(y|x)

log(y)

where L(·|x) is a slowly varying function. In particular, logL(y|x)/ log(y) ! 0 as y !

1 (see de Haan and Ferreira, 2006, Proposition B.1.9.1 p.36). The assumption asks for this
convergence to hold also when taking the gradient with respect to x, i.e. the function L(·|x)
does not vary too wildly in x when y is large. The finite limit of rx logF (y|x)/ log(y) as
y ! 1 will then be µ(x) = r�(x)/�2(x) 2 Rp. The intuition is that while condition L!

is a Lipschitz-type requirement on the log-conditional survival function at extreme levels,
condition D! is essentially an appropriate analog about its gradient with respect to x.

2.2 Intermediate quantile estimation

Let ⌧ = ⌧n " 1 as n ! 1. We start by showing that the estimator bqn(⌧n|x) is asymptot-
ically normal if ⌧n " 1 slowly enough, i.e. nhpn(1 � ⌧n) ! 1 so that the target quantity
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q(⌧n|x) lies inside the sample. Hereafter, under condition KS and D!, we let

⌥K : (�,x) 2 R⇥ Rp
7!

�(x)�

2

Z

Rp
K(u)(u>µ(x))2 du.

Theorem 1. Assume that conditions M, A(ln, rn), K, Lg, L!, Bp and B⌦ hold withP1
j=1 j

⌘↵(j) < 1 for some ⌘ > 1. Let ⌧n " 1, fix J � 1, pick distinct cj 2 (0, 1]
and let ⌧n,j be such that 1 � ⌧n,j = cj(1 � ⌧n)(1 + o(1)) as n ! 1 (for 1  j  J).

Assume further that hn ! 0 is such that nhpn(1 � ⌧n) ! 1, nhp+2
n (1 � ⌧n) log

2(1 �

⌧n) ! 0 and

p
nhpn(1� ⌧n)A((1 � ⌧n)�1

|x) = O(1), and that there is � > 0 such that

rn(rn/
p
nhpn(1� ⌧n))� ! 0. Then

q
nhpn(1� ⌧n)

✓
bqn(⌧n,j |x)
q(⌧n,j |x)

� 1

◆

1jJ

d
�! N

✓
0J ,

R
Rp K2

g(x)
�2(x)M

◆
,

where M = [1/max(cj , cl)]1j,lJ . If conditions KS, Dg and D! hold, then condition

nhp+2
n (1�⌧n) log

2(1�⌧n) ! 0 can be replaced by the weaker bias assumption

p
nhpn(1� ⌧n)⇥

h2n log
2(1� ⌧n) ! �(x) 2 [0,1), in which case, provided rnh

p
n ! 0, the asymptotic mean

0J of the above Gaussian limit is replaced by ⌥K(�(x),x)1J .

If ((Xt, Yt))t�1 is moreover ⇢�mixing, condition
P1

j=1 j
⌘↵(j) < 1 can be replaced byP1

j=1 ⇢(j) < 1. If ((Xt, Yt))t�1 is in fact also  �mixing with
P1

j=1  (j) < 1 (instead

of
P1

j=1 j
⌘↵(j) < 1 for some ⌘ > 1, or

P1
j=1 ⇢(j) < 1), all conditions on (ln) and (rn)

(including A(ln, rn)) as well as Bp and B⌦ can also be dropped.

It is remarkable that the asymptotic distribution in Theorem 1 is exactly the one ob-
tained in the i.i.d. setting by Daouia et al. (2011) under an unnecessary regularity assump-
tion on conditional tails. This is not true in the unconditional setting, see Drees (2003).
The essential di↵erence is that the kernel estimator only takes into account those pairs
(Xt, Yt) such that Xt are close enough to x, and the mixing and stationarity assumptions
ensure that such data points are far enough apart in time and hence asymptotically inde-
pendent. This phenomenon has been observed in other contexts, such as nonparametric
conditional Expected Shortfall estimation (Linton and Xiao, 2013, p.784).

Theorem 1 actually holds under weaker bias assumptions than those of Daouia et al.
(2011), although this naturally comes at the cost of the reinforced regularity conditions
Dg and D!. Indeed, when ((Xt, Yt))t�1 is geometrically ↵�mixing, and if A(t|x) / t⇢(x),
as is the case in a wide range of heavy-tailed models used in practice (see e.g. Beirlant
et al., 2004, Table 2.1 p.59), the optimal rate of convergence is n⇢(x)/(1�(p+2)⇢(x)) when
K, Lg and L! hold, while it is equal to n2⇢(x)/(2�(p+4)⇢(x)) if KS, Dg and D! are satisfied
(see Section A.3 for details). In the latter setting, note that p = 0 yields the optimal
convergence rate n⇢(x)/(1�2⇢(x)) of unconditional extreme value estimators in heavy-tailed
models (see de Haan and Ferreira, 2006, p.77), while the case ⇢(x) ! �1, corresponding
to the ideal but unrealistic scenario where all the Yt such that Xt 2 B(x, hn) can be used,
yields the optimal convergence rate n�2/(p+4), i.e. the optimal convergence rate of non-
parametric estimators of a twice continuously di↵erentiable central conditional quantile,
see Chaudhuri (1991).

The bias component ⌥K(�(x),x) appearing under conditions Dg and D! is an analog
of the bias component in kernel regression for the mean. It is linked to the gradient of
the target extreme conditional quantile through the vector µ(x) = r�(x)/�2(x). This
means that a key factor in extremal regression is the variation in conditional extremes

and especially of tail heaviness across space, as opposed to standard regression where it
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is also important to account for changes of shape in the underlying regression function
through its second derivatives (see e.g. Wasserman, 2006, p.73). We finally note that
the vector �(x)µ(x) = r�(x)/�(x) = r(log �)(x) is reminiscent of the design bias for
classical regression in the terminology of Wasserman (2006): the higher and less variable
� around x, the bigger and more stable the local number of extreme observations, and the
easier the conditional extreme value estimation problem.

2.3 Extreme quantile estimation

Consider now a level ⌧ 0n such that nhpn(1 � ⌧ 0n) ! c < 1. Then, in a strip around x,
very few or no top observations Yt will be close to the extreme value q(⌧ 0n|x), and the
empirical estimator bqn(⌧ 0n|x) will therefore not be consistent. A solution is to employ
the extrapolation methodology of Weissman (1978) from unconditional extreme quantile
estimation: the conditional heavy tail assumption suggests the approximation q(⌧ 0n|x) ⇡
((1�⌧ 0n)/(1�⌧n))

��(x)q(⌧n|x) for n large enough. Plugging in consistent estimators b�(x) of
�(x) and qn(⌧n|x) of q(⌧n|x) (such as bqn(⌧n|x)) yields the following conditional Weissman
estimator of q(⌧ 0n|x):

bqWn,⌧n(⌧
0
n|x) =

✓
1� ⌧ 0n
1� ⌧n

◆�b�(x)
qn(⌧n|x).

The next result shows that the choice of b�(x) is crucial since the extrapolated estimator
bqWn,⌧n(⌧

0
n|x) inherits its asymptotic distribution.

Theorem 2. Assume that condition M holds with ⇢(x) < 0. Let ⌧n, ⌧ 0n " 1 be such that

(1 � ⌧ 0n)/(1 � ⌧n) ! 0 and assume that vn(qn(⌧n|x)/q(⌧n|x) � 1) = OP(1) and vn(b�(x) �
�(x))

d
�! �, where � is a nondegenerate distribution and vn ! 1. If vnA((1�⌧n)�1

|x) =
O(1) and vn/ log[(1� ⌧n)/(1� ⌧ 0n)] ! 1, then

vn
log[(1� ⌧n)/(1� ⌧ 0n)]

 
bqWn,⌧n(⌧

0
n|x)

q(⌧ 0n|x)
� 1

!
d

�! �.

In our context, vn is typically
p
nhpn(1� ⌧n) and qn(⌧n|x) = bqn(⌧n|x). As a conditional tail

index estimator, we propose to use the refined Pickands-type kernel smoother from Daouia
et al. (2011): for an integer J � 2,

b�(J)⌧n (x) =
1

log(J !)

JX

j=1

log

✓
bqn(1� (1� ⌧n)/j|x)

bqn(⌧n|x)

◆
.

This estimator has the theoretical advantage to only use a finite, but otherwise arbitrary,
number of intermediate quantile estimators, and hence its asymptotic distribution can be
deduced from Theorem 1. This would not be the case for a conditional version of the Hill
estimator (see e.g. de Haan and Ferreira, 2006, Section 3.2) that would basically involve
the very di�cult study of conditional tail empirical quantile processes.

Theorem 3. Work under the conditions of Theorem 1, and assume in addition thatp
nhpn(1� ⌧n)A

�
(1� ⌧n)�1

|x
�
! �(x) 2 R. Then,

q
nhpn(1� ⌧n)

✓
b�(J)⌧n (x)� �(x),

bqn(⌧n|x)
q(⌧n|x)

� 1

◆

d
�! N

0

@

0

@ �(x)

log(J !)

JX

j=2

j⇢(x) � 1

⇢(x)
, 0

1

A ,

R
Rp K2

g(x)
�2(x)

0

@
J(J � 1)(2J � 1)

6 log2(J !)
0

0 1

1

A

1

A .
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If conditions KS, Dg and D! hold, under the weaker bias assumption

p
nhpn(1� ⌧n) ⇥

h2n log
2(1� ⌧n) ! �(x) 2 [0,1) and if rnh

p
n ! 0, the second component of the asymptotic

mean of the above Gaussian limit is replaced by ⌥K(�(x),x).

The asymptotic variance of b�(J)⌧n (x) reaches its minimum when J = 9, and is approximately
1.25 ⇥ �2(x). We shall adopt this choice in our finite-sample experiments in Sections 6
and 7. Theorem 3 improves upon Corollary 2 in Daouia et al. (2011), by removing unnec-
essary assumptions about the structure of the conditional right tail, and most importantly

by establishing the asymptotic normality of b�(J)⌧n (x) under a substantially weaker bias as-
sumption in conjunction with reasonable regularity conditions, see the discussion below
Theorem 1. Surprisingly perhaps, the bias component �(x) does not appear in the limit-

ing distribution of b�(J)⌧n (x), which suggests that the local variation of conditional extremes
is not as important in the estimation of the conditional shape parameter �(x) of the
underlying Pareto approximating distribution as it is for its scale q(⌧n|x).

3 Nonparametric extremal expectile regression

3.1 Framework and estimation method

We enrich our framework to handle extreme conditional expectile estimation. Rewrite the
transformed distribution of (1.2) as E(·|x) = 1�'(1)(y|x)/(2'(1)(y|x)+ y�m(x)) where
'(a)(y|x) = E((Y � y)a {Y >y}|X = x) stands for the conditional tail moment of order
a > 0, and m(x) = E(Y |X = x) for the regression mean. Consider the following kernel
smoother for E(y|x),

bEn(y|x) = 1�
b'(1)
n (y|x)

2b'(1)
n (y|x) + (y � bmn(x))

,

with b'(1)
n (y|x) =

1

bgn(x)
⇥

1

nhpn

nX

t=1

(Yt � y) {Yt>y}K

✓
x�Xt

hn

◆

and bmn(x) =
1

bgn(x)
⇥

1

nhpn

nX

t=1

YtK

✓
x�Xt

hn

◆
.

The estimator bmn is the Nadaraya-Watson estimator of the regression function m. The
characterization of the conditional expectiles as e(⌧ |x) ⌘ inf {y 2 R |E(y|x) � ⌧} (see
Jones, 1994) implies that they can be estimated by their empirical counterparts

ben(⌧ |x) = inf
n
y 2 R | bEn(y|x) � ⌧

o
.

A straightforward calculation shows that this estimator is identical to the asymmetric least
squares estimator obtained directly by smoothing up the loss function defining e(⌧ |x)
in (1.1), that is, ben(⌧ |x) = argmin✓2R

R
R(⌘⌧ (y � ✓) � ⌘⌧ (y)) d bFn(y|x). Our goal is to

estimate extreme conditional expectiles at a high asymmetry level ⌧ = ⌧n converging to 1
at any possible rate, as n ! 1. In addition to the conditions of Section 2.1, we make the
following assumptions on conditional tail heaviness and regularity of conditional moments.

Condition H� One has �(x) < 1/(2 + �) and there exists r > 0 such that E(Y 2+�
� |X = ·)

is bounded on B(x, r).

Condition Lm The response Y has a finite second moment given X = x, and the condi-
tional mean functions E(Y |X = ·) and E(Y 2

|X = ·) are Lipschitz continuous at x.

9



Condition Bm There exists r > 0 such that

sup
t�1

sup
x1,xt+12B(x,r)

E(Y 2
1 + Y 2

t+1|X1 = x1,Xt+1 = xt+1) < 1.

Condition H� (in which � > 0) guarantees a finite conditional moment of order (2 + �) in
a neighborhood of x; in the unconditional framework, Theorem 2 in Daouia et al. (2018)
requires the analog E(Y 2+�

� ) < 1. Finally, as in Section 2, the following stronger version
of condition Lm will be imposed to obtain better rates of convergence:

Condition Dm The response Y has a finite second moment given X = x, and the condi-
tional mean functions E(Y |X = ·) and E(Y 2

|X = ·) are continuously di↵erentiable in a
neighborhood of x and have Lipschitz continuous gradients at x.

3.2 Intermediate expectile estimation

We first derive the asymptotic distribution of an intermediate expectile estimator jointly
with an intermediate quantile estimator. This will be key to the construction of an
expectile-based estimator for the conditional tail index, and therefore to our extrapolation
of conditional expectiles to extreme levels.

Theorem 4. Assume that conditions M, A(ln, rn), K, H�, Lg, Lm, L!, Bp, Bm and

B⌦ hold with
P1

j=1 j
⌘[↵(j)]�/(2+�) < 1 for some ⌘ > �/(2 + �). Let ⌧n " 1 and  > 0

be given, and let �n be such that 1 � �n = (1 � ⌧n)(1 + o(1)) as n ! 1. Assume

further that hn ! 0 is such that nhpn(1 � ⌧n) ! 1, nhp+2
n (1 � ⌧n) log

2(1 � ⌧n) ! 0,p
nhpn(1� ⌧n)A((1� ⌧n)�1

|x) = O(1) and rn(rn/
p
nhpn(1� ⌧n))� ! 0. Then

q
nhpn(1� ⌧n)

✓
ben(⌧n|x)
e(⌧n|x)

� 1,
bqn(�n|x)
q(�n|x)

� 1

◆
d

�! N

✓
(0, 0),

R
Rp K2

g(x)
�2(x)⌃(x)

◆
,

where the 2⇥2 symmetric matrix ⌃(x) has entries ⌃1,1(x) = 2�(x)/(1�2�(x)), ⌃2,2(x) =
�1

and

⌃1,2(x) =

8
><

>:

�1
if  � 1/�(x)� 1,

✓
1

�(x)
� 1

◆�(x) ��(x)

1� �(x)
� 1 if  < 1/�(x)� 1.

If conditions KS, Dg, Dm and D! hold, then condition nhp+2
n (1� ⌧n) log

2(1� ⌧n) ! 0 can

be replaced by the weaker bias assumption

p
nhpn(1� ⌧n)⇥h2n log

2(1�⌧n) ! �(x) 2 [0,1),
and if moreover rnh

p
n ! 0, then the asymptotic mean (0, 0) of the above Gaussian limit is

replaced by ⌥K(�(x),x)⇥ (1, 1).

If ((Xt, Yt))t�1 is ⇢�mixing with
P1

j=1 ⇢(j) < 1 (instead of
P1

j=1 j
⌘[↵(j)]�/(2+�) < 1

for some ⌘ > �/(2+ �)), condition Bm can be dropped and condition H� can be replaced by

�(x) < 1/(2 + �). If ((Xt, Yt))t�1 is in fact also  �mixing with
P1

j=1  (j) < 1 (instead

of
P1

j=1 j
⌘[↵(j)]�/(2+�) < 1 for some ⌘ > �/(2+�), or

P1
j=1 ⇢(j) < 1), all conditions on

(ln) and (rn) (including A(ln, rn)) as well as conditions Bp and B⌦ can also be dropped,

and condition H� can be replaced by 0 < �(x) < 1/2.

We obtain again the same asymptotic distribution as in the i.i.d. setting under weaker
moment and regularity assumptions and with a faster optimal pointwise convergence rate,
see Theorem 1 in Girard et al. (2022) and the discussion below our Theorem 1. By
contrast, temporal mixing changes the asymptotic distribution of unconditional empirical
intermediate expectiles, as shown in Davison et al. (2021).
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3.3 Extreme expectile estimation

Extreme quantiles and expectiles being asymptotically proportional, in the sense that
e(⌧ |x)/q(⌧ |x) ! (1/�(x)�1)��(x) as ⌧ " 1 (see Proposition 2.3 in Bellini and Di Bernardino,
2017), Weissman’s approximation applies to tail expectiles as well, that is, e(⌧ 0n|x) ⇡

((1�⌧ 0n)/(1�⌧n))
��(x)e(⌧n|x), for n large. Plugging in consistent estimators b�(x) of �(x)

and en(⌧n|x) of e(⌧n|x) (such as ben(⌧n|x)) yields a Weissman-type estimator of e(⌧ 0n|x):

beWn,⌧n(⌧
0
n|x) =

✓
1� ⌧ 0n
1� ⌧n

◆�b�(x)
en(⌧n|x).

The next result states that beWn,⌧n(⌧
0
n|x) also inherits the asymptotic distribution of b�(x).

Theorem 5. Assume that condition M holds, with �(x) < 1, ⇢(x) < 0 and E(Y� |X =
x) < 1. Let ⌧n, ⌧ 0n " 1 be such that (1�⌧ 0n)/(1�⌧n) ! 0 and assume that vn(en(⌧n|x)/e(⌧n|x)�

1) = OP(1) and vn(b�(x)� �(x))
d

�! �, where � is a nondegenerate distribution and vn !

1. If vnA((1� ⌧n)�1
|x) = O(1), vn/q(⌧n|x) = O(1) and vn/ log[(1� ⌧n)/(1� ⌧ 0n)] ! 1,

then

vn
log[(1� ⌧n)/(1� ⌧ 0n)]

 
beWn,⌧n(⌧

0
n|x)

e(⌧ 0n|x)
� 1

!
d

�! �.

Define now a purely expectile-based estimator of �(x) as

b�E⌧n(x) =
 
1 +

bFn(ben(⌧n|x)|x)
1� ⌧n

!�1

,

where bFn(·|x) = 1 � bFn(·|x) and ⌧n is an intermediate sequence of expectile levels. We
derive the asymptotic normality of b�E⌧n(x) jointly with ben(⌧n|x) next.

Theorem 6. Work under the conditions of Theorem 4. Assume further that

p
nhpn(1� ⌧n)A((1�

⌧n)�1
|x) ! �1(x) 2 R and

p
nhpn(1� ⌧n)/q(⌧n|x) ! �2(x) 2 R. Then

q
nhpn(1� ⌧n)

✓
b�E⌧n(x)� �(x),

ben(⌧n|x)
e(⌧n|x)

� 1

◆

d
�! N

 
(bE(x), 0),

R
Rp K2

g(x)
vE(x)

 
1� �(x) 1

1 2

!!
,

where vE(x) = �3(x)/(1� 2�(x)) and

bE(x) =
�(x) (1/�(x)� 1)1�⇢(x)

1� �(x)� ⇢(x)
�1(x) + �2(x)(1/�(x)� 1)�(x)+1E(Y |X = x)�2(x).

If conditions KS, Dg, Dm and D! hold, under the weaker bias assumption

p
nhpn(1� ⌧n)⇥

h2n log
2(1� ⌧n) ! �(x) 2 [0,1) and if rnh

p
n ! 0, the second component of the asymptotic

mean of the above Gaussian limit is replaced by ⌥K(�(x),x).

Again, mixing does not impact the bias or the variance of b�E⌧n(x) obtained in the i.i.d. set-
ting (see Theorem 4 in Girard et al., 2022). Strikingly, even though this estimator and

b�(J)⌧n (x) have very di↵erent structures and properties, the bias component �(x) does not
appear in the limiting distribution of b�E⌧n(x) either. The advantage of using the expectile-
based estimator b�E⌧n(x) is that its asymptotic variance is lower than the asymptotic variance
�2(x) of the conditional Hill estimator when 0 < �(x) < 0.4, corresponding to many of the
practical applications where a second (tail) moment exists but a third moment may not.
The bias of b�E⌧n(x) is, however, much stronger; we consequently discuss a bias-correction
methodology in Section 5.2.
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4 Regression models covered by our framework

We now draw a non-exhaustive list of examples satisfying our assumptions. The conditions
involving the mixing coe�cients or the sequences ln and rn hold automatically when the
stochastic process ((Xt, Yt))t�1 is geometrically ↵�mixing, namely, there exists a 2 (0, 1)
such that ↵(n) = O(an). Besides, in the typical extreme value models where A(t|x) /

t⇢(x), our assumptions linking ⌧n and hn will be satisfied if hn = C1n�h and ⌧n = 1�C2n�⌧ ,
for any C1, C2 > 0 and suitably chosen h, ⌧ > 0, see the discussion below Theorem 1. We
therefore focus in this section on assumptions M, H�, Lg, Lm, L!, Bp, Bm, B⌦, Dg, Dm

and D!. We provide simple su�cient conditions and give an extended discussion with
more insight, and sometimes weaker conditions in Section B. We also give a full treatment
therein of the instructive case of m�dependent (including i.i.d.) observations.

Location-scale model with possible temporal misspecification Suppose that Yt =
m(Xt) + �(Xt)"t where m and � > 0 are location and scale components, and ("t) is a
stationary and centered sequence of unobserved heavy-tailed innovations independent from
the sequence (Xt). The "t can be dependent, which yields a form of misspecified regression
model.

Proposition 1 (Location-scale model). Assume that (Xt)t�1 is ��mixing (i.e. absolutely

regular) and ("t)t�1 is strongly mixing. Suppose further that:

• For any t � 1, the random pairs (X1,Xt+1) have absolutely continuous distributions

whose first marginal has a p.d.f. g such that g(x) > 0, and the functions g, m and � are

continuously di↵erentiable in a neighborhood of x.

• The error " has a p.d.f. f" which satisfies the asymptotic expansion

f"(z) = c0z
�1/��1(1 + d0z

�a + d00z
�a�b(1 + o(1))) as z ! 1

where � > 0, c0 > 0, d0, d00 6= 0 and a, b > 0 are such that either a 6= 1, a = 1 6= b, or
a = b = 1 with then 2d00(1 + �) 6= d20(1 + 2�).

Then conditions M, Lg, L!, Bp and B⌦ hold. If moreover � < 1/(2 + �) and E("2+�
� ) <

1, then conditions H�, Lm and Bm hold as well. If in addition g, m and � are twice

continuously di↵erentiable in a neighborhood of x, then conditions Dg and Dm also hold.

If moreover f" is continuously di↵erentiable in a neighborhood of infinity and satisfies the

second-order von Mises condition �zf 0
"(z)/f"(z) ! 1/�+1, then condition D! holds, with

limy!1rx logF (y|x)/ log(y) = 0.

The class of ��mixing processes covers many important cases such as Harris recurrent
aperiodic Markov chains (Bradley, 2005, Corollary 3.6). Our conditions on r and � cover
all standard location-scale regression models, such as heteroscedastic linear regression with
smooth conditional variance function, single-index models with smooth link functions, and
additive models. The assumptions on f" hold in the vast majority of standard heavy-tailed
models, such as the Fréchet, Burr, Student and Fisher distributions. We note that this
setting cannot cover time series models such as autoregressive models, which require a
specific treatment, because a key assumption is that the series (Xt) must be independent
from the series of errors ("t).
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Nonlinear regression model Let F (·,✓) be a parametric family of heavy-tailed distri-
bution functions on R, where ✓ 2 ⇥ ⇢ Rd is a finite-dimensional, convex and open set of
parameters, and let q(·,✓) be the associated quantile function (the left-continuous inverse
of y 7! F (y,✓)). Let (with a slight abuse of notation) ✓ : x 2 Rp

7! ✓(x) 2 ⇥ be a smooth
mapping and consider the model Yt = q(Ut,✓(Xt)) where (Ut) is a stationary sequence of
unobserved, uniformly distributed innovations independent from the series (Xt).

Proposition 2 (Nonlinear regression model). Assume that (Xt)t�1 is ��mixing and

(Ut)t�1 is strongly mixing. Suppose further that:

• For any ✓, the survival function F (·,✓) is second-order regularly varying, with tail index

� = �(✓), second-order parameter ⇢ = ⇢(✓) and auxiliary function A = A(·|✓). The

function ✓ 7! F (y,✓) is continuously di↵erentiable for y large enough.

• For any t � 1, the random pairs (X1,Xt+1) have absolutely continuous distributions

whose first marginal has a p.d.f. g such that g(x) > 0 and g is continuously di↵erentiable

in a neighborhood of x.

• The parameter mapping ✓ : Rp
! ⇥ is continuously di↵erentiable in a neighborhood of

x. There are y0 > 0 and a continuous function  on ⇥ with

8✓ 2 ⇥, sup
y�y0

����
r✓ logF (y,✓)

log(y)

���� = sup
y�y0

1

log(y)

kr✓F (y,✓)k

F (y,✓)
 (✓).

Then conditions M, Lg, L!, Bp and B⌦ hold. Assume moreover that:

• The survival function F (·,✓) only puts mass on [0,1).

• At the point x, �(✓(x)) < 1/(2 + �).

• The first and second moments of the distribution F (·,✓) define continuously di↵eren-

tiable functions m1 and m2 of ✓ wherever they are defined.

Then conditions H�, Lm and Bm hold. If the two moment functions m1 and m2 are twice

continuously di↵erentiable functions of ✓ wherever they are defined and g and ✓(·) are

twice continuously di↵erentiable in a neighborhood of x, then conditions Dg and Dm hold.

If in addition ✓ 7! �(✓) is twice continuously di↵erentiable on ⇥ and there exist y0 > 0
and a continuous function  on ⇥ with

8✓ 2 ⇥, sup
y�y0

⇢
1

log(y)

�
kr✓ logF (y,✓)k+ kH✓ logF (y,✓)k

��
 (✓)

then condition D! holds, with limy!1rx logF (y|x)/ log(y) = [r�(✓(x))]>J✓(x)/�2(✓(x)).

Our conditions on the statistical model F (·,✓) are mild and readily checked in typical
heavy-tailed models such as the Fréchet, Burr, Generalized Pareto and half-t models (also
called folded Student distribution, namely, the distribution of the absolute value of a
Student random variable). If F (·,✓) puts mass on a neighborhood of �1, then extra
assumptions on the left conditional tail (such as symmetry, or the left tail dominated by
the right tail) are required to ensure that conditions H�, Lm, Bm and Dm hold.
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Autoregressive model Consider the causal and invertible AR(p) model Yt =
Pp

j=1 �jYt�j+

"t, t 2 Z, where the polynomial P (z) = 1 �
Pp

j=1 �jz
j has no root inside the closed unit

disk in C, and ("t) is an i.i.d. sequence of innovations. Here Yt should be understood as
the stationary solution of the AR(p) equations, and Xt = (Yt�1, Yt�2, . . . , Yt�p)>.

Proposition 3 (Autoregressive model). Assume that " is centered, square-integrable, and
has a Lipschitz continuous, everywhere strictly positive p.d.f. f" with respect to the Lebesgue

measure that satisfies the asymptotic expansion

f"(z) = c0z
�1/��1(1 + d0z

�a + d00z
�a�b(1 + o(1))) as z ! 1

where � > 0, c0 > 0, d0, d00 6= 0 and a, b > 0 are such that either a 6= 1, a = 1 6= b, or
a = b = 1 with then 2d00(1 + �) 6= d20(1 + 2�).

Then conditions M, Lg, Dm, L!, Bp and B⌦ hold, and the process (Yt) is geometrically

�� and ⇢�mixing. If " also has a finite moment of order (2 + �) and � < 1/(2 + �),
then condition H� holds. If moreover f" is continuously di↵erentiable, with a uniformly

bounded Lipschitz continuous derivative f 0
", then condition Dg holds. Finally, if f" also

satisfies the second-order von Mises condition �zf 0
"(z)/f"(z) ! 1/� + 1, then condition

D! holds, with limy!1rx logF (y|x)/ log(y) = 0.

Condition Bm is unnecessary because (Yt) is ⇢�mixing. Unlike in our other examples,
checking condition B⌦ is nontrivial, because the sequences (Xt) = ((Yt�1, Yt�2, . . . , Yt�p)>)
and ("t) are not independent. This is done by noting that (Yt) is a Markov chain of order
p and then by checking the conditions of Lemma 1(iii) (with t0 = p).

5 Practical implementation

We discuss hyperparameter selection, bias and variance correction, and asymptotic confi-
dence interval construction for both tail quantities of interest.

5.1 Selection of tuning parameters

In any extreme value technique, the intermediate level ⌧n plays a crucial role. The value
kn = n(1� ⌧n), rounded to the next integer, can be viewed as the e↵ective sample size for
tail extrapolation. A larger kn leads to larger bias, while smaller kn results in more vari-
ance. In the regression case, in addition to ⌧n (or kn), one should determine the bandwidth
hn. Results in finite samples indicate that it is often enough to use the global bandwidth
obtained by minimizing the mean integrated squared error E(

R
X (bgn(x)� g(x))2dx) of the

density estimator over the support X of X, that is,

hn,? =

 
p
R
Rp K2

R
X
�R

Rp(u>Hg(x)u)K(u)du
�2

dx

!1/(p+4)

n�1/(p+4). (5.1)

For example, when p = 1, the classical normal scale rule derived from (5.1), assuming a
Gaussian p.d.f. g and a naive kernelK(u) = 1/2 on [�1, 1] yields bhn,? = (12

p
⇡)1/5b�nn�1/5,

where b�n is the empirical standard deviation of the Xt. We adopt this version in our
examples with p = 1 and abuse notation by denoting it hn,?.

We turn to a choice of kn optimizing the bias-variance tradeo↵ in extreme value estima-
tion: if the chosen tail index estimator has an asymptotic variance V (x) and an asymptotic
bias component �(x)B(x), where �(x) = limn!1

p
knh

p
n,?A(n/kn|x), we define

kn,?(x) = argmin
1kn

{(khpn,?)
�1V (x) +B2(x)A2(n/k|x)}.
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A common practice is to consider the very general case when A(t|x) = b(x)�(x)t⇢(x), for
b(x) 2 R and ⇢(x) < 0, which is satisfied in the vast majority of heavy-tailed models, see
among others Gomes and Pestana (2007). This yields the closed form expression

kn,?(x) =

✓
1

�2⇢(x)b2(x)�2(x)

V (x)

B2(x)

◆1/(1�2⇢(x))

h�p/(1�2⇢(x))
n,? n�2⇢(x)/(1�2⇢(x)).

The quantities b(x) and ⇢(x) are estimated using regression versions b(x) and ⇢(x) of the
estimators provided by the R function mop from the package evt0, see Section C.1 for
explicit expressions. To estimate B(x) and V (x), note that when the tail index estimator

is chosen as b�(J)1�kn/n
(x), we have V (x) = (

R
Rp K2/g(x))v(J)q (x) and B(x) = B(J)(x), with

v(J)q (x) = �2(x)
J(J � 1)(2J � 1)

6 log2(J !)
and B(J)(x) =

1

log(J !)

JX

j=1

j⇢(x) � 1

⇢(x)
.

When b�E1�kn/n
(x) is chosen, then V (x) = (

R
Rp K2/g(x))vE(x) and B(x) = BE(x) where

vE(x) =
�3(x)(1� �(x))

1� 2�(x)
and BE(x) =

�(x)(1/�(x)� 1)1�⇢(x)

1� �(x)� ⇢(x)
.

These quantities are estimated by plugging in bgn(x) (with h = hn,?) and ⇢(x) in place of
g(x) and ⇢(x), and a local regression version �(x) of the Hill estimator in place of �(x),
with h = hn,? and e↵ective sample size k corresponding to 25% of the local sample size
Nh(x) =

Pn
t=1 {kXt�xkh} (see Section C.1 for the expression of �(x)).

This results in data-driven parameter values bk(J)n,?(x) and bkEn,?(x), depending on the
chosen tail index estimation technique. We omit the dependence of this selected value
upon the tail index estimator chosen and we denote it again by kn,? for the sake of brevity.
The approximations made here might be far from the truth in certain di�cult cases, but
they a↵ord e↵ective data-based rules as we shall see on simulated and real data.

5.2 Bias correction guidelines

Our extrapolation procedures are based on the simplifying parametric assumption that the
conditional tail is purely Pareto. The quality of this approximation deteriorates as ⇢(x)
gets closer to 0, with the resulting bias being possibly very substantial then. Bias-reduced

versions of b�(J)1�kn/n
(x) and bqWn,⌧n(⌧

0
n|x) are

b�(J,BR)
1�kn/n

(x) = b�(J)1�kn/n
(x)

0

@1�
1

log(J !)

JX

j=1

j⇢(x) � 1

⇢(x)
b(x)

✓
n

kn

◆⇢(x)
1

A

and bqW,BR
n,⌧n (⌧ 0n|x) = bqWn,⌧n(⌧

0
n|x)

0

B@1 +

⇣
kn

n(1�⌧ 0n)

⌘⇢(x)
� 1

⇢(x)
b(x)b�(J,BR)

1�kn/n
(x)

✓
n

kn

◆⇢(x)

1

CA .

These estimators are respectively inspired by Theorem 3 and by the approach of Gomes and

Pestana (2007). We use b�(J,BR)
1�kn/n

(x) within bqWn,⌧n(⌧
0
n|x) in our subsequent implementation

of bqW,BR
n,⌧n (⌧ 0n|x).
As for extreme conditional expectile-based estimation, we note that bias reduction is

even more crucial, due to the fact that, in view of Theorems 5 and 6, the estimators contain
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two sources of bias: one coming from the second-order regular variation framework, and
the other stemming from the asymptotic proportionality between quantiles and expectiles.
We suggest using the following bias-reduced version of b�E1�kn/n

(x):

b�E,BR
1�kn/n

(x) =

 
1 +

bFn(ben(1� kn/n|x)|x)

kn/n

1

1 + br(1� kn/n|x)

!�1

where br(1� kn/n|x)

=

✓
1�

bmn(x)

ben(1� kn/n|x)

◆
1

1� 2kn/n

 
1 +

b(x)[bFn(ben(1� kn/n|x)|x)]�⇢(x)

1� b�E1�kn/n
(x)� ⇢(x)

!�1

� 1.

This is motivated by work in Girard et al. (2021b) in the unconditional setting. Here
b�E,BR
1�kn/n

(x) is computed using the R function tindexp with argument br=TRUE (from

the R package Expectrem) applied to the Yt such that kXt � xk  hn,?. We similarly
compute a bias-reduced version of the extreme conditional expectile estimator beWn,⌧n using
the R function extExpect with br=TRUE from that package; see Section C.2 for the full
expression of this estimator beW,BR

n,⌧n .

5.3 Pointwise asymptotic confidence intervals

5.3.1 Extremal conditional quantiles

We use the equivalent version of Theorem 2 on the log-scale, which tends to be more
accurate in practice. Applied to the bias-reduced version bqW,BR

n,1�kn,?/n
(⌧ 0n|x), this sug-

gests that log(bqW,BR
n,1�kn,?/n

(⌧ 0n|x)/q(⌧
0
n|x)) is approximately Gaussian centered with variance

(
R
Rp K2/g(x))v(J)q (x), with v(J)q (x) = �2(x)⇥ J(J � 1)(2J � 1)/(6 log2(J !)). A first 95%

asymptotic Gaussian confidence interval for q(⌧ 0n|x) is then

bIq,1(⌧ 0n|x) =

2

4bqW,BR
n,1�kn,?/n

(⌧ 0n|x) exp

0

@±

qR
Rp K2

bgn(x) bv
(J)
q (x)

p
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p
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log
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n(1� ⌧ 0n)

◆
z0.975

1
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5

with bv(J)q (x) =
J(J � 1)(2J � 1)

6 log2(J !)
(b�(J,BR)

1�kn,?/n
(x))2,

and where z⌧ is the ⌧th quantile of the standard normal distribution. This relies ex-
clusively on the asymptotic distribution of the tail index estimator used in the extrap-
olation. For small sample sizes, the variability of the intermediate quantile estimator
also has an impact on the variance of the extrapolated estimator. A direct application

of Theorem 3 provides a refined version ev(J)q (x) of the asymptotic variance estimate of

log(bqW,BR
n,1�kn,?/n

(⌧ 0n|x)/q(⌧
0
n|x)) and thus a corrected 95% asymptotic Gaussian confidence

interval, as

bIq,2(⌧ 0n|x) =

2

4bqW,BR
n,1�kn,?/n

(⌧ 0n|x) exp

0
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(J)
q (x)
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log
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z0.975

1
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3
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with ev(J)q (x) =

✓
J(J � 1)(2J � 1)

6 log2(J !)
+

1

log2(kn,?/[n(1� ⌧ 0n)])

◆
(b�(J,BR)

1�kn,?/n
(x))2.

Simulation evidence shows that this correction improves coverage for low sample sizes.
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5.3.2 Extremal conditional expectiles

Our extreme conditional expectile estimators are constructed using the same Weissman
extrapolation argument: we build upon Theorems 5 and 6 to deduce a first 95% asymptotic
Gaussian confidence interval for e(⌧ 0n|x) as

bIE,1(⌧
0
n|x) =

2

4beW,BR
n,1�kn,?/n

(⌧ 0n|x) exp

0

@±
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Rp K2

bgn(x) bvE(x)p
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p
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5

with bvE(x) =
(b�E,BR

1�kn,?/n
(x))3(1� b�E,BR

1�kn,?/n
(x))

1� 2b�E,BR
1�kn,?/n

(x)
.

For a low-to-moderate sample size n, the empirical variance of the estimates tends to be
very far from the asymptotic variance. This is not only due to neglecting the correlation
between the conditional tail index estimator and the empirical expectiles, but also to the
use of the asymptotic proportionality between extreme quantiles and expectiles in the
derivation of the asymptotic results. An inspection of the proofs of Theorems 4 and 6 (see
Section C.3) suggests that a corrected asymptotic variance matrix for the random vector

q
kn,?h

p
n,?

 
nbFn(ben(1� kn,?/n|x)|x)

kn,?
�

✓
1

�(x)
� 1

◆
,
ben(1� kn,?/n|x)

e(1� kn,?/n|x)
� 1

!

is (
R
Rp K2/g(x))Tn(x) where the 2⇥ 2 symmetric matrix Tn(x) has components

Tn,11(x) =
2(1� �(x))2

�(x)(1� 2�(x))

1,n(x)

22,n(x)
� 2

1� �(x)

�(x)

p
1,n(x)

2,n(x)
+

1� �(x)

�(x)
,

Tn,12(x) = �
2�(x)(1� �(x))

1� 2�(x)

1,n(x)

2,n(x)
+ �(x)

q
1,n(x), Tn,22(x) =

2�3(x)

1� 2�(x)
1,n(x),

with 1,n(x) =
1� 2kn,?/n

1�m(x)/e(1� kn,?/n|x)
and 2,n(x) = 1�

�(x)m(x)

e(1� kn,?/n|x)
.

Note that 1,n(x) and 2,n(x) indeed converge to 1 as n ! 1. They are estimated by

replacing �(x), m(x) and e(1� kn,?/n|x) with b�E,BR
1�kn,?/n

(x), bmn(x) and ben(1� kn,?/n|x),

respectively, yielding estimators b1,n(x) and b2,n(x) and therefore bTn,11(x), bTn,12(x) and
bTn,22(x). Then, observe that up order

p
kn,?h

p
n,?, we have b�E,BR

1�kn,?/n
(x) ⇡ G(nbFn(ben(1 �

kn,?/n|x)|x)/kn,?), where G(u) = 1/(1 + u). A power series expansion suggests

q
kn,?h

p
n,?

⇣
G(nbFn(ben(1� kn,?/n|x)|x)/kn,?)� G(1/�(x)� 1)

⌘

=
1X
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(�1)k�k+1(x)
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�

✓
1

�(x)
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◆!!k

because G(k)(u) = (�1)kk!/(1+u)k+1 for any k � 1. [This is conceptually simpler than an
Edgeworth expansion, which would approximate the p.d.f. of b�E,BR

1�kn,?/n
(x).] Taking only

the first term above leads to the delta-method for b�E,BR
1�kn,?/n

(x); to obtain a finer approx-

imation, we use all terms up to order 4. Based on our calculation of Tn(x), an asymp-
totic approximation of the covariance matrix of

p
kn,?h

p
n,?(b�E,BR

1�kn,?/n
(x) � �(x), ben(1 �
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kn,?/n|x)/e(1�kn,?/n|x)� 1) is (
R
Rp K2/g(x))Sn(x), where the symmetric matrix Sn(x)

has components

Sn,11(x) = �4(x)Tn,11(x)

✓
1 + 8

�2(x)Tn,11(x)

kn,?hn,?
⇥
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Rp K2
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,
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Rp K2
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◆
and Sn,22(x) = Tn,22(x).

We denote bSn(x) the associated estimator, which hinges upon the estimators bTn(x) and
b�E,BR
1�kn,?/n

(x) previously introduced. The final step is to recall that (see Section C.2)

log
beW,BR
n,1�kn,?/n

(⌧ 0n|x)

e(⌧ 0n|x)
⇡ log

beWn,1�kn,?/n
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e(⌧ 0n|x)
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The variance of (
p
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p
n,?/ log(kn,?/(n(1� ⌧ 0n))))⇥ log(beW,BR

n,1�kn,?/n
(⌧ 0n|x)/e(⌧

0
n|x)) is then

estimated by (
R
Rp K2/bgn(x))evE(x), where

evE(x) =
bSn,11(x) bL2

n + 2bSn,12(x) bLn + bSn,22(x)

log2(kn,?/(n(1� ⌧ 0n)))
and bLn = log(kn,?/(n(1� ⌧ 0n)b1,n(x))).

This results in the corrected 95% asymptotic Gaussian confidence interval
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It is shown below to have a greatly improved coverage probability compared to bIE,1(⌧ 0n|x).

6 Simulation study

6.1 Models and setup

For the sake of brevity, we only report here results in the following nonlinear (Burr)
regression model, with covariate dimension p = 1. Other cases spanning our list of worked-
out examples are presented in Section C.4.

We consider a nonlinear Burr process Yt = ((1� Ut)⇢(Xt) � 1)��(Xt)/⇢(Xt) where:

• Xt = �(Zt), with � being the standard Gaussian c.d.f. and (Zt) (simulated using the
garch.sim routine from the R package TSA) is a GARCH(1,1) process with ! = 0.25,
↵ = 0.75, � = 0.2, i.e. Zt+1 = ⌃t+1�t+1, where the �t are i.i.d. standard Gaussian and
⌃t+1 is defined recursively as ⌃t+1 = (! + ↵Z2

t + �⌃2
t )

1/2.

• "t = ��1
⌫ (Ut), where �⌫ is the Student c.d.f. and ⌫ = 10/3, and (Ut) is defined recursively

as U0 ⇠ Uniform[0, 1] and, for t � 1, Ut =
1
rUt�1 + ⌘t, where the ⌘t are i.i.d. uniformly

drawn over {0, 1/r, . . . , (r � 1)/r}, and r = 5.

We fix ⇢(x) = �1 for all x 2 [0, 1] and consider three di↵erent models for �(x), x 2 [0, 1]:

(NL-P) A polynomial trend �(x) = 0.5x(1� x) + 0.15;
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(NL-S) A sinusoidal model �(x) = 0.2 + 0.05 sin(2⇡x);

(NL-C) The constant model �(x) = 0.2.

In these three cases, �(x) 2 (0, 1/2) for any x 2 [0, 1]. The true value of the conditional
quantile is q(⌧ |x) = ((1 � ⌧)�1

� 1)�(x). The theoretical conditional expectile e(⌧ |x) is
computed numerically using the function eburr in the R package Expectrem.

We simulate N = 1,000 replications of size n = 10,000 of each of these models (results
for n 2 {1,000, 5,000} are found in Section C.4). We estimate extreme conditional quantiles
and expectiles at level ⌧ 0n = 1� 10/n = 0.999. We let K(u) = 0.5 {|u|1} be the uniform
kernel, hn = hn,? and ⌧n = ⌧n,? = 1�kn,?/n selected as in Section 5.1 and, as far as extreme

quantile estimation is concerned, J = 9 in the conditional tail index estimator b�(J,BR)
1�kn,?/n

(x).

Our quantile (resp. expectile) estimators are compared with the non-extrapolated quantile
estimator bqn(⌧ 0n|x) (resp. the non-extrapolated expectile estimator ben(⌧ 0n|x)) and the simple

extrapolated version bqWn,1�kn,?/n
(⌧ 0n|x) based on b�(J)1�kn,?/n

(x) (resp. the simple extrapolated

version beWn,1�kn,?/n
(⌧ 0n|x) based on b�E1�kn,?/n

(x)). Our proposed 95% asymptotic Gaussian

confidence intervals for q(⌧ 0n|x) are compared with the following competing intervals:
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with v(J)q (x) = J(J�1)(2J�1)
6 log2(J !)

(b�(J)1�kn,?/n
(x))2, based on naive Weissman extrapolation and a

direct application of Theorem 2 on the log-scale, and
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based on an equivalent version of Theorem 1 on the log-scale, which does not feature any
extrapolation at all. Likewise, for e(⌧ 0n|x), we compute

bIE,3(⌧
0
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n|x) exp

0

@±

qR
R K2

bgn(x) vE(x)p
kn,?hn,?

log

✓
kn,?

n(1� ⌧ 0n)

◆
z0.975

1

A

3

5 ,

with vE(x) =
(b�E

1�kn,?/n
(x))3(1�b�E

1�kn,?/n
(x))

1�2b�E
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, inspired by Theorem 5, and
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suggested by an equivalent version of Theorem 4 on the log-scale. This will make it possible
to assess the benefits of the extrapolation procedure and of the bias correction scheme.

6.2 Results

We represent in Figure 3 boxplots of the extreme conditional quantile and expectile esti-
mates and the coverage probabilities of the intervals bIq,j(⌧ 0n|x) and bIE,j(⌧ 0n|x), for 1  j  4,
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in models (NL-P), (NL-S) and (NL-C). We discuss the conclusions from a full set of re-
sults, in an expanded list of models and for sample sizes n 2 {1,000, 5,000, 10,000}, that
are found in Section C.4 of the Supplementary Material, see Figures C.1–C.6 therein.

While empirical point estimates without extrapolation seem at first glance to perform
respectably, their variance is substantially larger than that of extrapolated estimates, and
most importantly the lack of extrapolation makes accurate inference impossible, as can be
seen from the very low coverage probabilities of bIq,4(⌧ 0n|x) and bIE,4(⌧ 0n|x). Extrapolation
is therefore necessary in order to correctly infer extreme quantiles and expectiles. While
bias reduction and variance correction for extrapolated estimates are arguably not crucial
for quantile estimation at large values of n, bias reduction is indeed valuable when the
second-order parameter ⇢(x) gets close to 0 (see the top panels of Figure C.5), and vari-
ance correction brings noticeable improvements when n is moderately large (n = 1,000),
with coverage probabilities typically improving by about 5% when using our proposed
interval bIq,2(⌧ 0n|x) instead of bIq,1(⌧ 0n|x), see the bottom panels of Figures C.1–C.6. Bias
and variance correction are, however, of prime importance when estimating and inferring
extreme conditional expectiles: standard extrapolated estimates are heavily biased, with
the asymptotic consistency property not visibly evidenced even for large n, see the mid-
dle panels of Figures C.1–C.6. This is due to the presence of a typically very large bias
term proportional to the reciprocal of the extreme conditional quantile in the expectile
extrapolation formula that is key for the asymptotic normality of extrapolated expectile
estimators, see Lemma 10 in Section A.4. In addition, the uncorrected expression of the
asymptotic variance of the extrapolated expectile estimates yields values very far from
their sample variance, while our corrected proposal gets very close to this observed vari-
ance, see the rightmost panels in Figure 3. These are the main reasons why the intervals
bIE,1(⌧ 0n|x) and bIE,3(⌧ 0n|x) have very poor coverage, while bIE,2(⌧ 0n|x) achieves a coverage
remarkably close to the nominal rate when n � 5,000 and performs much better than its
competitors when n = 1,000, see the bottom panels of Figures C.1–C.6. It should also
be highlighted that in a substantial number of cases, the non-corrected variance estimate
bvE(x) was not positive and therefore the associated confidence interval bIE,3(⌧ 0n|x) could

not be calculated; by contrast, the interval bIE,2(⌧ 0n|x) was always well-defined.
We conclude that the Gaussian asymptotic theory, when properly corrected in order to

account for the presence of conditional heavy tails, provides reasonably accurate inference.
It should not come as a surprise that good inferential results require a fairly large sample
size, of the order of several thousands, due to the four main di�culties of the problem: (i)
Temporal mixing, which impacts the trustworthiness of the asymptotic Gaussian limits,
(ii) Nonparametric smoothing, inducing an approximation bias due to local variation of the
underlying distribution, (iii) Sparsity in x due to the nonparametric regression framework,
and (iv) Sparsity in y due to the extreme value context. Sparsity in x is a particular
concern in the di�cult model (AR), where the covariate, being a lagged response, takes
unbounded values and where a correct inference can only be expected where observations
Yt concentrate.

7 Real data analysis

7.1 Stock returns data

The first dataset, available from the R package HRW, contains the n = 2,363 values of
the excess daily stock returns (daily log-returns minus risk-free interest rate) on General
Electric and the S&P 500 index, from 1 November 1993 to 31 March 2003. LetXt (resp. Yt)
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be the negative of the excess daily log-return of the S&P 500 index (resp. General Electric),
so that large values represent large losses. About half of the data is negative, which is
detrimental to the calculation of our bias-reduced estimators that require only positive
values, see Section C.1. We thus shift most of the data above 0 by subtracting to the Yt
their empirical unconditional 10% quantile, approximately equal to �0.023, i.e. we apply
our procedures to Y 0

t = Yt + 0.023 before shifting back to the original position.
As in our simulation study, we infer extremal regression quantiles and expectiles at

level ⌧ 0n = 1� 10/n ⇡ 0.995 by following the methodology described in Section 5.1. This
results in the global bandwidth hn,? ⇡ 0.0045. We represent in the middle panel of Figure 1
(restricted to the interval Xt 2 [�0.015, 0.015] which contains more than 80% of the data)
our bias-reduced extrapolated estimates bqW,BR

n,1�kn,?/n
(⌧ 0n|x) and be

W,BR
n,1�kn,?/n

(⌧ 0n|x), along with

their respective asymptotic 95% confidence intervals bIq,2(⌧ 0n|x) and bIE,2(⌧ 0n|x). The purely
empirical competitors bqn(⌧ 0n|x) and ben(⌧ 0n|x) are graphed in the left panel along with their
respective asymptotic 95% confidence intervals bIq,4(⌧ 0n|x) and bIE,4(⌧ 0n|x). In agreement to

what was observed in Section 6.2, the intervals bIq,4(⌧ 0n|x) and bIE,4(⌧ 0n|x) are unrealistically

narrower than bIq,2(⌧ 0n|x) and bIE,2(⌧ 0n|x), respectively.
The estimated curves, confidence intervals, and regression in mean in the left and mid-

dle panels all point towards a linear trend. This motivated us to perform a residual-based
extreme value estimation from the ordinary linear regression model for comparison pur-
poses. We thus construct the residuals b"t = Y 0

t � (�0.00030 + 1.24Xt), and we calculate
corresponding residual-based, bias-corrected extreme quantile estimates bqn,⌧n,"(⌧ 0n), follow-
ing Gomes and Pestana (2007), and bias-corrected extreme expectile estimates ben,⌧n,"(⌧ 0n),
following Girard et al. (2021b), in which we chose ⌧n = 1�200/n = 0.915 after a graphical
inspection of a standard Hill plot. Their associated asymptotic 95% Gaussian confidence
intervals on the log-scale are also constructed. This yields conditional extreme point quan-
tile and expectile estimates of the Y 0

t as

qn,⌧n(⌧
0
n|x) = �0.00030 + 1.24x+ bqn,⌧n,"(⌧ 0n), en,⌧n(⌧

0
n|x) = �0.00030 + 1.24x+ ben,⌧n,"(⌧ 0n)

and their corresponding confidence intervals through the same shift. These are then all
shifted back to the original location of the Yt and graphed in the right panel of Figure 1.
Although the middle and right panels yield a broadly similar message, the confidence inter-
vals from the linear model are wider than our bias- and variance-corrected nonparametric
confidence intervals. This is probably due to the unavoidable assumption of constant tail
index in the linear model, whose validity is unclear here. The extremal linear regression
estimates are thus inevitably driven by the few largest observations in the data cloud.
By contrast, our nonparametric method is able to finely di↵erentiate conditional extreme
value behavior when x varies. Accurate inference on both extremal regression modes,
without recourse to the a priori assumptions of linearity and common tail, is crucial in
order to produce correct tail risk appraisal. This is especially important for conditional ex-
pectiles that typically result in more liberal assessments of risk than conditional quantiles
because they satisfy the diversification principle, and that here appear indeed to induce
less conservative risk measurements.

7.2 Tornado losses data

This dataset2 records, for each tornado that has occurred in the United States between
1 January 2010 and 31 December 2019, the associated monetary loss (loss), its starting

2
Available at https://www.spc.noaa.gov/wcm/#data
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Figure 1: Stock market data. Blue line: Estimated conditional quantile at level ⌧ 0n = 0.995
(with 95% confidence interval in dashed line), red line: Estimated conditional expectile at
level ⌧ 0n = 0.995 (with 95% confidence interval in dashed line). Left panel: Nonparametric
empirical estimates, middle panel: Extrapolated nonparametric estimates, right panel:
Extrapolated estimates based on the linear regression model. The orange line is the
Nadaraya-Watson estimate in the left and middle panels, and the ordinary least squares
line in the right panel.

and ending latitude and longitude (slat, slon, elat and elon), and the length and width
of the area traveled over by the tornado (len and wid). We focus on the loss per surface
unit Y (in USD) in terms of the tornado’s (average) geographical location X = (X1, X2),
that is, Y = loss/(len⇥ wid), X1 = (slon+ elon)/2, and X2 = (slat+ elat)/2. This
results in a sample (Xt, Yt) of size n = 6,360 across the whole of the US (excluding Alaska
and Hawaii), including the major Joplin, Missouri, tornado which caused a total loss of 2.8
billion USD on 22 May 2011. A fine analysis of the geographic variability of damages due
to infrequent, high-impact tornadoes is of utmost interest to the insurance industry and
government agencies. We conduct such an analysis in American cities located east of the
100th meridian west, due to sparsity of recorded tornadoes to the west of this geographical
limit. The data, over the studied area, is represented in Figure 2 (a). The heavy tail model
assumption was checked using local Generalized Pareto QQ-plots (see pp. 90-91 in de Haan
and Ferreira, 2006) omitted for the sake of brevity. Tail index estimates were found to
exceed 1 in many locations x, which prevents the use of the expectile risk measure.

Our target is the extremal conditional risk measure q(⌧ 0n|x) at each location x, where
⌧ 0n = 0.995 corresponds to a catastrophic loss exceeded (on average) only once every 200
cases at the location of interest. This is a reasonable choice in this setup given that,
for instance, the state of Florida has recorded around 200 tornado events over the 10-
year period we examine. A major hurdle to address this goal in this two-dimensional
setting is the practical calculation of the optimal bandwidth hn,?. The usual rule-of-
thumb calculations for the evaluation of

R
R2(u>Hg(x)u)K(u)du, involved in (5.1), based

on a bivariate Gaussian assumption lead to tedious calculations and unappealing results,
and a uniform distribution over the covariate space cannot be chosen as it would have
an identically zero Hessian matrix. Instead, the crude observation that the latitude X2 2

[18, 49] in the data concentrates around its median while the longitude X1 2 [�100,�66.5]
appears more uniformly scattered suggests, for the specific purpose of calculating hn,?
only, to make the simplifying assumption that

g(x1, x2) / [�100,�66.5](x1)⇥ (49� x2)(x2 � 18) [18,49](x2).

This leads to a diagonal nonzero Hessian matrix Hg(x). Letting (u) = (15/16)(1� u2)2,
for u 2 [�1, 1], be the one-dimensional quartic kernel and K(u) = (16/(5⇡))(kuk) be
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its isotropic version on R2, leads to the global spatial bandwidth hn,? ⇡ 5.47. Then, for
each geographic location x, representing one of the 21,935 cities located east of the 100th
meridian picked in the United States Cities Database3, we chose the corresponding local
optimal hyperparameter kn,? = bkn,?(x) as described above in Section 5.1, with the only
di↵erence that we set ⇢(x) ⌘ �1 and b(x) ⌘ 1. This is motivated by an inspection of
preliminary local estimates, which seem to vary around these values; setting constant esti-
mates ⇢(x) and b(x) also produces smoother fits. Each city x has in its hn,?�vicinity 1,100
observations on average, with 90% of locations reporting at least 400 observations. Fig-
ure 2 (b) displays the historical frequency of tornadoes, showing that the area most often
hit mainly comprises the states of Alabama, Mississippi, Louisiana, Arkansas, Missouri,
Kentucky, and Tennessee.

The estimated conditional mean of losses per squared yard (Nadaraya-Watson esti-
mates) and extrapolated bias-reduced conditional quantile estimates are shown in Fig-
ures 2 (c) and (d), respectively. The first conclusion is that the area most exposed to
tornadoes is actually not the riskiest in terms of average and/or extremal conditional
losses per tornado. By contrast, tornadoes in the states of Florida, Texas, Oklahoma, Ne-
braska, South Dakota, Iowa and their surroundings are found to carry the most extreme
risk, with a 99.5%�regression Value-at-Risk exceeding 80 USD per squared yard, even
though the frequency of tornadoes there is substantially lower. The large di↵erence in
order of magnitude between the regression mean and extremal quantile reflects the great
variability and tail heaviness of the conditional loss distribution; an important benefit of
the nonparametric approach is its ability to accurately identify conditional extreme value
behavior, without recourse to any strong a priori spatio-temporal model specification.
According to the results obtained at 9 selected cities, reported in Table 1, the conditional
tail index varies with x, with a minimum of 0.79 achieved at Harrisville, MI, as opposed to
1.53 in Woodson, TX, which is the location with maximal estimated extreme quantile risk.
It should also be noted that, among others, Charleston, SC and New Orleans, LA have
very similar tail index estimates but completely di↵erent tail quantile estimates, owing to
a strong geographical heterogeneity in the scale parameter of the loss distribution. Most
importantly, the confidence intervals bIq,4(0.995|x) based on purely empirical estimates are

much narrower than our corrected proposal bIq,2(0.995|x) based on extrapolated quantile
estimates, which underestimate the uncertainty of high regression quantiles.

Our results are compared with the straightforward unconditional approach estimating,
in each state, the mean and Value-at-Risk at level 99.5% from the univariate sample of
losses in this state only, see Figures 2 (e) and (f). This approach yields quantile point
estimates in the riskiest areas that are up to 67% lower than those of the regression
method, and produces unrealistic discontinuities in the estimates, see the examples of
Texas-Oklahoma-Kansas, Nebraska-South Dakota and Georgia-South Carolina, while the
local nature of our proposed approach eliminates these unpleasant discontinuities between
neighboring states by combining regional tail information. A similar countywide analysis in
the spirit of risk assessment exercises such as those reported by the US Federal Emergency
Management Agency (FEMA)4 cannot be carried out here, because certain counties did
not report any observation.

3
Available at https://simplemaps.com/data/us-cities

4
Available at https://hazards.fema.gov/nri/tornado
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(a) Losses per squared−yard

0
0.01
0.03
0.07
0.12
0.21
0.41
0.92
3.25
227.59
848.03

(b) Tornado frequency

38
394
561
685
836.6
992
1217
1436
1625
1936
2559

(c) Regression mean

0.4
0.9
1
1.1
1.3
1.4
1.6
2
2.5
3.4
5

(d) Regression tail risk (quantile)

13
26
33
40
46
50
59
78
112
154
391

(e) Mean by state

0.3
0.6
0.7
0.7
1.1
1.3
1.7
2
2.6
3.9
8.5

(f) Tail risk (quantile) by state

2
11
17
21
22
36
42
45
74
132
257

Figure 2: Tornado losses data. Top row, left: Data across the eastern half of the US (the
data across the western half is not represented for consistency with the other plots), right:
Local number of observations in the hn,?�ball. Middle row, left: Estimated conditional
mean of losses per squared yard, right: Extrapolated conditional quantile estimate of those
losses at level ⌧ 0n = 0.995. Cities with the highest estimated conditional average loss and
extreme loss are marked with a black triangle in the left and right panels, respectively.
Bottom row, left: Unconditional statewide estimation, using the sample average, right:
Using the bias-reduced extreme quantile estimator of Gomes and Pestana (2007). Losses
(all panels except (b), in USD) and tornado frequency (panel (b)) are indicated by a color
scheme, ranging from dark blue (lowest) to dark red (highest).
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Location x
Nhn,? (x) b�(J,BR)

1�kn,?/n
(x)

bqn(0.995|x) bqW,BR
n,1�kn,?/n

(0.995|x)
(State) bIq,4(0.995|x) bIq,2(0.995|x)

New York
413 1.11

16.71 63.53
(NY) [11.99, 23.29] [18.13, 222.70]

Charleston
1,019 1.01

340.91 259.92
(SC) [271.17, 428.59] [80.65, 837.72]

Nashville
2,317 0.95

16.57 24.51
(TN) [14.10, 19.47] [14.62, 41.08]

Captiva
205 0.93

236.74 144.67
(FL) [173.66, 322.73] [43.50, 481.13]

New Orleans
1,427 0.98

27.46 31.01
(LA) [22.69, 33.22] [16.42, 58.58]

Woodson
958 1.53

118.37 390.59
(TX) [81.12, 172.72] [100.95, 1511.26]

Kansas City
1,326 1.30

45.99 69.00
(MO) [34.53, 61.27] [25.57, 186.21]

Minneapolis
620 0.93

34.09 40.49
(MN) [26.82, 43.33] [17.01, 96.40]

Harrisville
472 0.79

24.86 29.32
(MI) [19.00, 32.52] [10.28, 83.67]

Table 1: Tornado losses data. Results at selected cities (first column), with the number of
neighboring observations (second column), conditional tail index estimate (third column),
empirical conditional quantile estimate at level 0.995 (fourth column) and extrapolated
bias-reduced conditional quantile estimate at the same level (fifth column), along with the
95% asymptotic confidence interval corresponding to each quantile estimate in brackets.
Captiva, FL is the city with maximal estimated average loss; Woodson, TX is the city
with maximal extrapolated conditional quantile estimate; Harrisville, MI is the city with
minimal estimated conditional tail index.
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Ehm, W., Gneiting, T., Jordan, A., and Krüger, F. (2016). Of quantiles and expectiles:
consistent scoring functions, choquet representations and forecast rankings. Journal of
the Royal Statistical Society: Series B, 78:505–562.

El Methni, J., Gardes, L., and Girard, S. (2014). Non-parametric estimation of extreme
risk measures from conditional heavy-tailed distributions. Scandinavian Journal of

Statistics, 41(4):988–1012.

Fraga Alves, M., Gomes, M. I., and de Haan, L. (2003). A new class of semi-parametric
estimators of the second order parameter. Portugaliae Mathematica, 60(2):193–214.
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