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In this paper, Dally and Sanford [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] (DS) two strain gages technique (DS2) and a modified DS two strain gages technique (M_DS2) for accurate measurement of stress intensity factor (SIF) K I are studied. Accordingly, general finite element approaches are developed to estimate the extent of the radial locations of the strain gages in order to estimate the extent of the three-and four-term of the strain series proposed by DS. Also, to estimate the extent of validity of the proposed modified technique (M_DS2), which is a modification of the four-term strain series proposed by DS. A comparison between the results obtained by the technique of a single strain gage and the technique of two strain gages proposed by DS and the new technique is performed for four examples of configuration. Results of numerical examples show that the DS2 and M_DS2 can yield a highly accurate value of K I when the two strain gages are placed within the valid locations. Also, the results of numerical examples show that the above two strain gages techniques provide good solutions to ensure accurate measurement of K I , when the technique of a single strain gage unable to provide the desired precision and accuracy of K I in some configurations.

Introduction

The fracture mechanics of homogeneous materials have been extensively investigated by several different experimental techniques, such as photoelastic techniques [START_REF] Marloff | Photoelastic determination of stress intensity factors[END_REF][START_REF] Amir | Stress intensity factor determination of radially cracked circular rings subjected to tension using photoelastic technique[END_REF][START_REF] Nurse | Stress intensity factors for cracks at fastener holes[END_REF] caustic techniques [START_REF] Lee | Determination of stress intensity factors and J-integrals using the method of caustics[END_REF][START_REF] Biak | Determination of stress-intensity factors by the method of caustics in anisotropic materials[END_REF] and strain gages techniques [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF][START_REF] Dally | Dynamic measurements of initiation toughness at high loading rates[END_REF][START_REF] Dally | A strain gage method for determining K I and K II in a mixed mode stress field[END_REF][START_REF] Sarangi | Optimum strain gage locations for accurate determination of the mixed mode stress intensity factors[END_REF][START_REF] Shukla | Determination of stress intensity factor in orthotropic composite materials using strain gages[END_REF][START_REF] Chakraborty | A new single strain gage technique for determination of mode I stress intensity factor in orthotropic composite materials[END_REF][START_REF] Khanna | Development of stress field equations and determination of stress intensity factor during dynamic fracture of orthotropic composite materials[END_REF][START_REF] Chakraborty | A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials[END_REF][START_REF] Bürgel | Optimization of the straingauge-method for measuring mode-II stress intensity factors[END_REF][START_REF] Paul | A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations[END_REF][START_REF] Berger | An overdeterministic approach for measuring KI using strain gages[END_REF][START_REF] Wei | A two-strain-gage technique for determining mode I stress intensity factor[END_REF][START_REF] Kondo | Use of strain gages for determining generalized stress intensity factors of sharp V-notched plates under transverse bending[END_REF][START_REF] Kondo | Strain gage method for determining stress intensities of sharp-notched strips[END_REF][START_REF] Dorogoy | Optimum location of a three strain gauge rosette for measuring mixed mode stress intensity factors[END_REF][START_REF] Ricci | Evaluation of fracture mechanics parameters in bimaterial systems using strain gages[END_REF]. Among these experimental techniques, strain gages based techniques are equally powerful and are widely used in the experimental determination of SIFs. This is due to their relatively low cost as well as their ease of implementation. The strain gages location and orientation relative to the crack tip play an important role in the accuracy of strain measurements and thus the accurate determination of SIFs.

Irwin [START_REF] Irwin | Analysis of stresses and strains near the end of a crack traversing a plate[END_REF] was the first to propose the idea of using strain gages to determine the SIF near the crack tip. Thirty years later, DS [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] provided the first practical strain gage technique to measure the SIF K I in two-dimensional bodies of isotropic materials. The theoretical foundation of this technique is based on the representation of the strain field only by the first three terms of the strain series. The main advantage of this technique is that a single strain gage pasted far away from the crack-tip at an appropriate location and orientation with respect to the crack axis is enough to accurately determine the SIF. Thanks to its simplicity and efficiency, this technique has been widely used by many researchers [START_REF] Marur | Static and dynamic fracture toughness of epoxy/alumina composite with submicron inclusions[END_REF][START_REF] Parnas | Strain gage methods for measurement of opening stress intensity factor[END_REF][START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF][START_REF] Rijal | Dimple fracture under short pulse loading[END_REF][START_REF] Kalthoff | Influence of loading rate on shear fracture toughness for failure mode transition[END_REF][START_REF] Kirugulige | Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurements and finite element simulations[END_REF][START_REF] Maleski | A method for measuring mode I crack tip constraint under static and dynamic loading conditions[END_REF][START_REF] Shirley | Approach to dynamic fracture toughness of GFRP from aspect of viscoelastic and debonding behaviors[END_REF][START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF] for determination of mode I SIF in different contexts. In this paper, this technique of a single strain gage will henceforth be called DS1 technique.

Later, many researchers have extended the DS1 technique for the determination of SIFs for isotropic and orthotropic materials: Dally and Barker [START_REF] Dally | Dynamic measurements of initiation toughness at high loading rates[END_REF] for measuring the dynamic SIF. Dally and Berger [START_REF] Dally | A strain gage method for determining K I and K II in a mixed mode stress field[END_REF] and Sarangi et al. [START_REF] Sarangi | Optimum strain gage locations for accurate determination of the mixed mode stress intensity factors[END_REF] for the measurement of mixed-mode SIFs. Shukla et al. [START_REF] Shukla | Determination of stress intensity factor in orthotropic composite materials using strain gages[END_REF] and Debaleena Chakraborty et al. [START_REF] Chakraborty | A new single strain gage technique for determination of mode I stress intensity factor in orthotropic composite materials[END_REF] for the determination of mode I SIF in orthotropic composite materials. Khanna and Shukla [START_REF] Khanna | Development of stress field equations and determination of stress intensity factor during dynamic fracture of orthotropic composite materials[END_REF] for measuring the dynamic SIF in orthotropic composite materials. Debaleena Chakraborty et al. [START_REF] Chakraborty | A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials[END_REF] for the measurement of mixed-mode SIFs of orthotropic composite materials. Bürgel et al. [START_REF] Bürgel | Optimization of the straingauge-method for measuring mode-II stress intensity factors[END_REF] for the determination of mode II SIF. More Recently, Pranjol Paul et al. [START_REF] Paul | A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations[END_REF] for determining mode I notch SIF of sharp V-notched configurations.

In addition to the DS1 technique, various strain gage techniques for the determination of SIF have been proposed in the literature. Berger and Dally [START_REF] Berger | An overdeterministic approach for measuring KI using strain gages[END_REF] proposed a strain gages technique based on many measurements for determining the [START_REF] Wei | A two-strain-gage technique for determining mode I stress intensity factor[END_REF] developed a method that requires two strain gages to measure the mode I SIF. Kondo et al. [START_REF] Kondo | Use of strain gages for determining generalized stress intensity factors of sharp V-notched plates under transverse bending[END_REF][START_REF] Kondo | Strain gage method for determining stress intensities of sharp-notched strips[END_REF] used ten strain gages to determine the mixed-mode SIFs of a sharp V-notch. Dorogoy and Rittle [START_REF] Dorogoy | Optimum location of a three strain gauge rosette for measuring mixed mode stress intensity factors[END_REF] proposed a technique using a three strain gage rosette for the determination of mixed-mode SIFs. Ricci et al. [START_REF] Ricci | Evaluation of fracture mechanics parameters in bimaterial systems using strain gages[END_REF] used two strain gages at two different locations for determining the complex SIF of a bi-material crack. The review of the literature has shown that the DS1 technique is more widely used than other strain gage techniques.

Sarangi et al. [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF][START_REF] Sarangi | Radial locations of strain gages for accurate measurement of mode I stress intensity factor[END_REF][START_REF] Sarangi | Optimum strain gage location for evaluating stress intensity factors in single and double ended cracked configurations[END_REF] were the first to adequately address the issue of the importance of strain gage locations for accurate measurement of SIFs. They presented for the first time a general methodology based on the FEA to obtain the valid radial locations for the single strain gage technique proposed by DS. They recommend that the minimum radial distance (r min ) should be greater than half the thickness of the plat to avoid the effects of crack-tip local plasticity and the effects three-dimensional [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF][START_REF] Shukla | Determination of stress intensity factor in orthotropic composite materials using strain gages[END_REF][START_REF] Rosakis | On crack-tip stress state: an experimental evaluation of three-dimensional effects[END_REF]. Also, they provide a methodology for determining the maximum permissible distance (r max ) for the location of strain gage without affecting the accuracy of the measured SIFs. The same authors [START_REF] Sarangi | Optimum strain gage locations for accurate determination of the mixed mode stress intensity factors[END_REF] also proposed a methodology for obtaining the valid radial locations of the strain gages in order to accurately determine the mixed-mode SIFs. Debaleena Chakraborty and al. [START_REF] Chakraborty | A new single strain gage technique for determination of mode I stress intensity factor in orthotropic composite materials[END_REF][START_REF] Chakraborty | A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials[END_REF] and Pranjol Paul et al. [START_REF] Paul | A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations[END_REF] have extended the methodologies proposed by these authors for orthotropic composite materials and for isotropic body containing a sharp V-notch, respectively.

According to Sarangi et al. [START_REF] Sarangi | Optimum strain gage location for evaluating stress intensity factors in single and double ended cracked configurations[END_REF], prior knowledge of a reasonably accurate value of r max is therefore needed for properly locating the strain gages for measurement of the SIFs. They have shown that many important results were obscured due to erroneous estimations of r max . These authors have shown that the locations of the strain gage r = 6 mm used by Dally and Barker [START_REF] Dally | Dynamic measurements of initiation toughness at high loading rates[END_REF] and r = 7 mm used by Rizal and Homma [START_REF] Rijal | Dimple fracture under short pulse loading[END_REF] are, respectively, greater than r max = 3.4 and 4.35 mm values of their corresponding cracked specimens. Knowing that the thickness of the cracked specimen used by Dally and Barker is 9.4 mm and that used by Rizal and Homma is 10 mm, which implies that the corresponding r min is 4.7 and 5 mm, respectively. By comparing the r max and the r min of the two cracked configurations, we can easily conclude that the DS1 technique is not able to provide the desired precision and accuracy of K I in these configuration examples. Another example that reinforces this conclusion is the work of Swamy et al. [START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF]. These authors conducted experimental trials to determine the SIFs of fully finite edge-cracked plates for various values of ratios a/b and h/b. They obtained a discrepancy of 7% between experimental and numerical values of K I for the configurations (a/b = 0.3, 0.5 and h/b = 0.3) and (a/b = 0.3 and h/b = 0.5, 0.7). These authors give two probable reasons to justify this discrepancy: (a) the difficulty of precisely controlling the length of the crack by the use of a razor blade through a distance of 2 mm. (b) When the razor blade is employed, the crack front at times is not precisely normal to the sheet surface. But another probable reason, which can also justify this discrepancy, is that the location r = 10 mm of the strain gage used by these authors is outside of r max and, in addition, the value of r max for these configurations is very small.

From the examples mentioned above, the DS1 technique which relies on the use of a single strain gage is not always reliable to ensure accurate measurement of K I . In order to avoid such a situation, it is recommended to use the two strain gages technique proposed by DS (DS2). To the best of the knowledge of the authors, no work to date has examined the validity and the effectiveness of DS2 technique. In order to estimate the extent of the radial locations of the two strain gages ensuring accurate determination of K I , the present paper aims at the development of an efficient finite element based approach for accurate and consistent evaluation of the extent of the four-term strain series proposed by DS. In addition, another technique which is a modification of the four-term strain series proposed by DS and based on two strain gages (M_DS2), is also proposed to evaluate K I in this paper. The extent of the validity of this modified technique is also determined.

The paper is organized as follows: (1) the formulation of the strain ε x ′ x ′ at a point P (r, θ) close to the crack tip in α direction is given explicitly using the first four terms of the generalized Westergaard formulation [START_REF] Sanford | A critical re-examination of the Westergaard method for solving opening-mode crack problems[END_REF]. (2) A new formulation of the DS approach is presented. The analytic expression of the angle of θ is given as a function of the Poisson's ratio, ν, and a simplified rewrite of the strain expression, ε x ′ x ′ , is obtained. Also, the extent of validity of the three-term representation, which requires the use of a single strain gage, and that of the four-term representation, which requires the use of two strain gages, are determined. (3) A modified of the four-term representation proposed by DS is presented to evaluate the value of K I by using two strain gages. The basic theoretical formulation for the determination of the valid radial location for the two strain gages is also presented. (4) The analysis is followed by numerical examples of single edge crack specimens subjected to mode I loading conditions. The main results are then discussed and followed with a concluding section.

Theoretical formulation

We assume that the material of the cracked specimen is homogeneous, linear elastic, isotropic and subjected to small deformations. The near field strain equations are obtained using the generalized Westergaard approach proposed by [START_REF] Sanford | A critical re-examination of the Westergaard method for solving opening-mode crack problems[END_REF]. The strain field for plane stress conditions can be written as [START_REF] Dally | Experimental stress analysis[END_REF] 

Eε xx = cos(θ/2) [f 1 -f 2 sin(θ/2) sin(3/2 θ)] A 0 r -1 2 + 2B 0 + cos(θ/2) f 1 + f 2 sin 2 (θ/2) A 1 r 1 2 + 2 cos(θ)B 1 r (1) 
Eε yy = cos(θ/2) [f 1 + f 2 sin(θ/2) sin(3/2 θ)] A 0 r -1 2 -2νB 0 + cos(θ/2) f 1 -f 2 sin 2 (θ/2) A 1 r 1 2 -2ν cos(θ)B 1 r (2) 
Eγ xy =f 2 sin(θ) cos(3/2 θ)A 0 r -1 2 -cos(θ/2)A 1 r 1 2 -4B 1 r (3) 
where the parameters f 1 and f 2 are given by, f 1 = 1 -ν and f 2 = 1 + ν. The strain component ε x ′ x ′ at point P located by r and θ (Fig. 1) is given by

P(r,θ) o r θ α Crack x y x' y'
Fig. 1. Strain gage location and orientation.

2Gε x ′ x ′ = κ cos(θ/2) + 1 2 sin(θ) (cos(3/2 θ) sin(2α) -sin(3/2 θ) cos(2α)) A 0 r -1 2 + [κ + cos(2α)] B 0 + cos(θ/2) κ + sin 2 (θ/2) cos(2α)- 1 2 sin(θ) sin(2α) A 1 r 1 2 + [κ cos(θ) + cos(θ) cos(2α)- 2 sin(θ) sin(2α)] B 1 r (4) 
where the parameter κ is given by, κ = f 1 /f 2 . By applying the standard definition of mode I SIF K I , it can be easily shown that A 0 is related to the SIF by the relation

K I = √ 2πA 0 (5) 
In order to effectively use the strain gage, it is necessary to determine its optimal location with respect to crack tip. Three parameters need to be considered when mounting a strain gage near a crack tip, i.e. the location in relation to the crack tip (r, θ), and the orientation angle α.

DS's single strain gage technique (DS1)

The orientation angle α is usually chosen such as to eliminate the effect of the B 0 term. It can be observed in Eq. ( 4) that coefficient associated with B 0 term only depends on ν and α. The effect of the B 0 term on the strain gage reading is completely eliminated if α is chosen as

α = ± 1 2 arccos(-κ) (6) 
with this restriction Eq. ( 4) reduces to

2Gε x ′ x ′ = κ cos(θ/2) + 1 2 sin(θ) ± √ 1 -κ 2 cos(3/2 θ) + κ sin(3/2 θ) A 0 r -1 2 + cos(θ/2) κ cos 2 (θ/2) ∓ 1 2 √ 1 -κ 2 sin(θ) A 1 r 1 2 ∓ 2 √ 1 -κ 2 sin(θ)B 1 r (7) 
Similarly the term A 1 vanishes if the angle θ is chosen so that

θ = ±2 arctan κ √ 1 -κ 2 (8) 
Now, substituting θ as defined by Eq. ( 8) into Eq. ( 7), one obtains the following relation

Gε x ′ x ′ = κ 1 -κ 2 3 2 A 0 r -1 2 -2κ 1 -κ 2 B 1 r (9) 
Substituting Eq. ( 5) into Eq. ( 9), Eq. ( 9) can be rewritten as

K I (r) = K I -Cr 3 2 (10) 
where

K I (r) = G √ 2πr ε x ′ x ′ κ (1 -κ 2 ) 3 2 (11) 
and

C = 2 √ 2πB 1 (1 -κ 2 ) 1 2 (12) 
For a three-term representation, a single strain gage can be used to provide the data necessary to determine K I . In this case, Eq. ( 10) reduces to

K I = G √ 2πr ε x ′ x ′ κ (1 -κ 2 ) 3 2 (13) 
Eq. ( 13) accurately determines K I up to a radial distance r 1,max [START_REF] Dally | A strain gage method for determining K I and K II in a mixed mode stress field[END_REF] which assures accurate values of K I . Thus, r 1,max is the point that separates the region of stable behavior from unstable behavior in the plot of the right-hand side of Eq. ( 13). The r 1,max can be determined by the methodology proposed by Sarangi et al. [START_REF] Sarangi | Radial locations of strain gages for accurate measurement of mode I stress intensity factor[END_REF] for determining the extent of validity of the three-term solution (Eq. ( 13)). Eq. ( 13) accurately determines ε x ′ x ′ up to a radial distance of r 1,max and it can be written as

ε x ′ x ′ = D √ r (14) 
where

D = κ(1-κ 2 ) 3 2 K I G √ 2π
is a constant. Taking logarithm on both sides of Eq. ( 14)

ln(ε x ′ x ′ ) = - 1 2 ln(r) + ln(D) (15) 
Eq. ( 15) is valid until a radial distance of r 1,max along the gage line which makes an

angle θ = ±2 arctan κ √ 1-κ 2
with the axis of crack. Thus, a log-log plot of Eq. ( 15) is a straight line of slope equals to -0.5, with an intercept of ln(D). Theoretically, the straight-line property breaks for r > r 1,max , because then more than three terms are needed in Eq. ( 9) to estimate ε x ′ x ′ . Using Eq. ( 15), the value of r 1,max can be accurately estimated. Also, to avoid 3D effects, the minimum radial distance r min should be greater than half the thickness of the plate [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF]. Therefore, the valid radial locations for a single strain gage can now be stated as

r min ≤ r ≤ r 1,max (16) 
Thus, by placing a single strain gage as shown in Fig. 1 oriented at an angle of α = ± 1 2 arccos(-κ) at a radial distance r between r min and r 1,max along the gage line at an angle of θ = ±2 arctan κ √ 1-κ 2 , the measured strain ε x ′ x ′ can be used to obtain K I using Eq. ( 13).

DS's two strain gages technique (DS2)

It is possible to obtain the data necessary to determine K I from a four-term representation by using two strain gages. Now, if we place two strain gages G A and G B with the same values of α and θ as defined by Eqs. ( 6) and ( 8), their respective positions r A and r B , and their respective strain readings (ε x ′ x ′ ) r=r A and (ε x ′ x ′ ) r=r B can be used to solve Eq. ( 10) for K I . Thus, when solving Eq. ( 10) for K I , using data obtained from strain gages G A and G B , one can write:

K I = G √ 2πr A r B κ (1 -κ 2 ) 3 2 r B (ε x ′ x ′ ) r=r A -r A (ε x ′ x ′ ) r=r B r 3/2 B -r 3/2 A ( 17 
)
The maximum radial distance r 2,max of the extent of validity of the four-term representation can be obtained by comparing the two quantities on the left-hand side and right-hand side of Eq. ( 10). The quantity on the left-hand side of Eq. ( 10) is computed from the ε x ′ x ′ value evaluated at radial locations in the α = ± 1 2 arccos(-κ) direction along the gage line θ = ±2 arctan κ √ 1-κ 2 . The accurate value of K I can be obtained using the best fit regression of the plot of the right-hand side quantities of Eq. [START_REF] Shirley | Approach to dynamic fracture toughness of GFRP from aspect of viscoelastic and debonding behaviors[END_REF]. The r 2,max is the point of deviation of the curve of the right-hand side of Eq. ( 10) from the curve of the left-hand side. Consequently, the valid radial locations for the two strain gages are given by

r min ≤ r A < r B ≤ r 2,max (18) 
Thus, by placing two strain gages G A and G B as indicated in Fig. 1 oriented at an angle of α = ± 1 2 arccos(-κ) at radial distances r A and r B (> r A ) between r min and r 2,max along the gage line at an angle of θ = ±2 arctan κ √ 1-κ 2 , the measured strains (ε x ′ x ′ ) r=r A and (ε x ′ x ′ ) r=r B can be used to obtain K I using Eq. ( 17).

Modified DS's two strain gages technique (M_DS2)

It was indicated previously that the contribution of the B 0 term to the strain ε x ′ x ′ will vanish when the strain gage is oriented at an angle α given by Eq. ( 6). Now, if we reexamine Eq. ( 7), we can easily show that the contribution of the term B 1 can be completely eliminated by choosing θ = 0 • . With θ = 0 • , Eq. ( 7) is reduced to

2Gε x ′ x ′ = κ A 0 r -1 2 + A 1 r 1 2 (19) 
The choice of θ = 0 • eliminates not only the term B 1 , but also all the terms B 2 , B 3 , . . . , B ∞ .

It is therefore clear that for a four-term representation, only the two terms A 0 and A 1 are retained in Eq. [START_REF] Bürgel | Optimization of the straingauge-method for measuring mode-II stress intensity factors[END_REF]. By considering this truncation of the Eq. ( 19), K I can be evaluated from the following linear relationship

K I (r) = K I + Cr (20) 
where

K I (r) = 2G √ 2πrε x ′ x ′ κ (21) 
and

C = √ 2πA 1 (22) 
Now, if we consider two strain gages G A and G B implanted on the gage line θ = 0 • and oriented along the angle α = ± 1 2 arccos(-κ), their respective positions r A and r B , and their respective strain readings (ε x ′ x ′ ) r=r A and (ε x ′ x ′ ) r=r B can be used to solve Eq. ( 20). Thus, when solving this equation, for K I , using data obtained from gages G A and G B one can write

K I = 2G √ 2πr A r B κ √ r B (ε x ′ x ′ ) r=r A - √ r A (ε x ′ x ′ ) r=r B r B -r A (23) 
Eq. ( 23) can be employed to determine K I , using only two strain gages provided that they are placed at the appropriate locations. It is clear that the radial distance r plays an important role in the precise determination of K I using Eq. [START_REF] Paul | A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations[END_REF]. For greater clarity, it is necessary to more closely examine the size of the linear behavior region represented by the right-hand side of Eq. ( 20) along the gage line θ = 0 • to determine its bounds, since it is essential that the size of this region must be large enough to accommodate the two strain gages in order to avoid excessive errors in K I . This linear behavior region also called intermediate region or region II by DS [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] is the valid region where the strain field can be represented within a specified accuracy by the first four terms only. Let r 3,max the boundary point between linear behavior region and nonlinear behavior region in the plot of the left-hand side of Eq. ( 20). The r 3,max boundary point does not only represent the extent of validity of Eq. ( 20) along the gage line θ = 0 • , but also the maximum permissible radial distance, which determines the upper bound of the linear behavior region to ensure valid locations of the two strain gages. Therefore, the valid radial locations for the two strain gages can now be stated as

r min ≤ r A < r B ≤ r 3,max (24) 
Using the linear behavior exhibited by Eq. ( 20), the value of r 3,max can be accurately estimated from the plot of the left-hand side of Eq. [START_REF] Paul | A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations[END_REF]. Once the r 3,max value of a cracked configuration is determined, the size of the linear behavior region is known, then with valid locations of the two strain gages that ensure correct measurement of strains, K I can be easily obtained using Eq. ( 23).

Numerical examples and discussions

In this section, Four numerical examples have been performed using ABAQUS software to validate the two techniques DS2 and M_DS2 discussed in Section 2.

To assure the highest accuracy in the numerical analyses, more refined meshes were used to discretize the area around the crack tip; see Fig. 2(b). The mesh refinement has also been kept high far away from the crack tip, in the zone where the influence of the non-singular terms becomes important, to make their evaluation easier.

Example 1: edge cracked plate subjected to uniform tensile stress

In this example, finite width and finite height edge cracked plate subjected to uniform tensile stress is considered. Due to symmetry, only half of the plate is modeled, as shown in Fig. 2(a). The width b = 100 mm and the half-height h = 100 mm of the plate are fixed in all configurations considered in this study. We assume plane stress conditions, an applied stress value of σ = 1 MPa, a Young's modulus of E = 75 GPa and a Poisson's ratio of ν = 1/3. We generate different configurations, with different values of the crack length to width ratio a/b ranging from 0.1 to 0.9 in steps of 0.1. 

Procedure for determination of r 1,max

According to the DS1 technique, the single strain gage must be placed at a suitable location on the gage line θ(ν = 1

3 ) = 60 • in the direction of α(ν = 1 3 ) = 60 • to measure the linear strain ε x ′ x ′ . In order to numerically simulate the strain gage based determination of K I following this technique, strain values ε x ′ x ′ at nodes along the gage line are considered to be strain gage readings. Using these strain values, K I can be calculated from Eq. ( 13). The radial distance r 1,max which assures accurate values of K I is obtained from the procedure devised by Sarangi et al. [START_REF] Sarangi | Radial locations of strain gages for accurate measurement of mode I stress intensity factor[END_REF]. Fig. 3 shows the plots of ln(ε x ′ x ′ ) versus ln(r). Following this procedure, straight lines having a slope of -0.5 are superposed onto the plots of ln(ε x ′ x ′ ). It can be clearly seen in Fig. 3 that both the initial straight line portion of the plots and superposed lines are congruent to each other up to a certain radial distance and the numerical results deviate from the superposed line thereafter. This is observed in plots for all values of a/b. The point of deviation or r 1,max is evaluated as the value of the radius at which the error reaches 0.5%. Estimated values of the r 1,max are also presented in Table 1. The results in Table 1 show that the value of r 1,max increases with the increase of the crack length until reaching a maximum value of 14.52 mm at a/b = 0.5, then decreases with the increase in the length of the crack. A similar trend has been reported by Sarangi et al. [START_REF] Sarangi | Radial locations of strain gages for accurate measurement of mode I stress intensity factor[END_REF][START_REF] Sarangi | Optimum strain gage location for evaluating stress intensity factors in single and double ended cracked configurations[END_REF]. It can also be observed from the results of Table 1 that when the crack tip approaches the right and left boundary of the cracked plate, the r 1,max values are very small, which makes it difficult to accurately measure the value of K I using the DS1 technique. 3.1.2. Procedure for determination of r 2,max and r 3,max Following the procedure described in Section 2.2 to estimate the extent of the four-term representation or r 2,max , the quantity on the left-hand side of Eq. ( 10) is computed from the ε x ′ x ′ values evaluated at radial locations in the α = 60 • direction along the gage line θ = 60 • . Fig. 5 shows the plot of the left-hand side quantity of Eq. ( 10) versus radial distance r and its best fit for a/b = 0.2. The estimated value of the r 2,max corresponding to the point of deviation between the plot of the left-hand side quantity of Eq. ( 10) and its best fit along the gage line is marked in Fig. 5 Similarly, to estimate the extent of the four-term representation or r 3,max following the procedure described in Section 2.3, the quantity on the left-hand side of Eq. ( 20) is computed from the ε x ′ x ′ values evaluated at radial locations in the α = 60 • direction along the gage line θ = 0 • . Fig. 6 shows the plot of the left-hand side quantity of Eq. ( 20) versus radial distance r and its straight line fit for a/b = 0.2. It could be observed from this figure that the plot consists of a distinguishable linear behavior region followed by a nonlinear behavior region, as predicted by the Eq. ( 20). The linear trend distinctly exists up to a certain radial distance r 3,max and thereafter gradually turns to the nonlinear behavior. The r 3,max value is obtained at the point of deviation of the plot from a superimposed line with an error ≤ 0.5%. The r 3,max values are extracted and are illustrated in Table 1 for all a/b configurations. It can be seen from the results of Table 1 that the value of r 3,max increases with the crack length until it reaches a maximum value of 13.40 mm at a/b = 0.2, then decreases with the increase in the length of the crack.

Comparison between the three values of r max

The plots of the variation of r 1,max /b, r 2,max /b and r 3,max /b with a/b are presented in Fig. 4 to observe the effect of a/b on the three values of r max , and to make 

Validation of the three techniques

To test the effectiveness of the DS1, DS2 and M_DS2 techniques for determining K I , the ε x ′ x ′ strain values at the nodes along pertaining gage lines are considered as strain gage readings. Using the ε x ′ x ′ strain values, K I have been calculated using Eq. ( 23) in the case of M_DS2 technique. Similarly, K I has been calculated from the ε x ′ x ′ strain values at the nodes along the gage line θ = 60 • using Eq. ( 13) in the case of DS1 technique and Eq. ( 17) in the case of DS2 technique. The Three techniques are illustrated with the help of numerical examples for the a/b = 0.2 configuration. To understand the importance of r max on the accuracy of determination of K I , two sets of combinations of strain gage placements on the gage lines θ = 0 • and θ = 60 • are considered. For a logical comparison between the two techniques DS2 and M_DS2, the two strain gages G A and G B are pasted at the same radial distances r A and r B on each gage line. The first strain gage G A is pasted far enough away from the crack tip, at a distance r A = 5 mm in the first set of combinations, at a distance r A = 10 mm in the second set of combinations. The second strain gage G B is pasted at different distances r B between r A and r = 30 mm. The value

K ref I = 0.3427 MPa m 1 2
predicted by ABAQUS is used as reference solution to test the accuracy of the simulated values of K I .

The absolute percentage relative error of the numerically simulated K I values is plotted as a function of the radial emplacement r B of the strain gage G B in Fig. 8, for the two sets of combinations. It can be observed in this figure that the DS1 technique gives an error that increases very rapidly beyond the upper boundary (r 1,max = 0.77 mm) of the region of validity of this technique. The errors in the K I measurement are 4.97% and 11.53% at locations r = 5 and 10 mm, respectively. It can be also observed in this figure that, regardless of the location of the two strain gages, The DS2 and M_DS2 techniques give an error that is lower than that obtained by DS1 technique. From these observations, it can be concluded that the DS2 and M_DS2 techniques make it possible to considerably reduce the errors and to ensure accurate measurement of K I , when the DS1 technique unable to provide the desired precision and accuracy of K I .

Verification with experimental data from the literature

This section presents the verification of the performance of the DS2 and M_DS2 techniques using the experimental data from the literature. Three cracked configurations are considered for this purpose viz., (a) Compact tension specimen used by DS [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] (Fig. 9 

Example 2: Compact tension specimen used by [1]

The geometrical and loading parameters of the compact tension specimen used by DS [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] (Fig. 9(a)) are b = 305 mm, a/b = 0.5, F = 8900 N and thickness t = 6.35 mm. The material properties are Young's modulus E = 70 GPa and Poisson's ratio ν = 0.33. The strain gage orientation α and the gage line orientation θ for this example are 60 • . The symmetry is exploited for this example for the purposes of FEA. Following the procedure stated in Sections 3.1.1 and 3.1.2, the r 1,max , r 2,max and r 3,max have been computed and are found to be 10.33, 48.41 and 46.90 mm, respectively. For this example, we can clearly notice that the value of r 3,max is large enough to accommodate the two strain gages, which is not the case in example 1 for the same configuration a/b = 0.5. The locations of strain gages used by DS [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF], r A = 12.27 and r B = 19.89 mm and their experimental data are used to verify the performance of DS2 and M_DS2 techniques. It is important to note that the locations of these two strain gages are between r 1,max and r 2,max . The value

K ref I = 24.4381 MPa m 1 2
predicted by ABAQUS is used as a reference solution to test the accuracy of the experimental and simulated values of K I .

Table 2 shows the measured and simulated values of K I for the three techniques presented in this paper. The absolute percent relative error in K I is also shown in Table 2. It is interesting to notice from the results of Table 2 that a very small error of 0.34% and 0.04% can be expected in the simulated K I values using the DS2 and M_DS2 techniques, respectively. In addition, the results in Table 2 also clearly demonstrate that the error can be reduced to 3.86% in the K I measured using the DS2 technique. The results in the above table clearly ensure that using the DS2 and M_DS2 techniques, very accurate values of K I can be obtained for a Compact tension specimen if the two strain gages are placed at optimal locations which can, at their turn be decided using the proposed parameters r 2,max and r 3,max .

Example 3:

Edge cracked plate with h/b = 0.762 employed by [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF] Fig. 9. Geometry of one half of (a) Compact tension specimen [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF], (b) Straight edge cracked plate specimen [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF] and (c) Edge cracked plate specimen [START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF].

Table 2

Experimental and numerical values of K I for compact tension specimen used by [START_REF] Dally | Strain gage methods for measuring the opening mode stress intensity factor, K I[END_REF] with (a/b = 0.5; r 1,max = 10.33 mm; r 2,max = 48.41 mm; r The geometrical and loading parameters of the straight edge cracked plate used by Sarangi et al. [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF] (Fig. 9 • and the orientation of the gage α is 58.28 • . Due to symmetry, only one half of the plate is used for the FEA. r 1,max , r 2,max and r 3,max have been computed and are found to be 8.25, 22.55 and 10.12 mm, respectively. The emplacements of strain gages used by Sarangi et al. [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF], r A = 7 and r B = 27 mm and their measured strains data are employed to verify the performance of DS2 and M_DS2 techniques. It is interesting to note that only the first strain gage is placed inside r 1,max , r 2,max and r 3,max . The normalized numerical value of SIF, F ref I = 6.1406, obtained by these authors is used as a reference solution to test the performance of the DS2 and M_DS2 techniques.

The measured and simulated values of F I are presented in Table 3 for the three techniques. Also, the absolute percent relative error in F I is shown in this table. Consistent with the results of the previous examples, the data in Table 3 again shows that a very small error of 0.47% and 0.12% can be expected in the measured and simulated values of F I , respectively, using the DS2 technique. Moreover, for M_DS2 technique an error of 8.45% in F I is obtained. The data of Table 3 also shows that the DS2 and M_DS2 techniques are robust and provide an accurate measurement of K I if the two strain gages are placed within r 2,max and r 3,max .

Table 3

Experimental and numerical values of F I edge cracked plate with h/b = 0.762 employed by [START_REF] Sarangi | Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors[END_REF] The geometrical and loading parameters of the edge cracked plate used by Swamy et al. [START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF] (Fig. 9(c)) are b = 150 mm, F = 500 N and thickness t = 10 mm. The a/b = 0.3 and 0.5 and h/b = 0.3 ratios were chosen for this example. The material properties are Young's modulus E = 2300 MPa and Poisson's ratio ν = 0.37. Thus α and θ are equal to 58.69 • and 54.76 • , respectively. Because of the symmetry, only one half of the plate is used in the present FEA. r 1,max , r 2,max and r 3,max have been computed and are found to be respectively 2.35, 13.75 and 9.51 mm for a/b = 0.3, and 3.29, 11.40 and 8.75 mm for a/b = 0.5. The emplacement of strain gage used by Swamy et al. [START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF] is 10 mm in both configurations. We can clearly notice that the location of the strain gage used by these authors is beyond r 1,max in the two configurations considered here. This may justify the slightly larger errors of 6.73% and 6.55% obtained by these authors for a/b = 0.3 and 0.5, respectively. It can also be noted that for the two configurations, the values of r 2,max and r 3,max are not large enough, and especially for a/b = 0.5 configuration, which is not the case in examples 1 and 2. To implement the DS2 and M_DS2 techniques, at least numerically, we consider two strain gages placed at r A = 5 and r B = 10 mm. We note that the r B emplacement is outside r 3,max for a/b = 0.3 and 0.5, but it still remains close to r 3,max . The reference solutions used by these authors, F ref I = 2.5390 and 4.0308 for a/b = 0.3 and 0.5, respectively, are also used here as reference solutions.

Table 4 shows the values of F I obtained using the three techniques for each of the a/b = 0.3 and 0.5 configurations. This table also shows a comparison with the reference solutions in terms of the absolute percent relative error. It is interesting to notice from the results of Table 4, for a/b = 0.3, the error in F I is only 0.29% for the DS2 technique and 1.31% for the M_DS2 technique. Similarly, for a/b = 0.5, the error in F I based on the DS2 technique is only 0.29% and the one based on the M_DS2 technique is 2.31%. The results in Table 4 also show that the DS2 and M_DS2 techniques are good solutions to ensure accurate measurement of K I , when the DS1 technique unable to provide the desired precision and accuracy of K I .

Table 4

Experimental and numerical values of F I for edge cracked plate with h/b = 0.3 considered by [START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF] 

Conclusion

In this paper, two techniques based on two strain gages namely, DS2 and M_DS2 were studied for the accurate determination of the SIF K I and compared with the DS1 technique. For this purpose, a four-term representation was derived from the generalized Westergaard stress functions. To ensure accuracy in the determination of K I , the extent of the four-term representation, allowing the two strain gages to be placed reasonably far away from the crack tip, is also determined for the two techniques. The effectiveness of the three techniques DS1, DS2 and M_DS2 is tested for four different examples with different configurations (a/b, h/b) and different boundary conditions. Also, a comparison is made between the three techniques through these four different examples to observe the precision and accuracy of K I . Numerical simulations have shown that the effectiveness of the three techniques depends on the given configuration and the boundary conditions. In addition, the present results also shown that the DS2 and M_DS2 techniques are very effective to ensure accurate measurement of K I when the DS1 technique unable to provide the desired precision and accuracy of K I for some configuration. The techniques developed in this study will be extremely useful because they allow the experimenters to choose the technique adapted for each specimen configuration, and determining the optimal strain gage locations for accurate experimental measurement of K I .

Fig. 2 .

 2 Fig. 2. (a) Geometry of finite edge cracked plate subjected to mode I loading conditions and typical mesh used in the present investigation for finite element analysis, (b) enlarged views at the crack tips corresponding to meshes in (a).

Fig. 3 .

 3 Fig. 3. Variations of ln(ε x ′ x ′ ) with ln(r) along the gage line θ = 60 • for different a/b ratios.

Fig. 4 .

 4 Fig. 4. Variations of r 1,max , r 2,max and r 3,max with a/b.

FEAFig. 5 .

 5 Fig. 5. Variation of K I (Eq. (11)) with r along the gage line θ = 60 • for a/b = 0.2.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Variation of K I (Eq. (21)) with r along the gage line θ = 0 • for a/b = 0.2.

  (a)), (b) Straight edge cracked plate subjected to tensile loading with h/b = 0.762 employed by Sarangi et al. [11] (Fig. 9(b)) and (c) Edge cracked plate specimen with h/b = 0.3 considered by Swamy et al. [5] (Fig. 9(c)). FEA of all the above configurations has been carried out as discussed in Section 3.1.

Fig. 8 .

 8 Fig. 8. Variation of absolute percentage relative error in K I with the radial position of the strain gage G B for a/b = 0.2.

F

  

  (b)) are b = 150 mm, h/b = 0.762, a/b = 0.693, F = 150 N and thickness t = 5.6 mm. The material properties are Young's modulus E = 2917 MPa and Poisson's ratio ν = 0.382. The orientation of the gage line θ is 53.13

  with (a/b = 0.3; r 1,max = 2.35 mm; r 2,max = 13.75 mm; r 3,max = 9.51 mm; F ref I = 2.5390) and (a/b = 0.5; r 1,max = 3.29 mm; r 2,max = 11.40 mm; r 3,max = 8.75 mm; F ref I = 4.0308).

Table 1

 1 Variation of r i,max and r i,max /b with a/b. the log-log procedure and which ensure accurate values of K I for a three-term representation is also marked in this figure. The r 2,max values are extracted for all a/b configurations and are tabulated in Table1. It can be observed from Table1that the ratio r

	a/b	DS1 technique r 1,max (mm) r 1,max /b	DS2 technique r 2,max (mm) r 2,max /b r 2,max /r 1,max	M_DS2 technique r 3,max (mm) r 3,max /b r 3,max /r 1,max
	0.1	0.37	0.0037	2.83	0.0283	7.645	8.37	0.0837	22.572
	0.2	0.77	0.0077	5.63	0.0563	7.288	13.40	0.1340	17.351
	0.3	1.67	0.0167	8.19	0.0819	4.486	9.59	0.0959	5.746
	0.4	3.66	0.0366	11.84	0.1184	3.239	9.44	0.0944	2.584
	0.5	14.52	0.1452	18.26	0.1826	1.258	9.25	0.0925	0.637
	0.6	3.84	0.0384	15.96	0.1596	4.157	5.97	0.0597	1.556
	0.7	1.97	0.0197	14.59	0.1459	7.390	4.74	0.0474	2.402
	0.8	1.21	0.0121	10.64	0.1064	8.765	2.93	0.0293	2.411
	0.9	0.76	0.0076	6.95	0.0695	9.184	1.68	0.0168	2.220

from

  3,max = 46.90 mm; K ref

	MPa √ m).		K I (MPa	√ m) (Absolute % relative error)	I	= 24.4381
				Experimental		Numerical
	Gage r(mm)	DS1	DS2	DS1	DS2	M_DS2
	A B	12.27 23.4 (4.25%) 23.4940 (3.86%) 19.89 23.3 (4.66%)	24.1548 (1.16%) 24.3561 (0.34%) 23.9406 (2.04%)	24.4472 (0.04%)

  with (a/b = 0.693; r 1,max = 8.25 mm; r 2,max = 22.55 mm; r 3,max = 40.12 mm;

	F ref I	= 6.1406.)			
			Normalized SIF, F I (Absolute % relative error)
			Experimental			Numerical
	Gage r(mm)	DS1	DS2	DS1	DS2	M_DS2
	A B	7 27	6.0348 (1.72%) 6.1696 (0.47%) 5.1484 (16.16%)	6.0052 (2.20%) 6.1482 (0.12%) 5.0651 (17.51%)	5.6036 (8.45%)

3.2.3. Example 4:

Edge cracked plate with h/b = 0.3 considered by

[START_REF] Swamy | Determination of the mode I stress intensity factors of the complex configurations using the strain gages[END_REF] 

Highlights

• An examination of techniques based on two strain gages for the determination of K I is performed.

• A new formulation of the Dally and Sanford approach is presented.

• Valid region theory for the locations of two strain gages is demonstrated.

• Computation of the upper bound of the valid region is also substantiated.

• Locations of the strain gages outside the valid region are also discussed.

• The proposed technique gives accurate values of K I .