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Abstract

In this paper, we propose a new technique that is, at least, as efficient
as the technique proposed by Dally and Sanford (DS) [3] to determine the
stress intensity factor (SIF) in Mode I. This technique relies on the use of a
single or two rectangular rosettes with two elements for a three- or four-term
representations of the strain field. The strong point of this technique is that
regardless of the type of material used the location angle θ and orientation
angle α of rectangular rosette are not changing with respect to the Poisson’s
ratio ν. In addition, the angle θ coincides with the angle α and is equal to
±60◦, which facilitates the use of this technique in the practice. Moreover,
a new formulation of the DS approach is presented. Accordingly, general
finite element approaches are developed to estimate the extent validity of the
three and four-term representations of the strain field for the two techniques.
Results of numerical examples show that the present technique can yield a
highly accurate value of SIF when the single or two rectangular rosettes are
placed within the valid locations. Furthermore, these results show that the
proposed technique and the technique of DS give almost the same precision
in the measured SIF values.
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1 Introduction

In fracture mechanics of stationary and propagating cracks in homogenous mate-
rials, the primary focus is generally based on the first singular term in the Williams
[1] series expansion, proportional to SIF. More accurate values of SIFs are important
in predicting and preventing the fracture of the engineering components. Several ex-
perimental techniques have been developed over the years to measure SIFs in cracked
bodies, such as the compliance method [2,3], photoelasticity [4–6], caustics [7,8] and
strain gage methods [9–16]. Among these experimental techniques, strain gage tech-
niques are the most common methods used to date in experimental stress analysis.
This is due to their simplicity and their ease of use in most environments [17]. They
can measure surface strains accurately and directly within strain gradient zones,
allowing the subsequent determination of SIFs.

Irwin [18] was the first to propose the idea of using strain gages to determine
the SIF near the crack tip. For more than two decades thereafter, little progress
was made in implementing this idea in practice. The primary reasons for the de-
lay in the development of an appropriate technique are related to several factors
such as the local yielding effect at the crack tip of metallic materials, high strain
gradients, the complexity of the three-dimensional state of stress at the crack tips
and the finite size of the strain gages. To overcome these difficulties, DS [9] were
the first to develop a strain gage technique for measuring the static mode I SIF in
two-dimensional isotropic bodies. The chief advantage of their technique is that a
single strain gage is sufficient to accurately determine the SIF. The accuracy in the
determination of the SIF depends on the gage location and orientation relative to
the crack tip. Thanks to its simplicity and efficiency, this technique has been widely
used by many researchers [19–27] for determination of mode I SIF in different con-
texts.

Later, Dally and Berger [28] and Dally and Barker [29] extended this technique
for determination of the mixed-mode SIFs and dynamic SIF respectively. Shukla et
al. [30] and Khanna and Shukla [31] extended the same technique to static and
dynamic cracks of orthotropic composite materials. Berger and Dally [10] pro-
posed a strain gage technique based on many measurements for determining the
opening-mode SIF by solving a large number of over deterministic equations. Wei
and Zhao [23] developed a method that requires two strain gages to measure the
mode I SIF. Kondo et al. [12,32] used ten strain gages to determine the mixed-mode
SIFs of a sharp notch. Dorogoy and Rittle [13] proposed a technique using a three
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strain gage rosette for the determination of mixed-mode SIFs. Ricci et al. [14] used
two strain gages at two different locations for determining the complex SIF of a
bi-material crack. Marur and Tippur [16] also developed a biaxial rosette technique
for determining the complex stress intensity factor in bi-material systems. Bürgel
et al. [33] have developed a strain gage measuring technique for determining mode
II SIF following the ideas introduced by Dally and Sanford. These researchers re-
marked that since the influence of higher-order terms is not eliminated, a few strain
gages should be used, and, an extrapolation should be conducted for obtaining accu-
rate SIF from the strain gages measurements. Accurate calculation of SIF requires
more than one strain gage. More recently Pranjol et al. [34] extended the technique
of DS to V-notched configurations to measure the mode I notch SIF.

Although some recommendations are available for the radial locations of strain
gage techniques in [11,13,31]. But no procedure was mentioned to determine the
valid radial locations in this works. In contrast, Sarangi et al. [35–37] presented for
the first time a general theoretical methodology based on the finite element analysis
to obtain the valid radial locations for the technique of single strain gage proposed
by DS. They defined a parameter rmax which is the upper bound on the radial loca-
tion for the strain gage which in turn can be used for locating the optimal or valid
radial locations for strain gages. Their results show the importance of knowing the
rmax value of an experimental specimen before conducting an experiment for the de-
termination of mode I SIF. The same authors [38] also proposed a methodology for
obtaining the valid radial locations of the strain gages in order to accurately deter-
mine the mixed-mode SIFs. Debaleena Chakraborty et al. [39–41] and Pranjol Paul
et al. [42] have extended the methodologies proposed by these authors for orthotropic
composite materials and for isotropic body containing a sharp V-notch, respectively.
Next, experiments conducted by Sarangi et al. [27,43], Debaleena Chakraborty et
al. [44] and Pranjol Paul et al. [34] have shown the effectiveness of these theoretical
methodologies and the usefulness of the optimal strain gage locations in accurate
measurement of SIFs.

The application of a rectangular rosette comprising two strain gages to deter-
mine the KI was addressed for the first time by DS [9]. These authors advised
using a rectangular rosette when the fracture specimen is subjected to a tempera-
ture gradient and temperature compensation is important. The rectangular rosette
technique proposed by these authors makes it possible to evaluate KI for a two-
term representation of the strain field. The rectangular rosette has also been used
by Maleski et al. [25] to determine the T -stress for a two-term representation of
the strain field. Marur and Tippur [45] also used a rectangular rosette to measure
the radial and hoop strains to determine the interfacial fracture parameters of bi-
material and functionally graded materials under impact loading conditions. The
rectangular rosette was used by these authors to improve the accuracy of dynamic
loading when separate locations could be subjected to different stress conditions.

According to the works mentioned above, the rectangular rosette has the advan-
tage of providing the first two coefficients of the asymptotic expansion at one point
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while preserving space. On the other hand, they also have advantage in dynamic
loading situations and specimens subjected to temperature gradients. This paper
aims to propose a new rectangular rosette technique in order to meet these require-
ments. Another major advantage of the proposed technique is that the location and
orientation of the rosettes do not change with the material properties and can be
easily located on the specimen to be tested. This work is a natural extension of the
work of DS [9].

The paper is organized as follows: (1) the formulation of the strains εx′x′ and
εy′y′ at a point P (r, θ) close to the crack tip in α direction is given explicitly using
the first four terms of the generalized Westergaard formulation [46]. (2) A new for-
mulation of the DS technique is presented. The analytic expression of the angle of θ
is given as a function of the Poisson’s ratio, ν, and a simplified rewrite of the strain
expression, εx′x′, is obtained. Also, the extent of validity of the three- and four-term
representation proposed by DS is determined. (3) A new technique is proposed to
evaluate the value of SIF using a single or two rectangular rosettes. The basic theo-
retical formulation for the determination of the extent of validity of the three- and
four-term representation is also presented. (4) The analysis is followed by numerical
examples of an edge crack in a finite plate subjected to mode I loading conditions.
The main results are then discussed and followed with a concluding section.

2 Theoretical formulation

We assume that the material of the cracked specimen is homogeneous, linear
elastic, isotropic and subjected to small deformations. The near field strain equations
are obtained using the generalized Westergaard approach proposed by [46]. The
modified Airy stress function in this approach is given by [47]

φ = ℜ
(

Z(z)
)

+ yℑ
(

Z(z)
)

+ yℑ
(

Y (z)
)

(1)

where

Z =
d

dz
Z(z) =

d2

dz2
Z(z), Y =

d

dz
Y (z), z = x+ iy

and the complex analytic functions Z(z) and Y (z) are defined as

Z(z) =

∞
∑

n=0

Anz
n− 1

2 and Y (z) =

∞
∑

m=0

Bmz
m (2)

which are series type functions containing an infinite number of real constants
(A0, A1, A2, . . . , A∞; B0, B1, B2, . . . , B∞) that can be determined using geometry
and boundary conditions of a given problem. The stress components for the entire
domain are represented by DS [9] as

σxx =ℜ(Z)− y [ℑ(Z ′) + ℑ(Y ′)] + 2ℜ(Y )

σyy =ℜ(Z) + y [ℑ(Z ′) + ℑ(Y ′)] (3)

τxy =− y [ℜ(Z ′) + ℜ(Y ′)]− ℑ(Y )
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Assuming plane stress conditions, equations for strain field are given as

Eεxx =f1ℜ(Z)− f2y [ℑ(Z ′) + ℑ(Y ′)] + 2ℜ(Y )

Eεyy =f1ℜ(Z) + f2y [ℑ(Z ′) + ℑ(Y ′)]− 2νℜ(Y ) (4)

Eγxy =− 2f2 [y (ℜ(Z ′) + ℜ(Y ′)) + ℑ(Y )]

where the parameters f1 and f2 are given by, f1 = 1− ν and f2 = 1 + ν.

Substitution of Z(z) and Y (z) and their derivatives in Eqs. (4) gives exact represen-
tation of strain field with infinite number of unknown terms An and Bm. It is assumed
that the strain field around the crack tip can be sufficiently represented a truncated series
of four terms only (n = 0, 1 and m = 0, 1) with unknown terms A0, A1, B0 and B1. The
four-term representation of strain field is therefore,

Eεxx =cos(θ/2) [f1 − f2 sin(θ/2) sin(3/2 θ)]A0r
− 1

2 + 2B0r
0+

cos(θ/2)
[

f1 + f2 sin
2(θ/2)

]

A1r
1

2 + 2cos(θ)B1r (5)

Eεyy =cos(θ/2) [f1 + f2 sin(θ/2) sin(3/2 θ)]A0r
− 1

2 − 2νB0r
0+

cos(θ/2)
[

f1 − f2 sin
2(θ/2)

]

A1r
1

2 − 2ν cos(θ)B1r (6)

Eγxy =f2 sin(θ)
[

cos(3/2 θ)A0r
− 1

2 − cos(θ/2)A1r
1

2 − 4B1r
]

(7)

P(r,θ)

o

r

θ

α

Crack x

y

x’

y’

Fig. 1. Strain gage location and orientation.

The strains relative to a rotated coordinate system (x′, y′) with its origin at an arbitrary
point P located by r and θ (Fig. 1) are determined from the first invariant of strain

εx′x′ + εy′y′ = εxx + εyy (8)

and the complex form of the strain-transformation equation

εy′y′ − εx′x′ + iγx′y′ = (εyy − εxx + iγxy) e
2iα (9)
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Substituting Eqs. (5)-(7) into Eqs. (8) and (9) leads to

2Gεx′x′ =

[

κ cos(θ/2) +
1

2
sin(θ) (cos(3/2 θ) sin(2α) − sin(3/2 θ) cos(2α))

]

A0r
− 1

2+

[κ+ cos(2α)]B0 + cos(θ/2)
[

κ+ sin2(θ/2) cos(2α)−
1

2
sin(θ) sin(2α)

]

A1r
1

2 + [κ cos(θ) + cos(θ) cos(2α)−

2 sin(θ) sin(2α)]B1r (10)

2Gεy′y′ =

[

κ cos(θ/2)− 1

2
sin(θ) (cos(3/2 θ) sin(2α) − sin(3/2 θ) cos(2α))

]

A0r
− 1

2+

[κ− cos(2α)]B0 + cos(θ/2)
[

κ− sin2(θ/2) cos(2α)+

1

2
sin(θ) sin(2α)

]

A1r
1

2 + [κ cos(θ)− cos(θ) cos(2α)+

2 sin(θ) sin(2α)]B1r (11)

where the parameter κ is given by, κ = f1/f2. By applying the standard definition of
mode I SIF KI , it can be easily shown that A0 is related to the SIF by the relation

KI =
√
2πA0 (12)

To make effective use of strain gage, it is necessary to determine its optimum location
relative to the crack tip. Three parameters must be examined when mounting a gage near
a crack tip, i.e. the location in relation to the crack tip (r, θ), and the orientation angle α.

2.1 DS approach formulation

The orientation angle α is usually chosen such as to eliminate the effect of the B0 term.
It can be observed in Eq. (12) that coefficient associated with B0 term only depends on ν
and α. The effect of the B0 term on the strain gage reading is completely eliminated if α
is chosen as

α = ±1

2
arccos(−κ) (13)

Similarly, the coefficient of the term A1 can also be made zero if the angle θ is selected as

tan(θ/2) = − cot(2α) (14)

that is to say if the relation between θ and α is such that

θ = 4α∓ 180◦ (15)

Substituting Eq. (13) into Eq. (15) gives

θ = ±2 arccos(−κ)∓ 180◦ = ±2 arcsin(κ) (16)

Now, substituting α and θ as defined by Eq. (13) and Eq. (16), respectively, into Eq. (12),
one obtains the following relation

Gεx′x′ = κ
(

1− κ2
)

3

2 A0r
− 1

2 − 2κ
(

1− κ2
)

B1r (17)
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Substituting Eq. (12) into Eq. (17), Eq. (17) can be rewritten as

KI(r) = KI − C1r
3

2 (18)

where

KI(r) =
G
√
2πr εx′x′

κ (1− κ2)
3

2

(19)

and

C1 =
2
√
2πB1

(1− κ2)
1

2

(20)

In what follows, we present the two cases proposed by DS [9] to determine KI , as well
as the methodologies to be used to determine the extent of their valid region. The first
case requires the use of a single gage for a three-term representation and the second case
requires the use of two gages for a four-term representation.

2.1.1 Case of a single gage

For a three-term representation, a single gage can be used to provide the data necessary
to determine KI . In this case, Eq. (18) reduces to

KI =
G
√
2πr εx′x′

κ (1− κ2)
3

2

(21)

Now, if we consider the example of an aluminum specimen with ν = 1/3. Eqs. (13) and
(16) give α = θ = ±60◦, in this case the strain εx′x′ is equivalent to the radial strain
εrr. Then, the substitution G = 3/8E and κ = 1/2 into Eq. (21) give the first formula
proposed by DS [9]

KI = E
√

(8/3)πr εrr (22)

Eq. (21) accurately determines KI up to a radial distance rDS
1,max which assures stable

values of KI . Thus, rDS
1,max is the point that separates the region of stable behavior from

unstable behavior in the plot of the right-hand side of Eq. (21). The rDS
1,max can also be

determined by the methodology proposed by Sarangi et al. [35–37] for determining the
extent of validity of the three-term solution (Eq. (21)). Eq. (21) accurately determines
εx′x′ up to a radial distance of rDS

1,max and it can be written as

εx′x′ =
D1√
r

(23)

where D1 =
κ(1−κ2)

3

2 KI

G
√
2π

is a constant. Taking logarithm on both sides of Eq. (23)

ln(εx′x′) = −1

2
ln(r) + ln(D1) (24)

Eq. (24) is valid until a radial distance of rDS
1,max along the gage line which makes an angle

θ = ±2 arcsin (κ) with the axis of crack. Thus, a log-log plot of Eq. (24) is a straight
line of slope equals to −0.5, with an intercept of ln(D1). Theoretically, the straight-line
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property breaks for r > rDS
1,max, because then more than three terms are needed in Eq. (21)

to estimate εx′x′ . Using Eq. (24), the value of r > rDS
1,max can be accurately estimated.

Also, to avoid 3D effects, the minimum radial distance rmin should be greater than half
the thickness of the plate [29]. Therefore, the valid radial locations for a single gage can
now be stated as

rmin ≤ r ≤ rDS
1,max (25)

Thus, by placing a single gage as shown in Fig. 1 oriented at an angle of α = ±1

2
arccos(−κ)

at a radial distance r between rmin and rDS
1,max along the gage line at an angle of θ =

±2 arcsin(κ), the measured strain εx′x′ can be used to obtain KI using Eq. (21).

2.1.2 Case of two gages

It is possible to obtain the data necessary to determine KI from a four-term represen-
tation by using two gages. Now, if we place two gages GA and GB with the same values of
α and θ as defined by Eqs. (13) and (15), their respective positions rA and rB , and their
respective strain readings (εx′x′)r=rA and (εx′x′)r=rB can be used to solve Eq. (18) for KI .
Thus, when solving Eq. (18) for KI , using data obtained from gages GA and GB one can
write

KI =
KI(rA)

1−
(

rA
rB

)3/2
+

KI(rB)

1−
(

rB
rA

)3/2
(26)

where KI(rA) and KI(rB) are the SIFs calculated in the case of a three-term representa-
tion from Eq. (21).

The maximum radial distance rDS
2,max of the extent of validity of the four-term rep-

resentation can be obtained by comparing the two quantities on the left-hand side and
right-hand side of Eq. (18). The quantity on the left-hand side of Eq. (18) is computed
from the εx′x′ value evaluated at radial locations in the α = ±1

2
arccos(−κ) direction along

the gage line θ = ±2 arcsin (κ). The accurate value of KI can be obtained using the best
fit regression of the plot of the right-hand side quantities of Eq. (18). The rDS

2,max is the
point of deviation of the curve of the right-hand side of Eq. (18) from the curve of the
left-hand side. Consequently, the valid radial locations for the two gages are given by

rmin ≤ rA < rB ≤ rDS
2,max (27)

By sticking two gages GA and GB as indicated in Fig. 1 oriented at an angle of α =
±1

2
arccos(−κ) at radial distances rA and rB between rmin and rDS

2,max along the gage line
θ = ±2 arcsin(κ), the measured strains (εx′x′)r=rA and (εx′x′)r=rB can be used to obtain
KI using Eq. (26).

2.2 Proposed technique

Now, if the angle θ coincides with the angle α, the strains εx′x′ and εy′y′ are equivalent
to radial strain εrr and tangential strain εθθ, respectively. For this case, Eqs. (12) and (11)
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give respectively

2Gεrr =

[

κ cos(θ/2) +
1

4
(cos(θ/2)− cos(3/2 θ))

]

A0r
− 1

2 + [κ+ cos(2θ)]B0+

[

κ cos(θ/2)− 1

4
(cos(θ/2)− cos(5/2 θ))

]

A1r
1

2+

[

κ cos(θ)− 1

2
(cos(θ)− 3 cos(3θ))

]

B1r (28)

2Gεθθ =

[

κ cos(θ/2)− 1

4
(cos(θ/2)− cos(3/2 θ))

]

A0r
− 1

2 + [κ− cos(2θ)]B0+

[

κ cos(θ/2) +
1

4
(cos(θ/2)− cos(5/2 θ))

]

A1r
1

2+

[

κ cos(θ) +
1

2
(cos(θ)− 3 cos(3θ))

]

B1r (29)

Using Eqs. (28) and (29), the term B0 can be completely eliminated by superposing εrr
with an appropriate fraction of εθθ as

2G

κ
([κ− cos(2θ)]εrr − [κ+ cos(2θ)]εθθ) =2 cos3(θ/2)[1 − 8 sin2(θ/2)]A0r

− 1

2−

2 cos3(θ/2)[1 − 4 sin2(θ/2)]A1r
1

2−
4 sin(θ) sin(2θ)B1r (30)

Considering Eq. (30), the term A1 can be eliminated if

θ = ±60◦ (31)

When substituting Eq. (31) into Eq. (30), one can obtain the following relation

G

κ
[(2κ+ 1)εrr − (2κ − 1)εθθ] =

3
√
3

4
A0r

− 1

2 − 3B1r (32)

Substituting Eq. (12) into Eq. (32), Eq. (32) can be rewritten as

KI(r) = KI − C2r
3

2 (33)

where

KI(r) =
4G

√
2πr

3
√
3κ

[(2κ + 1)εrr − (2κ− 1)εθθ] (34)

and

C2 =
4
√
2πB1√
3

(35)

Two cases will be presented here to determine KI . The first case requires the use of a single
rectangular rosette for a three-term representation and the second case requires the use of
two rectangular rosettes for a four-term representation. In both cases, a methodology is
proposed to determine the extent of the valid region for placing the rectangular rosettes
in order to accurately determine the KI .
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2.2.1 Case of a single rectangular rosette

A single rectangular rosette can be used to provide the data necessary to determine
KI for a three-term representation. If only the first three terms are retained in the series
representation, Eq. (33) reduces to

KI =
4G

√
2πr

3
√
3κ

[(2κ + 1)εrr − (2κ− 1)εθθ] (36)

Now, if we consider again the example of an aluminum specimen with ν = 1/3, Eq. (36)
reduces to first formula proposed by DS [9]

KI = E
√

(8/3)πr εrr (37)

It is clear from Eq. (37) that the strain measured by the radially aligned gage is sufficient
to provide the data necessary for the evaluation of the value KI .

Eq. (36) accurately determines KI up to a radial distance rPT
1,max, which corresponds

to the extent of the valid region in which the strains can be accurately represented by the
series of three-term strains. Thus, rPT

1,max is the point that separates the region of stable
behavior from unstable behavior in the plot of the right-hand side of Eq. (36). Following
the methodology proposed by Sarangi et al. [35–37] for determining rPT

1,max, Eq. (36) can
be written as

(2κ+ 1)εrr − (2κ − 1)εθθ =
D2√
r

(38)

where D2 =
3
√
3κKI

4
√
2πG

is a constant. Taking logarithm on both sides of Eq. (38)

ln [(2κ + 1)εrr − (2κ− 1)εθθ] = −1

2
ln(r) + ln(D2) (39)

Eq. (36) is valid until a radial distance of rPT
1,max along the rosette line θ = 60◦. Thus,

a log-log plot of Eq. (36) is a straight line of slope equals to −0.5, with an intercept of
ln(D2). Using Eq. (36), the value of rPT

1,max can be accurately estimated and the valid radial
locations for a single rectangular rosette can now be stated as

rmin ≤ r ≤ rPT
1,max (40)

By positioning a single rectangular rosette as shown in Fig. 1 at a radial distance r between
rmin and rPT

1,max along the gage line θ = ±60◦, the measured strains εrr and εθθ can be
used to obtain KI using Eq. (36).

2.2.2 Case of two rectangular rosettes

Now, if we consider two rectangular rosettes RA and RB installed along the θ = 60◦

line, their respective positions rA and rB , and their respective strain readings ((εrr)r=rA ,
(εθθ)r=rA) and ((εrr)r=rB , (εθθ)r=rB ) can be used to solve Eq. (33) for KI . Thus, when
solving Eq. (33) for KI , using data obtained from rectangular rosettes RA and RB one can
write

KI =
KI(rA)

1−
(

rA
rB

)3/2
+

KI(rB)

1−
(

rB
rA

)3/2
(41)
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where KI(rA) and KI(rB) are the SIFs calculated in the case of a three-term representa-
tion from Eq. (36).

Following the methodology adopted in section 2.1.2, the maximum radial distance
rPT
2,max can be obtained by comparing the two quantities on the left-hand side and right-

hand side of Eq. (33). The rPT
2,max is the point of deviation of the plot of the right-hand

side of Eq. (33) from the plot of the left-hand side. Consequently, the valid radial locations
for the two rectangular rosettes are given by

rmin ≤ rA < rB ≤ rPT
2,max (42)

Thus, by placing two rectangular rosettes RA and RB as indicated in Fig. 1 at radial
distances rA and rB between rmin and rPT

2,max along the gage line θ = ±60◦, the measured
strains ((εrr)r=rA , (εθθ)r=rA) and ((εrr)r=rB , (εθθ)r=rB ) can be used to obtain KI using Eq.
(41).

3 Numerical examples and discussions

In this section, numerical examples have been performed using ABAQUS software
to validate the rectangular rosette technique proposed in section 2.2. For this purpose,
finite width and finite height edge cracked plates subjected to uniform tensile stress are
considered. Due to symmetry, only half of the plate is modeled, as shown in Fig. 2(a).
The width b = 100 mm and the half-height h = 100 mm of the plate are fixed in all
configurations considered in this study. We assume plane stress conditions, an applied
stress value of σ = 1 MPa, a Young’s modulus of E = 210 GPa and a Poisson’s ratio of
ν = 0.3. We generate different configurations, with different values of the crack length to
width ratio a/b ranging from 0.1 to 0.9 in steps of 0.1. To assure the highest accuracy in
the numerical analyses, more refined meshes were used to discretize the area around the
crack tip; see Fig. 2(b).

3.1 Numerical determination of rmax

3.1.1 Procedure for determination of rDS
1,max

According to the technique proposed by DS [9], the single gage must be placed at a
suitable location on the gage line θ = 65.16◦ in α = 61.29◦ direction to measure the linear
strain εx′x′ . In order to numerically simulate the strain gage based determination of KI

following this technique, strain values εx′x′ at nodes along the gage line are considered
to be strain gage readings. Using these strain values, KI can be calculated from Eq.
(21). The radial distance rDS

1,max which assures stable values of KI is obtained from the
procedure devised by Sarangi et al. [35–37]. To ensure the best fit curves in determining
rDS
1,max, the first four nodes are discarded. Fig. 3 shows the plots of ln(εx′x′) versus ln(r).

Following this procedure, straight lines having slope of −0.5 are superposed onto the plots
of ln(εx′x′). It can be clearly seen in Fig. 3 that both the initial straight line portion of
the plots and superposed lines are congruent to each other up to a certain radial distance
and the numerical results deviate from the superposed line thereafter. This is observed
in plots for all values of a/b. The point of deviation or rDS

1,max is evaluated as the value

11
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m
)
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0

100

Gage line

σ

a = 50 mm

(a)

Rosette line

(b)

Gage line

Rosette line

Fig. 2. (a) Geometry of finite edge cracked plate subjected to mode I loading con-
ditions and typical mesh used in the present investigation for finite element analysis,
(b) enlarged views at the crack tips corresponding to meshes in (a).

of the radius at which the error reaches 0.5%. Estimated values of the rDS
1,max are also

presented in Table 1. The results in Table 1 show that the value of rDS
1,max increases with

the increase of the crack length until reaching a maximum value of 17.14 mm at a/b = 0.5,
then decreases with the increase in the length of the crack. A similar trend has been
reported by Sarangi et al. [35–37]. Fig. 4 illustrates this variation of rDS

1,max with a/b. It
can be observed also from the results of Table 1 that when the crack tip approaches of
the right and left boundary of the cracked plate, the rDS

1,max values are very small, which
makes it difficult to accurately measure the value of KI using the technique of the single
gage proposed by DS [9].

ln(r)

ln
(ε

x’x
’)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-15

-13

-11

-9

-7

-5

-3

Fig. 3. Variations of ln(εx′x′) with ln(r) along the gage line θ = 65.16◦ for different
a/b ratios.
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Table 1

Variations of rDS
1,max, r

DS
2,max, r

PT
1,max and rPT

2,max with a/b.
Proposed technique DS technique

Single rosette Two rectangular rosettes Single gage Two gages

a/b rPT
1,max (mm) rPT

1,max/b rPT
2,max (mm) rPT

2,max/b rPT
2,max/r

PT
1,max rDS

1,max (mm) rDS
1,max/b rDS

2,max (mm) rDS
2,max/b rDS

2,max/r
DS
1,max

0.1 0.37 0.0037 2.83 0.0283 7.645 0.34 0.0034 2.94 0.0294 8.763

0.2 0.77 0.0077 5.63 0.0563 7.288 0.69 0.0069 6.09 0.0609 8.856

0.3 1.67 0.0167 8.49 0.0819 4.486 1.51 0.0151 8.90 0.0890 5.904

0.4 3.66 0.0366 11.84 0.1184 3.239 3.36 0.0336 13.63 0.1363 4.054

0.5 14.52 0.1452 18.26 0.1826 1.258 17.14 0.1714 19.38 0.1938 1.131

0.6 3.84 0.0384 16.96 0.1596 4.157 3.84 0.0384 18.96 0.1896 4.937

0.7 1.97 0.0197 14.59 0.1459 7.390 1.97 0.0197 15.08 0.1508 7.639

0.8 1.21 0.0121 10.64 0.1064 8.765 1.21 0.0121 12.02 0.1202 9.903

0.9 0.76 0.0076 6.95 0.0695 9.184 0.75 0.0075 8.18 0.818 10.968

a / b

r i,m
ax

 / 
b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3
rDS

1,max / b (DS technique, Single gage)

rDS
2,max / b (DS technique, Two gages)

rPM
1,max / b (Proposed technique, Single rosette)

rPM
2,max / b (Proposed technique, Two rosettes)

Fig. 4. Variations of rDS
1,max, r

DS
2,max, r

PT
1,max and rPT

2,max with a/b.
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3.1.2 Procedure for determination of rDS
2,max

Following the procedure described in Section 2.1.2 to estimate the extent of the four-
term representation or rDS

2,max, the quantity on the left-hand side of Eq. (18) is computed
from the εx′x′ values evaluated at radial locations in the α = 61.29◦ direction along the
gage line θ = 65.16◦. Fig. 5(a)-(c) show the plot of the left-hand side quantity of Eq. (18)
versus radial distance r and its best fit for a/b = 0.2, 0.5 and 0.7, respectively. To ensure
the best fit curves in determining rDS

2,max, all the nodes lower than 0.25 mm are discarded.

The estimated value of the rDS
2,max corresponding to the point of deviation between the plot

of the left-hand side quantity of Eq. (18) and its best fit along the gage line is marked in Fig.
5(a)-(c) as per the procedure described above. The radial distance rDS

1,max obtained from
the log-log procedure and which ensure stable values of KI for a three-term representation
is also marked in these figures. The rDS

2,max values are extracted for all a/b configurations.
Then, they are tabulated in Table 1 and plotted versus a/b in Fig. 4. It can be observed
from Table 1 that the ratio rDS

2,max/r
DS
1,max decreases with the increase of a/b until reaching

a minimum value of 1.13 at a/b = 0.5, then increases with the increase of a/b. The rDS
2,max

is 8.76 times wider than rDS
1,max at a/b = 0.1, which is a value close to the left boundary of

the cracked plate and 10.97 times wider at a/b = 0.9, which is a value close to the right
boundary of the cracked plate. Thus, the use of the technique of two gages proposed by
DS is a good solution when the crack tip is near the right and left boundary of the cracked
plate.

3.1.3 Procedure for determination of rPT
1,max

According to the proposed technique of the single rectangular rosette described in Sec-
tion 2.2.1, a single rectangular rosette is to be placed at an appropriate location along
the rosette line θ = 60◦ within the estimated rPT

1,max in order to measure the linear strains
εrr and εθθ. From the finite element results, the strains εrr and εθθ, as well as the radial
distance r are computed for all the nodes along the rosette line. For all a/b configurations,
Fig. 6 gives the plots of ln [(2κ+ 1)εrr − (2κ − 1)εθθ] versus ln(r) for all the nodal values
along the rosette line. To ensure the best fit curves in determining rPT

1,max, the first four
nodes are discarded. It can be seen that the plots consist of a linear behavior part followed
by a nonlinear behavior part, as predicted by the theory. The points at which the plots
move from linear to nonlinear give the values of rPT

1,max. Lines of slope −0.5 are superposed
on the plots of ln [(2κ+ 1)εrr − (2κ − 1)εθθ] and considering these lines as being the exact
solutions, absolute percentage relative error at all values of radius of these plots are calcu-
lated. The rPT

1,max are estimated at points where the error is less than 0.5%. The values of

the rPT
1,max for all a/b configurations are also presented in Table 1 and plotted versus a/b in

Fig. 4. Similarly to the results obtained by using the technique of a single gage proposed
by DS, the value of rPT

1,max increases with the increase of the crack length until reaching a
maximum value of 14.52 mm at a/b = 0.5, then decreases with the increase in the length
of the crack. One can observe in Fig. 4 that the plot of rPT

1,max is almost similar to the plot

of rDS
1,max, the difference is very small between the two plots, except at a/b = 0.5 where the

difference is maximum and equal to 2.62 mm. Note that when the crack tip approaches of
the right and left boundary of the cracked plate, the rPT

1,max values are also very small, as
the case of a single gage proposed by DS.
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Fig. 5. Variation of KI with r along the gage line θ = 65.16◦ for (a) a/b = 0.2, (b)
a/b = 0.5 and (c) a/b = 0.7.
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Fig. 6. Variations of ln [(2κ+ 1)εrr − (2κ− 1)εθθ] with ln(r) along the rosette line
θ = 60◦ for different a/b ratios.

3.1.4 Procedure for determination of rPT
2,max

The same procedure used in the case of two gages was used to determine the extent
of validity of Eq. (33) ( i.e. the value of rPT

2,max) in the case of two rectangular rosettes.
The quantity on the left-hand side of Eq. (33) is computed from the values of εrr and
εθθ evaluated at radial locations along the rosette line θ = 60◦. The plot of the left-
hand side quantity of Eq. (33) versus radial distance r and its best fit for configurations
a/b = 0.2, 0.5 and 0.7 are shown in Fig. 7(a)-(c), respectively. The estimated value of the
rPT
2,max corresponding to the point of deviation between the curve of the measured quantity
4G

√
2πr

3
√
3κ

[(2κ + 1)εrr − (2κ− 1)εθθ] and the curve of the form KI −C2r
3

2 is marked in these

figures. In addition, the radial distance rPT
1,max obtained from the log-log for a three-term

representation is also indicated in these figures. The rPT
2,max values are extracted for all a/b

configurations and tabulated in Table 1 and plotted versus a/b in Fig. 4. Fig. 4 shows that
the curve of rPT

2,max followed the same trend of the curve rDS
2,max. Similarly to the results

obtained by using the technique of two gages proposed by DS, the results of Table 1 shows
that the ratio rPT

2,max/r
PT
1,max decreases with the increase of a/b until reaching a minimum

value of 1.26 at a/b = 0.5, then increases with the increase of a/b. The rPT
2,max is 7.65 times

wider than rPT
1,max at a/b = 0.1, which is a value close to the left boundary of the cracked

plate and 9.18 times wider at a/b = 0.9, which is a value close to the right boundary of the
cracked plate. The use of the two rectangular rosettes technique proposed is recommended
when the crack tip is near the right and left boundary of the cracked plate.

3.2 Validation of the technique

3.2.1 Both cases of single rectangular rosette and single gage

To test the effectiveness of the proposed technique for determining KI using single
rectangular rosette, the radial εrr and tangential εθθ strains values at the nodes along the
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Fig. 7. Variation of KI with r along the rosette line θ = 60◦ for (a) a/b = 0.2, (b)
a/b = 0.5 and (c) a/b = 0.7.
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rosette line θ = 60◦ are considered as strain rosette readings. Using the εrr and εθθ strains
values, KI have been calculated using Eq. (36). Similarly, in the case of the single gage
technique proposed by DS, KI has been calculated from the εx′x′ strain values at the nodes
along the gage line θ = 65.16◦ using Eq. (21). These two techniques are illustrated with
the help of the numerical examples for a/b = 0.2, 0.5 and 0.7. The values KI = 0.3427,

1.1192 and 2.9749 MPa m
1

2 predicted by ABAQUS in the cases of a/b = 0.2, 0.5 and 0.7,
respectively, are used as reference solutions to test the accuracy of the simulated values
of KI determined employing these two techniques. The absolute percentage relative error
of the numerically simulated KI values is plotted as a function of the radial emplacement
r of the rectangular rosette and of the gage in Fig. 8(a) and (b), respectively. It can be
observed in these figures that the error in KI does not exceed 0.5% if the rectangular
rosette and the gage are placed inside the valid region i.e., at r ≤ rPT

1,max and r ≤ rDS
1,max,

respectively. On the other hand, when the rectangular rosette and the gage are placed
outside the valid region, the error in KI increases very rapidly with radial location r.

For a/b = 0.5 configuration, Table 2 illustrates four different locations of rectangular
rosette and of gage along the rosette line θ = 60◦ and the gage line θ = 65.16◦, respectively.
It could be observed that in both the techniques, the error in KI measurement are very
low when the rectangular rosette is placed within rPT

1,max and the gage within rDS
1,max. In

both cases 1 and 2 correspond to the optimal locations r = 5 and 10 mm, respectively,
the error in KI does not exceed 0.3% for the rectangular rosette and 0.2% for the gage.
It was also observed that the error increase rapidly when the rectangular rosette is placed
outside rPT

1,max and the gage outside rDS
1,max. In both cases 3 and 4 correspond to the non-

optimal locations r = 25 and 35 mm, respectively, the error in KI jumps from a value
of 2.16 − 6.98% for the rectangular rosette and a value of 1.5 − 5.09% for the gage. This
shows that the location of the rectangular rosette in rPT

1,max and of the gage in rDS
1,max is

very important for a good estimate of KI . Also, the plots in Fig. 8(a) and (b), and the
results in Table 2 conclude that the use of a single rectangular rosette or a single gage
gives almost the same accuracy in the measured values of KI .

Table 2

KI obtained for four different locations of the rectangular rosette and of the gage
(a/b = 0.5; rPT

1,max = 14.52 mm; rDS
1,max = 17.14 mm; Kref

I = 1.1192 MPa
√

m).

Case r (mm)
Single rectangular rosette Single gage

εrr εθθ KI (MPa.m
1

2 ) Abs. % rel. err. εx′x′ KI (MPa.m
1

2 ) Abs. % rel. err.

1 5 2.6497E-5 5.4683E-6 1.1177 0.13 2.5157E-5 1.1179 0.12

2 10 1.8618E-5 1.4076E-6 1.1161 0.28 1.7775E-5 1.1170 0.20

3 25 1.1409E-5 -3.0196E-6 1.0950 2.16 1.1096E-5 1.1025 1.50

4 35 9.1398E-6 -3.9235E-6 1.0442 6.68 9.0352E-6 1.0622 5.09

3.2.2 Both cases of two rectangular rosettes and two gages

In order to numerically simulate the determination of KI following the proposed tech-
nique of two rectangular rosettes, εrr and εθθ strain values at nodes along rosette line
θ = 60◦ are considered to be strain rosette readings. Using these strain values, KI has
been calculated using Eq. (41). Similarly, in the case of the two-gage technique proposed
by DS, KI has been calculated from the εx′x′ strain values at the nodes along the gage
line θ = 65.16◦ using Eq. (26).
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To understand the importance of rPT
2,max and rDS

2,max on the accuracy of KI determi-
nation, three examples, representing the three possible types of combinations of locations
between RA/GA and RB/GB on the rosette/gage line θ = 60◦/θ = 65.16◦ are shown in
Tables 3-5 for a/b = 0.2, a/b = 0.5 and a/b = 0.7 configurations, respectively. The first
example represents the case where RA/GA and RB/GB are placed within rPT

2,max/r
DS
2,max.

The second example represents the case where RA/GA is placed within rPT
2,max/r

DS
2,max and

RB/GB outside rPT
2,max/r

DS
2,max. And the third example represents the case where RA/GA

and RB/GB are placed outside rPT
2,max/r

DS
2,max. The data of Tables 3-5 shows that the error

in KI is very small when RA/GA and RB/GB are placed within rPT
2,max/r

DS
2,max. The error

remains small even when RB/GB is placed outside rPT
2,max/r

DS
2,max, keeping RA/GA within

rPT
2,max/r

DS
2,max. As mentioned before, this type of combination of locations is not recom-

mended because it does not respect the methodology adopted here to obtain the extent of
validity of the four-term representation. The error becomes large when RB/GB is placed
outside rPT

2,max/r
DS
2,max. The results obtained in this study clearly indicate that the loca-

tion of RA/GA and RB/GB within rPT
2,max/r

DS
2,max is very important to ensure an accurate

measurement of KI . These results also clearly indicate that the use of two rectangular
rosettes or two gages gives almost the same accuracy in the measured values of KI .

Table 3

KI obtained for three different locations of two rectangular rosettes and of two gages
(a/b = 0.2; rPT

1,max = 0.77 mm; rPT
2,max = 5.63 mm; rDS

1,max = 0.69 mm; rDS
2,max = 6.09 mm;

Kref
I = 0.3427 MPa

√
m).

Proposed technique DS technique

Single rosette Two rectangular rosettes Single gage Two gages

Case
rA (mm)

εrr εθθ
KI Abs. % KI Abs. %

εx′x′

KI Abs. % KI Abs. %

rB (mm) (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err.

1
2.5 1.1725E-5 2.6469E-6 0.3495 1.97

0.3439 0.35
1.1134E-5 0.3498 2.07

0.3440 0.36
5 8.5121E-6 1.4095E-6 0.3596 4.93 8.1137E-6 0.3605 5.20

2
5 8.5121E-6 1.4095E-6 0.3596 4.93

0.3473 1.33
8.1137E-6 0.3605 5.20

0.3473 1.32
10 6.3753E-6 4.9343E-7 0.3822 11.51 6.1234E-6 0.3848 12.28

3
10 6.3753E-6 4.9343E-7 0.3822 11.51

0.3568 4.10
6.1234E-6 0.3848 12.28

0.3572 4.24
15 5.4829E-6 1.0078E-7 0.4034 17.71 5.2994E-6 0.4079 19.01

Table 4

KI obtained for three different locations of two rectangular rosettes and of two gages
(a/b = 0.5; rPT

1,max = 14.52 mm; rPT
2,max = 18.26 mm; rDS

1,max = 17.14 mm; rDS
2,max = 19.38

mm; Kref
I = 1.1192 MPa

√
m).

Proposed technique DS technique

Single rosette Two rectangular rosettes Single gage Two gages

Case
rA (mm)

εrr εθθ
KI Abs. % KI Abs. %

εx′x′

KI Abs. % KI Abs. %

rB (mm) (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err.

1
5 2.6497E-5 5.4683E-6 1.1177 0.13

1.1187 0.04
2.5157E-5 1.1179 0.12

1.1184 0.07
15 1.5097E-5 -7.1794E-7 1.1135 0.51 1.4497E-5 1.1157 0.31

2
15 1.5097E-5 -7.1794E-7 1.1135 0.51

1.1295 0.92
1.4497E-5 1.1157 0.31

1.1272 0.72
25 1.1409E-5 -3.0196E-6 1.0950 2.16 1.1096E-5 1.1025 1.50

3
25 1.1409E-5 -3.0196E-6 1.0950 2.16

1.1724 4.75
1.1096E-5 1.1025 1.50

1.1638 3.98
35 9.1398E-6 -3.9235E-6 1.0442 6.68 9.0352E-6 1.0622 5.09

4 Conclusion

In the present paper, a two-element rectangular rosette technique for accurate deter-
mination of mode I SIF has been proposed. For this purpose, a four-term representation
of the strain field was derived from the generalized Westergaard stress functions. The
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Table 5

KI obtained for three different locations of two rectangular rosettes and of two gages
(a/b = 0.7; rPT

1,max = 1.98 mm; rPT
2,max = 14.59 mm; rDS

1,max = 1.97 mm; rDS
2,max = 15.08

mm; Kref
I = 2.9749 MPa

√
m).

Proposed technique DS technique

Single rosette Two rectangular rosettes Single gage Two gages

Case
rA (mm)

εrr εθθ
KI Abs. % KI Abs. %

εx′x′

KI Abs. % KI Abs. %

rB (mm) (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err. (MPa.m
1

2 ) rel. err.

1
5 6.8804E-5 9.4875E-6 2.9097 2.19

2.9703 0.15
6.5468E-5 2.9091 2.21

2.9670 0.27
12 4.1356E-5 -8.9076E-6 2.7451 7.72 3.9972E-5 2.7516 7.51

2
12 4.1356E-5 -8.9076E-6 2.7451 7.72

3.0279 1.78
3.9972E-5 2.7516 7.51

3.0066 1.07
19 2.9148E-5 -1.6057E-5 2.4645 17.16 2.8845E-5 2.4986 16.01

3
19 2.9148E-5 -1.6057E-5 2.4645 17.16

3.1902 7.24
2.8845E-5 2.4986 16.01

3.1249 5.04
24 2.2548E-5 -1.7434E-5 2.1600 27.39 2.2965E-5 2.2357 24.85

important property of the proposed technique is that the position and orientation of the
rectangular rosette are independent of the physical properties of the material. The use of
a single rectangular rosette gives the data necessary for determining KI in a three-term
representation. The use of two rectangular rosettes makes it possible to determine KI in
a four-term representation. To ensure accuracy in the determination of KI , the extent
of validity of the three- and four-term representation is determined. A new formulation
of the DS approach has been presented, the analytic expression of the angle of θ is given
as a function of the Poisson’s ratio, ν, and a simplified rewrite of the strain expression is
obtained. The extent of validity of the three- and the four-term representation proposed
by DS is also determined. Numerical simulations show that the two techniques give almost
the same accuracy in the measured values of KI . The results of the present investigation
show that the proposed two rectangular rosette or two gage DS techniques appear to be
practically viable techniques for the configurations where the crack is close to the edges
(very small a/b or very large a/b values). For this, it is important to use two rectangular
rosettes or two gages to ensure an accurate measurement of KI . The techniques devel-
oped in this study should help the practitioner to choose the technique adapted to each
configuration a/b, and to determine the optimal rectangular-rosette or gage locations for
accurate experimental measurement of KI .
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