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Abstract:  

  The Representative Volume Element (RVE) plays a central role in the homogenization of 

random heterogeneous microstructures, especially for composite and porous materials, with a 

view to predicting their effective properties. A quantitative evaluation of its size is proposed in 

this work in linear elasticity and linear thermal conductivity of random heterogeneous materials. 

A RVE can be associated with different physical and statistical properties of microstructures. The 

methodology is applied to specific two–phase microstructure–based random sets. Statistical 

parameters are introduced to study the variation in the RVE size versus volume fractions of 

components and the contrast in their properties. The key notion of the integral range is introduced 

to determine these variations. For a given desired precision, we can provide a minimal volume 

size for the computation of effective mechanical and thermal properties. Numerical simulations 

are performed to demonstrate that a volume exists which is statistically representative of random 

microstructures. This finding is an important component for homogenization–based multiscale 

modeling of materials. 

 

Keywords: Representative volume element; Numerical Homogenization; Microstructures; 
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1. Introduction 
 

 One important goal of the physics of heterogeneous materials is to derive their effective 

properties from knowledge of the constitutive laws and the spatial distribution of their 

components. The homogenization methods used for this purpose have reached a high level of 

sophistication and efficiency, especially in the case of mechanical properties and the thermal 

conductivity. They can be found in reference extended papers and textbooks by such authors as 

Buryachenko (2007), Zimmerman (1989) and Ostoja-Starzewski et al. (2016). Numerical 

homogenization for the macroscopic effective properties is also available. They include the well–

known finite element methods or fast Fourier transform. Homogenization refers to the process of 

considering a statistically homogeneous representation of a heterogeneous material, called 

Representative Volume Element RVE. 

 In the last years, the determination of the RVE size has been a topic of extensive research 

as proposed by Kanit et al. (2003), Gitman et al. (2007) and Phu–Nguyen et al. (2010). The RVE 

size is very much dependent on the physics constitutive response and random geometry involved. 

Thus, the results of Drugan and Willis (1996) are of historical rather than practical interest as 

they do not apply to the entire range of the volume fractions and have actually been calculated 

using a sine (i.e., periodic) function for the dependence of spatial fields; there exists also yet 

another problem with their derivation. The results of Kanit et al. (2003) are only applicable to 

linear elasticity of composites. Despite that, there is still no a single or exact definition of the 

RVE. For this reason, some of the definitions used by scientists are listed below. 

 

• Hill (1963): The RVE is a sample that is 

structurally entirely typical of the whole mixture on average and contains a sufficient 

number of inclusions for the apparent overall moduli to be effectively independent of the 

surface values of traction and displacement, as long as these values are macroscopically 

uniform.  

• Hashin (1983): The RVE is a model of the 

material to be used to determine the corresponding effective properties for the 

homogenized macroscopic model. The RVE should be large enough to contain sufficient 

information about the microstructure in order to be representative, however it should be 

much smaller than the macroscopic body.  
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• Drugan and Willis (1996): The RVE must be 

chosen sufficiently large compared to the microstructural size for the approach to be 

valid, and it is the smallest material volume element of the composite for which the usual 

spatially constant overall modulus macroscopic constitutive representation is a 

sufficiently accurate model to represent the mean constitutive response. This work gives 

the minimum RVE size of an elastic composite composed of a random dispersion of non–

overlapping identical spheres. Gusev (1997) investigated the same problem but by using 

the numerical technique.  

• Trusov and Keller (1997): An RVE is the 

minimal material volume, which contains statistically enough mechanisms of deformation 

processes. The increase in this volume should not lead to changes of evolution equations 

for field–values, describing these mechanisms.  

• Evesque (2000): The size of the RVE should 

be large enough with respect to the individual grain size to define overall quantities such 

as stress and strain, but this size should also be small enough in order not to hide 

macroscopic heterogeneity.  

• Ostoja–Starzewski (2002): The RVE is very 

clearly defined in two situations only : i. unit cell in a periodic microstructure and ii. 

volume containing a very large mathematically infinite set of microscale elements, 

possessing statistically homogeneous and ergodic properties.  

• Ostoja–Starzewski (2006): The RVE is 

defined by three conditions: i. statistical homogeneity stationarity and ergodicity, ii. Hill 

condition leading to admissible boundary conditions, iii. variational principle.  

• Trias et al. (2006): The criteria used to define 

the minimal required size for a RVE was proposed. This work establishes the size of RVE 

for a typical carbon fiber reinforced polymer. It is concluded that the minimum size is 

L/R=50, where L is the volume length and R the fiber radius. 

A more practical RVE definition is found in the framework of homogenization in which a 

numerical RVE is defined as the smallest volume element that has the same target property / 

behavior as the full scale material. Numerous attempts have been made in order to quantify the 

size of RVE on the basis of both statistical and numerical methods, Grufman and Ellyin (2007). 
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Stroeven et al. (2004) have quantified the size of the RVE for heterogeneous microstructures by 

studying the averages and standard deviations of specific factors like particle size, dissipated 

energy and strain concentration. This methodology was also used by Ren and Zheng (2004) to 

define the minimum RVE size for random composites. The real application of the statistical 

method is studied by Thomas et al. (2008) for carbon–epoxy composite with high–fiber volume 

fraction and Pelissou et al. (2009) for random quasi–brittle composites. The RVE was generated 

using the microstructure of optical images. The size of different RVE ranges from 691.1µm x 

748.9µm to 1129.2µm x 785.5µm. The statistical parameters defined for each RVE are; the 

covariance, the pair correlation function and the voronoï diagram. These treatments make a 

strong case for the use of statistical descriptors in the development of the statistical RVE. 

According to Moussaddy et al. (2013), the RVE edge length was found to be around half the fiber 

length for aspect ratios larger than 10, allowing firsthand quick estimations of RVE sizes.  

The effect of volume fraction of particles on the RVE size was studied by EL Moumen et al 

(2015a) using the statistical approaches. For each configuration 200 realizations were generated 

in order to ensure the representativity of the results. The volume fraction of particles ranges from 

5% to 23% of spherical and ellipsoidal inclusions. It is concluded that the RVE size depends on 

the volume fraction, type of inclusion and the composite properties. It is concluded that the 

minimum RVE is obtained with 50 particles. Mirkhalaf et al. (2016) presented a methodology to 

construct the RVE of composites. This methodology based on the statistical and numerical 

approaches. It was concluded that for both cases of inclusion volume fraction equal to 10% and 

15% the RVE size could be considered 15µm.  Sukiman et al. (2017) studied the effect of 

microstructures on the RVE size of composite made up of randomly oriented short fibers using a 

computational homogenization technique. It appears that some microstructures with fibers do not 

respect the convergence of the apparent properties calculated under different boundary conditions 

because their RVE size is very large. Hua et al. (2018) proposed a statistical approach to 

determine RVE size to simulate a given property with the desired precision dependent on the 

volume fraction of particles and the number of realization. Using this technique, the mean of 

many realizations of a small RVE instead of a single large RVE can retain the desired precision 

of a result with much lower computational cost. Mohan et al. (2020) studied the RVE generation 

and its size determination. The minimum size is determined and integrated in the algorithm 

based 
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on the random sequential adsorption technique. This algorithm has been exploited to 

generate 

the 3D RVEs.  

In literature, much attention has been paid to construction of various parameters that affects 

the RVE size. The important examined parameters are particles volume fraction, morphology of 

particles (sizes and shapes) and distribution, effective properties and contrast in properties. 

However, all definitions reveal that the RVE should contain enough information’s about the 

microstructure and should be sufficiently smaller than the macroscopic structural dimensions. 

Obviously these definitions need to be completed introducing the statistical parameters of random 

microstructures.  

Motivated by the work Moussaddy et al. (2013) and Hu et al. (2018) the contribution of this 

paper is the numerical and statistical demonstration of the existence of RVE for random 

microstructures. This is because coupling numerical and statistical methods can give rise to 

marked differences in the macroscale response. The idea is to make a connection between the 

RVE size and all microstructure parameters. Having a general expression of the RVE of 

heterogeneous materials, a procedure to find its variation versus particle volume fractions and 

contrasts can be determined.  

After this general introduction, Section 2 outlines the different microstructural parameters 

which influence the RVE size. Section 3 presents the microstructures used in this investigation, 

benefits of identifying and using statistical parameters and the methodology used for RVE 

determination. The paper then discusses the results and Section 5 lastly presents the conclusions. 

 

2. RVE size versus microstructural 

parameters 
 

The objective of this section is to present the results of some works concerning the effect of 

microstructural parameters on the size of the RVE. The evolution of the RVE as a function of the 

volume fraction, contrasts and morphology of particles is presented.  

 

2.1. RVE size versus particle volume fractions 

 

In many investigations, the evolution of the RVE size as a function of particles volume 

fraction was studied. This is because changing the particle volume fractions changes the RVE 
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size. Figure 1 presents the results obtained by Gitman et al. (2004) and Gitman et al. (2007) for 

the variation in the RVE size as a function of the volume fraction of inclusions. It appears that the 

RVE of periodic microstructures with volume fractions ranging from 30% to 60% is the same. 

For non periodic microstructures, it appears that the RVE size increases by increasing the particle 

volume fractions until 50% of inclusions and then decreases. The maximum length of RVE is 22 

cm. It should be mentioned that the proposed methodology by Gitman et al. (2004) and Gitman et 

al. (2007) do not give a precise size of the RVE because the evolution is discontinuous. El 

Moumen et al. (2013), El Moumen et al. (2014) and El Moumen et al. (2015a, 2015b) have 

investigated on the variation of the RVE size as a function of the particle volume fractions, for 

elastic and thermal properties of random microstructures. Figure 2 presents the example of the 

evolution of RVE size for different values of contrasts. In this study, the authors consider the case 

of higher contrast, for that the RVE size becomes important. It appears that by increasing the 

volume fraction of inclusions, the size is increased. This RVE reaches a maximum value at 67% 

of inclusions and then decreases again. 

 

 
(a) Gitman et al. (2004) 
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(b) Gitman et al. (2007) 

Figure 1: Variation of the RVE size versus volume fraction of inclusions as proposed by: (a) 

Gitman et al. (2004) and (b) Gitman et al. (2007).  

 

 

 

 
El Moumen et al. (2015a, 2015b) 

Figure 2: RVE size vs particle volume fractions for different values of contrasts.  

 

 

2.2. RVE size versus effective and apparent 

properties 

 

In this sub–section, we present the variation of the RVE size depending on the computed 

mechanical properties. Generally, there is two types of estimated properties, apparent properties 
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obtained on the volume size less than RVE and effective properties obtained on the volume larger 

than RVE. The question is what is the RVE size regarding the estimated properties ? Kanit et al. 

(2003) and Phu–Nguyen et al. (2010) give the variation of the RVE as a function of the estimated 

properties for different boundary conditions. Figure 3 shows that the RVE size is achieved if the 

estimated properties do not depend on the used boundary conditions. It should be stated these are 

boundary conditions, the results being based on variational principles and certain statistical 

properties of random microstructures, see Huet (1990). 

 

 
 

Figure 3: RVE size vs estimated properties for different boundary conditions as proposed by 

Kanit et al. (2003):  Kinematic Uniform Boundary Conditions (KUBC), Static Uniform Boundary 

Conditions (SUBC). 
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The notion of realizations and statistical methods are introduced by El Moumen et al. 

(2014) to estimate the properties of heterogeneous materials and to determine the RVE size. In 

the case of the RVE, it appears that one realization is sufficiently for representativeness of the 

results, conversely to the case of volumes less than RVE for which the number of realizations, 

about 100 realizations, is important to achieve the effective properties. It should be mentioned 

that the RVE size of the thermal conductivity is small than the RVE size of mechanics properties, 

because the contrast and the number of degree of freedom. The statistical methods were also used 

in other works to investigate the RVE size for two–dimensional 2D and three–dimensional 3D 

viscoplastic composite materials as Madi et al. (2006). They found as conclusion that the size of 

the RVE in 2D is larger than the size of the RVE in 3D and the size of the RVE seems to be 

smaller in the nonlinear case than in the linear case. 

 

2.3. RVE size versus morphology of particles 

 

It is mentioned that the particles morphology (or shape of inclusions) has an important 

effect on the RVE size. Several articles have studied the effect of reinforcement shape on the 

physical properties and RVE size of heterogeneous materials, El Moumen et al. (2014) for 

example. The authors show that the RVE size of composites reinforced with random distribution 

of particles is increased if the geometrical shape becomes more complex, keeping the same 

contrast. The minimum RVE size is one of composites containing spherical particles. This is can 

be explained by the non–existence of preferred orientation in the case of spheres. Furthermore, 

Dirrenberger et al. (2014) have shown that there are some microstructures, with gigantic fibers or 

infinitely long fibers, can lead to gigantic RVE sizes, or even no RVE at all i.e. yield non–

homogenizability in the sense of Auriault (1991). Figure 4 gives the scale variation of the RVE 

size for different particle shapes generated using Poisson process.  

The large RVE is given by gigantic fibers and the small one by spherical particles, while 

maintaining the same contrasts between physical properties. It should be mentioned that the 

repulsion distance between neighboring particles has also an effect on the RVE size. For 

example, El Moumen et al. (2013) have shown that the RVE of microstructures based hard 

spheres models, with non–overlapping particles, is 13 times the RVE size of microstructures 

based Boolean models, with overlapping spheres. Figure 5 illustrates the morphological 

description of the effect of repulsion distance on the RVE size as proposed by El Moumen et al. 
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(2013).  

 

 
 

 

Figure 4: Sense of the RVE size increasing for different reinforcement shapes: (a) spherical 

particles, (b) oblate spheroïds, (c) prolate spheroïds and (d) gigantic fibers (infinitely long fibers). 

 

 

 
 

Figure 5: Morphological equivalence between RVE of overlapping and non–overlapping spheres 

as proposed by El Moumen et al. (2013). 

 

3. Description of the investigated 

microstructures 
 

In this investigation, various microstructures are used for numerical and statistical 

characterization. The microstructures are made of so–called Boolean models of spheres and hard 

spheres model. The Boolean models are obtained by a random implantation of primary 

inclusions, pores; grains; rigid particles; fibers; .., with possible overlaps. The hard spheres model 

is obtained by a sequential implantation of inclusions, keeping only the particle without any 

contact. The hard model does not give the microstructure with high volume fraction because the 

jamming limit. The maximum fraction obtained with this model is 27%. For the microstructures 

(a) (b) 
(c) (d) 
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with the volume fractions of particles more than 27%, the inclusions are allowed to overlap and 

in the case of volume fraction less than 27%, the overlapping is possible but not imposed in the 

algorithm.  

The composite microstructures are modeled by a random set. To generate the simulated 

microstructures, first pick points 1M
, 2M

, ..., i
M

, ..., n
M

 in space at random, according to a  

Poisson process. Next, construct inclusion i  of each center i
M

, while respecting a given 

repulsion distance between neighboring inclusions in the microstructure based hard spheres 

model and without respecting any repulsion distance for a microstructure based Boolean model. 

Figures 6 and 7 present an example of the investigated microstructures, generated by a Poisson 

process using the Boolean model and the hard spheres model.  

In our computation, an RVE with 200 particles randomly distributed in the matrix are 

generated with the possibility of overlapping for the case of high volume fraction. This RVE 

clearly reveals the multiscale microstructure of the composite with three scales: spherical 

particles, the aggregates phase, and the matrix 

 

   

(a) Boolean models 

  
 

(b) Complementary of Boolean models 

Figure 6: 3D simulated microstructures of Boolean models, with 30% of volume fraction, 
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obtained using Poisson Process. 

 

 

 

   
(a) Hard models 

   
(b) Complementary of hard models 

Figure 7: 3D simulated microstructures of hard model, with 10% of volume fraction, obtained 

using Poisson Process. 

 

The combination of basic models and their complementary leads us to generate composite 

structures with different particle volume fractions. Figure 8 gives an example of the simulated 

microstructure based Boolean model and its finite element FE meshes. The number of FE mesh 

used for the simulation was 100000 EFs. 
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Figure 8: Example of 3D microstructures based Boolean models and their FE meshes with 

different resolutions. 

4. Numerical and statistical evaluation of 

RVE size  
4.1. Expression of the RVE size 

 

Combined numerical and statistical methods offer a good balance between general 

applicability on the one hand and the possibility of automated testing of different samples on the 

other, Gitman et al. (2007). For this reason, a combined numerical–statistical approach was 

chosen in this study to determine the fluctuation of the RVE size as a function of the 

microstructure properties. It should be mention here that the FE computations presented in El 

Moumen et al. (2014) and El Moumen et al. (2015a, 2015b) are used in this section to study the 

fluctuation of the RVE size. These computations are reinforced introducing some laws of 

mathematical morphology. A computational procedure is proposed by which the fluctuation of 

the RVE can be determined for random microstructures. To achieve this objective, we apply the 

results of Kanit et al. (2003), Jeulin (2012) and El Moumen et al. (2013) in the case of composite 

materials and make use of the key notion of the integral range A . This geostatistical parameter is 

used to relate the size of the RVE with other microstructure parameters. This parameter was 

defined by various workers as follows.  

 

• Matheron (1971): It is possible to define a 

range which gives information on the domain size of the structure for which the 

parameters measured in this volume have a good statistical representativity. This range is 

called the integral range.  

• Kanit et al. (2003): In the microstructure of 

Voronoï mosaics, the integral range depends on the size of grains in RVE.  

• Jeulin (2012): The integral range A  does not 

depend on volume V , it is large enough to insure the stationarity of the field by 

minimizing the effect of boundary conditions.  

• El Moumen et al. (2013): It means that, the 

integral range A  is a morphological parameter, depends for the random microstructure, 

on the volume of inclusion in RVE.  



14 

 

• El Moumen et al. (2014): The integral range A  

depends on the volume of one inclusion in the RVE. This volume of inclusion was 

integrated in the particle volume fraction p. The authors have studied several 

configurations with changing the contrast, the particles distribution and the particles 

volume fractions. It appears that for random microstructures with volume fraction p , the 

integral range can be written as: 

RVEV

p
A =  

[1] 

 In order to obtain a good prediction of the effective properties, it is necessary to relate the 

size of RVE with all morphological and mechanical, or thermal, parameters of microstructures. 

The main parameters are the mechanical properties of phases 
1Z  and 

2Z , or thermal conductivity 

1λ  and 2λ , the particle volume fractions p  and some statistical parameters. 

In geostatic, based on the work of Jeulin (2012) it is well known that for an ergodic stationary 

random function Z , we can compute the variance 
2 ( )ZD V  over the volume V  as a function of the 

integral range A  and the point variance 
2

ZS  by: 

2 2( ) =  
Z Z

A
D V S

V
 

[2] 

We now consider a random microstructure made of two phases 1F  with volume fraction p  

and 2F  with volume fraction ( p−1 ) having real properties 1Z  for phase 1F  and 2Z  for phase 2F .  

In the case of a two–phase material, the point variance 
2

ZS  of the random variable Z  is given by 

Cailletaud et al. (1994) as: 

2 2

1 2= (1 )( )ZS p p Z Z− −  [3] 

 Considering now that the mechanical properties is the random function Z , we finally 

reach at the following equation: 

2 2

1 2( ) = (1 )( )  Z

A
D V p p Z Z

V
− −  

[4] 

Where 
2
( )ZD V  is the variance of the volume V  and A  is the integral range.  

Several methods were used to determine the RVE parameters. The first group lists the 

number of realizations n  determination criteria, while the second group lists the number of 
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inclusions N  determination criteria, Moussaddy et al. (2013). In this study, we use the first 

criterion for which the variance 
2
( )ZD V  is expressed introducing the absolute error 

abs
ε  and 

realizations n  as proposed by Lantuéjoul (1991): 





=
=

nVD

nVD

absZ

absZ

22 )(4

)(2

ε
ε

 
[5] 

It is to be noted that the size of the RVE can be defined as the volume for which the number 

of realizations is equal to 1, see Willot and Jeulin (2009). We have: 

( ) 1n V R V E= =  [6] 

Therefore the combination of Equations 1, 4, 5 and 6 gives: 

2

2 1

2

4 (1 )( )

abs

p p Z Z A
RVE

ε
− −=  

[7] 

2

2 1

2

4 (1 )( )

abs

p p Z Z p
RVE

RVEε
− −=  

 

Using Equation 7, we can deduce the variation of the RVE as a function of particle volume 

fractions p  and the contrast c in mechanical properties. The contrast c is defined as c=Z1/Z2. 

This volume size gives the representativity of the estimated properties in random microstructures, 

for desired error 
abs

ε  as: 

2 2

2 1

2

4 (1 ) ( )
R V E

a b s

p p Z Z
V R V E

ε
− −= =  

[8] 

The unit of the RVE is the Voxel. Therefore, the variation of the RVE size versus the 

volume fraction p  and the contrast c  in random microstructures is equivalent to the fluctuation 

of the bivariate function ( , )f p c  as follows: 

22 1 1
( , )

abs

Z c p p
f c p

ε
− −

=  
[9] 

Where c=Z2/Z1 and Z2 is the matrix property. Developing Equation 8, we finally come at: 

2
2 1 1

( , )
abs

Z c p p
RVE c p

ε
− −

=  
[10] 

The relative error is given as 
2

abs
r

Z

εε = , and the final expression of the RVE is:  
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2 1 1

r

c p p
RVE

ε
− −

=  
[11] 

Using this equation, the unit of the RVE is the voxel. This equation is used to describe the 

variation of the RVE of random microstructures as a function of the volume fraction and as a 

function of the contrast for desired and fixed absolute error.  

4.2. Fluctuation of the RVE as a function of 

contrasts and volume fractions 

 

 Considering the variation of Equation 11 as a function of the contrast c. We can determine 

the linear variation of the RVE size versus contrast for different fixed values of particle volume 

fractions p and the variation of the RVE as a function of the volume fraction for different values 

of c. These fluctuations are presented for contrasts defined on the range [0 50] in Figure 9 and for 

the variation as a function of p in Figure 10. Figure 9 gives these variations for different values of 

volume fractions 10%, 20%, 30% and 0.4. It appears that, by increasing the contrast c , the size of 

the volume for which the obtained numerical results are statistically representative and isotropic 

is increased. This RVE reaches a maximum value at ∞ac . It also appears that if the volume 

fraction increases the RVE becomes important.  

The variation of the RVE size as a function of the volume fraction is presented in Figure 

10. The size increases with increasing the volume fraction and reach the maximum value for 67% 

of particles and then decreases. This distribution provides a large RVE. Corresponding values of 

the RVE for all different volume fractions are 22 x 22 mm2, except the theoretical values p=0 and 

p=1, purely homogeneous materials. We can also deduce that, for any value of the contrast, the 

RVE size increases and reaches its maximum for 67% of inclusions and then decreases. Finally, it 

should be mentioned that the RVE size changes depending on the accuracy of the results (relative 

error). If the error is small the RVE becomes large.    
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(a) Thermal conductivity  

 
(b)Mechanical property  

Figure 9: Variation of the RVE size versus contrast for an error of 2%. The results are converted 

to mm.  
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Figure 10: Variation of the RVE size as a function of the particle volume fractions: comparison 

between existing data and the results of this paper.  

 

 

5. Conclusion 
 

 Several RVE determination methods have been presented for the computation of accurate 

effective properties. As noted at the outset, the methodology is used for virtual microstructures 

based Boolean and hard spheres models generated using Poisson process. This paper focuses on 

variation in the representative volume element size taking into account the all microstructure 

parameters. 

Based on a statistical and numerical analysis conclusions are drawn about the RVE 

existence and fluctuations. The key notion of the integral range is introduced. It appears that the 

RVE variation increases with increasing particle volume fractions, until 67% of particles, and 

then decreases. It is also found that the maximum RVE size is obtained by a random distribution 

of 67% of particles. Attention was subsequently given to the RVE size variation as a function of 

contrast. It may be concluded from a comparison of different results that the microstructure with 

a larger RVE is the one with the greatest contrast. The most important finding of this work is that 

a larger RVE is obtained with a random distribution of 67% of the particles and a high contrast.  

In this study, it was demonstrated that new definition can determine accurate the size of the 

RVE for random microstructures, particularly, the composite and porous materials. The size is 

given for each particle volume fractions taken into account the absolute error and the contrast in 
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properties. The set results are compared with the obtained results by other studies as presented in 

Figure 10. It appears that the new definition is in agreement with earlier results from RVE 

variations.     
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