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S U M M A R Y

Since their inception, Generative Adversarial Networks (GANs) enabled new frontiers in data synthesis in multiple fields. Cardiology is
not an exception. In this work we present an overview of GANs, their applications and clinical impact in cardiology as well as the
future perspectives they enable for cardiology and the challenges yet to be solved. In addition we present a showcase of their
capabilities on cardiac imaging data.

A B S T R A C T

Generative Adversarial Networks (GANs) are state-of-the-art neural network models used to synthesize images and other data.
GANs brought a considerable improvement to the quality of synthetic data, quickly becoming the standard for data generation tasks.
In this work, we summarize the applications of GANs in the field of cardiology, including generation of realistic cardiac images,
electrocardiography signals, and synthetic electronic health records. The utility of GAN-generated data is discussed with respect to
research, clinical care, and academia. Moreover, we present illustrative examples of our GAN-generated cardiac magnetic
resonance and echocardiography images, showing the evolution in image quality across six different models, which has become
almost indistinguishable from real images. Finally, we discuss future applications, such as modality translation or patient trajectory
modeling. Moreover, we discuss the pending challenges that GANs need to overcome, namely their training dynamics, the medical
fidelity or the data regulations and ethics questions, to become integrated in cardiology workflows.

1. Introduction
Generative adversarial networks (GANs) are a type of neural network dedicated to the creation of synthetic
data that is similar to a real, reference dataset [1]. For healthcare applications, GANs have been primarily
used to synthesize or post-process medical images; and secondarily to synthesize electronic health data
[2]. In recent years, the quality of GANs has surpassed that of other generative models (e.g. auto-encoders
and energy-based models) such that GANs are now regarded as the de facto solution for synthetic data
generation.

Regarded as one of the most notable artificial intelligence discoveries of the past decade, colloquially
birthed around the table of a Montreal brewery circa 2014, GANs have been incorporated in a variety of
computer vision and data analysis applications ranging from simulated radiographic images to synthetic
medical records.

GANs were introduced by Ian Goodfellow et al.[1] as a new class of probabilistic generative models
that overcome many of the drawbacks of the previously prevalent generative models such as Gaussian
mixtures, Markov chains and, more recently, variational autoencoders (VAE). GANs substantially
improved the quality of the generated data while maintaining a straightforward sampling approach.

Initially showcased on general datasets such as that of human faces or objects, GANs achieved high
quality samples compared to previous approaches. Moreover, GANs provide a way to generate more
diverse data samples, such as faces with blue or brown eyes. These powerful models have also been
shown surprisingly effective at generating computer artworks, some being even exposed and sold [3] !

The aforementioned success of GANs, prompted researchers to investigate their capability in more
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fields that would benefit from their generative modeling performance.
These applications have been used mainly in research projects, while their use in clinical practice still

faces some challenges. This popularity of GANs can be attributed to the following three characteristics:

1. Unlike most neural networks, GANs are unsupervised models that do not necessitate
(labor-intensive) human annotations to be trained;

2. GANs are simple, generic models that accommodate a wide variety of datasets, including medical
data;

3. The high resolution and quality of data produced by the latest GAN models easily confound
human observers, including medical experts.

Here, we review the main characteristics of GANs, discuss their applications and limitations in
cardiology, and compare six widely cited models which we trained to synthesize images based on two
publicly available datasets, namely the Automated Cardiac Diagnosis Challenge (ACDC) dataset [4], a
cardiac magnetic resonance (CMR) dataset, and the Cardiac Acquisitions for Multi-structure Ultrasound
Segmentation (CAMUS) dataset [5], an echocardiography dataset. The models used for this purpose are
the Deep Convolutional GAN [6], the Least Squares GAN [7], the WassersteinGAN [8], the HingeGAN [9],
the StyleGAN [10], and the SPatially Adaptive DEnormalization (SPADE) GAN [11].

Overall, this work is intended as an overview of the different usages that GANs have in cardiology and
their potential applications and future directions. In addition, we give a brief look at the capability of GANs
in the generation of cardiac images and the evolution of their generative powers throughout the years.

2. Generative Adversarial Networks
A GAN is composed of two connected deep neural networks: a Generator and a Discriminator. The

Generator receives random data as its input and attempts to generate pseudo-real synthetic data as its
output (e.g. a fake CMR image).

Figure 1: GANs are neural networks dedicated to the synthesis of highly-realistic data (e.g. cardiac MRIs). During the
training of the GAN, two neural networks (Generator and Discriminator) compete against each other. The Generator

produces synthetic images and the Discriminator attempts to differentiate real images from generated images.

The Discriminator receives either the generated or real data as its input and attempts to predict whether it
is fake or real as its output (Figure 1). The real data (e.g. a collection of actual CMR images) is provided a
priori and plays a major role in training the GAN and shaping the final appearance of the generated
synthetic data.

The goal of the Discriminator is to differentiate real data from synthetic data. The goal of the Generator
is to produce synthetic data whose characteristics are as close to that of the real data as possible,
inasmuch to "fool" the Discriminator into classifying it as real. These adversarial goals are analogous to
the art forger (i.e. the Generator) and art authenticator (i.e. the Discriminator). Training of the Generator’s
neural network is carried out through a gradient descent algorithm to minimize a loss function
representing the inaccuracies of the synthetic data relative to the real data. This loss function is

Skandarani et al. : GANs in Cardiology 2



ingenuously back-propagated from the Discriminator’s loss function (cross-entropy), such that the
Generator can be trained without its own separate loss function. Through this process, the Generator
progressively learns to produce samples with characteristics matching those of the real dataset, thereby
making them almost indistinguishable.

Practically, GANs are trained in a two step fashion. First, the generator is trained by feeding it random
vectors that would make it generate samples of data (images typically). This in turn is fed to the
discriminator which is optimized to predict whether it is real or fake and the error signal is
back-propagated to train the generator. Next, the discriminator is trained to discriminate between real and
fake data. This is done by feeding the discriminator network with real and synthetic data and optimizing it
to correctly predict the real and the fake data. This process is repeated across the dataset at hand until
the discriminator is not able to distinguish between fake and real data.

Later, the trained generator is used to sample a number of new data points by varying the input noise
and collecting the generated output.

3. Applications in Cardiology
In this section, we review the foremost applications of GANs encompassing different types of data in

cardiology, namely: cardiac imaging data, electrocardiography (ECG) signal data, and observational
health data.

3.1. Cardiac Imaging
Since their inception, GANs have primarily been used to generate images [12]. In cardiology, GANs

have been used to generate images of the cardiovascular organs successfully mimicking modalities such
as CMR, computed tomography, and echocardiography. For example, Amirrajab et al. [13] combined a
heart simulator [14] and a GAN to generate synthetic short-axis cine CMR images at various slice
locations. Skandarani et al. [15] combined a cardiac segmentation map and a VAE-GAN system to
generate synthetic short-axis cine CMR images with accompanying anatomical labels. Furthermore,
inputting disease labels alongside training images enabled GANs to generate synthetic images of
specified cardiovascular diseases, also known as conditional image synthesis.

While the clinical utility of image synthesis is not yet well defined, GANs have been useful to generate
large numbers of synthetic scans in order to train (data-hungry) machine learning models to predict
cardiac diagnoses or automatically segment cardiac chamber volumes. In turn, these machine learning
models may yield tangible benefits for workflow efficiency and patient care. Creating such synthetic data
is far less costly and time-consuming than acquiring and manually labelling more real scans. Skandarani
et al. [15] demonstrated improvements in their CMR segmentation neural network model after augmenting
their training dataset with 10,000 synthetic images.

Conditional image synthesis with GANs has enabled exciting demonstrations of modality translation,
effectively converting any given image from its original modality to another modality. For example, Zhang
et al. [16] trained a cycleGAN [17] to convert CMR images to computed tomography (and vice versa) for
enhanced visualization of calcified structures that were otherwise difficult to see on CMR. It has also
enabled disease simulation, altering any given image to reflect the expected phenotypical progression of
a specified disease over time (using similar algorithms to those used for face aging simulations).
Moreover, Chen et al. [18] proposed a GAN based approach to generate virtual patient images that
manage to be visually realistic while maintaining a feature space that is pathophysiologically interpretable.

GANs have been useful in post-processing to generate improved images with less noise, less
artifacts, and greater resolution (termed super resolution) than the raw acquired images. For example, Xia
et al. [19] used a GAN to increase the inter-slice resolution of cine CMR images from

(slice thickness and slice gap ) to . This1. 8 × 1. 8 ×  10 𝑚𝑚3 8 𝑚𝑚 2 𝑚𝑚 1. 8 × 1. 8 ×  0. 625 𝑚𝑚3

process drastically improves the evaluation of cardiac measures that include ventricular and myocardium
surface delineation, ventricular volumes and ejection fraction estimation. GANs have also been useful in
image reconstruction to more efficiently generate images with shorter acquisition times or reduced
radiation doses.

Other applications of GANs for surgery planning are also being explored. For example, Zhang et al.
[20] showed that GANs can be used to predict the optimal stenosis repair patch location, shape and size
for patients suffering from a tetralogy of Fallot.
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3.2. Electrocardiography
GANs can be applied to synthesize other data types, including electrocardiography (ECG) tracings.

For example, Zhu et al. [21] designed a GAN composed of a bidirectional LSTM (Long Short-Term
Memory) as its Generator and a CNN (Convolutional Neural Network) as its Discriminator, to ultimately
yield synthetic ECG tracings with characteristics mimicking cardiac diseases. The GAN performed best
when compared to other generative models using recurrent neural networks and auto-encoders. Wulan et
al. [22] compared three different models, of which the GANs performed best to generate diversified and
realistic ECG tracings. As above, GANs can also be applied for conversion and post-processing. Sarkar
et al. [23] developed a GAN model to convert photoplethysmograms to synthetic ECG tracings, leading to
more accurate computations of heart rate. Singh et al. [24] developed a GAN model to de-noise raw ECG
signals, leading to higher ratings of ECG tracing quality than other state-of-the-art denoising methods.

3.3. Observational Health Data
Electronic Health Records (EHRs) contain a wealth of patient data with the potential to fuel

unprecedented discoveries, however, the completeness of this data is limited by clinical indications and its
accessibility is tightly restricted by regulatory agents. GANs can be applied to synthesize alpha-numerical
data as found in EHRs [25] such as age, sex, race, height, weight, comorbid conditions, vital signs,
laboratory values, test results, complications, and more. This synthetic data can be inserted to either "fill
in the blanks" for real patients that have missing or not-yet-observed data points, or create characteristics
for imaginary patients that have similar distributions and relationships to those observed in real cohorts
but cannot be identified. While earlier iterations such as medGAN struggled to synthesize non-continuous
variables with discrete values, newer iterations overcame this limitation and evolved to accommodate
tabular and time-series data architectures capable of mirroring full EHRs [26].

Use-cases have highlighted several benefits of GANs. Firstly, to improve the performance of predictive
models by imputing missing data points or augmenting sparse datasets. Che et al. [27] showed that the
addition of GAN generated synthetic data to real patient data resulted in improved performance of their
CNN-based risk prediction model. Secondly, to improve the broad-scale accessibility of data by sharing
privacy-preserving synthetic versions of actual EHRs. GANs can be used to generate synthetic versions
of EHRs or other patient-level repositories in order to bypass the privacy concerns that accompany the
use of real patient information. To this end, both Yoon et al. [2] and Zhang et al. [28] proposed GAN
models to generate datasets endowed with similar properties to those of real patients. Thirdly, to improve
the personalized delivery of care by creating simulations of patient outcomes that are easily interpretable
for clinicians. Within the latter, potential therapies can be added or removed from simulations, yielding
individualized treatment effects for particular patients.

4. Empirical Example of GANs in Cardiac Imaging
To showcase the capabilities of GANs at generating realistic cardiac images, we trained six different

types of GAN models using two publicly-available datasets for CMR and echocardiography, respectively.
The methodology and results are presented below, accompanied by illustrative images.

4.1. Datasets
Automated Cardiac Diagnosis Challenge (ACDC) dataset [4]. This dataset contains short-axis cine
CMR sequences from 150 patients acquired at the University Hospital of Dijon. The dataset is divided into
5 evenly distributed subgroups (4 pathological groups and 1 healthy group). The images were acquired
using two MRI scanners of differ ent magnetic strengths (1.5T and 3T). The pixel size ranges from 0.7
mm to 1.9 mm. The slice spacing ranges from 5 mm to 10 mm. A clinical expert selected the end-diastolic
and end-systolic frames. The same expert completed manual annotations of the endocardial and
epicardial borders of the left ventricle and the endocardial border of the right ventricle.

Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CAMUS) dataset [5]. This
dataset contains apical two-chamber and four-chamber cine echocardiography sequences from 500
patients, half of which were considered to be pathological on the basis of left ventricular ejection fraction
<45%. The acquired sequences were resampled to a Cartesian coordinate system using a constant grid
resolution of on the x-axis parallel to the probe, and on the z-axisλ/2 = 0. 31 𝑚𝑚 λ/4 = 0. 15 𝑚𝑚
perpendicular to the probe. A clinical expert selected the end-diastolic and end-systolic frames and
Skandarani et al. : GANs in Cardiology 4



completed manual annotations of the endocardial and epicardial borders of the left ventricle and atrium.

4.2. Selected GANs
The literature on GANs has substantially grown over the past 8 years [29]. Among the multitude of

published models, we selected six fitting the following criteria: 1) widely adopted , 2) high-quality
generated images, 3) not exceeding the capabilities of a single 12GB GPU, and 4) representative of the
evolution of GANs since 2016.

DCGAN-2016 Deep Convolutional GAN [6] is the first GAN to use convolutional layers as opposed to
original GANs that only used fully connected layers. Due to its simplistic design, DCGAN is often used as
the de facto baseline GAN. Nevertheless, there has been a recent and notable increase in its image
quality and training stability. To our knowledge, DCGAN is among the most widely implemented GANs
to-date.

LSGAN-2017 Least Squares GANs [7] improves sample quality by replacing the cross entropy loss
function of the Discriminator in the original GAN by the mean squared error loss function. This reduces
the problems encountered with vanishing gradients and creates a more stable training process.

WGAN-2017 Wasserstein GANs [8] is considered a significant breakthrough in GAN research. It uses
the Wasserstein earth-mover distance as the GAN loss function, and in doing so, reduces the problems
encountered with mode collapse and creates a more stable training process.

HingeGAN-2017 Introduced by Lim et al. [9], HingeGAN uses the margin maximization loss function,
which theoretically converges to a Nash equilibrium between the Generator and the Discriminator. Like
WGAN and LSGAN, HingeGAN stabilizes the optimization process of GANs.

SPADE GAN-2019 Spatially Adaptive DEnormalization (SPADE) GAN [11] is a type of GAN for
image-to image translation, improving upon the previously published pix2pix [30] model. SPADE GAN
produces high-quality results on a wide range of datasets, perfectly matching a semantic input mask.

Style GAN-2020 StyleGAN [10] is considered the most state-of-the-art generative neural network that
builds on previous models, such as progressive GAN [31], training the GAN with increasing resolution,
leading to better image quality and a more stable training process. StyleGAN has a highly modified
Generator capable of synthesizing high quality and diverse images. Generator modifications include:
adaptive instance normalization blocks (AdaIN), noise injection at each network level and the use a
8-layer MLP mapping network on the input latent vector .𝑧

→

Figure 2: Examples of images generated from six GANs. Top row: cardiac MRIs; bottom row: ultrasound images.
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4.3. Cardiac Image Synthesis
To optimize results with the six GAN models, several hyperparameter values were tested and tuned

for each model. Following hundreds of training rounds and up to 200 GPU days of processing, the best
performing configuration for each model was retained. Of note, the majority of training rounds diverged
and produced degenerated models, highlighting the sensitivity of GANs.

Figure 2 shows a representative set of synthetic images generated by each GAN using the CMR and
echocardiography datasets. Incremental improvements in image quality are observed from the older
GANs (DCGAN, LSGAN, WGAN, HingeGAN) to the more recent ones (StyleGAN, SPADE GAN) as a
result of the model’s sophistication and deeper training. Indeed, StyleGAN and SpadeGAN required 30
days and 10 days of training, respectively.

4.4. Subjective Image Evaluation
Visual inspection of the images revealed that CMR images produced by the older GANs lacked some

anatomical details and suffered from blurry organs, rendering them less realistic. Echocardiography
images produced by the older and newer GANs were more similar in part due to the fact that ultrasound
images are inherently less crisp. Overall, StyleGAN was the best performing model, producing images
that were indistinguishable from their real counterparts (Figure 3).

To allow cardiac imaging experts to inspect and validate the quality of GAN-generated images, we
developed an online web application (https://gans.devpods.com) that displays real images from the ACDC
dataset alongside synthetic images from StyleGAN. When presented with these images in a blinded
fashion and asked to identify those images that are real and those that are synthetic, cardiac imaging
experts typically achieve a ceiling of 60% accuracy.

5. Present status and future directions
GANs are exciting new tools with a variety of clinical and research applications in the field of

cardiology. Their ability to synthesize realistic images, ECG tracings, and EHR data is already being used
by researchers to efficiently augment the available sample sizes to train predictive models (producing
models with higher accuracy which in turn improve patient care), especially when working with small
datasets or rare pathologies. They are also used by various stakeholders in the healthcare setting to mine
privacy-preserving synthetic versions of EHRs to gain insights into patient trajectories and care delivery,
especially when access to the real data would otherwise be restricted. GANs are increasingly used in
imaging post-processing platforms to produce enhanced versions of raw acquired images with
super-resolution and fewer artifacts.

Future implementations of GANs will exploit their ability to conditionally synthesize data based on
inputted source data and user-defined parameters. One exciting example is imaging modality translation,
whereby inputted source images can be converted into another modality in order to highlight those
features better represented by the latter modality which could, for example, prevent exposing the patient
to ionizing radiation in case of synthesis of CT images from other modalities such as MRI or ultrasound.
Another example with great potential in clinical practice is patient trajectory modeling, whereby a given
patient’s phenotype can be extrapolated to a future state in order to reflect the effects of a specified
disease or treatment. The simulated patient has been dubbed a digital twin, allowing for easily
interpretable representations of counterfactual conditions [32], [33] .
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Figure 3: Real or Fake? Real CMR images [B, C, E, G], StyleGAN-generated CMR images [A, D, F, H], real
echocardiography images [2, 3, 5, 7], StyleGAN-generated echocardiography images [1, 4, 6, 8].

For example, how might this patient’s heart look on CMR if he developed severe mitral regurgitation, and
how might it remodel after a mitral valve replacement procedure? The technology underlying this type of
GAN is similar to that employed in face aging software that addresses how a person’s face might look if
he aged 20 years. A different use-case for GAN-generated images is in medical education, enabling
learners at all levels to gain "on-demand" access to imaging cases of any specified disease or
combination of pathologies, even if rare and otherwise inaccessible in their respective centres, similar to
what was proposed by Diller et al. for congenital heart disease [34]. The generative GAN teaching file
could, in the absence of patient privacy concerns and data storage needs, be disseminated broadly and
become a powerful educational tool.

5.1. Challenges
Despite their generative capabilities, GANs have associated drawbacks that may hinder their adoption

in data synthesis software. It is, therefore, imperative to acknowledge their limitations to employ them
judiciously and effectively. The limitations of GANs are esepecially apparent when working with small or
imbalanced dataset, in which case the model may amplify biases within the original data. Some of these
limitations are outlined below:

● Training Dynamics. The adversarial framework of GANs renders the training process unstable
and unpredictable. Mode collapse is a common problem wherein the generator of a GAN learns to
only synthesize a subcategory of the reference dataset, thereby restricting the utility of the trained
model; for example, learning to only synthesize echocardiographic images of healthy cases even
though the reference dataset contains some abnormal cases. Another issue is the excessive time
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required to train advanced GAN models, requiring weeks of training even with contemporary
graphics processing units.

● Model Evaluation. The quality of generated images is difficult to objectively measure, leading to
uncertainty about model convergence and added challenges in training dynamics. Measures such
as the Inception Score [35], Frechet Inception Distance [36], and Kernel Inception Distance [37]
represent attempts to approximate subjective human evaluations; nevertheless, these measures
often correlate inadequately with expert raters.

● Medical Fidelity. Clinicians must be cautious about adopting new technologies as their decisions
affect the well-being of patients. Since the neural networks that form the building blocks of GANs
are a class of black-box probabilistic models, their behaviour is not fully understood.
Consequently, this lack of understanding hinders the widespread acceptance of data derived from
neural networks. Moreover, GAN-generated images may not fully encompass all of the subtle
features of an organ or pathology. These issues should be addressed for GANs to be accepted as
a reliable clinical tool.

● Data Regulations and Ethics. Medical data is highly sensitive as it is deeply tied to a person’s
health information. As such, it is still fuzzy whether synthetic data generated by GANs trained with
real data related to real patients is covered by data laws and regulations. Looking at the
landscape of the various regulatory frameworks around the world, there is still debate whether the
generated data can be relied on as authentic medical data. Likewise, GANs may also amplify the
biases that can be found in the original datasets which poses an issue about the ethics of relying
on GAN generated data as a source of truth.

6. Conclusion
In the present work, we summarized the applications of GANs in cardiology, which include the

generation of realistic cardiac images and ECG tracings, conversion of cardiac images from one modality
to another, sophisticated post-processing of images and signals, generation of privacy-preserving
synthetic EHR data, imputation of missing data, and simulation of patient treatment responses. These
applications are already being used to catalyze exciting research projects, and are beginning to permeate
clinical workflows and medical education. Clinical uptake is sure to accelerate as the quality of
GAN-generated data continues to improve and as model training becomes more robust, interpretable,
and efficient. Nonetheless, the usage of GAN-sourced data still remains shrouded by ethical and data
regulations questions that need to be addressed before GANs become part of the toolset available for a
clinical usage.
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