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Abstract

Subwavelength small particles can be tailored to fulfill
manifold functionalities when interacting with light. Dur-
ing the past twenty years, tremendous research efforts have
therefore been put into the field of nano-optics, leading to
astonishing results and applications like flat optics, optical
cloaking or negative index meta-materials. However, there
are physical and/or methodological constraints which have
proven hard to overcome. For instance, the optical diffrac-
tion limit is a difficult obstacle in many applications ranging
from microscopy to optical information storage. In nano-
optics modeling, inverse problems like the rational design
of nano-structures are another example for a difficult tasks.
We show how problems that were until recently considered
very hard to solve, can be tackled efficiently using methods
of artificial intelligence (AI) and specifically deep learning.

1. Introduction

Deep artificial neural networks (ANNs) have shown
tremendous potential in solving problems that formerly
were very hard or even impossible for “classical” algo-
rithms. As a consequence, researchers from manifold ar-
eas including medicine, biology or physics started to in-
creasingly use methods of AI [1, 2, 3]. ANNs can be
very efficient in the analysis of large (scientific) datasets
for instance from microscopy, tomography or spectroscopy
[1, 4]. Trained on large datasets, neural networks can also
learn to efficiently predict approximate solutions to noto-
riously hard inverse problems [5, 6] or to solve physical
models e.g. in fluid mechanics or optics [7, 8, 9]. Further-
more, in several proof-of-principle studies ANNs have re-
cently been used for the conception of on-demand photonic
nanostructures and meta-materials [5, 8, 10, 11].

Here we give an example on how ANNs can be used to
drastically accelerate simulations in nano-optics and give
an outlook on how this can be used for generalized in-
verse design of photonic nanostructures. We also show how
ANNs can help in the evaluation of experimental data in
nano-optics and demonstrate at a specific example how the
optical diffraction limit can be circumvented using an ANN,
pushing the data density in optical information storage.
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Figure 1: The internal optical fields of an arbitrary nanos-
tructure upon plane wave illumination are predicted by an
ANN and can then be used to derive various secondary
quantities.

2. Generalized nano-optics predictor network

In most applications of deep learning in physics, ANNs
are trained on very specific problems. If the problem
changes, the time-consuming training procedure including
costly data generation and testing needs to be re-done from
scratch. We demonstrate here how to overcome this limi-
tation by training an ANN on a very generalized descrip-
tion of light-matter interaction. To this end, we describe
arbitrary nanostructures in a coupled dipole approximation
(CDA) [12]. A 3D convolutional deep neural network is
then trained on the prediction of the CDA-calculated inter-
nal fields in an arbitrary, volumne discretized nanostructure.
As illustrated in figure 1 the input to the network is a vol-
ume model of the structure, and the output are the complex,
time-harmonic fields at every mesh-cell. The predicted in-
ternal fields can then be used to derive manifold physical
quantities in the near- and far-field region.

We show that a symmetric ANN model can be trained
very efficiently on this problem and becomes capable to
predict the optical response of individual nanostructures
with an accuracy of around five percent [9]. We show how
the approach can be extended to spectrally resolved pre-
dictions and multi-material scenarios and demonstrate how
generalized inverse design can be achieved by an evolution-
ary optimization scheme [13], replacing the slow simula-
tions routine by the very fast ANN model.
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Figure 2: Up to 9 bits, encoded in a nanostructure of sub optical diffraction limit size, are decoded via their optical scattering
spectrum, using an ANN for error free read-out, despite unavoidable fabrication imperfections and instrumental noise.

3. Deep learning for optical storage densities
beyond the diffraction limit

Recently we developed a concept encoding multiple bits
of information in the geometries of complex silicon nanos-
tructures, each covering no more than a diffraction limited
area (see left of Fig. 2). Via the optical scattering spec-
tra we then read-out the sequences of binary data from a
far-field measurement. This delicate task of data recovery
through an optical measurement is however prone to instru-
mental noise and fabrication defects. We demonstrate how
robust data read-out is possible based on an ANN, trained
on the recognition of the optical scattering spectra of the
topology-encoded nanostructures (right of Fig. 2). We ex-
perimentally achieve quasi-error-free readout of up to nine
bits per diffraction limited area, effectively going beyond
the Blu-ray data density. We show that an ANN can recover
the information even using very limited spectral informa-
tion like RGB color information, obtained from standard
dark-field microscopy images [4]. The latter approach al-
lows a massively parallel read-out of information encoded
in many thousands of nanostructures simultaneously and to-
gether with the high bit-density is very promising for next-
generation optical data storage solutions.
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