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Stable model reduction for linear variational
inequalities with parameter-dependent

constraints

Idrissa Niakh ∗†‡, Guillaume Drouet ∗, Virginie Ehrlacher †‡, Alexandre Ern †‡

September 6, 2022

Abstract

We consider model reduction for linear variational inequalities with parameter-dependent
constraints. We study the stability of the reduced problem in the context of a dualized
formulation of the constraints using Lagrange multipliers. Our main result is an algorithm
that guarantees inf-sup stability of the reduced problem. The algorithm is computation-
ally effective since it can be performed in the offline phase even for parameter-dependent
constraints. Moreover, we also propose a modification of the Cone Projected Greedy al-
gorithm so as to avoid ill-conditioning issues when manipulating the reduced dual basis.
Our results are illustrated numerically on the frictionless Hertz contact problem between
two half-spheres with parameter-dependent radius and on the membrane obstacle problem
with parameter-dependent obstacle geometry.

Keywords — model reduction, variational inequalities, reduced basis method, contact problem,
obstacle problem, inf-sup condition.

1 Introduction
Model reduction is a method for reducing computational costs by approximating a high-fidelity (HF)
parameter-dependent model that is computationally expensive by another model that is much cheaper
to solve; see [3232, 3333, 3030, 3838, 33, 1212] and the more recent textbooks [2525, 3434]. The principle is to organize
the calculations in a first offline phase which is a learning phase where expensive calculations are
carried out on the HF model for a small number of values of the parameter drawn from a training set.
The output of the offline phase is used to build the reduced-order model. Then, in the online phase, a
large number of new instances of the parameter are considered for which the reduced model is solved
instead of the HF model. Such studies are often carried out, for example, in the context of model
calibration, where the aim is to find the optimal value for certain parameters so that the results of
numerical simulations are as close as possible to those of the experiments.

The work developed herein is concerned with model reduction for linear parameter-dependent vari-
ational inequalities [2222, 2020, 4040]. These inequalities are, for instance, encountered in several problems
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in computational mechanics [2727]. As example of applications, we will study the frictionless Hertz
contact problem [2424, 3939] and the membrane obstacle problem [1717, 1818, 2626, 3131, 2121]. We are particularly
interested in the case where the problem is formulated by introducing Lagrange multipliers. This
formulation leads to a so-called primal-dual strategy, whereby reduced bases are created for both the
primal and the dual variables.

A first possibility in the primal-dual context is to generate the reduced primal and dual bases
in a decorrelated manner. This is for instance the case in [77] where, after sampling pairs of primal
and dual solutions for parameter values taken from a training set, the Proper Orthogonal Decompo-
sition (POD) [1313, 2828] is used to compress the primal basis and a Non-negative Matrix Factorization
(NMF) [2929] is used to compress the dual basis. Let us also mention [1616] where a hypereduction method
for contact problems is proposed. Instead of the NMF, one can also consider the Angle Greedy [2222, 1111]
and the Cone Projected Greedy (CPG) [99] algorithms for the compression of the dual basis. However,
whatever the compression technique, if the primal and dual reduced bases are generated in a decor-
related way, the stability of the reduced problem is not guaranteed a priori. Specifically, it cannot be
guaranteed that the resulting reduced bases are such that the operator associated with the constraint
satisfies an inf-sup condition for the reduced primal and dual spaces.

In order to satisfy this inf-sup condition, a strategy for constructing the reduced primal basis
according to the reduced dual basis has been proposed in [3737, 1919, 2222, 3636] in various contexts. The
idea is to complete the reduced primal basis with as many functions as there are in the reduced dual
basis, each of these functions being determined by a maximization problem in order to control the
corresponding element of the reduced dual basis. These functions are often called supremizers; see,
e.g., [88, 22]. In the case where the constraints are parameter-independent (which is the case in the
above references), the completion of the reduced primal basis can be calculated only once in the offline
phase. However, in the case where the constraints are parameter-dependent, the supremizers become
parameter-dependent so that the reduced primal space has to be constructed during the online phase.
This considerably reduces the efficiency of the online phase. An example of this situation is the
frictionless contact problem between Hertz spheres, even under the assumption of small deformations,
when the radius of one of the spheres depends on the parameter.

In this paper, we propose a strategy to approximate the parameter-dependent primal space ensur-
ing inf-sup stability by a parameter-independent space. This latter space can thus be constructed only
once in the offline phase. In addition, we establish a criterion to be checked during the construction
in the offline phase so as to guarantee uniform inf-sup stability condition for the reduced problem (at
least for all the parameters in the training set). We notice that an algorithm to build supremizers in
the context of parameter-dependent constraints has also been devised in [1414]; we discuss below the
differences between this contribution and the present one.

A second, distinct contribution of the present work is a modified version of the CPG algorithm
to build a cone with a wider aperture. The motivation is to achieve better approximation properties
compared to the ones provided by the plain CPG algorithm. In our numerical experiments, this
modification turned out to be instrumental in order to avoid ill-conditioning issues when manipulating
the reduced dual basis. Another algorithm to enhance the aperture of a given cone has been recently
devised in [66]; we discuss below the differences between this contribution and the present one.

The rest of this paper is organized as follows. In Section 22, we introduce the mathematical
framework for parameter-dependent variational inequalities. Then, we formulate the reduced model
in the standard cases where the reduced primal basis is decorrelated from the reduced dual basis or
enriched by parameter-dependent supremizers to be computed online. In Section 33, we present our
main result, namely the strategy to achieve stability by enriching the primal basis in the offline phase.
In Section 44, we describe the new version of the CPG algorithm to enhance the aperture of the cone
associated with the reduced dual basis. In Section 55, numerical results illustrating the efficiency of
our approach are reported for the frictionless Hertz contact problem between two half-spheres with
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parameter-dependent radius and the membrane obstacle problem with parameter-dependent obstacle
geometry. In future work, we plan to extend our work to the case of nonlinear problems such as the
contact problem under large deformations and the contact problem with Coulomb friction.

2 Setting
2.1 High-fidelity model
Let V and W be two finite-dimensional high-fidelity (HF) subspaces typically resulting from the finite
element discretization of some Hilbert spaces. We denote by 〈·, ·〉V (resp. 〈·, ·〉W) the inner product
equipping V (resp. W) and inducing the norm ‖ · ‖V (resp. ‖ · ‖W). We denote by V ′ the dual space of
V equipped with the duality product 〈·, ·〉V ′ ,V , and by ‖ · ‖V ′ the associated norm. Let W+ ⊂ W be a
positive cone containing 0. Let D ⊂ Rm,m ∈ N

∗ := N \ {0}, be the parameter domain. We consider
two uniformly bounded bilinear forms a(µ; ·, ·) : V × V → R and b(µ; ·, ·) : V ×W → R for all µ ∈ D,
and two uniformly bounded linear forms f(µ; ·) : V → R and g(µ; ·) :W → R for all µ ∈ D. We assume
that a(µ; ·, ·) is symmetric and uniformly coercive for all µ ∈ D. We consider the following well-posed
constrained minimization problem: For all µ ∈ D, find u(µ) ∈ V such that

u(µ) = argmin
v∈K(µ)

1
2a(µ; v, v)− f(µ; v), (1)

where the admissible set is defined as

K(µ) :=
{
v ∈ V

∣∣ b(µ; v, η) ≤ g(µ; η), ∀η ∈ W+}, (2)

and is assumed to be non-empty for all µ ∈ D.
We denote the boundedness and inf-sup stability coefficients of the bilinear form b(µ; ·, ·) with

respect to the high-fidelity pair
(
V,W+) as follows:

cHF(µ) := sup
η∈W+

sup
v∈V

b(µ; v, η)
‖v‖V‖η‖W

, βHF(µ) := inf
η∈W+

sup
v∈V

b(µ; v, η)
‖v‖V‖η‖W

. (3)

By the above assumption on b(µ; ·, ·), there exists a real number C0 such that cHF(µ) ≤ C0 for all
µ ∈ D, and we additionally assume that the HF pair

(
V,W+) is such that

∃β0 > 0, ∀µ ∈ D, βHF(µ) ≥ β0 > 0. (4)

One possibility to solve the optimization problem (11) is to use a dual formulation. Let L(µ; ·, ·) :
V ×W+ → R be the Lagrangian associated with (11) and defined as follows: For all µ ∈ D,

L(µ; v, η) := 1
2a(µ; v, v)− f(µ; v) + b(µ; v, η)− g(µ; η), ∀ (v, η) ∈ V ×W+. (5)

Then, for all µ ∈ D, we can rewrite (11) as the following saddle-point problem: Find
(
u(µ), λ(µ)

)
∈

V ×W+ such that (
u(µ), λ(µ)

)
= arg min max

v∈V η∈W+
L(µ; v, η). (6)

Owing to the above assumptions (in particular (44) and the coercivity of a(µ; ·, ·)), the pair
(
u(µ), λ(µ)

)
∈

V×W+ is uniquely defined and can be found as the critical point of the Lagrangian L(µ; ·, ·) by solving
for all µ ∈ D, {

a(µ;u(µ), v) + b(µ; v, λ(µ)) = f(µ; v), ∀v ∈ V,
b(µ;u(µ), η) ≤ g(µ; η), ∀η ∈ W+.

(7)
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2.2 Decorrelated model reduction
Let P ∈ N

∗ and consider a family {(u(µp), λ(µp))}p∈{1:P} ⊂ V × W+ of solutions to (77) which are
computed by using a training subset Dtrain := {µp}p∈{1:P} ⊂ D of cardinality P . In practice, the
sampling of the parameter domain can be driven by a posteriori error estimates, as in [2222, 55, 4040]. Let
us set

V := Span
(
{u(µp)}p∈{1:P}

)
⊂ V, W+ := Span+({λ(µp)}p∈{1:P}

)
⊂ W+, (8)

where, for an arbitrary family {θq}q∈{1:Q} ⊂ W+ with Q ∈ N
∗ , Span+ denotes the positive cone

generated by setting

Span+({θq}q∈{1:Q}
)

:=
{ ∑
q∈{1:Q}

αqθq, (α1, · · · , αQ) ∈ RQ+

}
. (9)

Given a positive real number δPOD > 0, one can construct using POD an orthonormal family of N ∈ N
∗

(N ≤ P ) elements of V ,

{vn}n∈{1:N} := POD
(
{u(µp)}p∈{1:P}; V, δPOD

)
,

such that

VN := Span
(
{vn}n∈{1:N}

)
⊂ V, (10)

ePOD(N) :=

( ∑
p∈{1:P}

‖
(
IV −ΠVVN

)
(u(µp))‖2V

) 1
2

( ∑
p∈{1:P}

‖u(µp)‖2V

) 1
2

≤ δPOD, (11)

where ΠHZ denotes the projection onto a generic closed convex subset Z of the generic Hilbert space
H (ΠHZ is the orthogonal projection if Z is a linear subspace) and IH denotes the identity operator in
H. Moreover, given a positive real number δCPG > 0, one can construct using the CPG algorithm a
subset {χr}r∈{1:R} of {λ(µp)}p∈{1:P} composed of R ∈ N

∗ (R ≤ P ) vectors of W+,

{χr}r∈{1:R} := CPG
(
{λ(µp)}p∈{1:P}; W, δCPG

)
,

satisfying

W+
R := Span+({χr}r∈{1:R}

)
⊂W+, (12)

eCPG(R) :=
max
p∈{1:P}

‖
(
IW −ΠW

W+
R

)
(λ(µp))‖W

max
p∈{1:P}

‖λ(µp)‖W
≤ δCPG. (13)

For all µ ∈ D and N,R ≤ P , we define

βdec
N,R(µ) := inf

η∈W+
R

sup
v∈VN

b(µ; v, η)
‖v‖V‖η‖W

, (14)

where the superscript refers to the decorrelated construction of the reduced bases. Since the primal
reduced space VN and the dual reduced coneW+

R are constructed in a decorrelated manner, one cannot
guarantee that βdec

N,R(µ) > 0 for all µ ∈ D, i.e., the pair (VN ,W+
R ) may not satisfy an inf-sup condition.
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2.3 Online enhancement of the reduced primal basis
A strategy for enriching the reduced primal basis in order to achieve inf-sup stability has been proposed
in [2222]. The idea is to complete the reduced primal basis {vn}n∈{1:N} with as many functions as there
are in the reduced dual basis {χr}r∈{1:R}. To this purpose, one proceeds as follows: For all µ in D,
one defines the operator T(µ) :W+ → V such that

T(µ) := J ◦ BHF(µ), (15)

where J : V ′ → V is the Riesz isomorphism between V ′ and V and where the operator BHF(µ) :W+ →
V ′ is defined such that

〈BHF(µ)(η), v〉V ′ ,V := b(µ; v, η), ∀(v, η) ∈ V ×W+. (16)

Then, for all µ ∈ D, the enriched reduced primal space V on
N,R(µ) is defined as

V on
N,R(µ) := VN + SR(µ) ⊂ V, SR(µ) := Span

(
{T(µ)χr}r∈{1:R}

)
. (17)

The superscript refers to the online construction of the enriched basis. The main motivation for (1717)
is that it ensures that the bilinear form b(µ; ·, ·) is uniformly inf-sup stable with respect to the pair(
V on
N,R(µ),W+

R

)
, i.e., we have

∀µ ∈ D, βon
N,R(µ) := inf

η∈W+
R

sup
v∈V on

N,R(µ)

b(µ; v, η)
‖v‖V‖η‖W

≥ βHF(µ) ≥ β0 > 0. (18)

Indeed, for all η ∈W+
R , we have

sup
v∈V on

N,R(µ)

b(µ; v, η)
‖v‖V

≥ b(µ; T(µ)(η), η)
‖T(µ)(η)‖V

= ‖T(µ)(η)‖2V
‖T(µ)(η)‖V

= ‖T(µ)(η)‖V

= ‖J
(
BHF(µ)(η)

)
‖V = ‖BHF(µ)(η)‖V ′ ≥ βHF(µ)‖η‖W . (19)

In the case where the operator BHF is parameter-independent, the space V on
N,R is also parameter-

independent. This space can thus be constructed once and for all in the offline phase, as in [2222].
However, when the operator BHF(µ) is parameter-dependent, the enriched space V on

N,R(µ) shares the
same feature, and thus has to be constructed in the online phase, which is computationally inefficient.
We overcome this problem in the next section.

3 Computationally efficient, stable model reduction
In this section, the reduced subspaces VN and W+

R obtained respectively by (1010) and (1212) are fixed.
Our goal is to construct a parameter-independent subspace of V that provides a sufficiently accurate
approximation of V on

N,R(µ) for all µ ∈ D to preserve inf-sup stability. The crucial advantage is that this
parameter-independent subspace can be constructed once and for all in the offline phase. The idea is
to approximate the linear space

SR := +
µ∈Dtrain

SR(µ), (20)

by a subspace Sred
R ⊂ SR, so that the bilinear form b(µ; ·, ·) is inf-sup stable with respect to the pair

(VN + Sred
R ,W+

R ) for all µ ∈ Dtrain. We will see in our numerical experiments that it is possible to
achieve this property by a proper subspace Sred

R ⊂ SR having a much smaller dimension than SR. To
realize this strategy, we rely on the following theoretical result which gives a sufficient condition on a
subspace S of SR to guarantee the above inf-sup stability.
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Proposition 3.1 (Inf-sup stability). Let S be any finite-dimensional subspace of SR. For all µ ∈ D,
we define

σS(µ) := sup
v∈SR(µ)
‖v‖V≤1

‖(IV −ΠVVN+S)(v)‖V = ‖
(
IV −ΠVVN+S

)
|SR(µ)‖L(V), (21)

and the boundedness constant

cS(µ) := sup
η∈W+

R

sup
v∈VN+SR(µ)+S

b(µ; v, η)
‖v‖V‖η‖W

≤ C0. (22)

For all µ ∈ D, if

σS(µ) <
βon
N,R(µ)
cS(µ) , (23)

then the following inf-sup condition holds:

inf
η∈W+

R

sup
v∈VN+S

b(µ; v, η)
‖v‖V‖η‖W

≥ β∗S(µ) :=
βon
N,R(µ)− cS(µ)σS(µ)

1 + σS(µ) > 0. (24)

Proof. Let µ ∈ D and let η ∈ W+
R with ‖η‖W = 1. The inf-sup stability of b(µ; ·, ·) with respect to

the pair
(
V on
N,R(µ),W+

R

)
(see (1818)) implies that there exists vη ∈ SR(µ) such that

b(µ; vη, η) ≥ 1, βon
N,R(µ)‖vη‖V ≤ 1. (25)

Letting uη := ΠVVN+S(vη), the definition of σS(µ) implies that

‖vη − uη‖V = ‖(IV −ΠVVN+S)(vη)‖V ≤ sup
v∈SR(µ)

βon
N,R

(µ)‖v‖V≤1

‖(IV −ΠVVN+S)(v)‖V = σS(µ)
βon
N,R(µ) . (26)

On the one hand, we have

b(µ;uη, η) = b(µ;uη − vη, η) + b(µ; vη, η),

and the definition (2222) of cS(µ) implies that∣∣b(µ;uη − vη, η)
∣∣ ≤ cS(µ)‖uη − vη‖V‖η‖W = cS(µ)‖uη − vη‖V .

Hence, recalling that b(µ; vη, η) ≥ 1 owing to (2525), we have

b(µ;uη, η) = b(µ;uη − vη, η) + b(µ; vη, η)

≥ 1− cS(µ)‖uη − vη‖V ≥ 1− cS(µ)
βon
N,R(µ)σS(µ),

where the last bound follows from the inequality (2626). On the other hand, we have

‖uη‖V ≤ ‖vη − uη‖V + ‖vη‖V ≤
σS(µ)
βon
N,R(µ) + 1

βon
N,R(µ) = 1 + σS(µ)

βon
N,R(µ) .

We conclude that

b(µ;uη, η)
‖uη‖V

≥
βon
N,R(µ)

1 + σS(µ)

(
1− cS(µ)

βon
N,R(µ)σS(µ)

)
=
βon
N,R(µ)− cS(µ)σS(µ)

1 + σS(µ) > 0,

where the last bound follows from the assumption (2323). Since uη ∈ VN + S, this implies the inf-sup
condition (2424).
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Using the result of Prop. 3.13.1, we design in Algo. 11 a so-called Projected Greedy Algorithm (PGA)
that, given a training subset Dtrain ⊂ D, the vector space VN , and a tolerance δ > 0, returns a
subspace Sred

R ⊂ SR such that

sup
µ∈Dtrain

σSred
R

(µ) ≤ δ. (27)

Notice that since σSR(µ) = 0 for all µ ∈ D, it is possible to construct a subspace Sred
R of SR satisfying

(2727). Our numerical results presented in Section 55 indicate that it is reasonable to expect that Sred
R

has a (much) smaller dimension than SR. In practice, the space Sred
R is constructed in a progressive

way by means of a greedy algorithm. The PGA algorithm involves the following two main steps at
iteration n:

• seek the parameter µn by solving an eigenvalue problem (line 2 and line 9).

• seek the supremizer v(1)
n+1 ∈ SR(µn) by solving a linear system (line 5).

Algorithm 1 PGA: Projected Greedy Algorithm
∣∣∣∣ PGA(Dtrain, VN , δ)

Require: Dtrain ⊂ D: training subset
VN ⊂ V : primal reduced space
δ > 0: tolerance

Ensure: S: subspace of SR
1: S0 := {0}
2: µ0 ∈ argmax

µ∈Dtrain

σS0(µ)
3: n := 0
4: while σSn(µn) > δ do
5: v

(1)
n+1∈argmax

v∈SR(µn)
‖v‖V≤1

‖(IV − ΠVVN+Sn)(v)‖V

6: v
(2)
n+1 := (IV − ΠVVN+Sn)(v(1)

n+1)

7: vn+1 := v
(2)
n+1

‖v(2)
n+1‖V

8: Sn+1 := Sn + Span{vn+1}
9: µn+1 ∈ argmax

µ∈Dtrain

σSn+1(µ)
10: n = n+ 1
11: end while
12: return S := Sn

In conclusion, we define the enriched primal reduced space V off
N,R as follows:

Sred
R := PGA

(
Dtrain, VN , δPGA

)
⊂ SR ⊂ V, (28)

V off
N,R := VN + Sred

R ⊂ V, (29)

where the tolerance δPGA > 0 is small enough so that (2323) is satisfied for all µ ∈ Dtrain. In practice, a
simple choice is δPGA < β−1

0 C0 since βon
N,R(µ) ≥ β0 and cS(µ) ≤ C0 for all µ ∈ Dtrain. The superscript

in the notation V off
N,R refers to the offline construction of the enriched reduced primal basis. For all
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µ ∈ D, we define

βoff
N,R(µ) := inf

η∈W+
R

sup
v∈V off

N,R

b(µ; v, η)
‖v‖V‖η‖W

. (30)

Notice that we only guarantee that βoff
N,R(µ) > 0 for all µ ∈ Dtrain. It is reasonable to expect inf-sup

stability for all µ ∈ D if the training subset is sufficiently rich.
Let us now show that Algo. 11 necessarily terminates in a finite number of iterations.

Lemma 3.2 (Convergence of PGA algorithm). The sequence
(

maxµ∈Dtrain σSn(µ)
)
n≥0 is nonincreas-

ing. Moreover, there is n0 ≤ min(mDtrainR,dim(V)− dim(VN )) with mDtrain := #(Dtrain) such that

max
µ∈Dtrain

σSn(µ) = 0, ∀n ≥ n0. (31)

Proof. (1) Line 8 of Algo. 11 implies that Sn ⊆ Sn+1 for all n ≥ 0. Hence, for all µ ∈ Dtrain,

max
v∈SR(µ)

‖(IV −ΠVVN+Sn+1)(v)‖V ≤ max
v∈SR(µ)

‖(IV −ΠVVN+Sn)(v)‖V ,

which implies that
max

µ∈Dtrain
σSn+1(µ) ≤ max

µ∈Dtrain
σSn(µ).

This proves the first assertion.
(2) Let us now prove the second assertion. To this purpose, let us first prove by induction that for

all n ≥ 0, if maxµ∈Dtrain σSn(µ) > 0, then Sn ( Sn+1 and

dim (VN + Sn+1) = dim (VN + Sn) + 1. (32)

Indeed, since µn ∈ argmaxµ∈Dtrain
σSn(µ), we have σSn(µn) = maxµ∈Dtrain σSn(µ) > 0. Hence, v(1)

n+1
from line 5 satisfies

v
(2)
n+1 := (IV −ΠVVN+Sn)(v(1)

n+1) 6= 0.

Thus, v(2)
n+1 is nonzero and orthogonal to the space VN + Sn. Since Sn+1 := Sn + Span{vn+1}, this

proves (3232). We are now in a position to prove the second assertion. We first observe that if there
is n0 ≥ 0 such that maxµ∈Dtrain σSn0 (µ) = 0, then maxµ∈Dtrain σSn(µ) = 0 for all n ≥ n0. Moreover,
since Sn ⊆ SR and dim(SR) ≤ mDtrainR, we infer from (2121) that maxµ∈Dtrain σSn(µ) = 0 whenever n ≥
mDtrainR. Finally, reasoning by induction and using (3232) shows that dim (VN +Sn) = dim(VN )+n for
all n ≥ 0 such that maxµ∈Dtrain σSn(µ) > 0. Since VN +Sn ⊂ V, we must have n ≤ dim(V)−dim(VN ).
This completes the proof of (3131).

Remark 3.3 (Finite termination). Lemma 3.23.2 provides two upper bounds on the maximum number of
iterations of the PGA algorithm. The first upper bound, n0 ≤ mDtrainR is, in particular, independent
of the dimension of the HF space V.

Remark 3.4 (Comparison with [1414]). The PGA algorithm is similar in spirit to the Algorithms 2
and 3 proposed in [1414] in the context of Petrov–Galerkin reduced basis approximations of transport
equations (the adaptation to saddle-point problems is discussed in Section 7 therein). The overall
organization of the reduced basis method is, however, different. Indeed, in contrast to [1414] where
a double greedy algorithm is proposed, we do not enrich here the reduced dual space in a greedy
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way and adapt the reduced primal space to guarantee inf-sup stability at each iteration of the greedy
algorithm. Instead, we fix once and for all the reduced dual space (which can be obtained as the
output of a greedy algorithm, see Section 44), and then enrich the reduced primal space following the
strategy highlighted in Algo. 11. A computational comparison of the performances of both algorithms
is postponed to future work. Moreover, we notice that Proposition 3.1 relates the inf-sup constant of
the pair of reduced spaces to some approximation property of the subspace VN + S in V. This idea is
similar to [1414, Prop. 3.7] which relates inf-sup stability to the notion of δ-proximality.

Remark 3.5 (Modified PGA algorithm). The sequence
(

maxµ∈Dtrain σSn(µ)
)
n≥0 is not a decreasing

sequence in general. However, a slight modification of Algo. 11 can be easily shown to guarantee that

max
µ∈Dtrain

σSn+1(µ) < max
µ∈Dtrain

σSn(µ)

for all n ≥ 0 such that maxµ∈Dtrain σSn(µ) > 0. The idea is to replace lines 6–8 therein by the following
statements:

6 : V
(1)
n+1 := argmax

v∈SR(µn)
‖v‖V≤1

‖(IV −ΠVVN+Sn)(v)‖V

7 : Tn+1 := Span{(IV −ΠVVN+Sn)(v(1)
n+1), v(1)

n+1 ∈ V
(1)
n+1}

8 : Sn+1 := Sn + Tn+1

4 Modified CPG algorithm
In this section, we propose a modified version of the plain CPG algorithm (see Remark 4.44.4 for a com-
parison with the algorithm from [66]). The goal is to promote the generation of a cone having a larger
aperture than the one built by the plain CPG algorithm. Indeed, a problem that arises numerically
when working with a positive cone is to be able to generate a basis such that the corresponding Gram
matrix is as well-conditioned as possible. In practice, one has often to deal with bases composed
of vectors which are almost collinear. In this context, ill-conditioning issues can arise, in particular
where performing projections onto the cone. To overcome this difficulty, it is not possible to perform
an orthogonalization process (such as Gram–Schmidt) since this would lead to a departure from the
positive cone W+. Instead, one possibility is to promote the aperture of the cone produced by the
plain CPG algorithm.

Specifically, we introduce the mCPG (modified CPG) algorithm (see Algo. 22) which, given a set
of Q ∈ N

∗ vectors {θq}q∈{1:Q} of W+, and a positive real number δ, produces a set of R ∈ N
∗(R ≤ Q)

vectors of W+,
{νr}r∈{1:R} := mCPG

(
{θq}q∈{1:Q}; W, δ

)
,

satisfying

W+
R := Span+({νr}r∈{1:R}

)
⊂ W+, (33)

emCPG(R) :=
max
q∈{1:Q}

‖
(
IW −ΠW

W+
R

)
(θq)‖W

max
q∈{1:Q}

‖θq‖W
≤ δ. (34)
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Algorithm 2 mCPG: modified CPG algorithm
∣∣∣∣ mCPG({θq}q∈{1:Q};W , δ)

Require: {θq}q∈{1:Q}, Q ∈ N
∗ : set of vectors
W : Hilbert space

δ > 0 : tolerance
Ensure: {νr}r∈{1:R} ⊂ W+, R ≤ Q
1: r := 0
2: I0 := ∅
3: K0 := {0} ⊂ W+

4: e0 := 1 + δ
5: q1 := argmax

q∈{1:Q}
‖θq‖W

6: while (er > δ) and (r < Q) do
7: r := r + 1
8: Ir := Ir−1 ∪ {qr}
9: Υr := argmin

Υ∈Kr−1∩(θqr−W+)
‖θqr −Υ‖W

10: νr := θqr−Υr
‖θqr−Υr‖W

11: Kr := Kr−1 + Span+{νr}
12: qr+1 := argmax

q∈{1:Q}\Ir

‖(IW−ΠWKr )(θq)‖W
‖θq1‖W

13: er := ‖(IW−ΠWKr )(θqr+1 )‖W
‖θq1‖W

14: end while
15: R := r
16: return {νn}n∈{1:R}

Remark 4.1 (Cone aperture). For all n ∈ N
∗ , we have Span+({θqn}n∈{1:r}

)
⊂ Span+({νn}n∈{1:r}

)
.

Indeed, reasoning by induction, since we have νr := θqr−Υr∥∥θqr−Υr
∥∥
W

with Υr ∈ Kr−1, we infer that

θqr =
∥∥θqr −Υr

∥∥
W × νr + Υr ∈ Span+({νn}n∈{1:r}

)
.

Remark 4.2 (Proper termination). In the mCPG algorithm, we observe that line 10 is only executed if

νr 6= 0. Indeed, if νr = 0, then θqr = Υr ∈ Kr−1 and consequently er−1 =
‖(IW−ΠWKr−1

)(θqr )‖W
‖θq1‖W

= 0 < δ.
This means that we do not continue the loop since the condition er−1 > δ is not satisfied.
Remark 4.3 (Comparison with CPG). The main difference between the CPG and mCPG algorithms is
that at each iteration r ≥ 1, the CPG algorithm does not execute line 9 and simply sets νr = θqr

‖θqr‖W
.

Instead, the mCPG algorithm computes νr as a member ofW+ (in fact of Span+({θqn}n∈{1:r}
)
). We

will show in the numerical experiments of Section 55 that the mCPG algorithm has the advantage of
providing a set of vectors whose Gram matrix is better conditioned compared to the one obtained with
the CPG algorithm. This property comes from the fact that at iteration r of the mCPG algorithm, the
element r of the basis is constructed by removing all the information contained in the basis constructed
at iteration r − 1. Figure 11 presents an illustration of how the CPG and mCPG algorithms operate
on the first two iterations.

Remark 4.4 (Comparison with [66]). The algorithm proposed in [66] consists in constructing from a given
family of functions {νr}r∈{1:R} (which can be obtained, for instance, as the output of the CPG algo-
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θq1

θq2

Υ2

KCPG
1 = KmCPG

1

ν1

ν2

θq2 −Υ2

KCPG
2

KCPG
2 ⊂KmCPG

2

Figure 1: Comparison of the first two iterations of the CPG and mCPG algorithms.

rithm from an original family of functions {θq}q∈{1:Q}), a new family of modified functions {ν̃r}r∈{1:R}
so that

Span+({νr}r∈{1:R}
)
⊂ Span+({ν̃r}r∈{1:R}

)
.

In other words, the approach proposed in [66] allows one to construct an enlarged cone from a reduced
cone which has to be given as an input, and which is spanned by the same number of functions as
the orginal reduced cone. In contrast, the mCPG algorithm proposed herein consists in constructing
an enlarged cone directly from the original family of functions {θq}q∈{1:Q} as an output of a greedy
algorithm, by enlarging the current reduced cone at each step of the greedy algorithm. This has,
in our opinion, two advantages. First, it avoids ill-conditioning issues raised by the standard CPG
algorithm and which are then also encountered in the approach proposed in [66]. Second, considering
enlarge reduced cones at each iteration of a greedy algorithm yields a tighter control on the accuracy
of the results given by the corresponding reduced-order model. Finally, we observe that our numerical
experiments indicate that the accuracy of the reduced-order approximation is better when using the
mCPG algorithm than the CPG algorithm. A more detailed computational comparison with the
approach from [66] is left to future work.

Finally, the following result states that Algo. 22 terminates in a finite number of iterations.

Lemma 4.5 (Finite termination). The sequence (er)1≤r≤Q is non-increasing and eQ = 0.

Proof. Let 1 ≤ r ≤ Q− 1 and let us prove that er+1 ≤ er. First, we have Kr ⊂ Kr+1. Hence,

er+1 :=
‖(IW −ΠWKr+1

)(θqr+2)‖W
‖θq1‖W

≤
‖(IW −ΠWKr)(θqr+2)‖W

‖θq1‖W
.
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In addition, since

qr+1 := argmax
q∈{1:Q}\Ir

‖(IW −ΠWKr)(θq)‖W
‖θq1‖W

,

we infer that
‖(IW −ΠWKr)(θqr+2)‖W

‖θq1‖W
≤
‖(IW −ΠWKr)(θqr+1)‖W

‖θq1‖W
=: er.

This proves that the sequence (er)1≤r≤Q is non-increasing. Finally, since necessarily Span+({θq}q∈{1:Q}
)
⊂

KQ, we infer that eQ = 0. This completes the proof.

5 Numerical results
In this section, we numerically illustrate our theoretical results on the membrane obstacle problem
and on the frictionless Hertz contact problem. In both examples, we compare the computational
performance of the different methods for building the reduced primal space (decorrelated, online and
offline) and the reduced dual basis (CPG and mCPG). The HF computations use a combination of
Freefem++ [2323] and Python, whereas the algorithms presented herein have been developed in Python
using the convex optimization package cvxopt [44].

5.1 Membrane obstacle problem
In this section, we study the membrane obstacle problem. We consider a square, elastic membrane
Ω ⊂ R2 of side A = 1m, located at some distance from an obstacle represented by a circular sub-domain
ω(µ) ⊂ Ω of radius r := µ1 and centre c := (µ2, µ3) with

µ = (µ1, µ2, µ3) ∈ D :=
[
0.8, 1.2

]
×
[
−0.05, 0.05

]
×
[
−0.05, 0.05

]
(m). (35)

For all µ ∈ D, we assume that there is a smooth invertible geometric mapping h(µ) : Ω̂ := Ω −→ Ω
such that there is a reference domain ω̂ ⊂ Ω satisfying h(µ)(ω̂) = ω(µ). We set h1(µ) := h(µ)|ω̂.
Moreover, the function ψ̂ : ω̂ → R prescribes the elevation of the obstacle in the reference domain,
and we set ψ(µ) := ψ̂ ◦ h1(µ)−1. We apply to the membrane a vertical load ̂̀ : Ω̂→ R, with ̂̀∈ L2(Ω̂)
and we set `(µ) := ̂̀◦ h(µ)−1. The membrane is fixed on the boundary Γ of Ω (see Figure 22). Thus,
we consider the following model problem:

−∆u = `(µ), in Ω,
u ≥ ψ(µ), in ω(µ),
u = 0, on Γ.

(36)

In what follows, we take ψ̂ so that ψ(µ)(x, y) := −1.25 (x−µ2)2+(y−µ3)2

µ2
1

for all µ ∈ D and all (x, y) ∈
ω(µ), and ̂̀(x, y) = −1 for all (x, y) ∈ Ω̂. The coefficient −1.25 in front of the obstacle function is
chosen so that the constraints at the boundary of ω(µ) are inactive in order to avoid oscillations of
the Lagrange multiplier at the transition zone. The training set is chosen as Dtrain :=

{
0.8 + 0.1i, 0 ≤

i ≤ 4
}
×
{
−0.05 + 0.025i, 0 ≤ i ≤ 4

}2 (altogether 125 points) and the validation set Dvalid is generated
by choosing 64 elements in D randomly with a uniform distribution.

We consider the HF subspace V̂ ⊂ H1
0 (Ω̂; R) and the HF subcone Ŵ+ ⊂ L2(ω̂; R+) built using P1

finite elements for the displacement and the Lagrange multiplier [1515, 1010]. Notice that the displacement
and the Lagrange multiplier are now defined on the reference domains Ω̂ and ω̂, respectively. The
reference mesh of Ω̂ is fitted to the boundary of ω̂ and is composed of 3594 nodes with 467 nodes in
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Ωω(µ) h
1 (µ)

ω̂

Γ

|0

A = 1

r•
c

x

û(x)

Figure 2: Obstacle test-case: Configuration.

ω̂. Thus, we have N := dim(V̂) = 3594 primal and R := dim(Ŵ) = 467 dual degrees of freedom. For
all µ ∈ D, the mesh of Ω fitted to the boundary of ω(µ) is built using the geometric mapping h(µ).
We have verified that all the meshes maintain satisfactory regularity properties by using the aspect
ratio quality criterion from the Salome platform [3535]. Figure 33 displays the maximum aspect ratio of
the meshes for all µ ∈ Dtrain ∪ Dvalid.

Figure 3: Obstacle test-case: Maximum aspect ratio for µ ∈ Dtrain ∪ Dvalid.

The variational formulation of (3636) leads to a minimization problem of the form (11) with the
bilinear form â(µ; ·, ·) : V̂ × V̂ → R defined by

â(µ; û, v̂) :=
∫

Ω
∇(û ◦ h(µ)−1) · ∇(v̂ ◦ h(µ)−1) dΩ, (37)

and the linear form f̂(µ; ·) : V̂ → R defined by

f̂(µ; v̂) :=
∫

Ω

(̂̀◦ h(µ)−1)(v̂ ◦ h(µ)−1) dΩ. (38)
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The admissible set K̂(µ) associated with the obstacle condition is defined as follows:

K̂(µ) :=
{
v̂ ∈ V̂

∣∣ b̂(µ; v̂, η̂) ≤ ĝ(µ; η̂), ∀η̂ ∈ Ŵ+}, (39)

where

b̂(µ; v̂, η̂) :=
∫
ω(µ)

(
v̂ ◦ h1(µ)−1)(η̂ ◦ h1(µ)−1) dΓ, ĝ(µ; η̂) :=

∫
ω(µ)

(
ψ̂ ◦ h1(µ)−1)(η̂ ◦ h1(µ)−1) dΓ.

(40)

Figure 44 displays the deformed configuration resulting from the HF displacement field u(µ) :=
û(µ) ◦ h(µ)−1 (left panel) and the Lagrange multiplier λ(µ) := λ̂(µ) ◦ h(µ)−1 (right panel) for
µ = (0.18, 0.025,−0.025)(m). Figure 55 shows on its left (resp. right) panel the projection error êPOD

Figure 4: Obstacle test-case: HF solution for µ = (0.18, 0.025,−0.025). Left: u(µ). Right:
λ(µ).

(resp. êCPG and êmCPG) defined in (1111) (resp. (1313) and (3434)) produced by the POD (resp. CPG and
mCPG) algorithms as a function of the number of vectors composing the reduced primal (resp. dual)
bases. In all cases, the projection errors decrease sufficiently fast so that the linear spaces generated by
the primal and dual snapshots can be approximated by small-dimensional subspaces. We also notice

Figure 5: Obstacle test-case: projection errors for the POD, CPG and mCPG algorithms. Left:
POD. Right: CPG and mCPG.

that the projection error for the mCPG algorithm is smaller than that for the CPG algorithm. This
indicates that the cone constructed using the mCPG algorithm yields more accurate approximations
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than the one obtained by means of the CPG algorithm. To further compare the CPG and the mCPG
algorithms, we introduce for all r ≥ 0, the quantity êorth(r) which measures the orthogonality of the
vector ν̂r+1, constructed by either the CPG or the mCPG algorithm, with respect to the cone K̂r.
This quantity is defined as

êorth(r) := ‖
(
IŴ −ΠŴ

K̂r

)
(ν̂r+1)‖Ŵ ≤ 1. (41)

Notice that by definition, the larger êorth(r) (i.e., close to 1), the closer ν̂r+1 to being orthogonal to
the cone. It can be seen in Figure 66 that êCPG

orth(r) ≤ êmCPG
orth (r) for all r ≥ 0, which illustrates that the

Figure 6: Obstacle test-case: Comparison between êCPG
orth(r) and êmCPG

orth (r).

basis constructed with the mCPG algorithm is of better quality than the one constructed with the
CPG algorithm.

Considering the three tolerance pairs (δPOD = 10−3, δmCPG = 10−2), (δPOD = 10−4, δmCPG = 10−3),
and (δPOD = 10−6, δmCPG = 10−2), we obtain respectively the following pairs for the dimensions of the
reduced bases: (N,R) = (19, 50), (N,R) = (51, 70), (N,R) = (89, 50). With these choices, we cover
the two possible settings, namely N < R where we are sure that for all µ ∈ D, the bilinear form
b̂(µ; ·, ·) is not inf-sup stable (β̂dec

N,R(µ) = 0) and N ≥ R where inf-sup stability cannot be asserted
a priori. Our numerical results for the pair (N,R) = (89, 50) show that the plain construction of
the reduced model does not guarantee inf-sup stability in this case. Indeed, the value of the inf-sup
constant β̂dec

N,R(µ) for the pair (N,R) = (89, 50) is almost zero (of the order of 10−7) for all µ ∈ Dvalid.
Let us now consider the results obtained with the strategy proposed in Section 33. For all µ ∈ D,

we define

β̂
Ŝn

(µ) := inf
η̂∈Ŵ+

R

sup
v̂∈V̂N+Ŝn

b(µ; v̂, η̂)
‖v̂‖V̂‖η̂‖Ŵ

, ∀n ∈ N. (42)

Figures 7c7c, 7f7f and 7i7i, respectively, show the values of β̂off
N,R(µ) as a function of µ ∈ Dvalid for the pairs

(N,R) = (19, 50), (N,R) = (51, 70), (N,R) = (89, 50). For each pair, we consider the tight tolerance
δPGA = 10−3 as well as the loose tolerance δPGA = 0.5, 0.6, 0.95, respectively. These results illustrate the
fact that the PGA algorithm does indeed recover the expected stability property. Notice that the values
of µ ∈ Dvalid have been sorted in increasing order with respect to the inf-sup constant β̂off

N,R(µ). The
panels in column 1 (resp. 2) of Figure 77 report the values of σ̂

Ŝn
(µn) (see (2323)) (resp. min

µ∈Dtrain
β̂
Ŝn

(µ)) as a

function of n for the pairs (N,R) = (19, 50), (N,R) = (51, 70) and (N,R) = (89, 50) with δPGA = 10−3.
The results show that the PGA algorithm converges and employs an effective greedy selection of
supremizers in order to recover inf-sup stability for the reduced model. Figure 88 shows a comparison
between the inf-sup constants β̂HF(µ), β̂dec

N,R(µ), β̂on
N,R(µ), and β̂off

N,R(µ) for each of the reduced basis
dimension pairs (N,R) = (19, 50), (N,R) = (51, 70) and (N,R) = (89, 50) with respectively δPGA = 0.5,
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(a) σ̂
Ŝn

(µn). (b) min
µ∈Dtrain

β̂
Ŝn

(µ). (c) β̂off
N,R(µ), µ ∈ Dvalid.

(d) σ̂
Ŝn

(µn). (e) min
µ∈Dtrain

β̂
Ŝn

(µ). (f) β̂off
N,R(µ), µ ∈ Dvalid.

(g) σ̂
Ŝn

(µn). (h) min
µ∈Dtrain

β̂
Ŝn

(µ). (i) β̂off
N,R(µ), µ ∈ Dvalid.

Figure 7: Obstacle test-case: PGA algorithm. Row 1: (N,R) = (19, 50). Row 2: (N,R) =
(51, 70). Row 3 (N,R) = (89, 50). Column 1 and Column 2: δPGA = 10−3. Column 3: δPGA ∈
{0.95, 0.6, 0.5, 10−3}.

δPGA = 0.6 and δPGA = 0.95. On the one hand, we see that in all cases, in agreement with the theoretical
results, β̂on

N,R(µ) ≥ β̂off
N,R(µ) ≥ β̂dec

N,R(µ) and β̂on
N,R(µ) ≥ β̂HF(µ) for all µ ∈ Dvalid. On the other hand,

we notice that there is no established order between β̂off
N,R(µ) and β̂HF(µ).

Table 11 shows that the offline phase of the offline enrichment method is approximately up to two
times more expensive than the online enrichment method for the three reduced basis dimension pairs
(N,R) with δPGA = 10−3. We see the opposite effect concerning the cost of the online phase. This is
explained on the one hand by the fact that in the case of the online enrichment strategy, the primal
basis is reconstructed for each calculation of the reduced model. On the other hand, it is also explained
by the fact that in the present test-case, the dimension of the primal basis is smaller in the case of an
offline enrichment strategy because the PGA algorithm converges in at most R iterations. We notice
that the larger R , the more advantageous the offline strategy compared to the online strategy. It
can also be seen that in the case of the offline strategy, the cost of the online phase is practically the
same for all the three reduced basis dimension pairs, although the dimensions are different. This is



5.2 Hertz contact between two half-disks 17

(a) (N,R) = (19, 50, δPGA = 0.5). (b) (N,R) = (51, 70, δPGA = 0.6). (c) (N,R) = (89, 50, δPGA =
0.95).

Figure 8: Obstacle test-case: Inf-sup constant β̂HF(µ), β̂dec
N,R(µ), β̂on

N,R(µ), and β̂off
N,R(µ) for µ ∈

Dvalid.

explained by the fact that, once the reduced model is constructed, the cost of solving the resulting
system varies quite moderately as a function of the dimension of the reduced bases. Comparing the
overall cost in computation time between the two enrichment strategies, we conclude that the offline
enrichment strategy is more advantageous than the online enrichment strategy if more than 102, 83,
52 online calculations are required with the reduced model for the reduced basis dimension pairs
(N,R) = (19, 50), (N,R) = (51, 70), (N,R) = (89, 50), respectively. These numbers are called benefit
threshold in Table 11.

(N,R) (19, 50) (51, 70) (89, 50)

Phase Method on off on off on off

Offline time(s) 1112 2296 1193 2395 1272 1884

Online time(s) 14 2.4 17 2.5 14 2.3

Benefit threshold 102 83 52

Table 1: Obstacle test-case: The cost in seconds of the offline and online phases of the reduced
model for the online (on) and offline (off) enrichment cases for the pairs (N,R) = (19, 50),
(N,R) = (51, 70) and (N,R) = (89, 50) with δPGA = 10−3.

5.2 Hertz contact between two half-disks
We consider two half-disks as shown in Figure 99. The first half-disk occupies a domain Ω1 ⊂ R2 of
fixed radius R1 = 1m, and the second a domain Ω2(µ) ⊂ R2 of parametric radius R2 := µ with

µ ∈ D :=
[
0.7, 1.3

]
(m). (43)

For reasons of symmetry, only quarter-disks are discretized. The initial gap between the two disks is
equal to γ0 > 0. We impose a displacement of −d (resp. d) on Γtop

1 (resp. Γbot
2 ) of Ω1 (resp. of Ω2(µ)),

with d ≥ 1
2γ0. We set Ω(µ) := Ω1∪Ω2(µ) as well as E := 15Pa (resp. ν := 0.35) for the Young modulus

(resp. the Poisson coefficient). For all µ ∈ D, we assume that there is a smooth invertible geometric
mapping h(µ) : Ω̂→ Ω(µ) defined on a reference domain Ω̂ := Ω̂1∪Ω̂2 such that

{
Ω̂1, Ω̂2

}
is a partition

of Ω̂, h(µ)(Ω̂1) = Ω1, h(µ)(Ω̂2) = Ω2(µ) (notice that h(µ)|Ω̂1
is parameter-independent). We denote by
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Γ̂c1 (resp. Γ̂c2) the potential contact manifold located on ∂Ω̂1 (resp. ∂Ω̂2), and we set Γc1 := h(µ)(Γ̂c1) and
Γc2(µ) := h(µ)(Γ̂c2). The training set is chosen as Dtrain :=

{
0.7 + 0.0075i, 0 ≤ i ≤ 80

}
(m) (altogether

Γle
ft

1

Γtop
1

Γc 1

Γle
ft

2

Γbot
2

Γ c2 (µ)

••

•
•

• •

Ω1

Ω2(µ)

R
1 =

1

R 2
=
µ

γ0

Figure 9: Hertz test-case: Configuration.

81 points) and the validation set Dvalid is generated by choosing 30 elements in D randomly with a
uniform distribution.

We consider the HF subspace V̂ ⊂ H1(Ω̂; R2) and the HF subcone Ŵ+ ⊂ L2(Γ̂c1,R+) built using
P1 finite elements for displacement and the LAC (Local Average Contact) method [11] with P0 finite
elements for the Lagrange multiplier on a mesh composed of 6130 nodes with 560 nodes on the potential
contact manifold Γ̂c

1. Thus, we have N := dim(V̂) = 12260 primal and R := dim(Ŵ) = 280 dual
degrees of freedom. We equip the space V̂ with the norm ‖ · ‖V̂ defined as follows (we use boldface
notation for vector-valued fields):

‖v̂‖V̂ :=
(
‖v̂‖2L2 + ˆ̀2‖∇v̂‖2L2

) 1
2
, ∀v̂ ∈ V̂, (44)

where ˆ̀ is a characteristic length of Ω̂ which is introduced for dimensional consistency. The varia-
tional formulation of the contact problem leads to a minimization problem of the form (11) subject
to a so-called non-interpenetration condition which can be written either under the small deforma-
tion assumption (linear) or under the large deformation assumption (nonlinear). The bilinear form
â(µ; ·, ·) : V̂ × V̂ → R associated with the equilibrium equation in Ω(µ) is defined by

â(µ; û, v̂) :=
∫

Ω(µ)
σ(ε(û ◦ h(µ)−1)) : ε(v̂ ◦ h(µ)−1) dΩ(µ), (45)

where the linearized strain tensor ε(v̂) is given by

ε(v̂) := 1
2
(
∇v̂ +∇v̂>

)
, (46)
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and the stress tensor σ(ε) is given by

σ(ε) := Eν

(1 + ν)(1− 2ν) tr(ε)I2 + E

(1 + ν)ε, (47)

with I2 the identity matrix of order 2. The linear form f̂(µ; ·) : V̂ → R associated with the external
load `(µ) : Ω(µ)→ R2 applied to Ω(µ) is defined as

f̂(µ; v̂) :=
∫

Ω(µ)
`(µ) ·

(
v̂ ◦ h(µ)−1) dΩ(µ). (48)

We consider here the first situation where we make the assumption of small deformations so that Ω̂
deviates very little from its initial configuration. This allows us to assume that the normal vector is
constant on the whole contact manifold. We denote by n := ey = (0, 1)> the outward normal vector
in Γ̂c1 and by φ̂ : Γ̂c1 → Γ̂c2 the pairing function. The non-interpenetration condition is written as
follows: (

û1(µ)(x̂)− û2(µ) ◦ φ̂(x̂)
)
· ey ≤

(
φ̂(x̂)− x̂

)
· ey, ∀x̂ ∈ Γ̂c1. (49)

Thus, the admissible set K̂(µ) becomes

K̂(µ) :=
{
v̂ ∈ V̂

∣∣ b̂(µ; v̂, η̂) ≤ ĝ(µ; η̂), ∀η̂ ∈ Ŵ+}, (50)

where

b̂(µ; v̂, η̂) :=
∫

Γ̂c1

(
v̂1(µ)(x̂)− (v̂2(µ) ◦ φ̂)(x̂)

)
· eyη̂(x̂) dx̂, (51)

ĝ(µ; η̂) = ĝ(η̂) :=
∫

Γ̂c1
(φ̂(x̂)− x̂) · eyη̂(x̂) dx̂. (52)

The initial gap γ0 and the imposed displacement d are, respectively, set to γ0 := 0.001m and d :=
0.09m. This latter value, which is less than 10% of the maximum value between R1 and R2, allows us
to remain within the validity of the small deformation assumption.

Figure 1010 displays the deformed configuration resulting from the HF displacement field u(µ) :=
û(µ) ◦ h(µ)−1 for µ = 0.9m on its left panel and the Lagrange multiplier λ(µ) := λ̂(µ) ◦ h(µ)−1 as a
function of the abscissa along Γ̂c1 for µ ∈

{
0.7, 0.8, 1.0, 1.1, 1.3

}
(m) on its right panel. We notice that

the non-interpenetration condition is respected on the deformed configuration as expected. We can
also notice some small oscillations in the Lagrange multipliers. This is due to the fact that for the
evaluation of the contact contributions, a direct projection of the integration scheme is used instead of
a projection-intersection of the master cells onto the slave cells. Figure 1111 shows on its left (resp. right)
panel the projection error êPOD (resp. êCPG and êmCPG) defined in (1111) (resp. (1313) and (3434)) produced
by the POD (resp. CPG and mCPG) algorithms as a function of the number of vectors composing
the primal (resp. dual) reduced bases. In all cases, the projection errors decrease sufficiently fast so
that the linear spaces generated by the primal and dual snapshots can be approximated by small-
dimensional subspaces. We also notice that the projection error for the mCPG algorithm is smaller
than that for the CPG algorithm. This numerically indicates that the cone constructed using the
mCPG algorithm yields more accurate approximations than the one obtained by means of the CPG
algorithm. As before, it can be seen in Figure 1212 that êCPG

orth(r) ≤ êmCPG
orth (r) for all r ≥ 0, which illustrates

that the basis constructed with the mCPG algorithm is of better quality than the one constructed
with the CPG algorithm.
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Figure 10: Hertz test-case: HF solution. Left: u(µ) for µ = 0.9m. Right: λ(µ) for µ ∈{
0.7, 0.8, 1.0, 1.1, 1.3

}
(m).

Figure 11: Hertz test-case: projection errors for the POD, CPG and mCPG algorithms. Left:
POD. Right: CPG and mCPG.

Figure 12: Hertz test-case: Comparison between êCPG
orth(r) and êmCPG

orth (r).

Considering the three tolerance pairs (δPOD = 10−3, δmCPG = 10−2), (δPOD = 10−3, δmCPG = 10−3),
and (δPOD = 10−2, δmCPG = 10−2), we obtain respectively the following pairs for the dimensions of the
reduced bases: (N = 46, R = 12), (N = 46, R = 70), (N = 3, R = 12). With these choices, we cover
the two possible settings, namely N < R where we are sure that for all µ ∈ D, the bilinear form
b̂(µ; ·, ·) is not inf-sup stable (β̂dec

N,R(µ) = 0) and N ≥ R where inf-sup stability cannot be asserted a
priori. Figure 1313 shows the coefficient β̂dec

N,R(µ) as a function of µ ∈ Dvalid for the pair (N,R) = (46, 12).
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Contrary to the results obtained in the obstacle test-case, the value of the inf-sup constant β̂dec
N,R(µ) is

non-zero although it remains very small compared with β̂HF(µ) (which is of the order of 8).

Figure 13: Hertz test-case: Inf-sup constant β̂dec
N,R(µ) with (N,R) = (46, 12).

Let us now consider the results obtained with the strategy proposed in Section 33. Figures 14c14c, 14f14f
and 14i14i, respectively, show the values of β̂off

N,R(µ) as a function of µ ∈ Dvalid for the pairs (N,R) =
(3, 12), (N,R) = (46, 70), (N,R) = (46, 12). For each of the above pairs, we consider the tighter
tolerance δPGA = 0.3 as well as the looser tolerance δPGA = 0.5, 0.6, 0.4, respectively. These results
illustrate the fact that the PGA algorithm does indeed recover the expected stability property. The
panels in column 1 (resp. 2) of Figure 1414, report the values of σ̂

Ŝn
(µn) (see (2323)) (resp. min

µ∈Dtrain
β̂
Ŝn

(µ)
(see (4242))) as a function of n for the pairs (N,R) = (3, 12), (N,R) = (46, 70), (N,R) = (46, 12)
with δPGA = 0.3. The results show that the PGA algorithm converges and employs an effective greedy
selection of supremizers in order to recover inf-sup stability for the reduced model. Another interesting
observation is that the decrease of σ̂

Ŝn
(µn) with respect to n is much slower than for the previous

test-case.
Figure 1515 shows a comparison between the inf-sup constants β̂HF(µ), β̂dec

N,R(µ), β̂on
N,R(µ), and

β̂off
N,R(µ) for each of reduced basis dimension pairs (N = 46, R = 12), (N = 46, R = 70), and

(N = 3, R = 12) with respectively δPGA = 0.5, δPGA = 0.6 and δPGA = 0.4. On the one hand, we
see that in all cases, in agreement with the theoretical results, β̂on

N,R(µ) ≥ β̂off
N,R(µ) ≥ β̂dec

N,R(µ) and
β̂on
N,R(µ) ≥ β̂HF(µ) for all µ ∈ Dvalid. On the other hand, we notice that there is no established order

between β̂off
N,R(µ) and β̂HF(µ).

Finally, Table 22 shows that the offline phase of the offline enrichment method is up to two times
more expensive than the online enrichment method for the three reduced basis dimension pairs (N,R)
with δPGA = 0.3. Overall, the same conclusions can be reached as those related to the previous test-case
in Table 11.
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(a) σ̂
Ŝn

(µn). (b) min
µ∈Dtrain

β̂
Ŝn

(µ). (c) β̂off
N,R(µ), µ ∈ Dvalid.

(d) σ̂
Ŝn

(µn). (e) min
µ∈Dtrain

β̂
Ŝn

(µ). (f) β̂off
N,R(µ), µ ∈ Dvalid.

(g) σ̂
Ŝn

(µn). (h) min
µ∈Dtrain

β̂
Ŝn

(µ). (i) β̂off
N,R(µ), µ ∈ Dvalid.

Figure 14: Hertz test-case: PGA algorithm. Row 1: (N,R) = (3, 12). Row 2: (N,R) =
(46, 70). Row 3 (N,R) = (46, 12). Column 1 and Column 2: δPGA = 0.3. Column 3: δPGA ∈
{0.6, 0.5, 0.4, 0.3}.
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(a) (N,R) = (3, 12), δPGA = 0.5. (b) (N,R) = (46, 70), δPGA = 0.6. (c) (N,R) = (46, 12), δPGA = 0.4.

Figure 15: Hertz test-case: Inf-sup constant β̂HF(µ), β̂dec
N,R(µ), β̂on

N,R(µ), and β̂off
N,R(µ) for µ ∈

Dvalid.

(N,R) (3, 12) (46, 70) (46, 12)

Phase Method on off on off on off

Offline time(s) 8490 18098 10889 19750 10874 18312

Online time(s) 75 18 162 20 78 19

Benefit threshold 169 62 126

Table 2: Hertz test-case: The cost in seconds of the offline and online phases of the reduced
model for the online (on) and offline (off) enrichment cases for the pairs (N,R) = (3, 12),
(N,R) = (46, 70) and (N,R) = (46, 12) with δPGA = 0.3.
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