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Abstract
In this paper, we study the stochastic bandits problem with k unknown heavy-tailed and corrupted
reward distributions or arms with time-invariant corruption distributions. At each iteration, the
player chooses an arm. Given the arm, the environment returns an uncorrupted reward with proba-
bility 1−ε and an arbitrarily corrupted reward with probability ε. In our setting, the uncorrupted re-
ward might be heavy-tailed and the corrupted reward might be unbounded. We prove a lower bound
on the regret indicating that the corrupted and heavy-tailed bandits are strictly harder than uncor-
rupted or light-tailed bandits. We observe that the environments can be categorised into hardness
regimes depending on the suboptimality gap ∆, variance σ, and corruption proportion ϵ. Following
this, we design a UCB-type algorithm, namely HuberUCB, that leverages Huber’s estimator for ro-
bust mean estimation. HuberUCB leads to tight upper bounds on regret in the proposed corrupted
and heavy-tailed setting. To derive the upper bound, we prove a novel concentration inequality for
Huber’s estimator, which might be of independent interest.
Keywords: Unbounded corruption, Heavy-tail distributions, Huber’s estimator, Regret bounds

1. Introduction

In this paper, we consider the problem of sequential decision making where the player has incom-
plete information about a finite number of decisions and the decisions generate corrupted returns.
Specifically, we are interested in the problem of Multi-armed Bandits in a corrupted setting, or in
short Corrupted Bandits, in which the player is presented with k> 0 arms corresponding to k un-
known probability distributions. At each iteration t ∈ {1, 2, . . .}, the player selects an arm and
observes a sample, called reward, generated independently from the corresponding probability dis-
tribution. In Corrupted Bandits, the observed reward is corrupted by some unknown adversary or
nature. The corruption might also differ from arm to arm. In order to model the corrupted rewards,
we consider that the rewards of an arm correspond to a possibly heavy-tailed (with only a finite
variance) and corrupted distribution instead of a well-behaved bounded or sub-Gaussian reward
commonly found in literature (cite). By corrupted rewards we mean that during the experiment, the
environment may randomly generate a reward that is arbitrarily different from the “true reward”,
which one would expect to get if the bandit was not corrupted. In such a case, we refer to these
arbitrarily different rewards as outliers. The goal of the player is to maximize the expected reward
obtained oblivious to the corruption.
A Motivating Example. Though this article focuses on the theoretical aspects of this problem, we
hereby illustrate a case study with roots in agriculture that motivates us. The Varroa mite is a pest
that invades apiaries and causes destruction of bee colonies. There are numerous treatments that
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the beekeeper can use against the Varroa, such as applying amitraz or tau-fluvalinate (Kamler et al.,
2016) based pesticides, performing organic treatments like thymus or oxalic acid or thymus (Gre-
gorc and Planinc, 2012). Every year, the beekeeper must rotate between treatments as the varroa
develops resistance to a given treatment (Rinkevich, 2020; Kamler et al., 2016). The reward of a
treatment is dictated by the number of fallen varroa mites due to it. This reward function seems
to be heavy-tailed and corrupted due to plethora of confounding variables, e.g. the weather, the
way to administer the treatment, the state of the hive etc. (Semkiw et al., 2013), which are hard to
model. Interestingly, observed corruptions are natural and non-adversarial but probably unbounded.
The heavy-tailed and corrupted nature of the problem resists application of the non-robust bandit
algorithms, such as UCB, and motivates us to propose our setting: Bandits corrupted by Nature.
Our Contributions. We consider the stochastic bandit with k arms of corrupted rewards {(1 −
ε)Pi + εHi}ki=1. Here, Pi’s are uncorrupted reward distributions with heavy-tails and bounded
variances, Hi’s are corruption distributions with probably unbounded corruptions, and ε ∈ [0, 1/2)
is the proportion of corruption. This is equivalent to considering a setting where at every step Nature
flips a coin with success probability ε. The player obtains a corrupted reward if Nature obtains 1
and otherwise, an uncorrupted reward. We call this setting ‘Bandits corrupted by Nature’. Our
setting encompasses both the heavy-tailed reward and unbounded corruptions. We formally define
the setting and corresponding regret definition in Section 2.

In order to understand the fundamental hardness of the proposed setting, we derive the lower
bounds on regret that illustrates the optimal regret achievable by any algorithm (Section 3). Lower
bounds in Theorem 1 confirm that the heavy-tailed and corrupted bandits are harder than light-tailed
bandits and there is an unavoidable cost to pay. It also indicates that though the logarithmic regret
is asymptotically achievable, the hardness is dictated by the suboptimality gap ∆i,1 the variance
of reward distributions σi and the corruption proportion ϵ. Specifically, when δi

σi
’s are large, i.e.

the optimal and the suboptimal arms are easy to distinguish, the effect due to this factor is inverse
logarithmic and the effect due to corruption is proportional to (log(1−ϵϵ ))−1. On the other hand, if
∆i
σi

’s are small, i.e. we are in low distinguishability/high variance regime, the hardness is dictated by
σ2
i

∆
2
i,ε

. Here, ∆i,ε ≜ ∆i(1−ε)−εσi is the ‘corrupted suboptimality gap’ that replaces the traditional

suboptimality gap ∆i in the lower bound of non-corrupted and light-tailed bandits (Lai and Robbins,
1985). Since ∆i,ε ≤ ∆i, it shows that in heavy-tailed and corrupt settings, it is harder to distinguish
the optimal and suboptimal arms. They are the same when the corruption proportion ε = 0.

Following the lower bounds, in Section 4, we design a robust algorithm, HuberUCB, that lever-
ages the Huber’s estimator for robust mean estimation. We derive a novel concentration inequality
on the deviation of empirical Huber’s estimate that allows us to design robust and tight confidence
intervals for HuberUCB. In Theorem 3, we show that HuberUCB achieves the logarithmic regret,
and also the optimal rate when the sub-optimality gap ∆ is not too large. In addition, we demon-
strate that the regret of HuberUCB decomposes according to the respective values of ∆i and σi:

Rn ≍

 ∑
i:∆i>σi

log(n)σi


︸ ︷︷ ︸

Error due to Heavy-tail

+ O

 ∑
i:∆i≤σi

log(n)∆i
σ2i

∆
2
i,ε


︸ ︷︷ ︸

Usual σ2/∆ error with corruption correction

+ O

(∑
i

∆i

log
(
1−ε
ε

))︸ ︷︷ ︸
Constant error due to corruption

.

1. Suboptimality gap of an arm is the difference in mean rewards of the optimal arm and that arm.

2



BANDITS CORRUPTED BY NATURE

Thus, our upper bound allows us to segregate the errors due to heavy-tail, corruption, and corruption-
correction with heavy tails. Due to the corruption, we incur at least an error log(n) ∆i

log( 1−ε
ε )

, and

instead of the usual log(n) σi∆i
, we obtain an error term log(n)∆i

σ2
i

∆
2
i,ε

with the corrupted subopti-

mality gap. These observations resonate that of the lower bound, i.e. corrupted bandits are harder
than uncorrupted ones as the corruption turns distinguishing the optimal arm from the suboptimal
ones strictly harder. Due to the heavy-tail behaviour, we have the first term σi log(n) that domi-
nates the upper bound for ∆i > σi. Thus, the effect of heavy-tailedness separates from that of the
corruption for large suboptimality gaps, where the optimal arm is easier to distinguish. In contrast,
the effect of heavy-tailedness and corruption entangles and turns the optimal arm harder to detect,
if the uncorrupted suboptimality gap is low. Thus, in the spirit of the lower bound, the upper bound
of HuberUCB also shows the transition in hardness regime depending on ∆i/σi. In Section 5, we
experimentally illustrate the claimed performance of HuberUCB for corrupted Gaussian and Pareto
environments. For brevity, we defer the detailed proofs and the parameter tuning to Appendix.

Related Work. Due to the generality of our setting, this work extends the existing methods for
both the heavy-tailed and corrupted bandits. While for designing the algorithm, it leverages on the
literature of robust mean estimation. Here, we connect to these three streams of literature.

Heavy-tailed bandits. Bubeck et al. (2013) introduced the heavy-tailed bandits problem and uses
robust mean estimator to propose RobustUCB algorithms. It sprouted research works leading to ei-
ther tighter rates of convergence (Lee et al., 2020; Agrawal et al., 2021) or algorithms for structured
environments (Medina and Yang, 2016; Shao et al., 2018). These works rely on the assumption
that a bound on the (1+ϵ)-moment, i.e. E[|X|1+ε], is known for some ε > 0. We do not assume
such a restrictive bound as knowing a bound on E[|X|1+ε] imply the knowledge of a bound on the
sub-optimality gap ∆. Instead, we assume that the centered moment, specifically the variance, is
bounded by a known constant. Thus, we address the open problem mentioned in (Agrawal et al.,
2021) by relaxing the classical bounded (1+ϵ)-moment assumption with bounded centered moment.

Corrupted bandits. To our knowledge, the Bandits Corrupted by Nature is a novel setting for Ban-
dits. Motivated by the agricultural and biological applications, we consider a non-adversarial pro-
portion (ε ∈ [0, 1/2)) of corrupted samples with probably unbounded amount of corruptions. This
is significantly different than the existing corrupted settings for bandits, which assume that the cor-
ruption is bounded and often the bound is known (Lykouris et al., 2018; Bogunovic et al., 2020).

Robust mean estimation. Our algorithm design leverages the rich literature of robust means es-
timation, specifically the influence function representation of Huber’s estimator. The problem of
robust mean estimation in a corrupted and heavy-tailed setting stems from the work of Huber (Hu-
ber, 1964, 2004). Recently, in tandem with machine learning, there has been numerous advances
bth in the heavy-tailed (Devroye et al., 2016; Catoni, 2012; Minsker, 2019) and in the corrupted
settings (Lecué and Lerasle, 2020; Minsker and Ndaoud, 2021; Prasad et al., 2019, 2020; Depersin
and Lecué, 2019; Lerasle et al., 2019; Lecué and Lerasle, 2020). Our work, specifically the novel
concentration inequality for Huber’s estimator, adds a new result in this spirit.

Notations. We denote by P the set of probabilı̂ty distributions on the real line R and P[q] ≜ {P ∈
P : EP [|X|q] <∞} the set of distributions with at least q ≥ 1 finite moments. 1{A} is the indicator
function for the event A being true. We denote the mean of a distribution Pi as µi ≜ EPi [X].
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2. Bandits corrupted by Nature: Problem setting

In this section, we present the corrupted bandits setting that we study, and introduce the notion of
regret decomposition for this setting. Importantly, the regret decomposition allows us to focus on
the expected number of pulls of a suboptimal arm as the central quantity to control algorithmically.

2.1. Bandits corrupted by Nature

In the setting of Bandits corrupted by Nature, a bandit algorithm, or policy π, has access to k ∈ N
uncorrupted reward distributionsP1, . . . , Pk∈P[q] and k corrupted reward distributionsH1, . . . ,Hk∈
P . At each step t ∈ {0, . . . , n}, Nature draws a random variableCt ∈ {0, 1} from a Bernoulli distri-
bution with mean ε ∈ [0, 1/2). If Ct = 1, the reward will be drawn from the corrupted distribution
HAt corresponding to the chosen arm At ∈ {1, . . . , k}. Otherwise, it will come from the uncor-
rupted distribution PAt . The policy π interacts with these corrupted environment by choosing an
arm At and obtaining a reward corrupted by Nature Xt. The policy leverages these observations to
choose another arm at the next step so that it maximises the total cumulative reward obtained after
n steps. In Algorithm 1, we outline a pseudocode of this problem.

Algorithm 1 Bandits corrupted by Nature
Parameters: ε ∈ [0, 1/2) and q ≥ 2
Data: P1, . . . , Pk ∈ P[q] be the uncorrupted reward distributions and H1, . . . ,Hk ∈ P be the

corrupted reward distributions.
for t = 1, . . . , n do

Player plays an arm At ∈ {1, . . . , k}
Nature draws a Bernoulli Ct ∼ Ber(ε)
Generate a corrupted reward Zt ∼ HAt and an uncorrupted reward X ′

t ∼ PAt

Player observe the reward Xt = X ′
t1{Ct = 0}+ Zt1{Ct = 1}

end

We call νε the law of the corrupted environment and we refer to the uncorrupted environment
as ν. In this model of corruption, if Ct = 1, the reward will be corrupted and obtaining Ct = 1
does not depend on the value of X ′

t but rather on the global parameter ε. Thus, this model assumes
independence of corruption, i.e. a non-adversarial behaviour of the Nature. Typically, one can think
of agricultural applications in which such a setting would make sense because there does not seem to
be an adversary that corrupts the data. The corruption is often due to external natural confounders,
such as animals or weather, which are non-adversarial.

Remark 1 Let us highlight that we do not assume sub-Gaussian behaviour for the inlier distribu-
tions Pi. Instead, we consider only a weak moment assumption: the inlier distributions Pi have a
finite variance. Thus, our setting is capable of modelling both heavy-tailed and corrupted settings.
This enables our setting with a generality to develop algorithms for both of the problems. We testify
this generality in the regret lower bounds and empirical performance analysis in Sections 3 and 5.

The Bandits corrupted by Nature model is equivalent to the classical finite-armed stochastic bandit
setting with distributions {(1 − ε)Pi + εHi}ki=1. The main difference is how we assess the perfor-
mance of an algorithm in this model: we try to quantify the effect of corruptions on the number
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of pulls or arms while ignoring the rewards coming from the Hi’s. In the following section, we
introduce a regret definition to explicate this connection.

2.2. Regret of corrupted bandits

We define the regret using the uncorrupted rewards instead of corrupted ones as otherwise it could
always lead to arbitrarily bad regret. In this setting, the regret is the difference between the ex-
pected sum of uncorrupted rewards collected from the optimal arm and the expected sum of rewards
collected by a bandit algorithm π operating under corrupted setting. Formally,

Rn ≜ nmax
i

EPi [X
′]− E

[
n∑
t=1

X ′
t

]
. (1)

The randomness in the second expectation is taken with respect to a bandit algorithm π that reacts
to the corrupted environment and the reward are those of the uncorrupted environment (X ′)n1 . The
first step is to decompose the regret over the arms as in Lemma 1.

Lemma 1 (Decomposition of corrupted regret) In a corrupted environment νε, the regret defined
in Equation (1) can be decomposed as

Rn =

k∑
i=1

∆iEνε [Ti(n)] ,

where Ti(n) ≜
∑n

t=1 1{At = i}, i.e. the number of pulls of arm i until time n, Eνε [Ti(n)] is the
expected number of pulls of arm i until time n in the corrupted environment, and ∆i ≜ maxj µj−µi,
which is called the suboptimality gap of arm i.

Lemma 1 states that the regret is the sum of the gaps in the uncorrupted environment times the
expected number of pulls in the corrupted environment. Hence, we will focus on controlling
Eνε [Ti(n)], i.e. the expected number of pulls of sub-optimal arms in the corrupted environment.

3. Lower bounds for uniformly good policies

In order to derive the lower bounds, we consider uniformly good policies on some family of envi-
ronments with the set of laws D = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P for each i ∈ {1, . . . , k}.

Definition 2 (Robust uniformly good policies) Let Dε = Dε
1 ⊗ · · · ⊗ Dε

k be a family of corrupted
bandit environments on R. For a corrupted environment νε ∈ Dε with corresponding uncorrupted
environment ν, let µi(ν) be the mean reward of arm i in the uncorrupted setting and µ∗(ν) ≜
maxa µi(ν) be the maximum mean reward. A policy π is uniformly good on Dε if for any α ∈ (0, 1],

∀ν ∈ Dε, ∀i ∈ {1, . . . , k}, µi(ν) < µ∗(ν) ⇒ Eνε [Ti(n)] = o(nα).

In order to derive the lower bound, we rely on Lemma 2, which is a version of the change of measure
argument (Burnetas and Katehakis, 1997), and can be found in (Maillard, 2019, Lemma 3.4).
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Lemma 2 (Lower bound for uniformly good policies) Let D = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P
for each i ∈ {1, . . . , k} and let ν ∈ D. Then, any uniformly good policy on D must pull arms such
that for any Pi ∈ Di, i ∈ {1, . . . , k},

∀i ∈ {1, . . . , k}, µi ≤ µ∗(ν) ⇒ lim inf
n→∞

Eν [Ti(n)]
log(n)

≥ 1

KL(Pi, P∗)
.

Lemma 2 shows that it is sufficient to have an upper bound on the KL-divergence of the reward
distributions interacting with the policy to get a lower bound on the number of pulls of a sub-
optimal arm. In the rest of this section, we compute upper bounds on the KL-divergences in some
specific cases of heavy-tailed, such as Student’s, and corrupted, such as Bernoulli, distributions. We
leverage them for deriving the lower bounds on the number of pulls and hence, on the robust regret
of a uniformly good policy.

Heavy-tails: Student’s Distribution. To obtain a lower bound in the heavy-tailed case we use
Student distributions. Student distribution are well adapted because they exhibit a finite number of
finite moment which makes them heavy-tailed and we can easily change the mean and variances of
Student distribution without changing its shape parameter ν.

Lemma 3 (Control of KL-divergence for Heavy-tails) Let P1, P2 be two Student distributions
with ν > 1 degrees of freedom with EP1 [X] = 0 and EP2 [X] = ∆. Then,

KL(P1, P2) ≤


3ν−1(ν+1)2∆2

ν if ∆ ≤ 1 ,

(ν + 1) log (∆) + log
(
3ν (ν+1)2

ν

)
if ∆ > 1 .

/ 1 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

KL

KL(Q0, Q1)
Eq. (2)
Eq. (3)

Figure 1: Plot of the KL and the bounds for
σ=1 and ε = 0.2 (x axis is in log scale)

Corruption: Corrupted Bernoullis. We choose
the corrupted Bernoulli distributions to get a lower-
bound on the number of sub-optimal pulls in cor-
rupted the setting. Let P0, P1 be two Bernoulli dis-
tributions on {0, c} such that PP0(c) = PP1(0) >
PP0(0) = PP1(c). We corrupt both P0 and P1 with
a proportion ε > 0 to getQ0 ≜ (1−ε)P0+εδc and
Q1 ≜ (1− ε)P1 + εδ0. We obtain Lemma 4 that il-
lustrates three bounds on KL(Q0, Q1) as functions
of the suboptimality gap ∆ ≜ EP0 [X] − EP1 [X],
variance σ2 ≜ VarP0(X) = VarP1(X), and cor-
ruption proportion ϵ.

Lemma 4 (Control of KL-divergence for Corruptions)
Let P0, P1 be two Bernoulli probability distribution
with ∆ = EP0 [X]−EP1 [X] and σ2 = VarP0(X) = VarP1(X). There exists Q0 and Q1, which are
some ε-corruptions of P0 and P1 respectively with the shifted suboptiallity gap ∆ε = ∆(1−ε)−εσ.
Given this, we have the following bounds on KL(Q0, Q1).

• Uniform Bound. For any ∆, σ, we have

KL(Q0, Q1) ≤ (1− 2ε) log

(
1 +

1− 2ε

ε

)
. (2)
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• High Distinguishability/Low Variance Regime. If σ ε√
1−2ε

< ∆ < σ, then

KL(Q0, Q1) ≤
∆ε

σ
log

(
1 + 2

∆ε

σ −∆ε

)
. (3)

• Low Distinguishability/High Variance Regime. If ∆ ≤ σ ε√
1−2ε

, then, there exists ε′ ≤ ε and
Q′

0, Q
′
1 some ε′- versions of P0 and P1 such that KL(Q′

0, Q
′
1) = 0.

Consequences of Lemma 4. We illustrate the bounds in Figure 1. The three upper bounds on the
KL-divergence of corrupted Bernoullis provide us some insights regarding the impact of corruption.
1. Three Regimes of Corruption: We observe that depending on ∆/σ, we can categorise the cor-
rupted environment in three categories. For ∆/σ ∈ [1,+∞), we observe that the KL-divergence
between corrupted distributions Q0 and Q1 is upper bounded by a function of only corruption pro-
portion ε and is independent of the uncorrupted distributions. Whereas for ∆/σ ∈ (ε/

√
1− 2ε, 1),

the distinguishability of corrupted distributions depend on the distinguishibility of uncorrupted dis-
tributions and also the corruption level. We call this the High Distinguishability/Low Variance
Regime. For ∆/σ ∈ [0, ε/

√
1− 2ε], we observe that the KL-divergence can always go to zero. We

refer to this setting as the Low Distinguishability/High Variance Regime.
2. High Distinguishability/Low Variance Regime: In Lemma 4, we observe that the effective gap to
distinguish the optimal arm to the closest suboptimal arm that dictates hardness of a bandit instance
has shifted from the uncorrupted gap ∆ to a corrupted suboptimality gap: ∆ε ≜ ∆(1− ε)− εσ.
3. Low Distinguishability/High Variance Regime: We notice also that there is a limit for ∆ below
which the corruption can make the two distributions Q0 and Q1 indistinguishable, this is a general
phenomenon in the setting of testing in corruption neighbourhoods (see (Huber, 1965)). Thus, in
Figure 1, we observe that KL(Q0, Q1) and the corresponding upper bound meet at zero.
4. Boundedness of KL under Corruption: Contrary to the usual setup, the KL between two corrupted
Bernoullis is bounded as the corruption causes Q0 and Q1 to have the same support.
5. Limitations of the Bounds: Though the bounds are individually tight in their corresponding
regimes, Figure 1 indicates looseness of them around σ. In future, it will be interesting to explore
how these bounds can be pushed closer to the actual KL(Q0, Q1) for ∆

σ close to 1.
From KL Upper bounds to Regret Lower Bounds. We can substitute the results of Lemma 3 and
4 in Lemma 2 to get the lower bounds on regret of any uniformly good policy in a corrupted and
heavy-tailed setting, where reward distributions belong to

Pε
[2] = {(1− ε)P + εH : H ∈ P and EP [|X|2] <∞}.

Theorem 1 (Lower bound for heavy-tailed and corrupted bandit) Let Dε
[2] ≜ Pε

2 ⊗ · · · ⊗ Pε
2 ,

and let ν ∈ Dε
[2]. Let i be a sub-optimal arm such that EPi [X] ≤ maxa EPa [X] and denote

∆i ≜ EPi [X]−maxa EPa [X] and ∆i,ε ≜ ∆i(1− ε)− εσi.
• If ∆i ≤ σi/2, any uniformly good policy on Dε

[2] satisfies

lim inf
n→∞

Eνε [Ti(n)]
log(n)

≥ σ2i

2∆
2
i,ε

∨ 1

log
(
1−ε
ε

) .
• If ∆i ≥ σi, any uniformly good policy on Dε

[2] satisfies

lim inf
n→∞

Eνε [Ti(n)]
log(n)

≥ 1

4 log
(
6∆i
σi

) ∨ 1

log
(
1−ε
ε

) .
7
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Due to brevity, the detailed proof is deferred to Appendix B. In Theorem 1, if ∆i is smaller than
σi, the term σ2i /∆

2
i,ε represents the additional error due to corruption as well as the error due to

heavy-tailedness. In the case where ∆i is larger than σi, we have a first term 1/4 log
(
6∆i
σi

)
that

is due to heavy-tailedness. In both the cases, we obtain an unavoidable second term, 1/ log
(
1−ε
ε

)
,

due to corruption. We also observe that when ∆ε is small, we recover a lower bound with the
factor σ2/2∆2

ε , which is analogous to inverse of the KL between Gaussians with variance σ2 and
a corrupted gap between means ∆ε = ∆(1 − ε) − εσ. For ϵ = 0, this exactly leads to the lower
bound for Gaussians with uncorrupted gap of means ∆i and variance σ2i . In contrast, for ∆i > σi,
it is not clear whether the term 1/ log(∆i/σi) is tight because our upper bound do not exhibit this
term but a constant error that does not go to zero as ∆i/σi go to infinity.

4. Robust bandit algorithm: Huber’s estimator and upper bound on the regret

In this section we introduce an UCB-type algorithm adapted to our corrupted and heavy-tailed setup,
see Algorithm 2. We further provide its theoretical guarantees in Theorem 3, showing that the rates
of Theorem 1 are attained in some settings. Before that, we introduce and discuss Huber’sestimator.

4.1. Robust mean estimation and Huber’s estimator

Now, we aim to design a UCB-type algorithm. In UCB, the focus is on mean estimation. Since the
rewards are heavy-tailed and corrupted in our setting, we have to use a robust estimator of mean.
We choose to use Huber’s estimator (Huber, 1964), an M-estimator that is known for its robust
properties and have been extensively studied, specially the concentration properties (Catoni, 2012).

Huber’s estimator is a M-estimator, which means that it can be derived as a minimizer of some
loss function. Let X1, . . . , Xn be i.i.d. random variables and β > 0, we define Huber’s estimator as
Hub(Xn

1 ) ∈ argminθ∈R
∑n

i=1 ρ(Xi − θ), where ρ is Huber’s loss function with parameter β and
Xn

1 is shorthand notation for (X1, . . . , Xn). ρ is a loss function that is quadratic near 0 and linear
near infinity, with β giving the limit between quadratic and linear behavior. In what follows, instead
of this definition we will prefer the alternative one as a root of the following equation:

n∑
i=1

ψ (Xi −Hub(Xn
1 )) = 0,

where the influence function ψ(x) ≜ x1{|x| ≤ β} + β sign(x)1{|x| > β}. We prefer this repre-
sentation as we will show afterwards that the properties of Huber’s estimator depend on ψ.

β plays the role of a scaling parameter and depending on β, Huber’s estimator is a trade-off be-
tween the efficiency of the minimizer of the square loss (i.e. the empirical mean) and the robustness
of the minimizer of the absolute loss (i.e. the empirical median).

4.2. Concentration of Huber’s estimator in corrupted setting

Let Hub(P ) be the theoretical counterpart of Hub(Xn
1 ), defined for Y a random variable with law

P by E[ψ(Y −Hub(P ))] = 0.

Theorem 2 (Concentration of Huber’s estimator) We now state our first key result on the con-
centration of Huber’s estimator in a corrupted and Heavy-tailed setting.
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Suppose that X1, . . . , Xn are i.i.d with law (1− ε)P + εH for some P,H ∈ P and proportion
of outliers ε ∈ (0, 1/2), and P having a finite variance σ2. Let p = PP (|Y − EP [Y ]| ≤ β/2)

with p > 5ε, β > 4σ. Let ε =

√
(1−2ε)

log( 1−ε
ε )

and suppose δ ≥ exp

(
−n 128(p−5ε)2

49(1+2ε
√
2)

2

)
. Then, with

probability larger than 1− 5δ,

|Hub(Xn
1 )−Hub(P )| ≤

σ

√
2 ln(1/δ)

n + β ln(1/δ)
3n + 2βε

√
ln(1/δ)
n + 2βε(

p−
√

ln(1/δ)
2n − ε

)
+

.

The Theorem 2 gives us the concentration of Hub(Xn
1 ) around Hub(P ), the Huber functional of

the inlier distribution P , there are a few details that must be explain to understand this Theorem:
1. Value of p: For most laws that exhibit some concentration properties, the constant p is close to 1
as β ≥ 4σ. One might also use Markov inequality to lower bound p.
2. Tightness of constants: If there are no outliers (ε = 0), the optimal rate of convergence in such a
setting is at least of order σ

√
2 ln(1/δ)/n due to the central limit theorem. Theorem 2 shows that

we are very close to attaining this optimal constant in the leading 1/
√
n term, this result for Huber’s

estimator was already present in (Catoni, 2012).
3. Value of β: β is a parameter that achieve a trade-off between accuracy in the light-tailed uncor-
rupted setting and robustness. See the discussion in Section 4.4.
4. Restriction on value of δ: In Theorem 2, δ must be at least of order e−n, this restriction may
seem arbitrary but it is in fact unavoidable as shown in (Devroye et al., 2016, Theorem 4.3). This is
a limitation of robust mean estimation that will imply later a forced exploration that we will have to
do at the beginning of our algorithm.

When P is non-symmetric, we need to control the distance to the mean |Hub(P ) − E[X]| (if
P is symmetric, we have Hub(P ) = E[X]) to get a concentration of Hub(Xn

1 ) around E[X]. We
have the following lemma, direct consequence of (Mathieu, 2021, Lemma 4).

Lemma 5 (Bias of Huber’s estimator) Let Y be a random variable with E[|Y |q] < ∞ for q ≥ 2
and suppose that β2 ≥ 9Var(Y ). Then

|E[Y ]−Hub(P )| ≤ 2E[|Y − E[Y ]|q]
(q − 1)βq−1

.

Using Lemma 5 and Theorem 2, we can control the deviations of Hub(Xn
1 ) from E[X]. This allows

us to formulate an index-based algorithm (UCB-type algorithm) for corrupted Bandits. We present
this algorithm in Section 4.3.

4.3. HuberUCB: Algorithm and regret bound

In this section, we describe a robust, UCB-type algorithm called HuberUCB. We denote µi as
the mean of arm i and σ2i its variance. We assume that we know the variances of the reward
distributions. We refer to Section 4.4 for a discussion on the choice of the parameters when the
reward distributions are unknown.

9
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HuberUCB: The algorithm. In order to use the Huber’s estimator in the multi-armed bandits
setting, we need to estimate the mean of the rewards of each arms separately. We do that by defining
a parameter βi for each arm and estimating separately each µi using

Hubi,s = Hub (Xt, 1 ≤ t ≤ s such that At = i, ) .

Denote for s ≥ slim(t) = log(t) 98
128(p−5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√
2

))2
, where ε =

√
(1−2ε)

log( 1−ε
ε )

,

Bi(s, t) =
σi

√
2 log(t2)

s + βi
log(t2)

3s + 2βiε

√
log(t2)
s + 2βiε(

p−
√

log(t2)
2s − ε

) + bi,

and Bi(s, t) = ∞ if s<slim(t), where bi is a bound on the bias |E[X]− Hub(Pi)|. This is zero if
Pi is symmetric and controlled by Lemma 5 otherwise. For example, one can take bi = 2σ2i /β

2
i .

Algorithm 2 HuberUCB
for t = 1, . . . , n do

Compute Ii(t) for i ∈ {1, . . . , k} using X1, . . . , Xt−1.
Choose arm at ∈ argmaxi Ii(t).
Observe a reward Xt.

end

Then, we introduce HuberUCB (Algorithm 2), which selects an arm at based on the index
Ii(t) = Hubi,Ti(t−1) +Bi(Ti(t− 1), t). We now provide the main regret guarantee of this strategy.

Theorem 3 (Upper Bound on Regret of HuberUCB) Suppose that for all i,Pi is a distribution
with finite variance σ2i . Suppose 4σi ≤ βi and p = inf1≤i≤k PPi(|X − EPi [X]| ≤ βi/2) with

p > 5ε (in particular ε < 1/5). Also, ∆̃i,ε = (∆i − 2bi)(p− ε)− 8βiε > 0 and
√

(1−2ε)

log( 1−ε
ε )

≤ ε.

• If ∆̃i,ε > 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
, then

E[Ti(n)] ≤ log(n)max

(
32βi

3∆̃i,ε

,
4

(p−5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2
)

+ 10(log(n)+1)

• If ∆̃i,ε ≤ 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
, then

E[Ti(n)] ≤ log(n)max

(
50σ2i

9∆̃2
i,ε

(√
2+2

βi
σi
ε

)2
,

4

(p−5ε)2

(
1+2

√
2

(
ε ∨ 9

14
√
2

))2)
+10(log(n)+1).

We now state a simplified version of Theorem 3 with bad but explicit constants for easier under-
standing. Let β2i =16σ2i , ε≤1/10 so that ε = 4/(5

√
ln(9)) ≃ 0.54, p ≥ 1− 4σ2

i

β2
i
≥ 3

4 ≥ 5ε+ 1
4 and

suppose Pi symmetric so that bi=0. Further simplifying the constants yields the following.
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Corollary 1 (Simplified version of Theorem 3) Suppose that for all i,Pi is a distribution with
finite variance σ2i . Denote ∆̃i,ε = ∆i (p− ε)− 32σiε,

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ 43 log(n)max

(
σi

∆̃i,ε

, 12ε2 + 6

)
+ 10(log(n) + 1).

• If ∆̃i,ε ≤ 6σi
(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ 23 log(n)max

(
σ2i

∆̃2
i,ε

(
1 + 32ε2

)
, 24ε2 + 12

)
+ 10(log(n) + 1).

We see that up to the constants, in the case ∆̃i,ε small, we recover the rate of convergences of
Theorem 1. Indeed, in Theorem 1 and Corollary 1, when ∆i is small compared to σi, we recover the

error term E[Ti(n)] ≍ log(n)

(
σ2
i

∆̃2
i,ε

∨ ε2
)

. On the other hand, if ∆i is large compared to σi, we get

that E[Ti(n)] ≤ O
(
log(n)

(
σi

∆̃i,ε
∨ ε2 ∨ 1

))
≤ O

(
log(n)

(
1 ∨ ε2

))
, the rate of convergence of

our algorithm is sub-optimal but this was unavoidable due to the forced exploration we have to give
to our algorithm (the slim(t)). This forced exploration seems necessary in our approach in order to
be able to handle the case ∆i ≤ σi.

4.4. Discussion

We discuss some properties of HuberUCB and compare it with RobustUCB (Bubeck et al., 2013).
Choice of β, σ and ε. HuberUCB depends on three hyperparameters that we have to choose. In
Theorem 3, we assume to know the σ and ε. In practice, these are unknown and we estimate σ2

with a robust estimator of the variance, such as the median absolute deviation. Ideally, β should be
larger than σ by some constant factor. We recommend to use the estimator of σ to estimate a good
value of β. In contrast, estimating ε is hard. However one can use the conservative upper bound
ε = 0.5. We refer to Appendix H for an empirical study of the choice of β and ε.
Comparison with Heavy-tail bandits. Linked to the problem of chosing β is the difference be-
tween heavy-tailed bandits and corrupted bandits. When the data are heavy-tailed but not corrupted,
(Catoni, 2012) shows that β≃σ

√
n is a good choice for the scaling parameter. However, this choice

is not robust to outliers and yields a linear regret in our setup (see Section 5). When there is corrup-
tion, β must remains bounded when the sample size goes to infinity in order to stay robust.
Computational cost. Huber’s estimator has linear complexity due to the involved Iterated Reweight-
ing Least Squares algorithm, which is not sequential. We have to do this at every iteration, which
leads HuberUCB to have quadratic time complexity. This seems to be the price for robustness.

5. Experimental Analysis

In this section, we assess the experimental efficiency of HuberUCB by plotting the empirical regret.
Contrary to the uncorrupted case, we cannot really estimate the regret in Equation (1) using the
observed regret. Instead, we use the theoretical uncorrupted gaps that we know because we are
in a simulated environment and we estimate the regret Rn using Regret =

∑k
i=1∆iT̂i(n), where

11
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Figure 2: Cumulative regret plot of the algorithms on a corrupted Gaussian (above) and Pareto
(below) datasets with various corruption proportions.
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T̂i(n) = 1
M

∑M
m=1(Ti(n))m is a Monte-Carlo estimation of Eνε [Ti(n)] over M experiments. We

used rlberry python library Domingues et al. (2021) for the experiments.
Comparison to bandit algorithms for Heavy-tailed setting. There is, to our knowledge, no ex-
isting bandit algorithm for the corruption setting prior to this work, hence we focus on comparing
ourselves to the closest relatives: bandits in heavy-tailed setting. We empirically and competitively
study three different algorithms: HuberUCB and two RobustUCB algorithms with Catoni Huber
estimator and Median of Means (MOM) (Bubeck et al., 2013). HuberUCB is closely related to
the RobustUCB with Catoni Huber estimator, which also uses Huber’s estimator but with another
set of parameters and confidence intervals. The RobustUCB algorithms are tuned for uncorrupted
heavy-tails. Hence, they incur linear regret in a truly corrupted setting and this is reflected in the ex-
periments. We also improve upon (Bubeck et al., 2013) as we can handle arm-dependent variances.
Corrupted Gaussian setting: In Figure 2 (top), we study a 3-armed bandits with corrupted Gaus-
sian distributions having means 0, 0.9, 1 and standard deviation 0.1. The corruption applied to this
bandit problem are Gaussians with variance 1 and centered in 100, 100 and −1000 respectively. For
HuberUCH, we chose to use βi = 4σi. We perform each experiment 100 times to get a Monte-
Carlo error estimation. We plot the mean plus/minus the standard deviation of the result in Figure 2.
We do that for the three corruption proportions ε equal to 0%, 3% and 5%. We notice that there
is a short linear regret phase at the beginning due to the forced exploration performed by the three
algorithms. Followed by that, HuberUCB incurs seemingly logarithmic regret. On the other hand,
for Catoni Huber Agent and MOM Agent, the regret is logarithmic only in the uncorrupted setting.
When the data are corrupted, i.e. ε > 0, the regret becomes linear.
Corrupted pareto setting: In Figure 2 (bottom), we illustrate the results for a 3-armed bandits with
corrupted pareto distributions having shape parameters 3, 4 and 5 (i.e. 2, 3, and 4 finite moments)
and scale parameters 0.1, 0.2, 0.3. Thus, the corresponding means are 0.15, 0.27 and 0.37 and the
standard deviations are 0.3, 0.4, 0.5, respectively. The corruption applied to this bandit problem
are Gaussians with variance 1 and centered in respectively 100, 100 and −1000 respectively. For
HuberUCB, we chose to use β = 3σi and we also bound the bias bi by σ2i /βi. The results echoes
the observations for the Gaussian case except that the learning process takes more time.

6. Conclusion
In this paper, we study the setting of Bandits corrupted by Nature that encompasses both the heavy-
tailed rewards with bounded variance and unbounded corruptions in rewards. In this setting, we
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prove lower bounds on the regret that shows the heavy-tail bandits and corrupted bandits are strictly
harder than the usual sub-gaussian bandits. Specifically, in this setting, the hardness depends on the
suboptimality gap/variance regimes. If the suboptimality gap is small, the hardness is dictated by
σ2i /∆

2
i,ε. Here, ∆i,ε is the corrupted suboptimality gap, which is smaller than the uncorrupted gap

∆ and thus, harder to distinguish. To complement the lower bounds, we design a robust algorithm
HuberUCB that uses Huber’s estimator for robust mean estimation and a novel concentration bound
on this estimator to create tight confidence intervals. HuberUCB achieves logarithmic regret that
matches the lower bound for low suboptimality gap/high variance regime. Unlike existing literature,
we do not need any assumption on a known bound on corruption and a known bound on the (1+ ϵ)-
uncentered moment, which was posed as an open problem in (Agrawal et al., 2021).

Since our upper and lower bounds disagree in the high gap/low variance regime, it will be
interesting to investigate this regime further. Also, following the literature, it will be natural to
extend HuberUCB to contextual and linear bandit settings with corruptions and heavy-tails. This
will facilitate its applicability to practical problems, such as choosing treatments against pests.
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Appendix A. Proof of Lemma 1: Regret Decomposition

From Equation (1), we have

Rn =
k∑
a=1

n∑
t=1

E
[
(max

a
EPa [X

′]−X ′
t)1 {At = a}

]
Then, we condition on At

E
[
(max

a
EPa [X

′]−X ′
t)1 {At = a} |At

]
= 1{At = a}E[max

a
EPa [X

′]−X ′
t|At]

= 1{At = a}(max
a

EPa [X
′]− µAt)

= 1{At = a}(max
a

EPa [X
′]− µa) = 1{At = a}∆a

and this stays true whatever the policy, because the policy at time t use knowledge up to time t− 1,
hence its decision does not depend on Xt. Hence, we have

Rn(π) =
k∑
a=1

∆aEπ(·|Xn
1 ,A

n
1 )
[Ta(n)]

where Ta(n) is with respect to the randomness of π, which is to say that we compute E[Ti(n)] in
the corrupted setting and not in the uncorrupted one.

Rn =

k∑
a=1

∆aEνε [Ta(n)] .

Appendix B. Proof of Theorem 1: Regret Lower Bound

From Lemma 2, we have

lim inf
n→∞

Eν [Ti(n)]
log(n)

≥ 1

KL(P0, P1)
∨ 1

KL(Q0, Q1)
(4)

where P0, P1 are student distributions with parameter ν = 3 and gap ∆i as in Lemma 3 renor-
malized so that the variance is σ2i , and Q0, Q1 are as in Lemma 4 with gap ∆i and variance σi.
From Lemma 3, we get

KL(P1, P2) ≤


3ν−1(ν+1)2∆2

i

σ2
i (ν−2)

if ∆2
i ≤ ν−2

ν σ2i
ν+1
2 log

(
ν

σ2
i (ν−2)

∆2
i

)
+ log

(
3ν (ν+1)2

ν

)
if ∆2

i >
ν−2
ν σ2i

Hence, with ν = 3,

KL(P1, P2) ≤


144∆2

i

σ2
i

if ∆2
i ≤ σ2i /3

2 log
(
3∆2

i

σ2
i

)
+ log (144) if ∆2

i > σ2i /3
(5)

First setting: If ∆i ≤ σi/2, then ∆2
i ≤ σ2i /3 and from Equations (5) and (4) and Lemma 4,
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lim inf
n→∞

Eν [Ti(n)]
log(n)

≥ σ2i
144∆2

i

∨ σi

∆i,ε log
(
1 +

∆i,ε

σi−∆i,ε

)
Then, use that ∆i,ε ≤ ∆i ≤ σi/2,

log

(
1 +

∆i,ε

σi −∆i,ε

)
≤ ∆i,ε

σi −∆i,ε

≤ 2∆i,ε

σi

Hence, considering also the term from Equation (2) in Lemma 4,

lim inf
n→∞

Eν [Ti(n)]
log(n)

≥ σ2i
144∆2

i

∨ σ2i

2∆
2
i,ε

∨ 1

log
(
1−ε
ε

)
We weaken this inequality to the simplified version found in Theorem 1 by dropping the second
term on the right-hand side for better interpretability.

Second setting: If ∆i > σi, then ∆2
i > σ2i /3 and from Equations (5) and (4) and Lemma 4,

lim inf
n→∞

Eν [Ti(n)]
log(n)

≥ 1

2 log
(
3∆2

i

σ2
i

)
+ log (144)

∨ 1

log
(
1−ε
ε

)
=

1

4 log
(√

3∆i
σi

)
+ 4 log

(
2
√
3
) ∨ 1

log
(
1−ε
ε

)
=

1

4 log
(
6∆i
σi

) ∨ 1

log
(
1−ε
ε

)
Appendix C. Upper Bounds on KL-divergence: Student’s and Corrupted Bernoulli

C.1. Proof of Lemma 3: Student’s Distribution

First, we compute the χ2 divergence between the two laws fa and f0. We have, for any a ∈ R

dχ2(fa, f0) =

∫
(fa(x)− f0(x))

2

f0(x)
dx

=
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

∫
R

 1(
1 + (x−a)2

k

) k+1
2

− 1(
1 + x2

k

) k+1
2


2(

1 +
x2

k

) k+1
2

dx

=
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

∫
R

((
1 + (x−a)2

k

) k+1
2 −

(
1 + x2

k

) k+1
2

)2

(
1 + (x−a)2

k

)k+1 (
1 + x2

k

) k+1
2

dx

=
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

∫
R

dx(
1 + x2

k

) k+1
2

− 2

∫
R

dx(
1 + (x−a)2

k

) k+1
2

+

∫
R

(
1 + x2

k

) k+1
2(

1 + (x−a)2
k

)k+1
dx

 .
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The first two terms are respectively equal to 1 and −2 using the fact that the student distribution
integrate to 1. Then, we do the change of variable y = x− a in the last integral to get

dχ2(fa, f0) =
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy − 1.

this is a polynomial of degree k in the variable a. We have the following Lemma proven in Sec-
tion G.1.

Lemma 6 For a ∈ R and k ≥ 0, we have the following algebraic inequality.

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy ≤ 2

a2√
k
(k + 1)2

(
2 +

a√
k

)k−1

+

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy

Using this lemma, and because we recognize up to a constant the integral of the student distribution
on R in the right hand side, we have

dχ2(fa, f0) =
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

2
a2√
k
(k + 1)2

(
2 +

a√
k

)k−1

+

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy

− 1

≤
Γ
(
k+1
2

)
Γ
(
k
2

)√
kπ

2
a2√
k
(k + 1)2

(
2 +

a√
k

)k−1

then, use that for any k ≥ 1, Γ(k+1
2 ) ≤ Γ(k2 )

√
k/2 from Wendel (1948), hence

dχ2(fa, f0) ≤
a2(k + 1)2

√
2

k
√
π

(
2 +

a√
k

)k−1

≤ a2(k + 1)2

k

(
2 +

a√
k

)k−1

Then, we use the link between KL divergence and χ2 divergence to get the result.

KL(fa, f0) ≤ log(1 + dχ2(fa, f0))

≤ log

(
1 +

a2(k + 1)2

k

(
2 +

a√
k

)k−1
)

(6)

Then, use that

log

(
1 +

a2(k + 1)2

k

(
2 +

a√
k

)k−1
)

≤

log
(
1 + 3k−1 (k+1)2

k a2
)

if a < 1

log
(
1 + 3k−1 (k+1)2

k ak+1
)

if a ≥ 1

hence, using that 1 ≤ 3k−1 (k+1)2

k ak+1

log

(
1 +

a2(k + 1)2

k

(
2 +

a√
k

)k−1
)

≤

3k−1 (k+1)2

k a2 if a < 1

(k + 1) log (a) + log
(
3k (k+1)2

k

)
if a ≥ 1

Inject this in Equation (6) to get the result.
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C.2. Proof of Lemma 4: Corrupted Bernoulli Distribution

Let α ∈ (0, 1/2) and c > 0. Define
P0 = (1− α)δ0 + αδc,
P1 = αδ0 + (1− α)δc,
Q0 = (1− ε)(1− α)δ0 + (1− (1− ε)(1− α))δc,
Q1 = (1− (1− ε)(1− α))δ0 + (1− ε)(1− α)δc.

One can check that Q0 = (1− ε)P0εδc and Q1 = (1− ε)P1 + εδ0 and hence Q0 and Q1 are in
the ε-corrupted neighborhood of respectively P0 and P1.

We have

KL(Q0, Q1) =
∑

k∈{0,c}

PQ0 (X = k) log

(
PQ0 (X = k)

PQ1 (X = k)

)

= (1− ε)(1− α) log

(
(1− ε)(1− α)

1− (1− ε)(1− α)

)
+ (1− (1− ε)(1− α)) log

(
1− (1− ε)(1− α)

(1− ε)(1− α)

)
= ((1− ε)(1− α)− (1− (1− ε)(1− α))) log

(
(1− ε)(1− α)

1− (1− ε)(1− α)

)
= (1− 2ε− 2α+ 2εα) log

(
1 +

1− 2ε− 2α+ 2εα

ε+ α− εα

)
Then, note that ∆ = EP1 [X] − EP0 [X] = (1 − 2α)c and σ2 = VarP0(X) = VarP1(X) =

α(1− α)c2. Hence, c =
√
∆2 + σ2 and α = 1

2

(
1−∆/

√
∆2 + σ2

)
.

KL(Q0, Q1) =

(
1− 2ε−

(
1− ∆√

∆2 + σ2

)
(1− ε)

)
log

1 +
1− 2ε−

(
1− ∆√

∆2+σ2

)
(1− ε)

ε+ 1
2

(
1− ∆√

∆2+σ2

)
(1− ε)


=

(
∆√

∆2 + σ2
(1− ε)− ε

)
log

(
1 +

∆√
∆2+σ2

(1− ε)− ε

1
2(1 + ε)− 1

2
∆√

∆2+σ2
(1− ε)

)

In the setting σ > ∆, we have the bound

KL(Q0, Q1) ≤
(
∆

σ
(1− ε)− ε

)
log

(
1 + 2

∆
σ (1− ε)− ε

1−
(
∆
σ (1− ε)− ε

))

On the other hand, if ε > 0, we have

KL(Q0, Q1) ≤ (1− 2ε) log

(
1 +

1− 2ε

ε

)
.
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Appendix D. Regret Upper Bounds for HuberUCB: Proofs of Theorem 3 and
Corollary 1

If At = i then at least one of the following four inequalities is true:

Ĥub1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1 (7)

or
Ĥubi,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t) (8)

or
∆i < 2Bi(Ti(t− 1), t) (9)

or

T1(t− 1) < slim(t) =
98 log(t)

128 (p− 5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2

(10)

Indeed, if Ti(t − 1) < slim(t), then Bi(Ti(t − 1), t) = ∞ and Inequality (9) is true. On the other
hand, if Ti(t−1) ≥ slim(t), then we haveBi(Ti(t−1), t) is finite and all four inequalities are false,
then,

Ĥub1,T1(t−1) +B1(T1(t− 1), t) > µ1

= µi +∆i

≥ µi + 2Bi(Ti(t− 1), n)

≥ µi + 2Bi(Ti(t− 1), t)

≥ Ĥubi,Ti(t−1) +Bi(Ti(t− 1), t)

which implies that At ̸= i.

Step 1. We have that P (7 is true) ≤ 5/t.
PROOF:

Then, we have that,

P
(
Ĥub1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=1

P
(
Ĥub1,s +B1(s, t) ≤ µ1

)
=

t∑
s=⌈slim(t)⌉

P
(
Ĥub1,s − µ1 ≤ −B1(s, t)

)

Then, use Theorem 2, we get

P
(
Ĥub1,T1(t−1) +B1(T1(t− 1), t) ≤ µ1

)
≤

t∑
s=⌈slim(t)⌉

5e− log(t2)

≤
t∑

s=⌈slim(t)⌉

5

t2
≤ 5

t
.
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Step 2. Similarly, for arm i, we have

P
(
Ĥubi,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)

)
≤ 5

t

PROOF: We have,

P
(
Ĥubi,Ti(t−1) ≥ µi +Bi(Ti(t− 1), t)

)
≤

t∑
s=⌈slim(t)⌉

P
(
Ĥubi,s − µi ≥ Bi(s, t)

)

≤
t∑

s=⌈slim(t)⌉

5e− log(t2) ≤ 5

t
.

Step 3. Let v ∈ N. If one of the two following conditions are true, then for all t such that Ti(t−1) ≥
v, we have ∆i ≥ 2Bi(Ti(t− 1), t) (i.e. Equation (9) is false).

Condition 1: if ∆̃i,ε > 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
and v ≤ log(n) 96βi

9∆̃i,ε
.

Condition 2: if ∆̃i,ε ≤ 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
and v ≤ 50

9∆̃2
i,ε

(
σi
√
2 + 2βiε

)2
log(n).

PROOF: We search for the smallest value v ≥ slim(n) such that ∆i verifies

∆i ≥ 2Bi(v, n) = 2
σi

√
2 log(n2)

v + β log(n2)
3v + 2εβi

√
log(n2)

v + 2βiε(
p−

√
log(n2)

2v − ε

) + 2bi.

First, we simplify the expression, having that v ≥ slim(n), we have

log(n2)

2v
≤ 128(p− 5ε)2

98(1 + 9/7)2
≤ (p− ε)2

4
,

hence we simplify to

∆i ≥
4

(p− ε)

(
σi

√
2 log(n2)

v
+ βi

log(n2)

3v
+ 2βiε

√
log(n2)

v
+ 2βiε

)
+ 2bi

let us denote ∆̃i,ε = (∆i − 2bi)(p− ε)− 8βiε, we are searching for v such that

βi
log(n2)

3v
+

√
log(n2)

v

(
σi
√
2 + 2βiε

)
− ∆̃i,ε

4
≤ 0

This is a second order polynomial in
√
log(n2)/v.

If ∆̃i,ε > 0, then the smallest v > 0 is

√
log(n2)

v
=

3

2βi

−
(
σi
√
2 + 2εβi

)
+

√(
σi
√
2 + 2βiε

)2
+

∆̃i,εβi
3

 .
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First setting: if ∆̃i,ε > 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
,

In that case, we have

√
log(n2)

v
≥ 3

2βi

−
(
σi
√
2 + 2βiε

)
+

√
βi∆̃i,ε

3

 ≥ 3

2βi

√
βi∆̃i,ε

12
=

√
9∆̃i,ε

48βi

Hence, v ≤ log(n) 96βi
9∆̃i,ε

.

Second setting: if ∆̃i,ε ≤ 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
, then we use Lemma 9, using that

∆̃i,εβi

3
(
σi
√
2 + 2βiε

)2 ≤ 4

and the fact that
√
1+4−1
4 ≥ 3

10 , we get,√
log(n2)

v
≥ 3∆̃i,ε

5
(
σi
√
2 + 2βiε

)
Hence,

v ≤ 50

9∆̃2
i,ε

(
σi
√
2 + 2βiε

)2
log(n).

Step 4. Using All the previous steps, we prove the theorem. PROOF: We have

E[Ti(n)] = E

[
n∑
t=1

1{At = i}

]

≤ ⌊max(v, slim(n))⌋+ E

 n∑
t=⌊max(v,slim(n))⌋+1

1{At = i and (9) is false}


≤ ⌊max(v, slim(n))⌋+ E

 n∑
t=⌊max(v,slim(n))⌋+1

1{(7) or (8) or (10) is true}


= ⌊max(v, slim(n))⌋+

n∑
t=⌊min(v,slim(n))⌋+1

P ((7) or (8) is true)

≤ ⌊max(v, slim(n))⌋+ 2
n∑

t=⌊min(v,slim(n))⌋+1

5

t

using the harmonic series bound by log(n) + 1, we have

E[Ti(n)] ≤ max(v, slim(n)) + 10(log(n) + 1)
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Then, we replace the value of v,

First setting: ∆̃i,ε > 12
σ2
i
βi

(√
2 + 2βiσi ε

)2

E[Ti(n)] ≤ log(n)max

(
96βi

9∆̃i,ε

,
4

(p− 5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2
)

+ 10(log(n) + 1)

Second setting: if ∆̃i,ε ≤ 12
σ2
i
βi

(√
2 + 2βiσi ε

)2
, then

E[Ti(n)] ≤ log(n)max

(
50

9∆̃2
i,ε

(
σi
√
2 + 2βiε

)2
,

4

(p− 5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2
)
+10(log(n)+1).

This concludes the proof of Theorem 3.

D.1. Proof of Corollary 1: Simplified Upper Bound of HuberUCB

Replacing βi by 4σi, we have
• If ∆̃i,ε > 6σi

(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ log(n)max

(
128σi

3∆̃i,ε

,
4

(p− 5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2
)

+ 10(log(n) + 1)

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ log(n)max

(
50σ2i

9∆̃2
i,ε

(√
2 + 8ε

)2
,

4

(p− 5ε)2

(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2
)
+10(log(n)+1).

Then, we use that(
1 + 2

√
2

(
ε ∨ 9

14
√
2

))2

≤ 2

(
1 +

(
2
√
2

(
ε ∨ 9

14
√
2

))2
)

= 2 + 8

(
ε2 ∨ 81

392

)
≤ 8ε2 + 2 +

648

392
≤ 8ε2 + 4

and that p− 5ε ≥ 1/4, to get
• If ∆̃i,ε > 6σi

(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ log(n)max

(
128σi

3∆̃i,ε

, 512ε2 + 256

)
+ 10(log(n) + 1)

=
128

3
log(n)max

(
σi

∆̃i,ε

, 12ε2 + 6

)
+ 10(log(n) + 1)

≤ 43 log(n)max

(
σi

∆̃i,ε

, 12ε2 + 6

)
+ 10(log(n) + 1)
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• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2

, then

E[Ti(n)] ≤ log(n)max

(
50σ2i

9∆̃2
i,ε

(√
2 + 8ε

)2
, 512ε2 + 256

)
+ 10(log(n) + 1)

≤ log(n)max

(
100σ2i

9∆̃2
i,ε

(
2 + 64ε2

)
, 512ε2 + 256

)
+ 10(log(n) + 1)

≤ 23 log(n)max

(
σ2i

∆̃2
i,ε

(
1 + 32ε2

)
, 24ε2 + 12

)
+ 10(log(n) + 1)

Appendix E. Proof of Theorem 2: Concentration of Huber’s Estimator

First, we control the deviations of Huber’s estimator using the deviations of ψ(X − Hub(Xn
1 )).

We will need the following lemma to control the variance of ψ(X −Hub(Xn
1 )), which will in turn

allow us to control its deviation with Lemma 8.

Lemma 7 (Controlling Variance of Influence of Huber’s Estimator) Suppose that Y1, . . . , Yn are
i.i.d with law P . Then

Var(ψ(Y −Hub(P ))) ≤ Var(Y ) = σ2

Lemma 8 (Concentrating Huber’s Estimator by Concentrating the Influence) Suppose thatX1,
. . . , Xn are i.i.d with law (1− ε)P + εH for some H ∈ P and proportion of outliers ε ∈ (0, 1/2).
Then, for any η > 0 and λ ∈ (0, β/2], we have

P(|Hub(Xn
1 )−Hub(P )| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≥ λ (p− η − ε)+

)
+2e−2nη2

where p = P(|Y − E[X]| ≤ β/2).

Then, using these Lemmas, we can prove the theorem.

Step 1. For any δ ∈ (0, 1), with probability larger than 1− 3δ,∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≤ σ

√
2 ln(1/δ)

n
+ β

ln(1/δ)

2n
+ 2βε+ 2β

√
ln(1/δ)(1− 2ε)

n log
(
1−ε
ε

) . (11)

PROOF: Write that Xi = (1−Wi)Yi +WiZi where W1, . . . ,Wn are i.i.d {0, 1} Bernoulli random
variable with mean ε, Y1, . . . , Yn are i.i.d ∼ P and Z1, . . . , Zn are i.i.d with law H , we have∣∣∣∣∣ 1n

n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

ψ(Yi −Hub(P )) +
1

n

n∑
i=1

1{Wi = 1} (ψ(Zi −Hub(P ))− ψ(Yi −Hub(P )))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ψ(Yi −Hub(P ))

∣∣∣∣∣+ 2β
1

n

n∑
i=1

1{Wi = 1}
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Remark that by definition of Hub(P ), it is defined as the root of the equation E[ψ(Y −Hub(P ))] =
0. From Bernstein’s inequality, for any δ ∈ (0, 1),

P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Yi −Hub(P ))

∣∣∣∣∣ ≥
√

2Vψ ln(1/δ)

n
+ β

ln(1/δ)

3n

)
≤ 2δ

where Vψ = Var(ψ(Yi −Hub(P ))).

Then, using that Bernoulli random variables with mean ε are sub-Gaussian with variance parameter
1−2ε

2 log((1−ε)/ε) (see (Bourel et al., 2020, Lemma 6)),

P

(
1

n

n∑
i=1

1{Wi = 1} ≤ ε+

√
ln(1/δ)(1− 2ε)

n log
(
1−ε
ε

) )
≥ 1− δ.

Then, using Lemma 7 we get for any δ ∈ (0, 1), with probability larger than 1− 3δ,∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≤ σ

√
2 ln(1/δ)

n
+ β

ln(1/δ)

2n
+ 2βε+ 2β

√
ln(1/δ)(1− 2ε)

n log
(
1−ε
ε

) .

Step 2. Using η =

√
ln(1/δ)

2n , the hypotheses of Lemma 8 are verified.
PROOF: To apply Lemma 8, it is sufficient that

σ

√
2t

n
+ β

ln(1/δ)

3n
+ 2β

√
ln(1/δ)(1− 2ε)

n log
(
1−ε
ε

) ≤ β

2

(
p−

√
ln(1/δ)

2n
− ε

)

and using that 4σ ≤ β, we have that it is sufficient that

√
ln(1/δ)

2n
+

ln(1/δ)

3n
+ 2

√
ln(1/δ)(1− 2ε)

n log
(
1−ε
ε

) ≤ 1

2
(p− 5ε) . (12)

This is a polynomial in
√
ln(1/δ)/n that we need to solve. We use the following elementary algebra

lemma.

Lemma 9 (2nd order polynomial root bound) let a, b, c be three positive constants and x verify
ax2 + bx− c ≤ 0. Suppose that 4ac

b2
≤ d, then x verifies

x ≥ 2c(
√
d+ 1− 1)

db
.

Observe that we have
2 (p− 5ε)

3

(
1√
2
+ 2

√
1−2ε√

log( 1−ε
ε )

)2 ≤ 4

3
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and (
√
4/3 + 1− 1)/(4/3) ≥ 8/7, hence, from Lemma 9, we get the following sufficient condition

for Equation (12) to hold:

√
ln(1/δ)/n ≤ 8

√
2 (p− 5ε)

7

(
1 +

2
√

2(1−2ε)√
log( 1−ε

ε )

) .

Hence, taking this to the square,

ln(1/δ) ≤ n
128 (p− 5ε)2

49

(
1 +

2
√

2(1−2ε)√
log( 1−ε

ε )

)2 .

Step 3. Using Lemma 8 and Step 1 prove that the theorem is true. PROOF: The hypotheses
of Lemma 8 are verified and we can use its result and together with Equation (11) we get with
probability larger than 1− 5δ,

|Hub(Xn
1 )−Hub(P )| ≤

σ

√
2 ln(1/δ)

n + β ln(1/δ)
3n + 2β

√
ln(1/δ)(1−2ε)

n log( 1−ε
ε )

+ 2βε(
p−

√
ln(1/δ)

2n − ε

)
+

.

Appendix F. Controlling Variance and Concentration of Huber’s Estimator with
Influence Function

F.1. Proof of Lemma 7: Controlling Variance of Influence of Huber’s Estimator

Let ρ be Huber’s loss function, with ψ = ρ′. We have that for any x > 0, ψ(x)2 ≤ 2ρ(x). Hence,

Var(ψ(Y −Hub(P ))) = E[ψ(Y −Hub(P ))2] ≤ 2E[ρ(Y −Hub(P ))].

Then, use that by definition of Hub(P ), Hub(P ) is a minimizer of θ 7→ E[ρ(Y − θ)], hence,

Var(ψ(Y −Hub(P ))) ≤ 2E[ρ(Y − E[Y ])].

and finally, use that ρ(x) ≤ x2/2 to conclude.

F.2. Proof of Lemma 8 : Concentrating Huber’s Estimator by Concentrating the Influence

For all n ∈ N∗, λ > 0, let

fn(λ) =
sign(∆n)

n

n∑
i=1

ψ(Xi −Hub(P )− λ sign(∆n)),

where ∆n = Hub(P )−Hub(Xn
1 ).
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Step 1. For any λ > 0, P(∃n ≤ N : |∆n| ≥ λ) ≤ P(∃n ≤ N : fn(λ) ≥ 0).
PROOF: For all y ∈ R, let Jn(y) = 1

n

∑n
i=1 ρ(Xi − y) we have,

J ′′
n(y) =

1

n

n∑
i=1

ψ′ (Xi − y) .

In particular, having fn(λ) = − sign(∆n)J
′(Hub(P ) + λ sign(∆n)) if we take the derivative of fn

with respect to λ, we have the following equation

∂

∂λ
fn(λ) = − sign(∆n)

2J ′′
n(Hub(P ) + λ sign(∆n))

≤ − 1

n

n∑
i=1

ψ′(Xi −Hub(P )− λ sign(∆n)). (13)

Then, because ψ′ is non-negative, the function λ 7→ fn(λ, ) is non-increasing. Hence, for all n ∈ N∗

and λ > 0,

|∆n| ≥ λ⇒ fn(|∆n|) = 0 ≤ fn(λ),

Hence,

P(∃n ≤ N : |∆n| ≥ λ) ≤ P(∃n ≤ N : fn(λ) ≥ 0). (14)

Step 2. For all λ > 0,

fn(λ) ≤ fn(0)− λ inf
t∈[0,λ]

∣∣f ′n(t)∣∣ .
PROOF: We apply Taylor’s inequality to the function fn. As fn is non-increasing (because its
derivative is non-positive, see Equation (13)), we get

fn(λ) ≤ fn(0)− λ inf
t∈[0,λ]

∣∣f ′n(t)∣∣ .
Step 3. Let mn = E

[
inft∈[0,λ]

1
n

∑n
i=1 ψ

′(X ′
i −Hub(P )− t)

]
. With probability larger than 1 −

2e−2nη2 ,

inf
t∈[0,λ]

∣∣f ′n(t))∣∣ ≥ mn − 2η − ε,

PROOF: Write thatXi = (1−Wi)Yi+WiZi whereW1, . . . ,Wn are i.i.d Bernoulli random variable
with mean ε, Y1, . . . , Yn are i.i.d ∼ P and Z1, . . . , Zn are i.i.d with law H .

27



BASU MAILLARD MATHIEU

From equation (13),

∣∣f ′n(t))∣∣ ≥ 1

n

n∑
i=1

ψ′(Xi −Hub(P )− t sign(∆))

≥ 1

n

n∑
i=1

1{Wi = 0}ψ′(Yi −Hub(P )− t sign(∆)) (15)

+
1

n

n∑
i=1

1{Wi = 1}ψ′(Zi −Hub(P )− t sign(∆)) (16)

≥ 1

n

n∑
i=1

ψ′(Yi −Hub(P )− t sign(∆)) (17)

+
1

n

n∑
i=1

1{Wi = 1}
(
ψ′(Zi −Hub(P )− t sign(∆))− ψ′(Wi −Hub(P )− t sign(∆))

)
(18)

Hence, because ψ′ ∈ [0, 1], we have

∣∣f ′n(t))∣∣ ≥ 1

n

n∑
i=1

ψ′(Yi −Hub(P )− t sign(∆))− 1

n

n∑
i=1

1{Wi = 1}) (19)

The right-hand side depends on the infimum of the mean of n i.i.d random variables in [0, 1]. Hence,
the function

Z(Xn
1 ) 7→ sup

t∈[0,λ]

n∑
i=1

ψ′(X ′
i −Hub(P )− t)

satisfies, by sub-linearity of the supremum operator and triangular inequality, the bounded difference
property, with differences bounded by 1. Hence, by Hoeffding’s inequality, we get with probability
larger than 1− e−2nη2 ,

inf
t∈[0,λ]

∣∣f ′n(t))∣∣ ≥E

[
inf

t∈[0,λ]

1

n

n∑
i=1

ψ′(X ′
i −Hub(P )− t)

]
− η − 1

n

n∑
i=1

1{Wi = 1})

and using Hoeffding’s inequality to control 1
n

∑n
i=1 1{Wi = 1}, we have with probability larger

than 1− 2e−2η2/n,

inf
t∈[0,λ]

∣∣f ′n(t))∣∣ ≥E

[
inf

t∈[0,λ]

1

n

n∑
i=1

ψ′(X ′
i −Hub(P )− t)

]
− 2η − ε

Step 4. For λ ∈ (0, β/2),

P ( |∆n| ≥ λ) ≤ P

( ∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≥ λ (mn − η − ε)

)
+ 2e−2nη2 .
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PROOF: For any λ > 0, we have

P(|∆n| ≥ λ) ≤ P(fn(λ) ≥ 0) (from Step 1)

≤ 1− P
(
fn(0)− λ inf

t∈[0,λ]

∣∣f ′n(t)∣∣ ≤ 0

)
(from Step 2)

≤ 1− P (fn(0) ≤ λ (mn − 2η − ε)) + 2e−2nη2 (from Step 3)

= P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≥ λ (mn − η − ε)

)
+ 2e−2nη2 . (20)

Step 5. We prove that mn ≥ p, and hence

P (|∆n| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≥ λ (p− η − ε)

)
+ 2e−2nη2

PROOF: For all λ ≤ β/2,

E

[
inf

t∈[0,λ]

1

n

n∑
i=1

ψ′(X ′
i −Hub(P )− t)

]
= E

[
inf

t∈[0,λ]

1

n

n∑
i=1

1{|X ′
i −Hub(P )− t| ≤ β}

]

≥ E

[
1

n

n∑
i=1

1{|X ′
i −Hub(P )| ≤ β − λ}

]

≥ E

[
1

n

n∑
i=1

1{|X ′
i −Hub(P )| ≤ β/2}

]
= p

Then, we plug the bound on mn found in the previous step in equation (20), we get for any η > 0
and λ ∈ (0, β/2],

P(|∆n| ≥ λ) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi −Hub(P ))

∣∣∣∣∣ ≥ λ (p− η − ε)

)
+ 2e−2nη2
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Appendix G. Proofs of Auxiliary Lemmas

G.1. Proof of Lemma 6

We have,

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy =

∫
R

k+1
2∑
l=0

(k+1
2

l

)
(y + a)2l

kl
(
1 + y2

k

)k+1
dy

=

∫
R

k+1
2∑
l=0

2l∑
j=0

(k+1
2

l

)(
2l

j

)
yja2l−j

kl
(
1 + y2

k

)k+1
dy

=

k+1
2∑
l=0

2l∑
j=0

(k+1
2

l

)(
2l

j

)∫
R

yja2l−j

kl
(
1 + y2

k

)k+1
dy

Remark that the integral is 0 if j is odd. Hence,

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy =

k+1
2∑
l=0

l∑
j=1

(k+1
2

l

)(
2l

2j

)
a2l−2j

kl

∫
R

y2j(
1 + y2

k

)k+1
dy

Then, we compute the integrals. By change of variable u = y/k, we have∫
R

y2j(
1 + y2

k

)k+1
dy = kj+1/2

∫
R

u2j

(1 + u2)k+1
du ≤ 2kj+1/2

and for l = j,
k+1
2∑
l=0

(k+1
2

l

)
1

kl

∫
R

y2l(
1 + y2

k

)k+1
dy =

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy

Hence,

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy ≤ 2

k+1
2∑
l=1

l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a2l−2j

kl
kj+1/2 +

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy

= 2

k+1
2∑
l=1

a2l
l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a−2j

kl
kj+1/2 +

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy

≤ 2

k+1
2∑
l=1

a2l
l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a−2j

kl
kj+1/2 +

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy (21)

(22)
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And,

k+1
2∑
l=1

a2l
l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a−2j

kl
kj+1/2 =

√
k

k+1
2∑
l=1

l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a2(l−j)kj−l

≤
√
k

k+1
2∑
l=1

l−1∑
j=0

(k+1
2

l

)(
2l

2j

)
a2(l−j)kj−l

≤
√
k

k+1
2∑
l=1

l−1∑
j=0

(k+1
2

l

)(
2(l − 1)

2j

)
4l2
(
a2

k

)l−j

≤ (k + 1)2
√
k

k+1
2∑
l=1

(k+1
2

l

)(
a2

k

)l(
1 +

√
k

a

)2(l−1)

=
a2

k
(k + 1)2

√
k

k+1
2∑
l=1

(k+1
2

l

)(
a√
k
+ 1

)2(l−1)

≤ a2√
k
(k + 1)2

(
2 +

a√
k

)k−1

.

Then, inject this in Equation (21) to get

∫
R

(
1 + (y+a)2

k

) k+1
2(

1 + y2

k

)k+1
dy ≤ 2

a2√
k
(k + 1)2

(
2 +

a√
k

)k−1

+

∫
R

(1 + y2/k)
k+1
2(

1 + y2

k

)k+1
dy.

G.2. Proof of Lemma 9

The solutions of the second order polynomial indicate that x must verify

x ≥ −b+
√
b2 + 4ac

2a
≥ b

2a

(
−1 +

√
1 +

4ac

b2

)
.

Then, use that the function x 7→
√
x+ 1 is concave and hence the graph of x 7→

√
x+ 1 is above

its chords and we have for any x ∈ [0, d],
√
1 + x ≥ 1 + x

√
d+1−1
d . Hence,

x ≥ b

2a

(
4ac(

√
d+ 1− 1)

db2

)
=

2c(
√
d+ 1− 1)

db
.
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Figure 3: Cumulative regret plots for different values of the parameters ε and β on a Weibull dataset.
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Appendix H. Sensitivity to β and ε

In this section we illustrate the impact of the choice of β and ε on the estimation.

Choice of β (Figure 4(b)): The choice of β is a trade-off between the bias (distance |Hub(P ) −
E[X]| which decreases as β go to infinity) and robustness (when β goes to 0, Hub(P ) goes to the
median). To illustrate this trade-off we use the Weibull distribution for which can be very asym-
metric. We use a 3-armed bandit problem with shape parameters (2, 2, 0.75) and scale parameters
(0.5, 0.7, 0.8) which implies that the means are approximately (0.44, 0.62, 0.95). These distribu-
tions are very asymmetric, hence the bias |Hub(P )−E[X]| is high and in fact even though arm 3 has
the optimal mean, arm 2 will have the optimal median, the medians are given by (0.41, 0.58, 0.49).
In this experiment we don’t use any corruption as we don’t want to complicate the interpretation.
As expected by the theory, we get that βi should not be too small or too large but it should be around
4σi.

Choice of ε (Figure 4(a)): To illustrate the dependency in ε, we also use the Weibull distribution
to show the dependency in ε with the same parameters as in the previous Weibull example, except
that we choose βi = 5σi which is around the optimum found in the previous experiment and we
corrupt with 2% of outliers (this is the true ε while we will make the ε used in the definition of
the algorithm vary). The outliers are constructed as in Section 5. The effect of the parameter ε is
difficult to assess because ε has an impact on the length of force exploration that we impose at the
beginning of our algorithm (the slim).
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