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In this paper, we study the stochastic bandits problem with k unknown heavy-tailed and corrupted reward distributions or arms with time-invariant corruption distributions. At each iteration, the player chooses an arm. Given the arm, the environment returns an uncorrupted reward with probability 1-ε and an arbitrarily corrupted reward with probability ε. In our setting, the uncorrupted reward might be heavy-tailed and the corrupted reward might be unbounded. We prove a lower bound on the regret indicating that the corrupted and heavy-tailed bandits are strictly harder than uncorrupted or light-tailed bandits. We observe that the environments can be categorised into hardness regimes depending on the suboptimality gap ∆, variance σ, and corruption proportion ϵ. Following this, we design a UCB-type algorithm, namely HuberUCB, that leverages Huber's estimator for robust mean estimation. HuberUCB leads to tight upper bounds on regret in the proposed corrupted and heavy-tailed setting. To derive the upper bound, we prove a novel concentration inequality for Huber's estimator, which might be of independent interest.

Introduction

In this paper, we consider the problem of sequential decision making where the player has incomplete information about a finite number of decisions and the decisions generate corrupted returns. Specifically, we are interested in the problem of Multi-armed Bandits in a corrupted setting, or in short Corrupted Bandits, in which the player is presented with k> 0 arms corresponding to k unknown probability distributions. At each iteration t ∈ {1, 2, . . .}, the player selects an arm and observes a sample, called reward, generated independently from the corresponding probability distribution. In Corrupted Bandits, the observed reward is corrupted by some unknown adversary or nature. The corruption might also differ from arm to arm. In order to model the corrupted rewards, we consider that the rewards of an arm correspond to a possibly heavy-tailed (with only a finite variance) and corrupted distribution instead of a well-behaved bounded or sub-Gaussian reward commonly found in literature (cite). By corrupted rewards we mean that during the experiment, the environment may randomly generate a reward that is arbitrarily different from the "true reward", which one would expect to get if the bandit was not corrupted. In such a case, we refer to these arbitrarily different rewards as outliers. The goal of the player is to maximize the expected reward obtained oblivious to the corruption. A Motivating Example. Though this article focuses on the theoretical aspects of this problem, we hereby illustrate a case study with roots in agriculture that motivates us. The Varroa mite is a pest that invades apiaries and causes destruction of bee colonies. There are numerous treatments that the beekeeper can use against the Varroa, such as applying amitraz or tau-fluvalinate [START_REF] Kamler | Comparison of taufluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of varroa destructor in a vial test[END_REF] based pesticides, performing organic treatments like thymus or oxalic acid or thymus [START_REF] Gregorc | Use of thymol formulations, amitraz, and oxalic acid for the control of the varroa mite in honey bee (apis mellifera carnica) colonies[END_REF]. Every year, the beekeeper must rotate between treatments as the varroa develops resistance to a given treatment [START_REF] Frank D Rinkevich | Detection of amitraz resistance and reduced treatment efficacy in the varroa mite, varroa destructor, within commercial beekeeping operations[END_REF][START_REF] Kamler | Comparison of taufluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of varroa destructor in a vial test[END_REF]. The reward of a treatment is dictated by the number of fallen varroa mites due to it. This reward function seems to be heavy-tailed and corrupted due to plethora of confounding variables, e.g. the weather, the way to administer the treatment, the state of the hive etc. [START_REF] Semkiw | The amitraz strips efficacy in control of varroa destructor after many years application of amitraz in apiaries[END_REF], which are hard to model. Interestingly, observed corruptions are natural and non-adversarial but probably unbounded. The heavy-tailed and corrupted nature of the problem resists application of the non-robust bandit algorithms, such as UCB, and motivates us to propose our setting: Bandits corrupted by Nature. Our Contributions. We consider the stochastic bandit with k arms of corrupted rewards {(1ε)P i + εH i } k i=1 . Here, P i 's are uncorrupted reward distributions with heavy-tails and bounded variances, H i 's are corruption distributions with probably unbounded corruptions, and ε ∈ [0, 1/2) is the proportion of corruption. This is equivalent to considering a setting where at every step Nature flips a coin with success probability ε. The player obtains a corrupted reward if Nature obtains 1 and otherwise, an uncorrupted reward. We call this setting 'Bandits corrupted by Nature'. Our setting encompasses both the heavy-tailed reward and unbounded corruptions. We formally define the setting and corresponding regret definition in Section 2.

In order to understand the fundamental hardness of the proposed setting, we derive the lower bounds on regret that illustrates the optimal regret achievable by any algorithm (Section 3). Lower bounds in Theorem 1 confirm that the heavy-tailed and corrupted bandits are harder than light-tailed bandits and there is an unavoidable cost to pay. It also indicates that though the logarithmic regret is asymptotically achievable, the hardness is dictated by the suboptimality gap ∆ i , 1 the variance of reward distributions σ i and the corruption proportion ϵ. Specifically, when δ i σ i 's are large, i.e. the optimal and the suboptimal arms are easy to distinguish, the effect due to this factor is inverse logarithmic and the effect due to corruption is proportional to (log( 1-ϵ ϵ )) -1 . On the other hand, if ∆ i σ i 's are small, i.e. we are in low distinguishability/high variance regime, the hardness is dictated by

σ 2 i ∆ 2 i,ε
. Here, ∆ i,ε ≜ ∆ i (1 -ε) -εσ i is the 'corrupted suboptimality gap' that replaces the traditional suboptimality gap ∆ i in the lower bound of non-corrupted and light-tailed bandits [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF]. Since ∆ i,ε ≤ ∆ i , it shows that in heavy-tailed and corrupt settings, it is harder to distinguish the optimal and suboptimal arms. They are the same when the corruption proportion ε = 0. Following the lower bounds, in Section 4, we design a robust algorithm, HuberUCB, that leverages the Huber's estimator for robust mean estimation. We derive a novel concentration inequality on the deviation of empirical Huber's estimate that allows us to design robust and tight confidence intervals for HuberUCB. In Theorem 3, we show that HuberUCB achieves the logarithmic regret, and also the optimal rate when the sub-optimality gap ∆ is not too large. In addition, we demonstrate that the regret of HuberUCB decomposes according to the respective values of ∆ i and σ i :

R n ≍   i:∆ i >σ i log(n)σ i   Error due to Heavy-tail + O   i:∆ i ≤σ i log(n)∆ i σ 2
Thus, our upper bound allows us to segregate the errors due to heavy-tail, corruption, and corruptioncorrection with heavy tails. Due to the corruption, we incur at least an error log(n

) ∆ i log( 1-ε ε )
, and instead of the usual log(n) σ i ∆ i , we obtain an error term log(n

)∆ i σ 2 i ∆ 2 i,ε
with the corrupted suboptimality gap. These observations resonate that of the lower bound, i.e. corrupted bandits are harder than uncorrupted ones as the corruption turns distinguishing the optimal arm from the suboptimal ones strictly harder. Due to the heavy-tail behaviour, we have the first term σ i log(n) that dominates the upper bound for ∆ i > σ i . Thus, the effect of heavy-tailedness separates from that of the corruption for large suboptimality gaps, where the optimal arm is easier to distinguish. In contrast, the effect of heavy-tailedness and corruption entangles and turns the optimal arm harder to detect, if the uncorrupted suboptimality gap is low. Thus, in the spirit of the lower bound, the upper bound of HuberUCB also shows the transition in hardness regime depending on ∆ i /σ i . In Section 5, we experimentally illustrate the claimed performance of HuberUCB for corrupted Gaussian and Pareto environments. For brevity, we defer the detailed proofs and the parameter tuning to Appendix.

Related Work. Due to the generality of our setting, this work extends the existing methods for both the heavy-tailed and corrupted bandits. While for designing the algorithm, it leverages on the literature of robust mean estimation. Here, we connect to these three streams of literature.

Heavy-tailed bandits. [START_REF] Bubeck | Bandits with heavy tail[END_REF] introduced the heavy-tailed bandits problem and uses robust mean estimator to propose RobustUCB algorithms. It sprouted research works leading to either tighter rates of convergence [START_REF] Lee | Optimal algorithms for stochastic multi-armed bandits with heavy tailed rewards[END_REF][START_REF] Agrawal | Regret minimization in heavy-tailed bandits[END_REF] or algorithms for structured environments [START_REF] Munoz | No-regret algorithms for heavy-tailed linear bandits[END_REF][START_REF] Shao | Almost optimal algorithms for linear stochastic bandits with heavy-tailed payoffs[END_REF]. These works rely on the assumption that a bound on the (1+ϵ)-moment, i.e. E[|X| 1+ε ], is known for some ε > 0. We do not assume such a restrictive bound as knowing a bound on E[|X| 1+ε ] imply the knowledge of a bound on the sub-optimality gap ∆. Instead, we assume that the centered moment, specifically the variance, is bounded by a known constant. Thus, we address the open problem mentioned in [START_REF] Agrawal | Regret minimization in heavy-tailed bandits[END_REF] by relaxing the classical bounded (1+ϵ)-moment assumption with bounded centered moment.

Corrupted bandits. To our knowledge, the Bandits Corrupted by Nature is a novel setting for Bandits. Motivated by the agricultural and biological applications, we consider a non-adversarial proportion (ε ∈ [0, 1/2)) of corrupted samples with probably unbounded amount of corruptions. This is significantly different than the existing corrupted settings for bandits, which assume that the corruption is bounded and often the bound is known [START_REF] Lykouris | Stochastic bandits robust to adversarial corruptions[END_REF][START_REF] Bogunovic | Corruption-tolerant gaussian process bandit optimization[END_REF].

Robust mean estimation. Our algorithm design leverages the rich literature of robust means estimation, specifically the influence function representation of Huber's estimator. The problem of robust mean estimation in a corrupted and heavy-tailed setting stems from the work of Huber [START_REF] Peter | Robust estimation of a location parameter[END_REF](Huber, , 2004)). Recently, in tandem with machine learning, there has been numerous advances bth in the heavy-tailed [START_REF] Devroye | Sub-gaussian mean estimators[END_REF][START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF][START_REF] Minsker | Distributed statistical estimation and rates of convergence in normal approximation[END_REF] and in the corrupted settings [START_REF] Lecué | Robust machine learning by median-of-means: theory and practice[END_REF][START_REF] Minsker | Robust and efficient mean estimation: an approach based on the properties of self-normalized sums[END_REF][START_REF] Prasad | A unified approach to robust mean estimation[END_REF][START_REF] Prasad | A robust univariate mean estimator is all you need[END_REF][START_REF] Depersin | Robust subgaussian estimation of a mean vector in nearly linear time[END_REF][START_REF] Lerasle | Monk outlier-robust mean embedding estimation by median-of-means[END_REF][START_REF] Lecué | Robust machine learning by median-of-means: theory and practice[END_REF]. Our work, specifically the novel concentration inequality for Huber's estimator, adds a new result in this spirit.

Notations. We denote by P the set of probabilîty distributions on the real line R and P [q] ≜ {P ∈ P : E P [|X| q ] < ∞} the set of distributions with at least q ≥ 1 finite moments. 1{A} is the indicator function for the event A being true. We denote the mean of a distribution P i as

µ i ≜ E P i [X].

Bandits corrupted by Nature: Problem setting

In this section, we present the corrupted bandits setting that we study, and introduce the notion of regret decomposition for this setting. Importantly, the regret decomposition allows us to focus on the expected number of pulls of a suboptimal arm as the central quantity to control algorithmically.

Bandits corrupted by Nature

In the setting of Bandits corrupted by Nature, a bandit algorithm, or policy π, has access to k ∈ N uncorrupted reward distributions P 1 , . We call ν ε the law of the corrupted environment and we refer to the uncorrupted environment as ν. In this model of corruption, if C t = 1, the reward will be corrupted and obtaining C t = 1 does not depend on the value of X ′ t but rather on the global parameter ε. Thus, this model assumes independence of corruption, i.e. a non-adversarial behaviour of the Nature. Typically, one can think of agricultural applications in which such a setting would make sense because there does not seem to be an adversary that corrupts the data. The corruption is often due to external natural confounders, such as animals or weather, which are non-adversarial.

Remark 1 Let us highlight that we do not assume sub-Gaussian behaviour for the inlier distributions P i . Instead, we consider only a weak moment assumption: the inlier distributions P i have a finite variance. Thus, our setting is capable of modelling both heavy-tailed and corrupted settings. This enables our setting with a generality to develop algorithms for both of the problems. We testify this generality in the regret lower bounds and empirical performance analysis in Sections 3 and 5.

The Bandits corrupted by Nature model is equivalent to the classical finite-armed stochastic bandit setting with distributions {(1 -ε)P i + εH i } k i=1 . The main difference is how we assess the performance of an algorithm in this model: we try to quantify the effect of corruptions on the number of pulls or arms while ignoring the rewards coming from the H i 's. In the following section, we introduce a regret definition to explicate this connection.

Regret of corrupted bandits

We define the regret using the uncorrupted rewards instead of corrupted ones as otherwise it could always lead to arbitrarily bad regret. In this setting, the regret is the difference between the expected sum of uncorrupted rewards collected from the optimal arm and the expected sum of rewards collected by a bandit algorithm π operating under corrupted setting. Formally,

R n ≜ n max i E P i [X ′ ] -E n t=1 X ′ t . (1) 
The randomness in the second expectation is taken with respect to a bandit algorithm π that reacts to the corrupted environment and the reward are those of the uncorrupted environment (X ′ ) n 1 . The first step is to decompose the regret over the arms as in Lemma 1.

Lemma 1 (Decomposition of corrupted regret) In a corrupted environment ν ε , the regret defined in Equation (1) can be decomposed as

R n = k i=1 ∆ i E ν ε [T i (n)] ,
where T i (n) ≜ n t=1 1{A t = i}, i.e. the number of pulls of arm i until time n, E ν ε [T i (n)] is the expected number of pulls of arm i until time n in the corrupted environment, and ∆ i ≜ max j µ j -µ i , which is called the suboptimality gap of arm i.

Lemma 1 states that the regret is the sum of the gaps in the uncorrupted environment times the expected number of pulls in the corrupted environment. Hence, we will focus on controlling

E ν ε [T i (n)],
i.e. the expected number of pulls of sub-optimal arms in the corrupted environment.

Lower bounds for uniformly good policies

In order to derive the lower bounds, we consider uniformly good policies on some family of environments with the set of laws

D = D 1 ⊗ • • • ⊗ D k , where D i ⊂ P for each i ∈ {1, . . . , k}. Definition 2 (Robust uniformly good policies) Let D ε = D ε 1 ⊗ • • • ⊗ D ε
k be a family of corrupted bandit environments on R. For a corrupted environment ν ε ∈ D ε with corresponding uncorrupted environment ν, let µ i (ν) be the mean reward of arm i in the uncorrupted setting and µ * (ν) ≜ max a µ i (ν) be the maximum mean reward. A policy π is uniformly good on D ε if for any α ∈ (0, 1],

∀ν ∈ D ε , ∀i ∈ {1, . . . , k}, µ i (ν) < µ * (ν) ⇒ E ν ε [T i (n)] = o(n α ).
In order to derive the lower bound, we rely on Lemma 2, which is a version of the change of measure argument [START_REF] Burnetas | Optimal adaptive policies for markov decision processes[END_REF], and can be found in (Maillard, 2019, Lemma 3.4).

Lemma 2 (Lower bound for uniformly good policies)

Let D = D 1 ⊗ • • • ⊗ D k ,
where D i ⊂ P for each i ∈ {1, . . . , k} and let ν ∈ D. Then, any uniformly good policy on D must pull arms such that for any

P i ∈ D i , i ∈ {1, . . . , k}, ∀i ∈ {1, . . . , k}, µ i ≤ µ * (ν) ⇒ lim inf n→∞ E ν [T i (n)] log(n) ≥ 1 KL(P i , P * )
.

Lemma 2 shows that it is sufficient to have an upper bound on the KL-divergence of the reward distributions interacting with the policy to get a lower bound on the number of pulls of a suboptimal arm. In the rest of this section, we compute upper bounds on the KL-divergences in some specific cases of heavy-tailed, such as Student's, and corrupted, such as Bernoulli, distributions. We leverage them for deriving the lower bounds on the number of pulls and hence, on the robust regret of a uniformly good policy.

Heavy-tails: Student's Distribution. To obtain a lower bound in the heavy-tailed case we use Student distributions. Student distribution are well adapted because they exhibit a finite number of finite moment which makes them heavy-tailed and we can easily change the mean and variances of Student distribution without changing its shape parameter ν.

Lemma 3 (Control of KL-divergence for Heavy-tails) Let P 1 , P 2 be two Student distributions with ν > 1 degrees of freedom with Corruption: Corrupted Bernoullis. We choose the corrupted Bernoulli distributions to get a lowerbound on the number of sub-optimal pulls in corrupted the setting. Let P 0 , P 1 be two Bernoulli distributions on {0, c} such that P P 0 (c) = P P 1 (0) > P P 0 (0) = P P 1 (c). We corrupt both P 0 and P 1 with a proportion ε > 0 to get

E P 1 [X] = 0 and E P 2 [X] = ∆. Then, KL(P 1 , P 2 ) ≤    3 ν-1 (ν+1) 2 ∆ 2 ν if ∆ ≤ 1 , (ν + 1) log (∆) + log 3 ν (ν+1) 2 ν if ∆ > 1 .
Q 0 ≜ (1 -ε)P 0 + εδ c and Q 1 ≜ (1 -ε)P 1 + εδ 0 .
We obtain Lemma 4 that illustrates three bounds on KL(Q 0 , Q 1 ) as functions of the suboptimality gap

∆ ≜ E P 0 [X] -E P 1 [X], variance σ 2 ≜ Var P 0 (X) = Var P 1 (X)
, and corruption proportion ϵ.

Lemma 4 (Control of KL-divergence for Corruptions) Let P 0 , P 1 be two Bernoulli probability distribution with ∆ = E P 0 [X] -E P 1 [X] and σ 2 = Var P 0 (X) = Var P 1 (X). There exists Q 0 and Q 1 , which are some ε-corruptions of P 0 and P 1 respectively with the shifted suboptiallity gap

∆ ε = ∆(1-ε)-εσ.
Given this, we have the following bounds on KL(Q 0 , Q 1 ).

• Uniform Bound. For any ∆, σ, we have

KL(Q 0 , Q 1 ) ≤ (1 -2ε) log 1 + 1 -2ε ε .
(2)

• High Distinguishability/Low Variance Regime. If σ ε √ 1-2ε < ∆ < σ, then KL(Q 0 , Q 1 ) ≤ ∆ ε σ log 1 + 2 ∆ ε σ -∆ ε .
(3)

• Low Distinguishability/High Variance Regime. If ∆ ≤ σ ε √ 1-2ε , then, there exists ε ′ ≤ ε and Q ′ 0 , Q ′ 1 some ε ′ -versions of P 0 and P 1 such that KL(Q ′ 0 , Q ′ 1 ) = 0.
Consequences of Lemma 4. We illustrate the bounds in Figure 1. The three upper bounds on the KL-divergence of corrupted Bernoullis provide us some insights regarding the impact of corruption. 1. Three Regimes of Corruption: We observe that depending on ∆/σ, we can categorise the corrupted environment in three categories. For ∆/σ ∈ [1, +∞), we observe that the KL-divergence between corrupted distributions Q 0 and Q 1 is upper bounded by a function of only corruption proportion ε and is independent of the uncorrupted distributions. Whereas for ∆/σ ∈ (ε/ √ 1 -2ε, 1), the distinguishability of corrupted distributions depend on the distinguishibility of uncorrupted distributions and also the corruption level. We call this the High Distinguishability/Low Variance Regime.

For ∆/σ ∈ [0, ε/ √ 1 -2ε],
we observe that the KL-divergence can always go to zero. We refer to this setting as the Low Distinguishability/High Variance Regime. 2. High Distinguishability/Low Variance Regime: In Lemma 4, we observe that the effective gap to distinguish the optimal arm to the closest suboptimal arm that dictates hardness of a bandit instance has shifted from the uncorrupted gap ∆ to a corrupted suboptimality gap:

∆ ε ≜ ∆(1 -ε) -εσ.
3. Low Distinguishability/High Variance Regime: We notice also that there is a limit for ∆ below which the corruption can make the two distributions Q 0 and Q 1 indistinguishable, this is a general phenomenon in the setting of testing in corruption neighbourhoods (see [START_REF] Peter | A robust version of the probability ratio test[END_REF]). Thus, in Figure 1, we observe that KL(Q 0 , Q 1 ) and the corresponding upper bound meet at zero. 4. Boundedness of KL under Corruption: Contrary to the usual setup, the KL between two corrupted Bernoullis is bounded as the corruption causes Q 0 and Q 1 to have the same support. 5. Limitations of the Bounds: Though the bounds are individually tight in their corresponding regimes, Figure 1 indicates looseness of them around σ. In future, it will be interesting to explore how these bounds can be pushed closer to the actual KL(Q 0 , Q 1 ) for ∆ σ close to 1. From KL Upper bounds to Regret Lower Bounds. We can substitute the results of Lemma 3 and 4 in Lemma 2 to get the lower bounds on regret of any uniformly good policy in a corrupted and heavy-tailed setting, where reward distributions belong to

P ε [2] = {(1 -ε)P + εH : H ∈ P and E P [|X| 2 ] < ∞}.
Theorem 1 (Lower bound for heavy-tailed and corrupted bandit)

Let D ε [2] ≜ P ε 2 ⊗ • • • ⊗ P ε 2 , and let ν ∈ D ε [2]
. Let i be a sub-optimal arm such that

E P i [X] ≤ max a E Pa [X] and denote ∆ i ≜ E P i [X] -max a E Pa [X] and ∆ i,ε ≜ ∆ i (1 -ε) -εσ i . • If ∆ i ≤ σ i /2, any uniformly good policy on D ε [2] satisfies lim inf n→∞ E ν ε [T i (n)] log(n) ≥ σ 2 i 2∆ 2 i,ε ∨ 1 log 1-ε ε . • If ∆ i ≥ σ i , any uniformly good policy on D ε [2] satisfies lim inf n→∞ E ν ε [T i (n)] log(n) ≥ 1 4 log 6∆ i σ i ∨ 1 log 1-ε ε .
Due to brevity, the detailed proof is deferred to Appendix B. In Theorem 1, if ∆ i is smaller than σ i , the term σ 2 i /∆ 2 i,ε represents the additional error due to corruption as well as the error due to heavy-tailedness. In the case where ∆ i is larger than σ i , we have a first term 1/4 log 6∆ i σ i that is due to heavy-tailedness. In both the cases, we obtain an unavoidable second term, 1/ log 1-ε ε , due to corruption. We also observe that when ∆ ε is small, we recover a lower bound with the factor σ 2 /2∆ 2 ε , which is analogous to inverse of the KL between Gaussians with variance σ 2 and a corrupted gap between means ∆ ε = ∆(1 -ε) -εσ. For ϵ = 0, this exactly leads to the lower bound for Gaussians with uncorrupted gap of means ∆ i and variance σ 2 i . In contrast, for ∆ i > σ i , it is not clear whether the term 1/ log(∆ i /σ i ) is tight because our upper bound do not exhibit this term but a constant error that does not go to zero as ∆ i /σ i go to infinity.

Robust bandit algorithm: Huber's estimator and upper bound on the regret

In this section we introduce an UCB-type algorithm adapted to our corrupted and heavy-tailed setup, see Algorithm 2. We further provide its theoretical guarantees in Theorem 3, showing that the rates of Theorem 1 are attained in some settings. Before that, we introduce and discuss Huber'sestimator.

Robust mean estimation and Huber's estimator

Now, we aim to design a UCB-type algorithm. In UCB, the focus is on mean estimation. Since the rewards are heavy-tailed and corrupted in our setting, we have to use a robust estimator of mean. We choose to use Huber's estimator [START_REF] Peter | Robust estimation of a location parameter[END_REF], an M-estimator that is known for its robust properties and have been extensively studied, specially the concentration properties [START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF]).

Huber's estimator is a M-estimator, which means that it can be derived as a minimizer of some loss function. Let X 1 , . . . , X n be i.i.d. random variables and β > 0, we define Huber's estimator as Hub(X n 1 ) ∈ arg min θ∈R n i=1 ρ(X i -θ), where ρ is Huber's loss function with parameter β and X n 1 is shorthand notation for (X 1 , . . . , X n ). ρ is a loss function that is quadratic near 0 and linear near infinity, with β giving the limit between quadratic and linear behavior. In what follows, instead of this definition we will prefer the alternative one as a root of the following equation:

n i=1 ψ (X i -Hub(X n 1 )) = 0,
where the influence function ψ(x) ≜ x1{|x| ≤ β} + β sign(x)1{|x| > β}. We prefer this representation as we will show afterwards that the properties of Huber's estimator depend on ψ. β plays the role of a scaling parameter and depending on β, Huber's estimator is a trade-off between the efficiency of the minimizer of the square loss (i.e. the empirical mean) and the robustness of the minimizer of the absolute loss (i.e. the empirical median).

Concentration of Huber's estimator in corrupted setting

Let Hub(P ) be the theoretical counterpart of Hub(X n 1 ), defined for Y a random variable with law P by E[ψ(Y -Hub(P ))] = 0.

Theorem 2 (Concentration of Huber's estimator) We now state our first key result on the concentration of Huber's estimator in a corrupted and Heavy-tailed setting.

Suppose that X 1 , . . . , X n are i.i.d with law (1 -ε)P + εH for some P, H ∈ P and proportion of outliers ε ∈ (0, 1/2), and P having a finite variance σ 2 . Let p = P P (|Y

-E P [Y ]| ≤ β/2) with p > 5ε, β > 4σ. Let ε = (1-2ε) log( 1-ε ε ) and suppose δ ≥ exp -n 128(p-5ε) 2 49(1+2ε √ 2) 2
. Then, with probability larger than 1 -5δ,

|Hub(X n 1 ) -Hub(P )| ≤ σ 2 ln(1/δ) n + β ln(1/δ) 3n + 2βε ln(1/δ) n + 2βε p -ln(1/δ) 2n -ε + .
The Theorem 2 gives us the concentration of Hub(X n 1 ) around Hub(P ), the Huber functional of the inlier distribution P , there are a few details that must be explain to understand this Theorem: 1. Value of p: For most laws that exhibit some concentration properties, the constant p is close to 1 as β ≥ 4σ. One might also use Markov inequality to lower bound p. 2. Tightness of constants: If there are no outliers (ε = 0), the optimal rate of convergence in such a setting is at least of order σ 2 ln(1/δ)/n due to the central limit theorem. Theorem 2 shows that we are very close to attaining this optimal constant in the leading 1/ √ n term, this result for Huber's estimator was already present in [START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF]. 3. Value of β: β is a parameter that achieve a trade-off between accuracy in the light-tailed uncorrupted setting and robustness. See the discussion in Section 4.4. 4. Restriction on value of δ: In Theorem 2, δ must be at least of order e -n , this restriction may seem arbitrary but it is in fact unavoidable as shown in (Devroye et al., 2016, Theorem 4.3). This is a limitation of robust mean estimation that will imply later a forced exploration that we will have to do at the beginning of our algorithm.

When P is non-symmetric, we need to control the distance to the mean |Hub(P ) -E[X]| (if P is symmetric, we have Hub(P ) = E[X]) to get a concentration of Hub(X n 1 ) around E[X]. We have the following lemma, direct consequence of (Mathieu, 2021, Lemma 4).

Lemma 5 (Bias of Huber's estimator) Let Y be a random variable with E[|Y | q ] < ∞ for q ≥ 2 and suppose that β 2 ≥ 9Var(Y ). Then

|E[Y ] -Hub(P )| ≤ 2E[|Y -E[Y ]| q ] (q -1)β q-1 .
Using Lemma 5 and Theorem 2, we can control the deviations of Hub(X n 1 ) from E[X]. This allows us to formulate an index-based algorithm (UCB-type algorithm) for corrupted Bandits. We present this algorithm in Section 4.3.

HuberUCB: Algorithm and regret bound

In this section, we describe a robust, UCB-type algorithm called HuberUCB. We denote µ i as the mean of arm i and σ 2 i its variance. We assume that we know the variances of the reward distributions. We refer to Section 4.4 for a discussion on the choice of the parameters when the reward distributions are unknown.

HuberUCB: The algorithm. In order to use the Huber's estimator in the multi-armed bandits setting, we need to estimate the mean of the rewards of each arms separately. We do that by defining a parameter β i for each arm and estimating separately each µ i using

Hub i,s = Hub (X t , 1 ≤ t ≤ s such that A t = i, ) . Denote for s ≥ s lim (t) = log(t) 98 128(p-5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2
, where ε =

(1-2ε) log( 1-ε ε ) , B i (s, t) = σ i 2 log(t 2 ) s + β i log(t 2 ) 3s + 2β i ε log(t 2 ) s + 2β i ε p -log(t 2 ) 2s -ε + b i ,
and

B i (s, t) = ∞ if s < s lim (t)
, where b i is a bound on the bias |E[X] -Hub(P i )|. This is zero if P i is symmetric and controlled by Lemma 5 otherwise. For example, one can take b i = 2σ 2 i /β 2 i .

Algorithm 2 HuberUCB for t = 1, . . . , n do Compute I i (t) for i ∈ {1, . . . , k} using X 1 , . . . , X t-1 .

Choose arm a t ∈ arg max i I i (t).

Observe a reward X t . end Then, we introduce HuberUCB (Algorithm 2), which selects an arm a t based on the index I i (t) = Hub i,T i (t-1) + B i (T i (t -1), t). We now provide the main regret guarantee of this strategy.

Theorem 3 (Upper Bound on Regret of HuberUCB) Suppose that for all i,P i is a distribution with finite variance σ 2 i . Suppose 4σ i ≤ β i and p = inf 1≤i≤k P P i (|X -

E P i [X]| ≤ β i /2) with p > 5ε (in particular ε < 1/5). Also, ∆ i,ε = (∆ i -2b i )(p -ε) -8β i ε > 0 and (1-2ε) log( 1-ε ε ) ≤ ε. • If ∆ i,ε > 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 , then E[T i (n)] ≤ log(n) max 32β i 3 ∆ i,ε , 4 (p-5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 + 10(log(n)+1) • If ∆ i,ε ≤ 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 , then E[T i (n)] ≤ log(n) max 50σ 2 i 9 ∆ 2 i,ε √ 2+2 β i σ i ε 2 , 4 (p-5ε) 2 1+2 √ 2 ε ∨ 9 14 √ 2 2 +10(log(n)+1).
We now state a simplified version of Theorem 3 with bad but explicit constants for easier understanding. Let β 2 i = 16σ 2 i , ε ≤ 1/10 so that ε = 4/(5 ln( 9)) ≃ 0.54, p ≥ 1-

4σ 2 i β 2 i ≥ 3 4 ≥ 5ε+ 1
4 and suppose P i symmetric so that b i = 0. Further simplifying the constants yields the following.

Corollary 1 (Simplified version of Theorem 3) Suppose that for all i,P i is a distribution with finite variance

σ 2 i . Denote ∆ i,ε = ∆ i (p -ε) -32σ i ε, • If ∆ i,ε > 6σ i 1 + 4 √ 2ε 2 , then E[T i (n)] ≤ 43 log(n) max σ i ∆ i,ε , 12ε 2 + 6 + 10(log(n) + 1). • If ∆ i,ε ≤ 6σ i 1 + 4 √ 2ε 2 , then E[T i (n)] ≤ 23 log(n) max σ 2 i ∆ 2 i,ε
1 + 32ε 2 , 24ε 2 + 12 + 10(log(n) + 1).

We see that up to the constants, in the case ∆ i,ε small, we recover the rate of convergences of Theorem 1. Indeed, in Theorem 1 and Corollary 1, when ∆ i is small compared to σ i , we recover the

error term E[T i (n)] ≍ log(n) σ 2 i ∆ 2 i,ε ∨ ε 2 . On the other hand, if ∆ i is large compared to σ i , we get that E[T i (n)] ≤ O log(n) σ i ∆ i,ε ∨ ε 2 ∨ 1 ≤ O log(n) 1 ∨ ε 2
, the rate of convergence of our algorithm is sub-optimal but this was unavoidable due to the forced exploration we have to give to our algorithm (the s lim (t)). This forced exploration seems necessary in our approach in order to be able to handle the case ∆ i ≤ σ i .

Discussion

We discuss some properties of HuberUCB and compare it with RobustUCB [START_REF] Bubeck | Bandits with heavy tail[END_REF].

Choice of β, σ and ε. HuberUCB depends on three hyperparameters that we have to choose. In Theorem 3, we assume to know the σ and ε. In practice, these are unknown and we estimate σ 2 with a robust estimator of the variance, such as the median absolute deviation. Ideally, β should be larger than σ by some constant factor. We recommend to use the estimator of σ to estimate a good value of β. In contrast, estimating ε is hard. However one can use the conservative upper bound ε = 0.5. We refer to Appendix H for an empirical study of the choice of β and ε.

Comparison with Heavy-tail bandits. Linked to the problem of chosing β is the difference between heavy-tailed bandits and corrupted bandits. When the data are heavy-tailed but not corrupted, [START_REF] Catoni | Challenging the empirical mean and empirical variance: a deviation study[END_REF] shows that β ≃ σ √ n is a good choice for the scaling parameter. However, this choice is not robust to outliers and yields a linear regret in our setup (see Section 5). When there is corruption, β must remains bounded when the sample size goes to infinity in order to stay robust. Computational cost. Huber's estimator has linear complexity due to the involved Iterated Reweighting Least Squares algorithm, which is not sequential. We have to do this at every iteration, which leads HuberUCB to have quadratic time complexity. This seems to be the price for robustness.

Experimental Analysis

In this section, we assess the experimental efficiency of HuberUCB by plotting the empirical regret. Contrary to the uncorrupted case, we cannot really estimate the regret in Equation (1) using the observed regret. Instead, we use the theoretical uncorrupted gaps that we know because we are in a simulated environment and we estimate the regret R n using Regret = k i=1 ∆ i T i (n), where 

T i (n) = 1 M M m=1 (T i (n)) m is a Monte-Carlo estimation of E ν ε [T i (n)]
over M experiments. We used rlberry python library Domingues et al. ( 2021) for the experiments. Comparison to bandit algorithms for Heavy-tailed setting. There is, to our knowledge, no existing bandit algorithm for the corruption setting prior to this work, hence we focus on comparing ourselves to the closest relatives: bandits in heavy-tailed setting. We empirically and competitively study three different algorithms: HuberUCB and two RobustUCB algorithms with Catoni Huber estimator and Median of Means (MOM) [START_REF] Bubeck | Bandits with heavy tail[END_REF]. HuberUCB is closely related to the RobustUCB with Catoni Huber estimator, which also uses Huber's estimator but with another set of parameters and confidence intervals. The RobustUCB algorithms are tuned for uncorrupted heavy-tails. Hence, they incur linear regret in a truly corrupted setting and this is reflected in the experiments. We also improve upon [START_REF] Bubeck | Bandits with heavy tail[END_REF] as we can handle arm-dependent variances. Corrupted Gaussian setting: In Figure 2 (top), we study a 3-armed bandits with corrupted Gaussian distributions having means 0, 0.9, 1 and standard deviation 0.1. The corruption applied to this bandit problem are Gaussians with variance 1 and centered in 100, 100 and -1000 respectively. For HuberUCH, we chose to use β i = 4σ i . We perform each experiment 100 times to get a Monte-Carlo error estimation. We plot the mean plus/minus the standard deviation of the result in Figure 2. We do that for the three corruption proportions ε equal to 0%, 3% and 5%. We notice that there is a short linear regret phase at the beginning due to the forced exploration performed by the three algorithms. Followed by that, HuberUCB incurs seemingly logarithmic regret. On the other hand, for Catoni Huber Agent and MOM Agent, the regret is logarithmic only in the uncorrupted setting. When the data are corrupted, i.e. ε > 0, the regret becomes linear. Corrupted pareto setting: In Figure 2 (bottom), we illustrate the results for a 3-armed bandits with corrupted pareto distributions having shape parameters 3, 4 and 5 (i.e. 2, 3, and 4 finite moments) and scale parameters 0.1, 0.2, 0.3. Thus, the corresponding means are 0.15, 0.27 and 0.37 and the standard deviations are 0.3, 0.4, 0.5, respectively. The corruption applied to this bandit problem are Gaussians with variance 1 and centered in respectively 100, 100 and -1000 respectively. For HuberUCB, we chose to use β = 3σ i and we also bound the bias b i by σ 2 i /β i . The results echoes the observations for the Gaussian case except that the learning process takes more time.

Conclusion

In this paper, we study the setting of Bandits corrupted by Nature that encompasses both the heavytailed rewards with bounded variance and unbounded corruptions in rewards. In this setting, we prove lower bounds on the regret that shows the heavy-tail bandits and corrupted bandits are strictly harder than the usual sub-gaussian bandits. Specifically, in this setting, the hardness depends on the suboptimality gap/variance regimes. If the suboptimality gap is small, the hardness is dictated by

σ 2 i /∆ 2 i,ε .
Here, ∆ i,ε is the corrupted suboptimality gap, which is smaller than the uncorrupted gap ∆ and thus, harder to distinguish. To complement the lower bounds, we design a robust algorithm HuberUCB that uses Huber's estimator for robust mean estimation and a novel concentration bound on this estimator to create tight confidence intervals. HuberUCB achieves logarithmic regret that matches the lower bound for low suboptimality gap/high variance regime. Unlike existing literature, we do not need any assumption on a known bound on corruption and a known bound on the (1 + ϵ)uncentered moment, which was posed as an open problem in [START_REF] Agrawal | Regret minimization in heavy-tailed bandits[END_REF].

Since our upper and lower bounds disagree in the high gap/low variance regime, it will be interesting to investigate this regime further. Also, following the literature, it will be natural to extend HuberUCB to contextual and linear bandit settings with corruptions and heavy-tails. This will facilitate its applicability to practical problems, such as choosing treatments against pests.

Appendix A. Proof of Lemma 1: Regret Decomposition

From Equation (1), we have

R n = k a=1 n t=1 E (max a E Pa [X ′ ] -X ′ t )1 {A t = a} Then, we condition on A t E (max a E Pa [X ′ ] -X ′ t )1 {A t = a} |A t = 1{A t = a}E[max a E Pa [X ′ ] -X ′ t |A t ] = 1{A t = a}(max a E Pa [X ′ ] -µ At ) = 1{A t = a}(max a E Pa [X ′ ] -µ a ) = 1{A t = a}∆ a
and this stays true whatever the policy, because the policy at time t use knowledge up to time t -1, hence its decision does not depend on X t . Hence, we have

R n (π) = k a=1 ∆ a E π(•|X n 1 ,A n 1 ) [T a (n)]
where T a (n) is with respect to the randomness of π, which is to say that we compute E[T i (n)] in the corrupted setting and not in the uncorrupted one.

R n = k a=1 ∆ a E νε [T a (n)] .

Appendix B. Proof of Theorem 1: Regret Lower Bound

From Lemma 2, we have

lim inf n→∞ E ν [T i (n)] log(n) ≥ 1 KL(P 0 , P 1 ) ∨ 1 KL(Q 0 , Q 1 ) (4) 
where P 0 , P 1 are student distributions with parameter ν = 3 and gap ∆ i as in Lemma 3 renormalized so that the variance is σ 2 i , and Q 0 , Q 1 are as in Lemma 4 with gap ∆ i and variance σ i . From Lemma 3, we get

KL(P 1 , P 2 ) ≤    3 ν-1 (ν+1) 2 ∆ 2 i σ 2 i (ν-2) if ∆ 2 i ≤ ν-2 ν σ 2 i ν+1 2 log ν σ 2 i (ν-2) ∆ 2 i + log 3 ν (ν+1) 2 ν if ∆ 2 i > ν-2 ν σ 2 i
Hence, with ν = 3,

KL(P 1 , P 2 ) ≤    144∆ 2 i σ 2 i if ∆ 2 i ≤ σ 2 i /3 2 log 3∆ 2 i σ 2 i + log (144) if ∆ 2 i > σ 2 i /3 (5) 
First setting:

If ∆ i ≤ σ i /2, then ∆ 2 i ≤ σ 2
i /3 and from Equations ( 5) and ( 4) and Lemma 4,

lim inf n→∞ E ν [T i (n)] log(n) ≥ σ 2 i 144∆ 2 i ∨ σ i ∆ i,ε log 1 + ∆ i,ε σ i -∆ i,ε Then, use that ∆ i,ε ≤ ∆ i ≤ σ i /2, log 1 + ∆ i,ε σ i -∆ i,ε ≤ ∆ i,ε σ i -∆ i,ε ≤ 2∆ i,ε σ i
Hence, considering also the term from Equation (2) in Lemma 4,

lim inf n→∞ E ν [T i (n)] log(n) ≥ σ 2 i 144∆ 2 i ∨ σ 2 i 2∆ 2 i,ε ∨ 1 log 1-ε ε
We weaken this inequality to the simplified version found in Theorem 1 by dropping the second term on the right-hand side for better interpretability.

Second setting:

If ∆ i > σ i , then ∆ 2 i > σ 2
i /3 and from Equations ( 5) and ( 4) and Lemma 4, First, we compute the χ 2 divergence between the two laws f a and f 0 . We have, for any a ∈ R

lim inf n→∞ E ν [T i (n)] log(n) ≥ 1 2 log 3∆ 2 i σ 2 i + log (144) ∨ 1 log 1-ε ε = 1 4 log √ 3∆ i σ i + 4 log 2 √ 3 ∨ 1 log 1-ε ε = 1 4 log 6∆ i σ i ∨ 1 log 1-ε ε Appendix C. Upper
d χ 2 (f a , f 0 ) = (f a (x) -f 0 (x)) 2 f 0 (x) dx = Γ k+1 2 Γ k 2 √ kπ R     1 1 + (x-a) 2 k k+1 2 - 1 1 + x 2 k k+1 2     2 1 + x 2 k k+1 2 dx = Γ k+1 2 Γ k 2 √ kπ R 1 + (x-a) 2 k k+1 2 -1 + x 2 k k+1 2 2 1 + (x-a) 2 k k+1 1 + x 2 k k+1 2 dx = Γ k+1 2 Γ k 2 √ kπ     R dx 1 + x 2 k k+1 2 -2 R dx 1 + (x-a) 2 k k+1 2 + R 1 + x 2 k k+1 2 1 + (x-a) 2 k k+1 dx     .
The first two terms are respectively equal to 1 and -2 using the fact that the student distribution integrate to 1. Then, we do the change of variable y = x -a in the last integral to get

d χ 2 (f a , f 0 ) = Γ k+1 2 Γ k 2 √ kπ R 1 + (y+a) 2 k k+1 2 1 + y 2 k k+1 dy -1.
this is a polynomial of degree k in the variable a. We have the following Lemma proven in Section G.1.

Lemma 6 For a ∈ R and k ≥ 0, we have the following algebraic inequality.

R 1 + (y+a) 2 k k+1 2 1 + y 2 k k+1 dy ≤ 2 a 2 √ k (k + 1) 2 2 + a √ k k-1 + R (1 + y 2 /k) k+1 2 1 + y 2 k k+1 dy
Using this lemma, and because we recognize up to a constant the integral of the student distribution on R in the right hand side, we have [START_REF] Wendel | Note on the gamma function[END_REF], hence

d χ 2 (f a , f 0 ) = Γ k+1 2 Γ k 2 √ kπ   2 a 2 √ k (k + 1) 2 2 + a √ k k-1 + R (1 + y 2 /k) k+1 2 1 + y 2 k k+1 dy    -1 ≤ Γ k+1 2 Γ k 2 √ kπ 2 a 2 √ k (k + 1) 2 2 + a √ k k-1 then, use that for any k ≥ 1, Γ( k+1 2 ) ≤ Γ( k 2 ) k/2 from
d χ 2 (f a , f 0 ) ≤ a 2 (k + 1) 2 √ 2 k √ π 2 + a √ k k-1 ≤ a 2 (k + 1) 2 k 2 + a √ k k-1
Then, we use the link between KL divergence and χ 2 divergence to get the result.

KL(f a , f 0 ) ≤ log(1 + d χ 2 (f a , f 0 )) ≤ log 1 + a 2 (k + 1) 2 k 2 + a √ k k-1 (6) 
Then, use that

log 1 + a 2 (k + 1) 2 k 2 + a √ k k-1 ≤    log 1 + 3 k-1 (k+1) 2 k a 2 if a < 1 log 1 + 3 k-1 (k+1) 2 k a k+1 if a ≥ 1 hence, using that 1 ≤ 3 k-1 (k+1) 2 k a k+1 log 1 + a 2 (k + 1) 2 k 2 + a √ k k-1 ≤    3 k-1 (k+1) 2 k a 2 if a < 1 (k + 1) log (a) + log 3 k (k+1) 2 k if a ≥ 1
Inject this in Equation ( 6) to get the result.

C.2. Proof of Lemma 4: Corrupted Bernoulli Distribution

Let α ∈ (0, 1/2) and c > 0. Define

P 0 = (1 -α)δ 0 + αδ c , P 1 = αδ 0 + (1 -α)δ c , Q 0 = (1 -ε)(1 -α)δ 0 + (1 -(1 -ε)(1 -α))δ c , Q 1 = (1 -(1 -ε)(1 -α))δ 0 + (1 -ε)(1 -α)δ c .
One can check that Q 0 = (1 -ε)P 0 εδ c and Q 1 = (1 -ε)P 1 + εδ 0 and hence Q 0 and Q 1 are in the ε-corrupted neighborhood of respectively P 0 and P 1 .

We have

KL(Q 0 , Q 1 ) = k∈{0,c} P Q 0 (X = k) log P Q 0 (X = k) P Q 1 (X = k) = (1 -ε)(1 -α) log (1 -ε)(1 -α) 1 -(1 -ε)(1 -α) + (1 -(1 -ε)(1 -α)) log 1 -(1 -ε)(1 -α) (1 -ε)(1 -α) = ((1 -ε)(1 -α) -(1 -(1 -ε)(1 -α))) log (1 -ε)(1 -α) 1 -(1 -ε)(1 -α) = (1 -2ε -2α + 2εα) log 1 + 1 -2ε -2α + 2εα ε + α -εα Then, note that ∆ = E P 1 [X] -E P 0 [X] = (1 -2α)c and σ 2 = Var P 0 (X) = Var P 1 (X) = α(1 -α)c 2 . Hence, c = √ ∆ 2 + σ 2 and α = 1 2 1 -∆/ √ ∆ 2 + σ 2 . KL(Q 0 , Q 1 ) = 1 -2ε -1 - ∆ √ ∆ 2 + σ 2 (1 -ε) log   1 + 1 -2ε -1 - ∆ √ ∆ 2 +σ 2 (1 -ε) ε + 1 2 1 - ∆ √ ∆ 2 +σ 2 (1 -ε)   = ∆ √ ∆ 2 + σ 2 (1 -ε) -ε log 1 + ∆ √ ∆ 2 +σ 2 (1 -ε) -ε 1 2 (1 + ε) -1 2 ∆ √ ∆ 2 +σ 2 (1 -ε)
In the setting σ > ∆, we have the bound

KL(Q 0 , Q 1 ) ≤ ∆ σ (1 -ε) -ε log 1 + 2 ∆ σ (1 -ε) -ε 1 -∆ σ (1 -ε) -ε
On the other hand, if ε > 0, we have

KL(Q 0 , Q 1 ) ≤ (1 -2ε) log 1 + 1 -2ε ε .
Appendix D. Regret Upper Bounds for HuberUCB: Proofs of Theorem 3 and Corollary 1

If A t = i then at least one of the following four inequalities is true:

Hub 1,T 1 (t-1) + B 1 (T 1 (t -1), t) ≤ µ 1 (7) or Hub i,T i (t-1) ≥ µ i + B i (T i (t -1), t) (8) or ∆ i < 2B i (T i (t -1), t) (9) 
or

T 1 (t -1) < s lim (t) = 98 log(t) 128 (p -5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 (10)
Indeed, if T i (t -1) < s lim (t), then B i (T i (t -1), t) = ∞ and Inequality ( 9) is true. On the other hand, if T i (t -1) ≥ s lim (t), then we have B i (T i (t -1), t) is finite and all four inequalities are false, then,

Hub 1,T 1 (t-1) + B 1 (T 1 (t -1), t) > µ 1 = µ i + ∆ i ≥ µ i + 2B i (T i (t -1), n) ≥ µ i + 2B i (T i (t -1), t) ≥ Hub i,T i (t-1) + B i (T i (t -1), t)
which implies that A t ̸ = i.

Step 1. We have that P (7 is true) ≤ 5/t. PROOF:

Then, we have that,

P Hub 1,T 1 (t-1) + B 1 (T 1 (t -1), t) ≤ µ 1 ≤ t s=1 P Hub 1,s + B 1 (s, t) ≤ µ 1 = t s=⌈s lim (t)⌉ P Hub 1,s -µ 1 ≤ -B 1 (s, t)
Then, use Theorem 2, we get

P Hub 1,T 1 (t-1) + B 1 (T 1 (t -1), t) ≤ µ 1 ≤ t s=⌈s lim (t)⌉ 5e -log(t 2 ) ≤ t s=⌈s lim (t)⌉ 5 t 2 ≤ 5 t .
Step 2. Similarly, for arm i, we have

P Hub i,T i (t-1) ≥ µ i + B i (T i (t -1), t) ≤ 5 t PROOF: We have, P Hub i,T i (t-1) ≥ µ i + B i (T i (t -1), t) ≤ t s=⌈s lim (t)⌉ P Hub i,s -µ i ≥ B i (s, t) ≤ t s=⌈s lim (t)⌉ 5e -log(t 2 ) ≤ 5 t .
Step 3. Let v ∈ N. If one of the two following conditions are true, then for all t such that T i (t-1) ≥ v, we have ∆ i ≥ 2B i (T i (t -1), t) (i.e. Equation ( 9) is false).

Condition 1: if ∆ i,ε > 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 and v ≤ log(n) 96β i 9 ∆ i,ε . Condition 2: if ∆ i,ε ≤ 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 and v ≤ 50 9 ∆ 2 i,ε σ i √ 2 + 2β i ε 2 log(n). PROOF: We search for the smallest value v ≥ s lim (n) such that ∆ i verifies ∆ i ≥ 2B i (v, n) = 2 σ i 2 log(n 2 ) v + β log(n 2 ) 3v + 2εβ i log(n 2 ) v + 2β i ε p -log(n 2 ) 2v -ε + 2b i .
First, we simplify the expression, having that v ≥ s lim (n), we have

log(n 2 ) 2v ≤ 128(p -5ε) 2 98(1 + 9/7) 2 ≤ (p -ε) 2 4 ,
hence we simplify to

∆ i ≥ 4 (p -ε) σ i 2 log(n 2 ) v + β i log(n 2 ) 3v + 2β i ε log(n 2 ) v + 2β i ε + 2b i let us denote ∆ i,ε = (∆ i -2b i )(p -ε) -8β i ε, we are searching for v such that β i log(n 2 ) 3v + log(n 2 ) v σ i √ 2 + 2β i ε - ∆ i,ε 4 ≤ 0 
This is a second order polynomial in log(n 2 )/v.

If ∆ i,ε > 0, then the smallest v > 0 is log(n 2 ) v = 3 2β i   -σ i √ 2 + 2εβ i + σ i √ 2 + 2β i ε 2 + ∆ i,ε β i 3   . First setting: if ∆ i,ε > 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 ,
In that case, we have

log(n 2 ) v ≥ 3 2β i   -σ i √ 2 + 2β i ε + β i ∆ i,ε 3   ≥ 3 2β i β i ∆ i,ε 12 = 9 ∆ i,ε 48β i Hence, v ≤ log(n) 96β i 9 ∆ i,ε . Second setting: if ∆ i,ε ≤ 12 σ 2 i β i √ 2 + 2 β i σ i ε 2
, then we use Lemma 9, using that

∆ i,ε β i 3 σ i √ 2 + 2β i ε 2 ≤ 4
and the fact that

√ 1+4-1 4 ≥ 3 10 , we get, log(n 2 ) v ≥ 3 ∆ i,ε 5 σ i √ 2 + 2β i ε Hence, v ≤ 50 9 ∆ 2 i,ε σ i √ 2 + 2β i ε 2 log(n).
Step 4. Using All the previous steps, we prove the theorem. PROOF: We have

E[T i (n)] = E n t=1 1{A t = i} ≤ ⌊max(v, s lim (n))⌋ + E   n t=⌊max(v,s lim (n))⌋+1 1{A t = i and (9) is false}   ≤ ⌊max(v, s lim (n))⌋ + E   n t=⌊max(v,s lim (n))⌋+1
1{( 7) or ( 8) or ( 10) is true}

  = ⌊max(v, s lim (n))⌋ + n t=⌊min(v,s lim (n))⌋+1 P ((7) or (8) is true) ≤ ⌊max(v, s lim (n))⌋ + 2 n t=⌊min(v,s lim (n))⌋+1
5 t using the harmonic series bound by log(n) + 1, we have

E[T i (n)] ≤ max(v, s lim (n)) + 10(log(n) + 1)
Then, we replace the value of v, First setting: ∆ i,ε > 12

σ 2 i β i √ 2 + 2 β i σ i ε 2 E[T i (n)] ≤ log(n) max 96β i 9 ∆ i,ε , 4 (p -5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 + 10(log(n) + 1) Second setting: if ∆ i,ε ≤ 12 σ 2 i β i √ 2 + 2 β i σ i ε 2 , then E[T i (n)] ≤ log(n) max 50 9 ∆ 2 i,ε σ i √ 2 + 2β i ε 2 , 4 (p -5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 +10(log(n)+1).
This concludes the proof of Theorem 3.

D.1. Proof of Corollary 1: Simplified Upper Bound of HuberUCB

Replacing β i by 4σ i , we have

• If ∆ i,ε > 6σ i 1 + 4 √ 2ε 2 , then E[T i (n)] ≤ log(n) max 128σ i 3 ∆ i,ε , 4 (p -5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 + 10(log(n) + 1) • If ∆ i,ε > 6σ i 1 + 4 √ 2ε 2 , then E[T i (n)] ≤ log(n) max 50σ 2 i 9 ∆ 2 i,ε √ 2 + 8ε 2 , 4 (p -5ε) 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 +10(log(n)+1).
Then, we use that where V ψ = Var(ψ(Y i -Hub(P ))).

1 + 2 √ 2 ε ∨ 9 14 √ 2 2 ≤ 2 1 + 2 √ 2 ε ∨ 9 14 √ 2 2 = 2 +
Then, using that Bernoulli random variables with mean ε are sub-Gaussian with variance parameter 1-2ε 2 log((1-ε)/ε) (see (Bourel et al., 2020, Lemma 6)),

P 1 n n i=1 1{W i = 1} ≤ ε + ln(1/δ)(1 -2ε) n log 1-ε ε ≥ 1 -δ.
Then, using Lemma 7 we get for any δ ∈ (0, 1), with probability larger than 1 -3δ, 

1
This is a polynomial in ln(1/δ)/n that we need to solve. We use the following elementary algebra lemma.

Lemma 9 (2nd order polynomial root bound) let a, b, c be three positive constants and x verify ax 2 + bx -c ≤ 0. Suppose that 4ac b 2 ≤ d, then x verifies

x ≥ 2c( √ d + 1 -1) db .

Observe that we have 2 (p -5ε)

3 1 √ 2 + 2 √ 1-2ε log( 1-ε ε ) 2 ≤ 4 3
Step 1. For any λ > 0, P(∃n ≤ N : |∆ n | ≥ λ) ≤ P(∃n ≤ N : f n (λ) ≥ 0). PROOF: For all y ∈ R, let J n (y) = 1 n n i=1 ρ(X i -y) we have,

J ′′ n (y) = 1 n n i=1
ψ ′ (X i -y) .

In particular, having f n (λ) = -sign(∆ n )J ′ (Hub(P ) + λ sign(∆ n )) if we take the derivative of f n with respect to λ, we have the following equation

∂ ∂λ f n (λ) = -sign(∆ n ) 2 J ′′ n (Hub(P ) + λ sign(∆ n )) ≤ - 1 n n i=1
ψ ′ (X i -Hub(P ) -λ sign(∆ n )).

Then, because ψ ′ is non-negative, the function λ → f n (λ, ) is non-increasing. Hence, for all n ∈ N * and λ > 0, 

|∆ n | ≥ λ ⇒ f n (|∆ n |) = 0 ≤ f n (λ),
Step 2. For all λ > 0,

f n (λ) ≤ f n (0) -λ inf t∈[0,λ]
f ′ n (t) .

PROOF: We apply Taylor's inequality to the function f n . As f n is non-increasing (because its derivative is non-positive, see Equation ( 13)), we get

f n (λ) ≤ f n (0) -λ inf t∈[0,λ] f ′ n (t) .
Step 3. Let m n = E inf t∈[0,λ] 

1 n n i=1 ψ ′ (X ′ i -

G.2. Proof of Lemma 9

The solutions of the second order polynomial indicate that x must verify

x ≥ -b + √ b 2 + 4ac 2a ≥ b 2a -1 + 1 + 4ac b 2 .
Then, use that the function x → √ x + 1 is concave and hence the graph of x → √ x + 1 is above its chords and we have for any x ∈ [0, d],

√ 1 + x ≥ 1 + x √ d+1-1 d . Hence, x ≥ b 2a 4ac( √ d + 1 -1) db 2 = 2c( √ d + 1 -1) db .

Figure 1 :

 1 Figure 1: Plot of the KL and the bounds for σ=1 and ε = 0.2 (x axis is in log scale)

Figure 2 :

 2 Figure 2: Cumulative regret plot of the algorithms on a corrupted Gaussian (above) and Pareto (below) datasets with various corruption proportions.

  Bounds on KL-divergence: Student's and Corrupted Bernoulli C.1. Proof of Lemma 3: Student's Distribution

  ≤ N : |∆ n | ≥ λ) ≤ P(∃n ≤ N : f n (λ) ≥ 0).

  . . , P k ∈ P[q] and k corrupted reward distributions H 1 , . . . , H k ∈ P. At each step t ∈ {0, . . . , n}, Nature draws a random variable C t ∈ {0, 1} from a Bernoulli distribution with mean ε ∈ [0, 1/2). If C t = 1, the reward will be drawn from the corrupted distribution H At corresponding to the chosen arm A t ∈ {1, . . . , k}. Otherwise, it will come from the uncorrupted distribution P At . The policy π interacts with these corrupted environment by choosing an arm A t and obtaining a reward corrupted by Nature X t . The policy leverages these observations to choose another arm at the next step so that it maximises the total cumulative reward obtained after n steps. In Algorithm 1, we outline a pseudocode of this problem.

	Algorithm 1 Bandits corrupted by Nature
	Parameters: ε ∈ [0, 1/2) and q ≥ 2
	Data: P 1 , . . . , P k ∈ P [q] be the uncorrupted reward distributions and H 1 , . . . , H k ∈ P be the
	corrupted reward distributions.
	for t = 1, . . . , n do
	Player plays an arm A t ∈ {1, . . . , k}
	Nature draws a Bernoulli C t ∼ Ber(ε)
	Generate a corrupted reward Z t ∼ H At and an uncorrupted reward X ′ t ∼ P At Player observe the reward X t = X ′ t 1{C t = 0} + Z t 1{C t = 1}
	end

  Remark that by definition of Hub(P ), it is defined as the root of the equation E[ψ(Y -Hub(P ))] = 0. From Bernstein's inequality, for any δ ∈ (0, 1),

	P	1 n	n i=1	ψ(Y i -Hub(P )) ≥	2V ψ ln(1/δ) n	+ β	ln(1/δ) 3n	≤ 2δ
									8 ε 2 ∨	81 392	≤ 8ε 2 + 2 +	648 392	≤ 8ε 2 + 4
	and that p -5ε ≥ 1/4, to get • If ∆ i,ε > 6σ i 1 + 4 √ 2ε	2 , then	
	E[T i (n)] ≤ log(n) max	128σ i 3 ∆ i,ε	, 512ε 2 + 256 + 10(log(n) + 1)
			=	128 3	log(n) max	σ i ∆ i,ε	, 12ε 2 + 6 + 10(log(n) + 1)
			≤ 43 log(n) max	σ i ∆ i,ε	, 12ε 2 + 6 + 10(log(n) + 1)

  n Using η = ln(1/δ) 2n , the hypotheses of Lemma 8 are verified. PROOF: To apply Lemma 8, it is sufficient that

	n i=1	ψ(X i -Hub(P )) ≤ σ	2 ln(1/δ) n	+ β	ln(1/δ) 2n	+ 2βε + 2β	ln(1/δ)(1 -2ε) n log 1-ε
		σ	2t n	+ β	ln(1/δ) 3n	+ 2β	ln(1/δ)(1 -2ε) n log 1-ε ε	≤	β 2	p -	ln(1/δ) 2n	-ε
	and using that 4σ ≤ β, we have that it is sufficient that
				ln(1/δ) 2n	+	ln(1/δ) 3n	+ 2	ln(1/δ)(1 -2ε) n log 1-ε ε	≤	1 2	(p -5ε) .

ε .

Step 2.

  Hub(P ) -t) . With probability larger than 1 -2e -2nη 2 ,

	inf t∈[0,λ]	f ′ n (t)) ≥ m n -2η -ε,

PROOF: Write that X i = (1-W i )Y i +W i Z i where W 1 , . . . ,

W n are i.i.d Bernoulli random variable with mean ε, Y 1 , . . . , Y n are i.i.d ∼ P and Z 1 , . . . , Z n are i.i.d with law H.
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2 , 512ε 2 + 256 + 10(log(n) + 1)
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Appendix E. Proof of Theorem 2: Concentration of Huber's Estimator

First, we control the deviations of Huber's estimator using the deviations of ψ(X -Hub(X n 1 )). We will need the following lemma to control the variance of ψ(X -Hub(X n 1 )), which will in turn allow us to control its deviation with Lemma 8.

Lemma 7 (Controlling Variance of Influence of Huber's Estimator) Suppose that Y 1 , . . . , Y n are i.i.d with law P . Then

Var(ψ(Y -

Lemma 8 (Concentrating Huber's Estimator by Concentrating the Influence) Suppose that X 1 , . . . , X n are i.i.d with law (1 -ε)P + εH for some H ∈ P and proportion of outliers ε ∈ (0, 1/2).

Then, for any η > 0 and λ ∈ (0, β/2], we have

Then, using these Lemmas, we can prove the theorem.

Step 1. For any δ ∈ (0, 1), with probability larger than 1 -3δ, 

and ( 4/3 + 1 -1)/(4/3) ≥ 8/7, hence, from Lemma 9, we get the following sufficient condition for Equation (12) to hold:

.

Hence, taking this to the square,

Step 3. Using Lemma 8 and Step 1 prove that the theorem is true. PROOF: The hypotheses of Lemma 8 are verified and we can use its result and together with Equation ( 11) we get with probability larger than 1 -5δ, Let ρ be Huber's loss function, with ψ = ρ ′ . We have that for any x > 0, ψ(x) 2 ≤ 2ρ(x). Hence,

Then, use that by definition of Hub(P ),

and finally, use that ρ(x) ≤ x 2 /2 to conclude.

F.2. Proof of Lemma 8 : Concentrating Huber's Estimator by Concentrating the Influence

For all n ∈ N * , λ > 0, let

where ∆ n = Hub(P ) -Hub(X n 1 ).

From equation ( 13),

Hence, because ψ ′ ∈ [0, 1], we have

The right-hand side depends on the infimum of the mean of n i.i.d random variables in [0, 1]. Hence, the function

satisfies, by sub-linearity of the supremum operator and triangular inequality, the bounded difference property, with differences bounded by 1. Hence, by Hoeffding's inequality, we get with probability larger than 1 -e -2nη 2 ,

and using Hoeffding's inequality to control 1 n n i=1 1{W i = 1}, we have with probability larger

Step 4. For λ ∈ (0, β/2),

PROOF: For any λ > 0, we have

Step 5. We prove that m n ≥ p, and hence

Then, we plug the bound on m n found in the previous step in equation ( 20), we get for any η > 0 and λ ∈ (0, β/2],

Appendix G. Proofs of Auxiliary Lemmas G.1. Proof of Lemma 6

We have,

Remark that the integral is

Then, we compute the integrals. By change of variable u = y/k, we have

and for l = j, In this section we illustrate the impact of the choice of β and ε on the estimation.

Choice of β (Figure 4(b)): The choice of β is a trade-off between the bias (distance |Hub(P ) -E[X]| which decreases as β go to infinity) and robustness (when β goes to 0, Hub(P ) goes to the median). To illustrate this trade-off we use the Weibull distribution for which can be very asymmetric. We use a 3-armed bandit problem with shape parameters (2, 2, 0.75) and scale parameters (0.5, 0.7, 0.8) which implies that the means are approximately (0.44, 0.62, 0.95). These distributions are very asymmetric, hence the bias |Hub(P )-E[X]| is high and in fact even though arm 3 has the optimal mean, arm 2 will have the optimal median, the medians are given by (0.41, 0.58, 0.49).

In this experiment we don't use any corruption as we don't want to complicate the interpretation.

As expected by the theory, we get that β i should not be too small or too large but it should be around 4σ i .

Choice of ε (Figure 4(a)): To illustrate the dependency in ε, we also use the Weibull distribution to show the dependency in ε with the same parameters as in the previous Weibull example, except that we choose β i = 5σ i which is around the optimum found in the previous experiment and we corrupt with 2% of outliers (this is the true ε while we will make the ε used in the definition of the algorithm vary). The outliers are constructed as in Section 5. The effect of the parameter ε is difficult to assess because ε has an impact on the length of force exploration that we impose at the beginning of our algorithm (the s lim ).