
HAL Id: hal-03611628
https://hal.science/hal-03611628v3

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The price of unfairness in linear bandits with biased
feedback

Solenne Gaucher, Alexandra Carpentier, Christophe Giraud

To cite this version:
Solenne Gaucher, Alexandra Carpentier, Christophe Giraud. The price of unfairness in linear bandits
with biased feedback. NeurIPS 2022, Nov 2022, New Orleans, United States. �hal-03611628v3�

https://hal.science/hal-03611628v3
https://hal.archives-ouvertes.fr

The price of unfairness in linear bandits with biased
feedback

Solenne Gaucher
Département de Mathématiques d’Orsay, Université Paris-Saclay, Orsay, France

solenne.gaucher@math.u-psud.fr

Alexandra Carpentier
Institut für Mathematik, Universität Potsdam, Potsdam, Germany

carpentier@uni-potsdam.de

Christophe Giraud
Département de Mathématiques d’Orsay, Université Paris-Saclay, Orsay, France

christophe.giraud@universite-paris-saclay.fr

Abstract

In this paper, we study the problem of fair sequential decision making with biased
linear bandit feedback. At each round, a player selects an action described by a
covariate and by a sensitive attribute. The perceived reward is a linear combination
of the covariates of the chosen action, but the player only observes a biased
evaluation of this reward, depending on the sensitive attribute. To characterize the
difficulty of this problem, we design a phased elimination algorithm that corrects
the unfair evaluations, and establish upper bounds on its regret. We show that the
worst-case regret is smaller than O(κ

1/3
∗ log(T)1/3T 2/3), where κ∗ is an explicit

geometrical constant characterizing the difficulty of bias estimation. We prove
lower bounds on the worst-case regret for some sets of actions showing that this
rate is tight up to a possible sub-logarithmic factor. We also derive gap-dependent
upper bounds on the regret, and matching lower bounds for some problem instance.
Interestingly, these results reveal a transition between a regime where the problem
is as difficult as its unbiased counterpart, and a regime where it can be much harder.

1 Introduction

Artificial intelligence is increasingly used in a wide range of decision making scenarii with higher and
higher stakes, with application in online advertisement [31], credit [3], health care [11], education
[28] and job interviews [35], in the hope of improving accuracy and efficiency. Recent works have
shown that the decisions made by algorithms can be dangerously biased against certain categories of
people, and have endeavored to mitigate this behavior [22, 14, 6, 27]. Studies have underlined that
the main cause of algorithmic unfairness is the presence of bias in the training set [27], which led to
the development of methods aiming to guarantee the fairness of the algorithms. This paper, in lines
with these works, addresses the problem of online decision making under biased feedback.

Linear bandits have become a very popular tool in online decision making problems, when side
information on the actions is available in the form of covariates. In the present paper, we consider a
variant of this problem, where the agent only has access to an unfair assessment of the action taken,
that is systematically biased against a group of actions. For example, examiners may be prejudiced
against people from a minority group, and give them lower grades; similarly, algorithms trained on

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

biased data may produce unfair assessments of the credit risk of individuals belonging to a minority
group. Note that not correcting biased evaluation can have adverse effects for all parties: on the one
hand, actions disadvantaged by the evaluation mechanism will be unfairly discriminated against;
on the other hand, the agent may spend his budget on an unfairly advantaged action that is actually
sub-optimal. The problem of sequential decision making under biased feedback can be formalized as
follows.

Biased linear bandit problem A player is presented with a set of k distinct actions characterized
by covariates x ∈ X ⊂ Rd, and by known sensitive attributes zx ∈ {−1, 1} indicating the group of
the action. For the sake of clarity, we consider here a two-group model (respectively privileged or
discriminated against), and we defer to Appendix D discussions on how to extend this model and
our algorithm to more than two groups. At each round t ≤ T , the player chooses the action xt and
receives an unobserved reward x>t γ

∗, where γ∗ ∈ Rd is the regression parameter specifying the true
value of the action. The regret of the player is given by

RT = E
[∑
t≤T

(x∗ − xt)>γ∗
]
, where x∗ ∈ argmax

x∈X
x>γ∗. (1)

By contrast to the classical linear bandit, the player does not observe a noisy version of the unbiased
reward x>t γ

∗. Instead, she observes an unfair evaluation yt of the value of the action x>t γ
∗, given by

the following biased linear model:

yt = x>t γ
∗ + zxtω

∗ + ξt

where ξt
i.i.d∼ N (0, 1) is a noise term. The evaluation are systematically biased against a certain

group: this unequal treatment of the groups is captured by the bias parameter ω∗ ∈ R.

Preliminary discussion The biased linear bandit is a variant of the linear bandit. By contrast,
in the classical linear bandit model, the agent observes a noisy version of the reward. Obviously,
applying directly an algorithm designed for linear bandit to biased linear bandits without correcting
the evaluations would lead to a linear regret if the evaluation mechanism is prejudiced against the
group of the best action in terms of reward, and if the best action in terms of feedback belongs
to the advantaged group. To avoid this pitfall, one must estimate the bias in order to correct the
evaluations. This implies a change in the exploration-exploitation trade-off, as exploration becomes
more expensive. Indeed, in classical bandit problems, one can compare the rewards of two actions
by repeatedly sampling them - or, to put it differently, one can find the best action by sampling only
those actions that seem optimal. This does not hold in the biased linear bandit: if, at some point,
the set of potentially optimal actions contains representatives from both groups, and does not span
Rd, one is forced to sample sub-optimal actions to estimate the bias and improve the estimation of
the unbiased rewards. For this reason, classical algorithm for linear bandit that only sample actions
considered as potentially optimal, such as OFUL [1] or Phase Elimination [24], can suffer linear
regret. This underlines the necessity to ensure sufficient estimation of the bias parameter, even when
it implies sampling sub-optimal actions.

1.1 Related work

Fairness in bandit problems has mostly been studied from the perspective of fair budget allocation
between actions. This problem is motivated by the fact that classical bandit algorithms select sub-
optimal actions only a vanishing fraction of the time, which may be undesirable in many situations.
To mitigate this problem and guarantee diversity in the actions selected, some papers [4, 29, 9, 16, 43]
have proposed new algorithms ensuring fairness of the selection frequency of each action. The
framework studied in this paper is different: we consider here that the mechanism for observing the
rewards is unfair, and we aim at correcting it in order to maximize a (fair) true cumulative reward.

In this work, we consider that the agent knows the sensible attributes, and that she can treat actions
differently according to their sensible attributes, in order to correct the prejudice caused by the
unfair bias in the evaluation. This situation falls into the awareness framework, by contrast to the
unawareness one, where using the sensitive attributes is prohibited. Whether or not it is preferable to
treat different groups differently remains a controversial question. While using sensitive attributes at
the time of prediction is sometimes forbidden by law, some recent works have highlighted critical

2

issues related to unawareness. For example, empirical evidence [26] have shown that classification
algorithms based on disparate learning processes use non-sensitive features correlated with the
sensitive attribute as a proxy for the later. These empirical findings have recently been supported by
theoretical results established in [15] in the case of demographic parity. Similarly, the authors of
[7] study a problem of fair online learning, and show that some problems feasible in the awareness
framework become infeasible in the unawareness one (such as no-regret learning under demographic
parity constraints). These examples, amongmany others, advocate for the use of the sensitive attribute,
as it allows for better fairness guarantees while preventing unfair discrimination based on (possibly
irrelevant) non-sensitive features correlated with the sensitive attribute. Without taking a position in
this debate, we underline that, in practice, this attribute (gender or minority status) is often known to
the decision-maker, and that its use is in some cases allowed or even encouraged (e.g. for affirmative
action).

By contrast to a line of work on statistical fairness, the aim of our model is not to correct for the
possibly unequal distribution of features x and values x>γ∗ across the different groups. Our approach
is instead related to causal fairness [18]: in the causal fairness framework, the dependencies between
prediction, sensitive attributes and non-sensitive attributes are captured by a causal model. The goal is
then to ensure that the sensitive attribute does not directly influence the prediction (in other words, that
conditionally on selected resolving variables, the prediction is independent of the sensitive attribute).
Here, the resolving variables may depend on the sensitive attribute in a manner that is considered as
non-discriminatory. For example, one group may have, on average, more physical strength than the
other one, and this skill can be considered as fair when it comes to recruit a piano mover. The biased
linear model studied in this paper is a simple example of causal model with linear structural model
equations x = f(z, ξ′) and y = x>γ∗ + zω∗ + ξ, where ξ and ξ′ are noise terms: the covariates x
may depend on the sensitive attribute z, and the biased evaluation y depends on both. In our work,
we treat x>γ∗ as a fair evaluation of the value of action x, since it is independent of z conditionally
on the resolving variable x.

The biased linear model has been studied in the batch setting in [8], where the authors investigate
the optimal trade-off between minimax risk and Demographic Parity. Detection of systematic bias,
interpreted as a treatment effect, has been investigated in a batch setting in [18]. In [2], the authors
consider a similar model, with unobserved sensitive attribute z and known bias parameter ω∗, under
additional assumption that the sensitive attribute z is independent from the covariate x. By contrast,
we show that bias estimation is one of the main difficulties of the biased bandit problem.

The linear bandit with biased feedback can be viewed as a stochastic partial monitoring game. With
the terminology of partial monitoring, the biased problem considered in the present paper is globally
observable but not locally observable: in this case, the optimal worst-case regret rate typically
increases as Õ(T 2/3). This regret rate is for example achieved in the related problem of partial linear
monitoring with linear feedback and linear reward using an Information Directed Sampling algorithm
[20]. However, the dependence of the regret on the geometry of the action set and on the dimension d
remains in most cases an open question [25, 5, 20]. In this paper, we characterize the geometry of the
biased linear bandit problem, and we investigate dependence of the regret on the gaps.

1.2 Contribution and outline

In this paper, we introduce the linear bandit problem with biased feedback. We design a new algorithm
based on optimal design for this problem. We derive an upper bound on the worst case regret of
this algorithm of order κ1/3

∗ log(T)1/3T 2/3 for large T , where κ∗ is an explicit constant depending
on the geometry of the action set. We provide matching lower bounds on some problem instances,
showing that the constant κ∗ characterizes the difficulty of the action set. Note that this regret is
higher than the classical rates of order Õ(dT 1/2) obtained for d-dimensional linear bandits: this
increase corresponds to the price to pay for debiasing the unfair evaluations.

We also characterize the gap-depend regret, showing that it is of order (d/∆min ∨ κ(∆)/∆2
6=) log(T),

where ∆min is the minimum gap, ∆ 6= is the gap between the best actions of the two groups, and κ(∆)
corresponds to the minimum regret to pay for estimating the bias with a given variance. This bound
underlines the relative difficulties of the d-dimensional linear bandit and of the bias estimation. When
d/∆min ≥ κ(∆)/∆2

6=, i.e. when one group contains all near-optimal actions, the difficulty is dominated

3

by that of the corresponding linear bandit problem. When both groups contain near-optimal actions,
and d/∆min ≤ κ(∆)/∆2

6=, the regret corresponds to the price of debiasing the rewards.

The rest of the paper is organized as follows. In Section 2, we present the FAIR PHASED ELIMI-
NATION algorithm: we first discuss parameter estimation in Section 2.1, before presenting a sketch
of the algorithm in Section 2.2 (a detailed version of this algorithm is provided in Appendix B).
Then, in Section 3, we establish an upper bound on its worst-case regret. In Section 4, we derive a
gap-dependent upper bound on the regret of our algorithm. In Section 5, we establish lower bounds
on some action sets for both the worst-case and the gap-dependent regret, showing that these rates are
sharp respectively up to a sub-logarithmic factor and an absolute multiplicative constant. Additional
discussions on the geometry of bias estimation are postponed to Appendix A.

1.3 Notations and additional assumptions

We assume that all covariates x ∈ X are distinct, which implies that the group zx of action x is well
defined. We also assume that no group is empty, that the set {

(
x
zx

)
: x ∈ X} spans Rd+1 (which

guarantees identifiability of the parameters), and that the rewards are bounded: maxx∈X |x>γ∗| ≤ 1.

When necessary, we underline the dependence of the regret on the parameter θ by denoting it RθT .

We denote by ax =
(
x
zx

)
the vector describing an action and its group, by θ∗ =

(
γ∗

ω∗

)
∈ Rd+1 the

unknown parameter, and by A = {ax : x ∈ X} the set of actions and of corresponding sensitive
attributes. We denote by ∆ = (∆x)x∈X the vector of gaps ∆x = maxx′∈X (x′ − x)>γ∗, and
by C(X) =

{
γ ∈ Rd : ∀x ∈ X , |x>γ| ≤ 1

}
the set of admissible parameters. Note that for all

x ∈ C(X), ∆x ≤ 2. For i ≤ d+1, let ei be the i-th vector of the canonical basis of Rd+1, and for any
matrixM , letM+ be a generalized inverse ofM . We denote byPX the set of probability measures on
X , andMX = {µ : X 7→ R+}. For any µ ∈ PX or µ ∈MX , we denote V (µ) =

∑
x∈X µ(x)axa

>
x

the covariance matrix corresponding to this allocation. For u ∈ Rd+1 (resp. U ∈ Rd+1), we denote by
PXu (resp.MXu) the measures µ in PX (resp. inMX) such that u ∈ Range(V (µ)). For U ⊂ Rd+1,
we denote by PXU (resp.MXU) the measures µ such that µ ∈ PXu (resp.MXu) for all u ∈ U .

2 Fair Phased Elimination algorithm

The Fair Phased Elimination algorithm belongs to the category of sequential elimination algorithms.
Classical sequential elimination algorithms typically proceed by phases, indexed by l = 1, 2, At
phase l, these algorithms consider a set of potentially optimal actions Xl. The rewards of all actions
x ∈ Xl are then estimated with a given precision O(εl), typically chosen as εl = 22−l, by sampling
actions in Xl. Actions sub-optimal by a gap larger than the precision level are then removed from the
set Xl+1 of potentially optimal actions for the phase l + 1.

As underlined previously, classical sequential elimination algorithms may suffer linear regret in the
biased linear bandit problem if actions allowing to estimate the bias are discarded by the algorithm
before the best group is identified (this happens for example if at a phase l, less that d + 1 action
remains, with at least one action in each group). To mitigate this problem, we first estimate the
biased evaluations of the potentially optimal actions, using ordinary least squares estimation. We then
debias the estimations using an estimator for the bias relying on independent observations, which
may be obtained by sampling sub-optimal actions. Before presenting the algorithm, let us discuss the
estimation of the evaluations and of the bias parameter.

2.1 Optimal design for parameter estimation in the biased linear bandit

G-optimal design for biased evaluation estimation As in the Phased Elimination algorithm [24],
we rely on G-optimal design to estimate the biased evaluations a>x θ

∗ with small error uniformly over
a set of actions Xl. More precisely, for a given set of potentially optimal actions Xl, we compute the
G-optimal design solution to the problem

minimize
π∈PXlXl

max
x∈Xl

a>x (V (π))
+
ax . (G-optimal design) (2)

4

This can be done using polynomial-time algorithms, relying for example on interior points method
[40], or on mixed integer second-order cone programming [37]. The celebrated General Equivalence
theorem of Kiefer [19] and Pukelsheim [33] states that the value of Equation (2) is bounded by d+ 1.
Let π∗ denote any design solution to the G-optimal design problem (2), and let θ̂ denote the ordinary
least square estimator obtained by sampling each action x ∈ Xl exactly dnπ∗(x)e times for a given
n > 0. Then, for all x ∈ Xl, the General Equivalence theorem implies that the variance of the
estimate a>x θ̂ is smaller than (d+1)/n. Moreover, the G-optimal design π∗ can be chosen so that it is
supported by at most (d+1)(d+2)/2 points, so the total number of samples is at most n+ (d+1)(d+2)/2.

∆-optimal design for bias evaluation In this paragraph, we introduce the ∆-optimal design, which
is discussed in greater depth in Appendix A. ∆-optimal design aims at estimating a parameter with
a given accuracy and with minimal regret. Similar ideas have recently been used in [42] to solve
classical linear bandit problems. To estimate the bias parameter ω∗, we use the estimator ω̂ = e>d+1θ̂,
where θ̂ is the ordinary least square estimator for the full parameter θ∗. Now, if we sample each
action x ∈ X exactly µ(x) time, the variance of ω̂ is equal to e>d+1V (µ)+ed+1. Given the vector of
gaps ∆, the design µ minimizing the regret of this exploration phase, while ensuring that the variance
of ω̂ is smaller than 1, is solution of the problem

minimize
µ∈M

ed+1
X

∑
x

µ(x)∆x such that e>d+1V (µ)+ed+1 ≤ 1. (∆-optimal design) (3)

In the following, we denote µ∆ a minimizer of (3), and κ(∆) =
∑
x∈Xµ

∆(x)∆x. Lemma 9 in
Appendix A explains how to compute the design µ∆ in polynomial time by adapting tools from
c-optimal design. This lemma also shows that the support of µ∆ can be chosen to be of cardinality
at most d + 1. Then, choosing each action exactly dnµ∆(x)e times for a given n > 0 allows us
to estimate the bias with variance lower than n−1 and a regret no larger than nκ(∆) + 2(d + 1).
Obviously, we do not know the gap vector ∆ beforehand, so we must estimate it as we go.

2.2 Outline of the Fair Phased Elimination algorithm

The Fair Phased Elimination algorithm, sketched in Algorithm 3, relies on the following key ideas.
First, note that within a group, the order of the true rewards and of the biased evaluations are the
same. Hence, within a group, we can use classical algorithms for linear bandits to choose the
actions and estimate the biased evaluations with a controlled within-group regret: this is done using
G-exploration and elimination. Second, to compare actions belonging to different groups, we
independently estimate the bias parameter ω∗, using ∆-exploration and elimination. Finally, we
underline that bias estimation may require to sample very sub-optimal actions. Therefore, it can be
overly costly to estimate the bias up to the precision level required to identify the best group. To
prevent this, we use a stopping criterion.

G-exploration and elimination At each phase l = 1, 2, ..., we keep two sets of potentially optimal
actions belonging to the groups +1 and −1, denoted respectively X (+1)

l and X (−1)
l . If we have not

identified the group containing the best action, we run a G-EXP-ELIM routine 1 on each set X (z)
l

for z = 1 and z = −1. This routine samples actions according to a rounded G-optimal design on
X (z)
l , with a total number of observations chosen so that the biased evaluations of all actions in X (z)

l

are known with an error at most εl. The set X (z)
l+1 is obtained by removing from X (z)

l actions whose
estimated evaluations are sub-optimal by a gap larger than 3εl, compared to the empirical best action
in the group. This allows to ensure that only actions sub-optimal by a gap O(εl) remain in X (z)

l+1, and
to estimate the gap vector ∆ with a precision sufficient for ∆-optimal estimation.

If the group containing the best action has been identified, we discard the other group, and run a
G-EXP-ELIM routine 1 on the set of potentially optimal actions in this group.

∆-exploration and elimination If the group of the best action has not been found before phase
l, we run the ∆-EXP-ELIM routine 2. More precisely, relying on a previous estimate ∆̂l of the gap
vector ∆, we compute the ∆̂l-optimal design µ̂. We then estimate the bias using actions sampled
according to a rounded version of this design, with a total number of observations chosen so that the

5

Routine 1 G-EXP-ELIM (X , n, ε)
1: Compute G-optimal design π solution of (2) on X , with | supp(π)| ≤ (d+1)(d+2)/2
2: Sample dnπ(x)e times each action ax for x ∈ X . G-optimal parameter estimation
3: Compute the ordinary least square estimator θ̂
4: X ′ ←

{
x ∈ X : maxx′∈X (x′ − x)>θ̂ ≤ 3ε

}
. Suboptimal actions elimination

5: return θ̂ and X ′

error of bias estimation is smaller than εl, and use it to debias the reward estimation. If the debiased
evaluation of the best action of each group are separated by a gap larger than 4εl, we consider that
the best group is the one containing the empirical best action in terms of biased evaluation, and we
discard the other group.

If we cannot find the best group, we rely on estimates of the bias and of the biased evaluations
obtained during the previous round to update the estimate of the gap vector ∆̂l+1.

Routine 2 ∆-EXP-ELIM (X , (X (z), θ̂(z))z∈{−1,1}, ∆̂, n, ε)

1: Compute ∆̂-optimal design
(
µ̂, κ(∆̂)

)
solution of (3) on X , with | supp(µ̂)| ≤ d+ 1

2: Sample dnµ̂(x)e times each action ax for x ∈ X . ∆̂-optimal bias estimation
3: Compute ω̂ = e>d+1θ̂, where θ̂ is the ordinary least square estimator
4: for z ∈ {−1, 1} and x ∈ X (z) do m̂x ← a>x θ̂

(z) − zω̂ . Debiased rewards estimation
5: if ∃z ∈ {−1, 1} such that max

x∈X (z)
m̂x ≥ max

x∈X (−z)
m̂x + 4ε then Z ← {z} . Group elimination

6: else ∆̂x ← 2 ∧ (maxx′∈X (−1)∪X (1) m̂x′ − m̂x + 4ε) for all x ∈ X (−1) ∪ X (1)

7: return Z and ∆̂

Stopping criterion As underlined previously, the ∆-EXP-ELIM routine samples actions that can
be very sub-optimal. As a consequence, when the gap between the best two actions of each group is
small, finding the best group can be overly costly in terms of regret. To prevent this, if the best group
has not been found at stage l fulfilling εl ≤

(
κ(∆̂l) log(T)/T

)1/3
, the bias estimation is stopped and the

empirical best action in X (1)
l+1 ∪ X

(−1)
l+1 is sampled for the remaining time (see Algorithm 3)

Algorithm 3 FAIR PHASED ELIMINATION (sketched)

1: input: δ, T , X , k = |X |, εl = 22−l for l ≥ 1

2: initialize: X (+1)
1 ← {x : zx = 1}, X (−1)

1 ← {x : zx = −1},
3: Z1 ← {−1,+1}, ∆̂1 ← (2, ..., 2), l← 0
4: while the budget is not spent do l← l + 1
5: for z ∈ Zl do
6:

(
θ̂(z),X (z)

l+1

)
← G-EXP-ELIM

(
X (z)
l , 2(d+1)

ε2l
log
(
kl(l+1)

δ

)
, εl

)
7: if Zl = {−1,+1} then

8: if εl ≤
(
κ(∆̂l) log(T)/T

)1/3

then . Stop bias estimation

9: Sample best action in X (−1)
l+1 ∪ X

(+1)
l+1 for the remaining time

10: else
11:

(
Zl+1, ∆̂

l+1
)
← ∆-EXP-ELIM

(
X ,
(
X (z)
l+1, θ̂

(z)
l

)
z∈{−1,1}

, ∆̂l, 2
ε2l

log
(
l(l+1)
δ

)
, εl

)

6

3 Upper bound on the worst-case regret of FAIR PHASED ELIMINATION

The regret of the FAIR PHASED ELIMINATION depends on the difficulty of estimating the bias
parameter, captured by κ(∆). Lemma 7 in Appendix A.6 shows that for all parameter γ∗ ∈ X , κ(∆)
is upper bounded by 2κ∗, where κ∗ is the minimal variance of the bias estimator given by

κ∗ = min
π∈PXed+1

e>d+1 (V (π))
+
ed+1.

The following theorem provides a bound on the worst case regret depending on κ∗. Proofs are
postponed to Appendix C.2.
Theorem 1. For the choice δ = T−1, there exists two numerical constants C,C ′ > 0 such that the
following bound on the regret of the FAIR PHASED ELIMINATION algorithm 4 holds

RT ≤ C
(
κ

1/3
∗ T 2/3 log(T)1/3 + (d ∨ κ∗) log(T) + d2 + dκ

−1/3
∗ T 1/3 log(kT) log(T)−1/3

)
≤ C ′κ1/3

∗ T 2/3 log(T)1/3 for T ≥
(
(d ∨ κ∗)3/2 log(T)

)
∨ d3

√
κ∗

∨ (d log(kT))3

(κ∗ log(T))2
.

In Section 5.1, we show that the upper bound obtained in Theorem 1 is sharp in some settings, up to
the sub-logarithmic factor log(T)1/3.

Theorem 1 shows that the worst-case regret of the Fair Phased Elimination algorithm asymptot-
ically grows as Cκ1/3

∗ T 2/3 log (T)
1/3. This worst-case regret rate is higher than the typical rate

Cd log(T)T 1/2 obtained under unbiased feedback on the rewards (see, e.g., [1]). This increase in
the regret corresponds to the cost of learning from unfair evaluations. It is due to the fact that the
algorithm may need to sample actions that are sub-optimal in order to estimate the bias parameter.
Note that this rate Õ(T 2/3) is typical for globally observable bandit problems with partial linear
monitoring, and can be obtained by applying results established in [20] for in the partial linear
monitoring setting to the biased linear bandit problem.

By contrast to previous results, Theorem 1 characterizes precisely the dependence of the worst-case
regret on the geometry of the action set. The relevant constant κ∗ is the minimal variance for
estimating the bias, which appears when considering the related c-optimal design problem. While the
connection between G-optimal design and the linear bandit problem has already been exploited, it is
to the best of our knowledge the first time that c-optimal design is related to partial monitoring.

The constant κ∗ corresponds to the minimum number of samples required for estimating the bias with
a variance equal to 1 (up to rounding issues). Intuitively, if the actions are very correlated with their
sensitive attributes, more samples will be needed to estimate the bias with the same precision. This
situation corresponds to cases where κ∗ is large, and leads to a higher regret. Lemma 1, illustrated in
Figure 2, relates κ∗ to the margin between the two groups of actions.
Lemma 1. κ∗ is the largest constant κ ≥ 0 such that, there exists an hyperplane H containing
zero and separating the two groups, and such that, the margin toH is at least

√
κ−1/

√
κ+1 times the

maximum distance of all points to the hyperplane (see Figure 2). When no such hyperplane exists,
then κ∗ = 1.

(a) The margin m is equal to
√

κ∗−1/√κ∗+1 times the
maximum distanceM of any action to the hyperplane.

(b) κ∗ = 1: the groups cannot be separated by a
hyperplane containing 0.

Figure 1: Interpretation of κ∗ in terms of separation of the groups.
Interestingly, Lemma 1 underlines that under reasonable assumptions, the constant κ∗ may not
depend on the ambient dimension d, and it can even be equal to 1. By contrast, while the Information

7

Directed Sampling algorithm can be applied to the biased linear bandit problem, the regret bounds
established in [20] are of order α1/3d1/2T 2/3 log(kT)1/2, where α is a measure of the complexity
of the action set called the worst-case alignment constant. Lemma 6 in Appendix A shows that α is
equivalent to the minimal variance of the bias estimator κ∗. Hence, our bound improves over previous
results by a factor d1/2 log(T)1/6(log(kT)/ log(T))1/2.

The gaps are not involved in the definition of the minimal variance of bias estimation κ∗. The reader
may have expected to get, instead of κ∗, the minimax regret for estimating the bias

κ̃ = max
γ∈C(X),x′∈X

∑
x∈X

µ̃(x)(x′ − x)>γ, where

µ̃ = argmin
µ

max
x′∈X ,γ∈C(X)

∑
x∈X

µ(x)(x′ − x)>γ, such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ 1.

Next lemma shows that κ∗ and κ̃ are in equivalent up to a factor 2. We refer the interested reader
to Appendix A, where further discussions on the geometry of bias estimation are postponed, due to
space constraints.
Lemma 2. κ̃/2 ≤ κ∗ ≤ 2κ̃.

4 Upper bound on the gap-depend regret of FAIR PHASED ELIMINATION

In this section, we provide an upper bound on the worst-case regret that depends on the gap between
the two best actions, and on the gap between the best actions of the two groups. Compared to
instance-dependent bounds, established in the linear bandit problem in [23, 21], gap-dependent
bounds characterize the dependence of the regret on a small number of parameters. They are typically
less sharp than instance-dependent bounds, but allow to better highlight the influence of the parameters
on the difficulty of the problem. The bound established in the following theorem relates the difficulty
of the biased linear bandit to that of bias estimation, and to that of the corresponding d-dimensional
linear bandit. Proofs are postponed to Appendix C.2.
Theorem 2. Assume that x∗ ∈ argmaxx∈X x

>γ∗ is unique. Then, there exists two numerical
constants C,C ′ > 0 such that, for the choice δ = T−1, the following bound on the regret of the FAIR
PHASED ELIMINATION algorithm 4 holds

RT ≤ C

((
d

∆min
∨
κ
(
∆ ∨∆ 6= ∨ εT

)
∆2
6=

)
log(T) + d2 +

d

∆min
log (k)

)

≤ C ′

(
d

∆min
∨
κ
(
∆ ∨∆ 6= ∨ εT

)
∆2
6=

)
log(T) for T ≥ k ∨ ed∆min

where ∆min = minx∈X\x∗ ∆x, ∆ 6= = minx∈X :zx=−zx∗ ∆x, and εT = (κ∗ log(T)/T)1/3.

The term d/∆min∨κ(∆∨∆ 6=∨εT)/∆2
6= highlights the two sources of difficulty of the problem. On the one

hand, the term d/∆min is unavoidable: even if the algorithm knew beforehand the group containing the
best action, it would still need to play a game of d-dimensional linear bandits in this group, and suffer,
in the worst-case, the corresponding gap-dependent regret [1]. Note that lower bounds on gap-depend
regret of classical linear bandits follow from considering a setting with one near-optimal action with
gap ∆min in each of the d dimensions. Then, any algorithm needs to explore each dimension up
to ∆−2

min log(T) times in order to find the best action, but can do so by choosing the near-optimal
actions, thus having a regret ∆−1

min log(T) in each direction. By contrast, the term κ(∆∨∆ 6=∨εT)/∆2
6= is

characteristic of the biased linear bandit problem: it is due to the fact that the algorithm may need
to sample very sub-optimal actions in order to find the group containing the best action. Indeed, to
identify this group, one must estimate the bias with a precision ∆ 6=, i.e. sample sub-optimal actions
with average regret κ(∆) approximately ∆−2

6= log(T) times.

When d/∆min ≤ κ(∆∨∆ 6=∨εT)/∆2
6=, the regret corresponds to the regret of this bias estimation phase. In

other words, when both groups contain near-optimal actions, the difficulty of the problem is dominated
by the price to pay for debiasing the unfair evaluations. Interestingly, when d/∆min > κ(∆∨∆ 6=∨εT)/∆2

6=,
the difficulty of the linear bandit with systematic bias is dominated by that of the classical d-linear

8

bandit. In this case, the algorithm is able to find the group containing the best action, and the problem
reduces to a linear bandit in dimension d. Thus, the linear bandit with systematic bias is a non trivial
example of a globally observable game that can be locally observable around the best action.

Finally, we underline that the magnitude of the bias does not appear in the regret: intuitively, no
matter its magnitude, the algorithm always need to estimate it up to the same precision (of order ∆ 6=)
in order to find the best group and to be optimal in terms of gap-depend regret. This indicates that our
algorithm is robust against important discriminations in the evaluation mechanism.

5 Lower bounds on the regret

In this section, we derive lower bounds on the worst-case regret and the gap-dependent regret that
respectively match the upper bounds established in Theorems 1 and 2 up to sub-logarithmic factors
or numerical constants.

5.1 Lower bound on the worst-case regret

Theorems 1 and 2 underline the dependence of the regret on the geometry of the action set. Before
stating our result, we begin by introducing the notion of κ∗-correlated action set.

Definition 1 (κ∗-correlated action set). For κ∗ ≥ 1, a set of actions A is κ∗-correlated if A ∈ Aκ∗,d,
where

Aκ∗,d =


A = {a1, ..., ak} ⊂

(
Rd × {−1,+1}

)k
:

k ∈ N∗, min
π∈PAed+1

{
e>d+1

(∑
a∈A

π(a)aa>
)+

ed+1

}
≥ κ∗


is the set of actions sets such that the minimal variance of the bias estimator is larger than κ∗.

In the following theorem, we establish a lower bound on the regret valid for all κ∗ ≥ 1 by designing
κ∗-correlated sets of actions A ∈ Aκ∗,d, and obtaining lower bounds on the regret of any algorithm
on these sets of actions.

Theorem 3. Let κ∗ ≥ 1, d ≥ 2 and T ≥ 43κ∗. There exists an action set A ∈ Aκ∗,d such that for
any algorithm, there exists a bandit problem with parameter θT ∈ Rd+1 such that the regret of this
algorithm on the problem characterized by θT satisfies RθTT ≥ κ1/3

∗ T 2/3
/8e.

Previous lower bounds on the regret of linear bandits with partial monitoring, established in [20], state
that the regret must be at least cAT 2/3 for some parameter θT ∈ Rd+1, where cA > 0 is a constant
depending (not explicitly) on A. By contrast, Theorem 3 provides an explicit characterization of the
dependence of the regret rate on the geometry of the problem, which matches the upper bound of
Theorem 1 up to a sub-logarithmic factor. Note that the assumption d ≥ 2 is necessary here: if d = 1,
there are at most two potentially optimal actions (namely, max{x : x ∈ X} and min{x : x ∈ X}).
Then, the problem becomes locally observable, and regret of order Õ(T 1/2) can be achieved [20].

5.2 Lower bound on the gap-dependent regret

We now present a lower bound on the gap-dependent regret. More precisely, for given values of
∆min and ∆ 6=, we establish a lower bound on the worst case regret among parameters θ verifying
∆min ≤ minx∈X\x∗ ∆x, and ∆ 6= ≤ minx∈X :zx=−zx∗ ∆x. Before stating formally the result, let us
define the corresponding parameter set. For an action set A ∈ Aκ∗,d, and for (∆min,∆ 6=) ∈ (0, 1)2

such that ∆min ≤ ∆ 6=, we denote

ΘA∆min,∆ 6=
=


θ =

(
γ
ω

)
: γ ∈ C(X), ∃ !

(
x∗

zx∗

)
∈ argmax(x

zx
)∈A{x

>γ},

∀
(
x′

zx′

)
∈ A such that x′ 6= x∗, (x∗ − x′)> γ ≥ ∆min,

∀
(
x′

zx′

)
∈ A such that zx′ 6= zx∗ , (x

∗ − x′)> γ ≥ ∆ 6=


the set of parameters with minimum gap ∆min, and minimum between-group-gap ∆ 6=.

9

The upper bounds established in Theorem 2 underline the dependence of the gap-dependent regret
on the minimal regret κ(∆) for estimating the bias. Before stating our results, we define a class
of problems ΘA∆min,∆ 6=,κ

such that κ(∆) ≤ κ. For a parameter γ ∈ C(X), let us denote ∆(γ)x =

maxx′∈X (x′ − x)>γ, and ∆(γ) = (∆(γ)x)x∈X . Moreover, for a given set A, let us denote

ΘA∆min,∆ 6=,κ
= ΘA∆min,∆ 6=

∩
{
θ =

(γ
ω

)
: γ ∈ C(X), κ(∆(γ)) ≤ κ

}
.

Theorem 4. For all κ ≥ 2 and all d ≥ 4, there exists a set of actions A ∈ Rd+1 such that for all
(∆min,∆ 6=) ∈ (0, 1/8)2 with ∆min ≤ ∆ 6=,

lim inf
T→∞

sup
θ∈ΘA∆min,∆ 6=,κ

RθT
log (T)

≥
[

d

10∆min

]
∨

[
κ+ 2

8∆2
6=

]
. (4)

Theorem 4 shows that for some action sets A, the gap-depend regret of the FAIR PHASED ELIM-
INATION algorithm is asymptotically optimal up to a numerical constant. Note that the assump-
tion d ≥ 4 is necessary in our proof to design an action set A such that Equation (4) holds for
all ∆min,∆ 6= ∈ (0, 1/8). On the other hand, as discussed in Appendix C.6, for d ≥ 2, for all
∆min,∆ 6= ∈ (0, 1/8), we can show that there exists action sets A and θ ∈ ΘA∆min,∆ 6=

such that
the lower bound in Equation (4) still holds, by considering separately the cases d/∆min > κ/∆2

6= and
d/∆min ≤ κ/∆2

6=.

6 Conclusion

In this paper, we addressed the problem of online decision making under biased bandit feedback.
We designed a new algorithm based on ∆- and G-optimal design, and obtained worst-case and
gap-dependent upper bounds on its regret. We obtained lower bounds on the regret for some problem
instances showing that these rates are tight up to sub-logarithmic factors in some settings. These rates
highlight two behaviors: on the one hand, the worst case rate O(κ

1/3
∗ log(T)1/3T 2/3) highlights the

cost induced by the biased feedback, and the need to select sub-optimal actions in order to debias
it. On the other hand, the gap-dependent bound shows that for some instance, the problem can be
locally observable around the best action: then, the difficulty of the problem is dominated by the
difficulty of the corresponding linear bandit problem, and is no more difficult than this problem.
When this is not the case, the regret scales as κ(∆)∆−2

6= log(T), where ∆ 6= is the gap between the
best actions of the two groups, and κ(∆) is the minimum regret for estimating the bias with a given
precision. In Appendix D, we discuss the extension of the biased linear model and of the Fair Phased
Elimination algorithm to multiple groups with different biases. This work paves the way for studying
other bandit models with unfair feedback, considering for example continuous, multi-dimensional
sensitive attributes.

Broader impact

In this work, we propose a model for sequential decision making under biased feedback. Our goal
is primarily to provide a good strategy for sequential learning in an unfair environment, and to
characterize the difficulty of this problem by bounding the regret. On the one hand, our results reveal
that maximizing the fair rewards instead of unfair evaluations may be more difficult in terms of regret,
which may discourage practitioners from correcting unfair feedbacks. On the other hand, we believe
that as fairness is an important long-term key objective, rather than discouraging the practitioner, it
will inform them to better plan the adaptation of their methods toward this aim.

Acknowledgements.

The authors would like to thank Evgenii Chzhen and Nicolas Verzelen for their valuable discussions
and suggestions.

The work of A. Carpentier is partially supported by the Deutsche Forschungsgemeinschaft (DFG)
Emmy Noether grant MuSyAD (CA 1488/1-1), by the DFG - 314838170, GRK 2297 MathCoRe, by

10

the FG DFG, by the DFG CRC 1294 ’Data Assimilation’, Project A03, by the Forschungsgruppe
FOR 5381 "Mathematical Statistics in the Information Age - Statistical Efficiency and Computational
Tractability", Project TP 02, by the Agence Nationale de la Recherche (ANR) and the DFG on the
French-German PRCI ANR ASCAI CA 1488/4-1 "Aktive und Batch-Segmentierung, Clustering und
Seriation: Grundlagen der KI" and by the UFADFH through the French-German Doktorandenkolleg
CDFA 01-18 and by the SFI Sachsen-Anhalt for the project RE-BCI. Christophe Giraud received
partial support by grant ANR-19-CHIA-0021-01 (“BiSCottE”, Agence Nationale de la Recherche)
and by the ANR and the DFG on the French-German PRCI ANR-21-CE23-0035 (ASCAI).

References
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[2] A. Barik and J. Honorio. Fair sparse regression with clustering: An invex relaxation for a
combinatorial problem. In Thirty-Fifth Conference on Neural Information Processing Systems,
2021.

[3] A. Byanjankar, M. Heikkilä, and J. Mezei. Predicting credit risk in peer-to-peer lending: A
neural network approach. In 2015 IEEE Symposium Series on Computational Intelligence,
pages 719–725, 2015.

[4] L. E. Celis, S. Kapoor, F. Salehi, and N. K. Vishnoi. An algorithmic framework to control bias
in bandit-based personalization, 2018.

[5] S. Chaudhuri and A. Tewari. Phased exploration with greedy exploitation in stochastic combina-
torial partial monitoring games. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[6] S. Chawla and M. Jagadeesan. Individual Fairness in Advertising Auctions Through Inverse
Proportionality. In M. Braverman, editor, 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 42:1–42:21, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[7] E. Chzhen, C. Giraud, and G. Stoltz. A unified approach to fair online learning via blackwell
approachability. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 18280–18292.
Curran Associates, Inc., 2021.

[8] E. Chzhen and N. Schreuder. A minimax framework for quantifying risk-fairness trade-off in
regression, 2020.

[9] H. Claure, Y. Chen, J. Modi, M. F. Jung, and S. Nikolaidis. Multi-armed bandits with fairness
constraints for distributing resources to human teammates. 2020 15th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 299–308, 2020.

[10] G. Elfving. Optimum Allocation in Linear Regression Theory. The Annals of Mathematical
Statistics, 23(2):255 – 262, 1952.

[11] J. Fauw, J. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham,
X. Glorot, B. O’Donoghue, D. Visentin, G. Driessche, B. Lakshminarayanan, C. Meyer,
F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, and O. Ron-
neberger. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature
Medicine, 24, 09 2018.

[12] V. V. Fedorov. Theory of optimal experiments. New York : Academic Press, 1972.

[13] J. Fellman. On the Allocation of Linear Observations. Commentationes physico-mathematicae.
Societas Scientiarum Fennica, 1974.

11

[14] A. Fuster, P. Goldsmith-Pinkham, T. Ramadorai, and A. Walther. Predictably unequal? the
effects of machine learning on credit markets. The Journal of Finance, 77(1):5–47, 2022.

[15] S. Gaucher, N. Schreuder, and E. Chzhen. Fair learning with wasserstein barycenters for
non-decomposable performance measures, 2022.

[16] H. Hadiji, S. Gerchinovitz, J.-M. Loubes, and G. Stoltz. Diversity-Preserving K-Armed Bandits,
Revisited. working paper or preprint, Oct. 2020.

[17] R. Harman and T. Jurík. Computing c-optimal experimental designs using the simplex method
of linear programming. Computational Statistics & Data Analysis, 53(2):247–254, dec 2008.

[18] A. Khademi, S. Lee, D. Foley, and V. Honavar. Fairness in algorithmic decision making: An
excursion through the lens of causality. In The World Wide Web Conference, WWW ’19, page
2907–2914, New York, NY, USA, 2019. Association for Computing Machinery.

[19] J. Kiefer. General Equivalence Theory for Optimum Designs (Approximate Theory). The
Annals of Statistics, 2(5):849 – 879, 1974.

[20] J. Kirschner, T. Lattimore, and A. Krause. Information directed sampling for linear partial
monitoring. In J. D. Abernethy and S. Agarwal, editors, Conference on Learning Theory,
volume 125 of Proceedings of Machine Learning Research, pages 2328–2369. PMLR, 2020.

[21] J. Kirschner, T. Lattimore, C. Vernade, and C. Szepesvari. Asymptotically optimal information-
directed sampling. In M. Belkin and S. Kpotufe, editors, Proceedings of Thirty Fourth Confer-
ence on Learning Theory, volume 134 of Proceedings of Machine Learning Research, pages
2777–2821. PMLR, 15–19 Aug 2021.

[22] A. Köchling and M. C. Wehner. Discriminated by an algorithm: a systematic review of
discrimination and fairness by algorithmic decision-making in the context of hr recruitment and
hr development. Business Research, pages 1–54, 2020.

[23] T. Lattimore and C. Szepesvari. The End of Optimism? An Asymptotic Analysis of Finite-
Armed Linear Bandits. In A. Singh and J. Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 728–737. PMLR, 20–22 Apr 2017.

[24] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[25] T. Lin, B. Abrahao, R. Kleinberg, J. Lui, and W. Chen. Combinatorial partial monitoring game
with linear feedback and its applications. In E. P. Xing and T. Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning, pages 901–909, Bejing, China, 22–24
Jun 2014. PMLR.

[26] Z. Lipton, J. McAuley, and A. Chouldechova. Does mitigating ml’s impact disparity require
treatment disparity? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[27] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and
fairness in machine learning. ACM Computing Surveys, 54(6), jul 2021.

[28] Z. Papamitsiou and A. A. Economides. Learning analytics and educational data mining in prac-
tice: A systematic literature review of empirical evidence. Journal of Educational Technology
& Society, 17(4):49–64, 2014.

[29] V. Patil, G. Ghalme, V. Nair, and Y. Narahari. Achieving fairness in the stochastic multi-armed
bandit problem. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5379–
5386, Apr. 2020.

[30] A. Pázman. Foundations of Optimum Experimental Design. Mathematics and its Applications.
Springer Netherlands, 1986.

12

[31] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost. Machine learning for
targeted display advertising: transfer learning in action. Machine Learning, 95(1):103–127,
2014.

[32] L. Pronzato and G. Sagnol. Removing inessential points in c-and A-optimal design. Journal of
Statistical Planning and Inference, 213:233–252, 2021.

[33] F. Pukelsheim. On linear regression designs which maximize information. Journal of statistical
planning and inferrence, 4:339–364, 1980.

[34] H. Qi. A semidefinite programming study of the elfving theorem. Journal of Statistical Planning
and Inference, 141:3117–3130, 2011.

[35] M. Raghavan, S. Barocas, J. M. Kleinberg, and K. E. C. Levy. Mitigating bias in algorithmic
hiring: evaluating claims and practices. Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 2020.

[36] G. Sagnol. Plans d’expériences optimaux et application à l’estimation des matrices de trafic
dans les grands réseaux : programmation conique du second ordre et sous-modularité. PhD
thesis, 2010.

[37] G. Sagnol and R. Harman. Computing exact d-optimal designs by mixed integer second order
cone programming. The Annals of Statistics, 43, 07 2013.

[38] G. Sagnol and M. Stahlberg. Picos: A python interface to conic optimization solvers. Journal
of Open Source Software, 7(70):3915, 2022.

[39] D. M. Titterington. Algorithms for computing D-optimal design on finite design spaces.
Proceedings of the 1976 Conf. on Information Science and Systems, page 213–216, 1976.

[40] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix
inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19(2):499–533,
1998.

[41] M. Černý and M. Hladík. Two complexity results on c-optimality in experimental design.
Computational Optimization and Applications, 51(3):1397–1408, apr 2012.

[42] A. Wagenmaker, J. Katz-Samuels, and K. Jamieson. Experimental design for regret minimization
in linear bandits. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 3088–3096. PMLR, 13–15 Apr 2021.

[43] L. Wang, Y. Bai, W. Sun, and T. Joachims. Fairness of exposure in stochastic bandits. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 10686–10696.
PMLR, 18–24 Jul 2021.

[44] H. P. Wynn. The Sequential Generation of D-Optimum Experimental Designs. The Annals of
Mathematical Statistics, 41(5):1655 – 1664, 1970.

13

Appendix

The Appendix is organized as follows. In Section A, we further discuss the geometry of bias
estimation, and provide additional results on the constants κ∗ and κ(∆). Then, we provide in Section
B a detailed version of the FAIR PHASED ELIMINATION algorithm 3. In Section C, we prove the
main results of this paper. Finally, in Section D, we discuss the extension of the biaised linear bandits
to more than 2 groups.

A On the geometry of bias estimation

We begin in Section A.1 by highlighting the relationship of the constant κ∗ with the problem of ed+1-
optimal design. Then, in Section A.2, we show that the geometrical constant κ∗ can be expressed
in terms of separation of the two groups. In Section A.3 and Section A.4, we relate κ∗ to classical
geometrical measures of the difficulty of a set of actions such as the condition.ing number and the
worst-case alignment constant of [20]. In Section A.5, we show that κ∗ is equivalent to the variance
of the optimal design for estimation the bias against the worst parameter θ∗. In Section A.6, we
provide further results on κ(∆), the ∆-optimal regret for estimation the bias with variance 1 when
the gap vector is ∆. Finally, in Section A.7, we propose guidance for computing the G-optimal and
∆-optimal designs.

A.1 Bias estimation as a ed+1-optimal design problem

Recall that κ∗ is the minimal variance of the bias estimator related to the problem of ed+1-optimal
design.

ed+1-optimal design Optimal design theory addresses the following problem: a scientist must
design a set of n experiments {x1, ..., xn} ∈ Xn so as to estimate at best a parameter of interest,
where each experiment x ∈ X corresponds to a point ax ∈ Rd+1. The aim of the scientist is to
choose a design, i.e. a function µ : X 7→ N indicating the budget µ(x) to be allocated to each
experiment x ∈ X . Each experiment x is then repeated exactly µ(x) times, and the corresponding
observations yx,1, ..., yx,µ(x) are collected for each x ∈ X . The law of the observations corresponding
to experiment x at point ax is given by

yx,i = a>x θ
∗ + ξx,i,

where ξx,i ∼ N (0, 1) are independent noise terms, and θ∗ ∈ Rd+1 is an unknown parameter. The
aim of the scientist is to choose the design µ so as to best estimate (some features of) the parameter
θ∗, under a constraint on the total number of experiments

∑
x∈X µ(x) ≤ n for some n ∈ N.

Different criteria can be used to characterize the optimality of a design µ. For example, one may need
to estimate the full parameter θ∗, in order to predict the outcomes of the experiments x ∈ X with a
small uniform error: this leads to the G-optimal design problem (2). Alternatively, for c a vector in
Rd+1, one may aim at finding the best design µ ∈ NX for estimating the scalar product c>θ∗ under
a budget constraint

∑
x∈X

µ(x) ≤ n, where NX = {µ : X → N}. This problem is known as c-optimal

design. Unbiased linear estimation of c>θ∗ is possible only when c belongs to the image of V (µ),
and in this case the best linear unbiased estimator of the scalar product c>θ∗ is given by c>θ̂, where
θ̂ is the least-square estimator defined as

θ̂ = V (µ)+
∑
x∈X

ax

 ∑
i≤µ(x)

yx,i

 for V (µ) =
∑
x∈X

µ(x)axa
>
x . (5)

The variance of the estimator c>θ̂ is then equal to c>V (µ)+c.

Exact c-optimal design aims at choosing the allocation µ ∈ NX minimizing the variance of c>θ̂
for a given budget

∑
x µ(x) ≤ n, under the constraint that c ∈ Range(V (µ)). Let us define the

normalized design π : x ∈ X 7→ µ(x)/n, and let us underline that π defines a probability on X . The
variance of c>θ̂ is then equal to n−1c>V (π)+c. In the limit n→ +∞, the problem is equivalent to

14

the problem of approximate c-optimal design (sometimes simply referred to as c-optimal design),
that aims at finding a probability measure π ∈ PXc := {π ∈ PX : c ∈ Range(V (π))} solution to
the following problem

min
π∈PXc

c>V (π)+c . (c-optimal design)

Note that when {ax : x ∈ X} spans Rd+1, for any c ∈ Rd+1, there exists a design π such that
c ∈ Range(V (π)), and hence the c-optimal design problem admits a solution.

Computation of the ed+1-optimal design Finding an exact optimal allocation µ ∈ NX under the
constraint that

∑
x∈X µ(x) ≤ n is unfortunately NP-complete. However, finding an approximate

optimal design π ∈ PXc can be done in polynomial time [41]. Several algorithms, including
multiplicative algorithms [13] and a simplex method of linear programming [17], have been proposed
to iteratively approximate the optimal design. More recently, [32] suggested using screening tests to
remove inessential points to accelerate optimization algorithms.

Classical results from ed+1-optimal design show that there exists a c-optimal design supported by at
most d+ 1 points (see, e.g., [30, 17] for a proof of this result). The following Lemma indicates how
to obtain an exact design by rounding an approximate design supported by at most d+ 1 points.

Lemma 3. For any π ∈MXed+1
and any m > 0, the estimator e>d+1θ̂µ computed from the design µ :

x 7→ dmπ(x)e is an unbiased estimator of e>d+1θ and it has a variance at most m−1e>d+1V (π)+ed+1.

Obviously, similar results also hold for G-optimal design.
Lemma 4. Let π be a solution of the G-optimal design problem (2). Then, for any m > 0 and any
x ∈ X , the estimator a>x θ̂µ computed from the design µ : x 7→ dmπ(x)e is an unbiased estimator of
the evaluation a>x θ, and it has a variance

a>x V (µ)+ax ≤ m−1(d+ 1).

A.2 Interpretation of κ∗ in terms of separation of the groups

Next theorem, due to Elfving, characterizes solutions to the c-optimal design problem.
Theorem 5 ([10]). Let S = convex hull {+ax,−ax : x ∈ X} be the Elfving’s set of {ax : x ∈ X} ⊂
Rd+1, and let ∂S denote the boundary of S . A design π ∈ PXc is c-optimal for c ∈ Rd+1 if and only
if there exists ζ ∈ {−1,+1}X and t > 0 such that

tc =
∑
x∈X

π(x)ζxax ∈ ∂S.

Moreover, t−2 = c> (V (π))
+
c is value of the c-optimal design problem.

Elfving’s characterization of the ed+1-optimal design allows us to derive the following equivalent
characterization of κ∗.

Lemma 5. κ∗ = max
u∈Rd

1

maxx∈X (x>u+ zx)
2 .

Lemma 1 follows from the characterization in Lemma 5. When κ∗ > 1, the vector ũ defined as

ũ = argmaxu∈Rd
1

maxx∈X (x>u+zx)2 is a normal vector of the separating hyperplaneH in Figure 2.

Moreover, as shown in the proof of Lemma 1, the margin is in this case equal to 1− κ−1/2
∗ , while the

maximum distance of all points to the hyperplane is 1 + κ
−1/2
∗ .

Application to the action set A of Lemma 10 To provide the reader with intuition on κ∗,
we analyze here the set of actions used to derive the lower bound in Theorem 3. Let A ={(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where

(
xi
zxi

)
= ei + ed+1, for i ∈ {2, ..., bd/2c},

(
xi
zxi

)
= ei − ed+1

for i ∈ {bd/2c+ 1, ..., d}, and
(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. We show in Lemma 10 that

the minimal variance for estimating the bias on A is indeed κ∗.

15

Figure 2: Illustration of Lemma 1 on the action set A described above for d = 2.

The set of actions A spans Rd+1, however it is easy to see that only x1 and xd+1 can be used to
estimate the bias. On the one hand, when κ = 1,

(
xd+1

zxd+1

)
=
(

0
−1

)
, so the bias can be evaluated

just by sampling xd+1. In the other hand, in the limit where κ∗ →∞, the problems becomes more
difficult as

(
xd+1

zxd+1

)
tends to −

(
x1

zx1

)
. In the limit κ∗ =∞, it is impossible to distinguish between

the contribution of γ>e1 and ω in the evaluations of actions 1 and d+ 1: the problem becomes not
identifiable. We represent this setting for an intermediate value of κ∗ in Figure 2. We also represent
the separating hyperplane, margin m and distance M of Lemma 1.

A.3 Comparison to the conditioning number

By contrast to classical complexity measures such as conditioning numbers that give equal weight to
all observations, optimal design gives flexibility to choose d+ 1 best actions to estimate the bias, and
therefore allows for sharper bounds.

Indeed, by definition of κ∗,
κ∗ ≤ ed+1V (πu)+ed+1,

where πu is the uniform measure giving the same weight 1/k to all actions. Now, V (πu) is the
classical covariance matrix associated with the design points ax ∈ A, so the condition number CN
of this design is given by

CN =
λmax(V (πu))

λmin(V (πu))
.

We see that ed+1V (πu)+ed+1 ≤ λmin(V (πu))−1. When the actions ax are bounded (for example
‖ax‖ ≤M), this implies that κ∗ ≤ CN/M .

We provide an example showing that κ∗ can be much smaller than the conditioning number. Consider
the following example in dimension d = 2 with k ≥ 4 actions, where x1 = (1, 0) and x2 = (−1, 0)
belong to group 1, and x3, ..., xk are identical, equal to (0, 1), and in group −1. Then, Lemma 1
shows that the minimal variance for estimating the bias is indeed 1, and that the optimal design puts
equal mass on x1 and x2. On the other hand, straightforward computations show that the conditioning

number of the covariance matrix is 1+(k−2)−1+
√

1+(k−2)−2

1+(k−2)−1−
√

1+(k−2)−2
. Thus, on this example, CN/κ∗ is of

order k.

A.4 Comparison to the worst-case alignment constant

Lemma 5 also allows us to compare the bound in Theorem 1 with previous results on linear bandit
with partial monitoring, expressed in terms of the worst-case alignment constant.

16

Previous work on linear bandit with partial linear monitoring measures the difficulty of the bandit
game using the worst-case alignment constant α, defined as

α = max
u∈Rd

maxx,x′∈X ((x− x′)>u)2

maxx∈X (zxx>u+ 1)2
.

The following Lemma shows that this constant is essentially equivalent to the minimal variance of
the bias estimator κ∗.
Lemma 6. κ∗

3 ≤ α ≤ 16κ∗.

On the one hand, Lemma 6 shows that κ∗ and α are essentially equivalent. In particular, Theorem 3
implies that the large T regret is of order α1/3 log(T)1/3T 2/3. This improves over previous known
rates, obtained in [20], by a factor d1/2 log(T)1/6(log(kT)/ log(T))1/2.

On the other hand, as underlined, the constant κ∗ appears when considering the well-studied problem
of c-optimal design. Therefore, classical results and algorithms for optimal design can be used to
characterize and compute this constant.

A.5 Optimal bias estimation against the worst parameter

The constant κ∗ also appears naturally when considering the related problem of optimal bias estima-
tion against the worst parameter.

Regret of ed+1-optimal design Recall that κ∗ denotes the minimal variance of the bias estimator,
i.e. the value of the solution of the ed+1-optimal design problem

κ∗ = min
π∈PXed+1

e>d+1 (V (π))
+
ed+1 ,

The ed+1-optimal design can be equivalently defined as the solution of the problem

minimize
∑
x∈X

µ(x) such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ κ∗. (6)

The characterization given in Equation (6) underlines that the ed+1-optimal design provides (up to
discretization issues) the minimal number of samples required for estimating ω∗ with a variance κ∗.
Let us denote by µ∗ the optimal design for estimating ω∗ with a variance 1, defined as

µ∗ = argmin
µ

∑
x∈X

µ(x) such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ 1.

Note that from the definition of κ∗, we have
∑
x µ
∗(x) = κ∗.

A first (naive) approach to obtain an estimate of the bias parameter ω∗ with precision level ε > 0
would consist in sampling actions according to ε−2µ∗, rounded according to the procedure defined in
Lemma 3. Let us denote by ∆x the gap ∆x = maxx′∈X (x′ − x)>γ∗ between the (non-observed)
reward of the best action and the reward of the action x. The regret corresponding to this estimation
phase would then be

ε−2
∑
x∈X

µ∗(x)∆x,

which can be as large as κ∗ε−2 maxx ∆x. Interestingly, we show that the regret corresponding to the
ed+1-optimal design is equivalent (up to a small multiplicative constant) to the minimax regret.

Optimal worst-case estimation The minimax regret corresponds to the regret of the best sampling
scheme against the worst admissible parameter γ. Note that, for a given design µ, this worst-case
regret is given by

max
x′∈X ,γ∈C(X)

∑
x

µ(x)(x′ − x)>γ,

where we recall that C(X) =
{
γ ∈ Rd : ∀x ∈ X , |x>γ| ≤ 1

}
is the set of admissible parameters. To

achieve the lowest regret against the worst parameter, we must use the minimax optimal design µ̃
solution to the problem

µ̃ = argmin
µ

max
x′∈X ,γ∈C(X)

∑
x∈X

µ(x)(x′ − x)>γ such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ 1.

17

Lemma 2 underlines that the regret corresponding to the ed+1-optimal design is no larger than twice
the minimax regret.

A.6 Additionnal results the ∆-optimal design

Recall that for a vector of gaps ∆ = (∆x)x∈X , µ∆ denotes the ∆-optimal design, defined as the
solution of the following problem

µ∆ = argmin
µ

∑
x∈X

µ(x)∆x such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ 1. (∆-optimal design)

If we knew the gaps ∆x, we could sample the actions according to the ∆-optimal design µ∆, and pay
the regret ε−2κ(∆) (up to rounding error) for estimating ω∗ with an error smaller than ε, where

κ(∆) =
∑
x∈X

µ∆(x)∆x.

Lemma 7. If γ∗ ∈ C(X), then κ(∆) ≤ 2κ∗

Proof. Be definition of C(X), for all γ∗ ∈ C(X), all x, x′ ∈ X , we have

(x− x′)>γ∗ ≤ |x>γ∗|+ |x′>γ∗| ≤ 2.

Then,

κ(∆) ≤ 2 min
µ

∑
x∈X

µ(x) such that µ ∈MXed+1
and e>d+1V (µ)+ed+1 ≤ 1.

Let µ∗ be the solution of the ed+1-optimal design problem

minimize
µ

e>d+1V (µ)+ed+1 such that µ ∈ PXed+1
.

By definition of κ∗, we see that e>d+1V (µ∗)
+ed+1 = κ∗. This implies that the measure κ∗ × µ∗

verifies the constraints e>d+1V (κ∗ × µ∗)+ed+1 ≤ 1 and κ∗µ∗ ∈MXed+1
. Thus,

κ(∆) ≤ 2
∑
x∈X

κ∗µ∗(x) = 2κ∗.

On the regret κ(∆) The function κ verifies the following properties.
Lemma 8. For two vectors of gaps ∆, ∆′, denote by ∆∧∆′ (respectively ∆∨∆′) the vector of gaps
given by (∆ ∧∆′)x = ∆x ∧ ∆′x (respectively (∆ ∨∆′)x = ∆x ∨ ∆′x) for all x ∈ X . Moreover,
denote ∆ ≤ ∆′ if ∆x ≤ ∆′x for all x ∈ X . Then, the following properties hold :

i) for all c > 0, κ(c∆) = cκ(∆);

ii) if ∆ ≤ ∆′, then κ(∆) ≤ κ(∆′);

iii) κ(∆ ∨∆′) ≥ κ(∆) ∨ κ(∆′);

iv) the function ε 7→ κ(∆ ∨ ε) is continuous at 0.

A.7 Computation of G- and ∆-optimal design

Computing the optimal design is a convex problem, for which many algorithms have been proposed.
The first method to compute G-optimal design is due to [12] and [44]; later, [39] proposed a
multiplicative weight update algorithm. More recently, [40] suggested to use a Semi-Definite
Programming approach to solve the G-optimal design problem. Linear programming was used in
[17] to compute c-optimal design, while [34] studied a SDP formulation of this problem. Reducing

18

the G-optimal problem to a Mixed-Integer, Second Order Cone Programming, [37] proposed a new
algorithm based on interior point methods. We refer the interested reader to the review in [36].

In practice, one can rely on the R package OptimalDesign or the Python Package PICOS [38] to
compute G- and c-optimal design.

The following Lemma allows us to reduce the problem of finding a ∆-optimal design to that of a
c-optimal design for some rescaled features.

Lemma 9. For any vector ∆ ∈ (0,+∞)X , let π∆ be the ed+1-optimal design relative to the set

A∆ =
{

∆
−1/2
x

(
x
zx

)
: x ∈ X

}
and let κ∆ = e>d+1V (π∆)+ed+1 be the ed+1-optimal variance

relative to A∆. Then, the ∆-optimal design µ∆ is given by µ∆(x) = κ∆π∆(x)∆−1
x for all x ∈ X .

In addition, the support of µ∆ can be chosen to be of cardinnality at most d+ 1.

Thus, Lemma 9 shows that to compute the ∆-optimal design, one should follow these steps :

1. Compute the rescaled features A∆;

2. Compute the ed+1-optimal design π∆ on A∆, as well as the variance term κ∆ =

e>d+1

(∑
x∈X

π∆(x)
∆x

axa
>
x

)+

ed+1;

3. Compute the ∆-optimal design µ∆ given by µ∆(x) = κ∆π∆(x)∆−1
x for all x ∈ X .

B Detailed Fair Phased Elimination algorithm

We present the notations used in Algorithm 4. The phases are indexed by l ∈ N∗. The sets X (z)
l

for z ∈ {−1,+1} corresponds to actions in group z that are considered as potentially optimal in
phase l. The variable ẑ∗l encodes the group determined as optimal: it is 0 as long as this group has
not been determined. The subscript (z) refer to the group z when z ∈ {−1,+1}, and otherwise
to the estimation of the bias ω∗: for example, the probability π(z)

l for z ∈ {−1,+1} and l > 1

corresponds to the approximate G-optimal design on X (z)
l . Then, for z ∈ {−1,+1}, allocations

µ(z) (resp. µ(0)) correspond to allocation of samples in the exploration phase Exp(z)
l (resp. Exp(0)

l).

Similarly, V (z)
l (resp V (0)

l) denotes the variance matrix of the estimator
(
γ̂(z)

l

ω̂(z)

l

)
(resp. ω̂(0)

l) obtained

from observations made during phase Exp(z)
l (resp. Exp(0)

l). Finally, Explore(z)
l (resp. Explore(0)

l)
is a Boolean variable indicating whether the exploration at phase l for group z (resp. for the bias
parameter) has been performed. It is used in the proofs to ensure that the corresponding estimators
are well defined.

19

https://CRAN.R-project.org/package=OptimalDesign

Algorithm 4 Fair Phased Elimination (detailed version)

1: Input: δ, T , k = |X |
2: Initialize: Recovery← ∅, t← 0, l← 1 ẑ∗1 ← 0,
3: X (+1)

1 ← {x : zx = 1}, X (−1)
1 ← {x : zx = −1}, ∆̂1

x ← 2 for x ∈ X
4: while t < T do
5: Initialize: εl ← 22−l, ẑ∗l+1 ← ẑ∗l, ∆̂l+1 ← ∆̂l, Explore(z)

l ← False for z ∈ {−1, 0,+1}
6: for z ∈ {−1,+1} such that z 6= −ẑ∗l do . G-optimal Exploration and Elimination

7: π
(z)
l ← argmin

π

{
max
x∈X (z)

l

a>x V (π)+ax : π ∈ PX
(z)
l

X (z)
l

, | supp(π)| ≤ (d+1)(d+2)
2

}
8: µ

(z)
l (x)←

⌈
2(d+1)π

(z)
l (x)

ε2l
log
(
kl(l+1)

δ

)⌉
for all x ∈ X (z)

l

9: n
(z)
l ←

∑
x∈X (z)

l

µ
(z)
l (x), Exp(z)

l ←
{
t+ 1, ..., T ∧ (t+ n

(z)
l)
}

10: if t+ n
(z)
l ≤ T then

11: Explore(z)
l ← True, choose each action x ∈ X (z)

l exactly µ(z)
l (x) times

12: V
(z)
l ←

∑
t∈Exp(z)

l

axta
>
xt , θ̂

(z)

l ←
(
V

(z)
l

)+∑
t∈Exp(z)

l

ytaxt

13: X (z)
l+1 ←

{
x ∈ X (z)

l : max
x′∈X (z)

l

(ax′ − ax)
>
θ̂

(z)

l ≤ 3εl

}
14: else for t ∈ Exp(z)

l , sample empirical best action in X (z)
l

15: t← t+ n
(z)
l

16: if ẑ∗l = 0 then
17: compute the ∆̂l-optimal design µ̂l and the corresponding regret κ(∆̂l)

18: if εl ≤
(
κ(∆̂l) log(T)/T

)1/3

then . Recovery phase
19: Recovery← {t, ..., T}
20: sample empirical best action in X (−1)

l+1 ∪ X
(1)
l+1 until the end of the budget, t← T

21: else . ∆̂l-optimal Exploration and Elimination
22: µ

(0)
l (x)←

⌈
2µ̂l(x)
ε2l

log
(
l(l+1)
δ

)⌉
for all x ∈ X

23: n
(0)
l ←

∑
x∈X

µ
(0)
l (x), Exp(0)

l ←
{
t, ..., T ∧ (t+ n

(0)
l)
}

24: if t+ n
(0)
l ≤ T then

25: Explore(0)
l ← True, choose each action x ∈ X exactly µ(0)

l (x) times

26: V
(0)
l ←

∑
t∈Exp(0)

l

axta
>
xt , ω̂

(0)
l ← e>d+1

(
V

(0)
l

)+∑
t∈Exp(0)

l

ytaxt

27: for x ∈ X (−1)
l+1 ∪ X

(1)
l+1 do

28: m̂l,x ← a>x θ̂
(zx)

l − zxω̂(0)
l

29: ∆̂l+1
x ←

(
max

x′∈X (−1)
l+1 ∪X

(1)
l+1

m̂l,x′ − m̂l,x + 4εl

)
∧ 2

30: for z ∈ {−1,+1} do
31: if max

x∈X (z)
l+1

m̂l,x − 2εl ≥ max
x∈X (−z)

l+1

m̂l,x + 2εl then ẑ∗l+1 ← z

32: else sample empirical best action in X (−1)
l+1 ∪X

(1)
l+1 until the end of the budget, t← T

33: t← t+ n
(0)
l

34: l← l + 1

20

C Proofs

Before proving the main results our this paper, we begin by outlining in Section D.1 the main ideas
used to obtain upper and lower bounds on the regret. Then, Theorem 1 is proved in Section C.2,
Theorem 2 is proved in Section C.3, Theorem 3 is proved in Section C.4, and Theorem 4 is proved
in Section C.5. Extension of Theorem 4 to d = 2 and d = 3 is discussed in Section C.6. Finally,
auxiliary lemmas are proved in Appendix C.7.

For an event F such that P (F) > 0, we denote by E|F (resp. P|F) the expectation (resp. the
probability) conditionally on F .

C.1 Outline of the proofs

C.1.1 Outline of the proof of Theorem 1

The proof of Theorem 1 can be found in Appendix C.2. We outline here the keys ingredients to this
proofs. We begin by introducing some notations.
Notations We denote by LT the largest integer l such that εl ≥ κ1/3

∗ T−1/3 log(T)1/3. We denote by
L(0) the last phase where ∆̂l-optimal Exploration and Elimination happens. We denote by Exp(z)

l

the time indices where G-exploration is performed on X (z)
l and by Exp(0)

l the time indices where
∆-exploration is performed at phase l. We also denote by Recovery the time indices subsequent to
the stopping criterion, this set being empty when the stopping criterion is not activated.

We define a "good" event F such that the errors
∣∣∣a>x (θ∗ − θ̂l)∣∣∣ and |ω∗ − ω̂(0)

l | are smaller than εl

for all l such that these quantities are defined, and all x ∈ X (−1)
l and X (+1)

l . In the following, we use
c, c′ to denote positive absolute constants, which may vary from line to line. With these notations, we
decompose the regret as follows :

RT ≤ 2TP (F) + E|F

[∑
l≤LT

∑
z∈{−1,+1}

∑
t∈Exp(z)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RGT

]
+ E|F

[∑
l≤L(0)

∑
t∈Exp(0)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
R∆
T

]

+E|F

[∑
l≥LT+1

∑
z∈{−1,+1}

∑
t∈Exp(z)

l

(x∗ − xt)> γ∗ +
∑

t∈Recovery

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RRecT

]
.

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we show that
P (F) ≤ 2T−1.

Bound on RGT . We show that on F , only actions with gaps smaller than cεl remain in the sets
X (−1)
l and X (+1)

l . The length of each G-optimal Exploration and Elimination phase is of the order
d log(klT)/ε2l , so the regret of each phase is of the order d log(klT)/εl. Summing over the different
phases, we find that

RGT ≤ cd log(kLTT)/εLT . (7)

Using the definition of LT , we find that RGT ≤ cd log(kLTT)κ
−1/3
∗ log(T)−1/3T 1/3.

Bound on R∆
T . We show that on F , ∆̂l ≥ ∆ for all l ≥ 1. Then, our choice of design µ(0)

l ensures
that for l ≤ L(0), on F ,∑

t∈Exp(0)
l

(x∗ − xt)> γ∗ ≤ c
(

log(l(l + 1)T)

ε2l
κ(∆̂l) + d+ 1

)

21

for some constant c > 0. Summing over the different phases, we find that

R∆
T ≤ cκ(∆̂L(0)

) log(L(0)T)/ε2L(0) . (8)

Now, the algorithm does not enter the Recovery phase before phase L(0) + 1, so we must have
ε−2
L(0) ≤ T 2/3 log(T)−2/3κ(∆̂L(0)

)−2/3. This implies that R∆
T ≤ cκ(∆̂L(0)

)1/3 log(T)1/3T 2/3.

Since κ(∆̂l) ≤ 2κ∗, we find that R∆
T ≤ c′κ

1/3
∗ log(T)1/3T 2/3.

Bound on RRec
T . On the one hand, the actions selected during the Phases Exp(−1)

l and Exp(+1)
l for

l ≥ LT + 1 are sub-optimal by a gap at most cεLT on the event F . On the other hand, if the algorithm
enters the Recovery phase at a phase l, then

εl ≤ κ(∆̂L(0)

)1/3T−1/3 log(T)1/3 ≤ κ1/3
∗ T−1/3 log(T)1/3,

so we must have l = L(0) + 1 ≥ LT + 1. Therefore, all actions selected during the Recovery phase
are sub-optimal by a gap at most cεLT . Then, RRecT can be bounded as RRecT ≤ cεLT T . This implies
in particular that RRecT ≤ c′κ1/3

∗ log(T)1/3T 2/3.

When T ≥ Tκ∗,d,k for some Tκ,d,k large enough, we find that RT ≤ c′κ1/3
∗ log(T)1/3T 2/3.

C.1.2 Outline of the Proof of Theorem 2

The proof of Theorem 2 is close to that of Theorem 1, and we adopt the same notations as in the
proof sketch above.

Notations We denote by L(0) the last phase where ∆̂l-optimal Exploration and Elimination happens.
We denote F some "good" event such that the errors |a>x (θ∗− θ̂(zx)

l)| and |ω∗− ω̂(0)
l | are smaller than

εl for all l such that these quantities are defined, and all x ∈ X (−1)
l ∪ X (+1)

l . We denote by Exp(z)
l

the time indices where G-exploration is performed on X (z)
l and by Exp(0)

l the time indices where
∆-exploration is performed at phase l. We also denote by Recovery the time indices subsequent
to the stopping criterion, this set being empty when the stopping criterion is not activated. In the
following, we use c, c′ to denote positive absolute constants, which may vary from line to line.

Fact 1 Let l∆min be the largest integer such that εl∆min
≥ C∆min for some well-chosen absolute

constant C > 0. We show that on the good event F , no more than l∆min
G-optimal Exploration and

Elimination phases are needed to find the best action. For all phases l ≥ l∆min
, the algorithm always

chooses x∗, and suffers no regret.

Fact 2 We show that on the good event F , for each phase l, ∆̂l ≤ c (∆ ∨ εl) for some constant c.
Lemma 8 then implies that for all l ≤ L(0) and all τ > 0, κ(∆̂l) ≤ cκ(∆∨ εl) ≤ c(1 + εlτ

−1)κ(∆∨
τ).

Fact 3 Let l∆ 6= be the largest integer such that εl∆ 6= ≥ C∆ 6= for some well-chosen absolute constant

C > 0. On the good event F , if the algorithm enters the ∆̂l-optimal Exploration and Elimination
phase at round l ≥ l∆ 6= , we show that the algorithm finds the best group at this phase. This implies
that L(0) ≤ l∆ 6= .

Fact 4 We denote by LT the largest integer l such that εl ≥ (κ∗ log(T)/T)
1/3. Since κ∗ ≥ κ(∆̂l)

for all l ≥ 1, we see that if the algorithm enters the Recovery phase, we must have LT ≤ L(0), and
εL(0) ≤ εLT ≈ εT .

22

Using Fact 1, we find that the regret can be written as

RT ≤ 2TP (F) + E|F

[∑
l≤l∆min

∑
z∈{−1,+1}

∑
t∈Exp(z)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RGT

]

+E|F

[∑
l≤L(0)

∑
t∈Exp(0)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
R∆
T

]
+ E|F

[∑
t∈Recovery

(x∗ − xt)> γ∗︸ ︷︷ ︸
RRecT

]
.

Bound on RG
T . We rely on arguments similar to those used in Equation (7) to show that

RGT ≤ c(d+ 1) log(kl∆minT)ε−1
l∆min

. Since εl∆min
≥ C∆min, this implies that

RGT ≤
c(d+ 1) log(kl∆min

T)

∆min
≤ c′d log(T)

∆min

if T ≥ k.

Bound on R∆
T + RRec

T . We begin by bounding R∆
T . Recall that Equation (8) states that R∆

T ≤
cκ(∆̂L(0)

) log(lL(0)T)ε−2
L(0) . Using Fact 2, we find that for any τ > 0,

R∆
T ≤ cκ(∆ ∨ τ) log(lL(0)T)

(
ε−2
L(0) + ε−1

L(0)τ
−1
)
. (9)

Let us now consider two cases, corresponding to Recovery= ∅ and Recovery6= ∅.

Case 1: Recovery= ∅. On the one hand, our case assumption implies that

RRecT = 0.

On the other hand, by Fact 3, we know that on F , L(0) ≤ l∆ 6= . Then, using the definition of l∆ 6= and
Equation (9) with τ = ∆6=, we find that

R∆
T ≤ cκ(∆ ∨∆ 6=) log(L(0)T)∆−2

6= .

Case 2: Recovery6= ∅. All actions selected during the Recovery phase belong to X (−1)

L(0)+1
∪ X (+1)

L(0)+1
,

so on F these actions are sub-optimal by a gap at most cεL(0)+1, so RRecT ≤ cT εL(0)+1. Now, since
the algorithm enters the Recovery phase, we must have εL(0)+1 ≤ (κ(∆L(0)+1) log(T)/T)1/3, which
implies that

RRecT ≤ cκ(∆̂L(0)+1) log(T)

ε2
L(0)+1

.

Using Fact 2 with τ = εL(0) together with Equation (9), we find that

R∆
T +RRecT ≤ cκ(∆ ∨ εL(0)) log(T)

ε2
L(0)

.

On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before finding the best
group, we must have εL(0) ≥ εl∆ 6= . On the other hand, Fact 4 ensures that εL(0) ≤ εT . Thus,

RRecT ≤ cκ(∆ ∨ εT) log(T)

∆2
6=

.

Conclusion Combining these results, we find that

RT ≤ c

(
d

∆min
∨ κ(∆ ∨∆ 6=)

∆2
6=

∨ κ(∆ ∨ εT)

∆2
6=

)
log(T)

when T ≥ k. Using Lemma 8, we get that κ(∆ ∨∆ 6=) ∨ κ(∆ ∨ εT) ≤ κ(∆ ∨∆ 6= ∨ εT), which
concludes the proof of the results.

23

C.1.3 Outline of the Proof of Theorem 4

We outline the main ingredients used to prove Theorem 4. Theorem 3 relies on similar arguments.

To prove the lower bounds, we need to construct two close problem instances with optimal actions
belonging to different groups - to obtain the part of the lower bound involving ∆ 6= - and in addition
we must also create confusing instances with different optimal actions belonging to a same group - to
obtain the part of the lower bound involving ∆min. This is done by considering the following set of
actions and of problems.

Lemma 10. Set A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where

(
xi
zxi

)
= ei + ed+1, for i ∈ {2, ..., bd/2c},(

xi
zxi

)
= ei − ed+1 for i ∈ {bd/2c+ 1, ..., d}, and

(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. It holds

that

min
π∈PAed+1

e>d+1

 ∑
(xz)∈A

π(x)

(
x

zx

)(
x

zx

)>
+

ed+1

 = κ∗.

We also define the following parameters:

γ(1) =
1 + ∆ 6= −∆min

2

 ∑
1≤j≤bd/2c

ej

+
1−∆ 6= −∆min

2

 ∑
bd/2c+1≤j≤d

ej


+∆mine1 + ∆minebd/2c+1

γ(i) = γ(1) + 2∆minei + 2∆minebd/2c+i ∀i ∈ {2, ..., bd/2c}

γ(bd/2c+1) =
1−∆ 6= −∆min

2

 ∑
1≤j≤bd/2c

ej

+
1 + ∆ 6= −∆min

2

 ∑
bd/2c+1≤j≤d

ej


+∆mine1 + ∆minebd/2c+1.

The bias parameters are given by ω(i) = −∆ 6=
2 ∀i ∈ {1, ..., bd/2c}, and ω(bd/2c+1) =

∆ 6=
2 . The

parameters θ(i) =
(
γ(i)

ω(i)

)
characterize bd/2c + 1 problems, with noise distribution i.i.d. N (0, 1).

We write Problem i for the problem characterized by θ(i). Note that by construction and for any
i ∈ {1, ..., bd/2c+ 1}, we have that θ(i) ∈ ΘA∆min,∆ 6=

.

The following facts hold:

• For any i ∈ {1, ..., bd/2c+ 1}, action xi is the unique optimal action in Problem i. Since
1/2 ≥ ∆ 6= ≥ ∆min, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least ∆min. Moreover, choosing an action in the group −zi leads to an instantaneous
regret of at least ∆ 6=.

• In Problem i for any i ∈ {1, ..., bd/2c+ 1}, action d+ 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1− 2/(

√
κ∗ + 1))(1−∆ 6= + ∆min) + (1 +

∆ 6= + ∆min)/2 ≥ 1/2, since κ∗ ≥ 1 and 1/2 ≥ ∆ 6= ≥ ∆min. This action is the worst
action in all problems.

• Many actions are such that their distributions are the same across problems. More specifi-
cally:

– For any i ∈ {2, ..., bd/2c}, between Problem 1 and Problem i, the only actions that
provide different evaluations when sampled are action i and action bd/2c+ i, and the
mean difference between the evaluations in both cases is 2∆min.

– Between Problem 1 and Problem bd/2c+ 1, the only actions that provide different
evaluations when sampled is action d+1, and the mean gap in this case is 2√

κ∗+1∆ 6= :=

α∆ 6=.

The proof is then divided in two parts, one part for proving the part of the bound depending on ∆min

and one part for proving the part of the bound depending on ∆ 6=.

24

Part of the bound depending on ∆min. This part of the proof is obtained using classical arguments
for K-armed bandit problems. For i ∈ {2, ..., bd/2c, all actions but xi and xbd/2c+i have the same
feedback under Problem 1 and Problem i. On the other hand, the average feedback for actions xi
and xbd/2c+i differs by 2∆min, so either action needs to be selected approximately log(T)

∆2
min

times in
order to identify the problem at hand with high enough probability. In Problem 1, the simple regret
for choosing xi or xbd/2c+i is larger than ∆min, so the total regret obtained when doing this is at least
of the order log(T)

∆min
. Summing over the different actions i leads to a lower bound of the order d log(T)

∆min
.

Part of the bound depending on ∆ 6=. To obtain the second part of the lower bound, we note
that all actions but xd+1 have the same feedback under Problem 1 and Problem bd/2c + 1. The
average feedback for actions xd+1 differs by α∆ 6= under these parameters, so action xd+1 needs to
be selected approximately log(T)

α2∆2
6=

& log(T)κ∗
∆2
6=

times to identify the problem at hand with high enough

probability. Since selecting action xd+1 leads to an simple regret larger than 1/2 under Problem 1,
this implies that the regret must be at least of the order κ∗ log(T)

∆2
6=

.

Bounds on κ(∆) Finally, the following lemma allows to express κ(∆) as a function of κ∗.
Lemma 11. For any i ∈ {1, ..., bd/2c+ 1}, the gap vector ∆ verifies

κ(∆) =
(1 +

√
κ∗)

2∆d+1

4

where ∆d+1 = maxi(xi − xd+1)>γ(i).

On the one hand, since κ∗ ≥ 1, we see that κ∗ ≤ (1 +
√
κ∗)

2 ≤ 4κ∗. On the other hand,
1/2 ≤ ∆d+1 ≤ 2, so κ(∆) ∈

[
κ∗
8 , 2κ∗

]
.

C.2 Proof of Theorem 1

We begin by defining for z ∈ {−1, 0,+1}

L(z) = max
{
l ≥ 1 : Explore(z)

l = True
}

the largest integer l such that Explore(z)
l = True. Recall that κ∗ is the ed+1-optimal variance. By

definition of the algorithm, for all l ≤ L(0) + 1, ∆̂l ≤ 2, so κ(∆̂l) ≤ 2κ∗. Now, let us also define

LT = max

{
l ≥ 1 : εl >

(
2κ∗ log(T)

T

)1/3
}
.

Then, if Recovery6= ∅, we must have L(0) ≥ LT . Moreover, we see that since εLT = 22−LT , we
have LT ≤ 2 + log2(T/(2κ∗ log(T)))

3 ≤ 3 log2 (T) when T > 1.

We define a "bad" event F , such that, on F , our estimators γ̂(z)
l and ω̂(z)

l are close to the true
parameters γ∗ and ω∗ for all rounds l. More precisely, let

F =
⋃
l≥1

Fl, (10)

where for l ≥ 1

Fl =

∃z ∈ {−1, 1} such that Explore(z)
l = True, and x ∈ X (z)

l such that

∣∣∣∣∣∣
(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>(
x

zx

)∣∣∣∣∣∣ ≥ εl
⋃{

Explore(0)
l = True and

∣∣∣ω̂(0)
l − ω

∗
∣∣∣ ≥ εl} .

Then, the regret decomposes as

RT ≤
∑
t≤T

E|F
[
(x∗ − xt)>γ∗

]
+ 2TP [F] . (11)

The following lemma relies on concentration of Gaussian variables to bound the probability of the
event F .

25

Lemma 12. P (F) ≤ 2δ.

Now, the first term of (11) can be decomposed as

∑
t≤T

(x∗ − xt)>γ∗ ≤
∑

z∈{−1,0,+1}

L(z)+1∑
l=1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗ +
∑

t∈Recovery

(x∗ − xt)>γ∗,

where we use as convention that the sum over an empty set is null. Note that for z ∈ {−1,+1},
during the phase Exp(z)

l the algorithm only samples actions from X (z)
l . By contrast, during the

phase Exp(0)
l , even actions eliminated from the sets X (z)

l can be sampled. Finally, if the algorithm
stops during phase Exp(0)

L(0)+1
, but does not have enough budget to complete the last ∆̂l-optimal

Exploration and Elimination Phase, it samples the remaining actions in the set X (−1)

L(0)+2
∪ X (+1)

L(0)+2
.

Hence, the first term of (11) can be upper-bounded by

∑
t≤T

(x∗ − xt)>γ∗ ≤
∑

z∈{−1,+1}

LT∑
l=1

 ∑
x∈X (z)

l

µ
(z)
l (x)

 max
x∈X (z)

l

(x∗ − x)>γ∗ (12)

+
∑

z∈{−1,+1}

L(z)+1∑
l=LT+1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗ +
∑

t∈Recovery

(x∗ − xt)>γ∗

+

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x + 1

{
Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗.

We begin by bounding the sum of the regret corresponding to the Recovery phase and to the phases
Exp(z)

L for z ∈ {−1,+1} and l > LT on the event F .

Bound on
∑

z∈{−1,+1}

L(z)+1∑
l=LT+1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗ +
∑

t∈Recovery

(x∗ − xt)>γ∗.

Lemma 13. Let x∗ ∈ argmaxx∈X x
>γ∗ be an optimal action. Then, on the event F defined in

Equation (10), for l ≥ 1 such that Explore(zx∗)
l = True,

X (zx∗)
l+1 ⊂

{
x ∈ X (zx∗)

1 : (x∗ − x)>γ∗ < 10εl+1

}
. (13)

Moreover, for l ≥ 1 such that Explore(−zx∗)
l = True,

X (−zx∗)
l+1 ⊂

{
x ∈ X (−zx∗)

1 : (x∗ − x)>γ∗ < 42εl+1

}
.

Recall that if Recovery 6= ∅, L(0) ≥ LT . Then, all actions sampled during the Recovery phase belong
to X (−1)

l+1 ∪ X
(+1)
l+1 for some l ≥ LT . Lemma 13 shows that, on F , for l ≥ LT , the actions in X (z)

l+1

are sub-optimal by at most 42εLT+1. Then, we get that on the event F ,

∑
z∈{−1,+1}

L(z)+1∑
l=LT+1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗ +
∑

t∈Recovery

(x∗ − xt)>γ∗ ≤ T × 42εLT+1

≤ 53κ
1/3
∗ T 2/3 log(T)1/3.(14)

26

Bound on
L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x + 1

{
Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ −

x)>γ∗.
We begin by bounding 1

{
Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗−x)>γ∗.Recall

that n(0)

L(0)+1
=
∑
x∈X

µ
(0)

L(0)+1
(x) is the budget that would be necessary to complete the ∆̂l-optimal

Exploration and Elimination phase at phase L(0) + 1. On the one hand, Lemma 13 implies that on
the event F ,

1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗ ≤ 42n
(0)

L(0)+1
εL(0)+2 ≤ 21n

(0)

L(0)+1
εL(0)+1.

On the other hand, for all l ≤ L(0) + 1, the definition of ∆̂l implies that ∆̂l
x ≥ εl for all x ∈ X .

Therefore, 21n
(0)

L(0)+1
εL(0)+1 ≤ 21n

(0)

L(0)+1
minx ∆̂L(0)+1

x . This implies that on F ,

1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗ ≤ 21
∑
x∈X

µ
(0)

L(0)+1
(x)∆̂L(0)+1

x . (15)

Next, to bound the remaining terms of Equation (12), we bound the regret
∑
x∈X

µ
(0)
l (x)∆x of explo-

ration phase Exp(0)
l using the following lemma.

Lemma 14. For all l > 0, and z ∈ {−1,+1}, we have∑
x∈X (z)

l

µ
(z)
l (x) ≤ 2(d+ 1)

ε2l
log

(
kl(l + 1)

δ

)
+

(d+ 1)(d+ 2)

2
.

and on F , we have∑
x∈X

µ
(0)
l (x)∆x ≤

∑
x∈X

µ
(0)
l (x)∆̂l

x ≤
2κ(∆̂l)

ε2l
log

(
l(l + 1)

δ

)
+ 2(d+ 1).

Then, Equation (15) and Lemma 14 imply that on F

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x + 1

{
Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗

≤ 21

L(0)+1∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x

≤ 42

L(0)+1∑
l=1

κ(∆̂l)

ε2l
log

(
l(l + 1)

δ

)
+ 42(d+ 1)(L(0) + 1)

(16)

We rely on the following Lemma to bound κ(∆̂l).

Lemma 15. On F , we have for any l ≥ 1 and any τ > 0

κ(∆̂l) ≤ 513
(

1 +
εl
τ

)
κ(∆ ∨ τ).

and
κ(∆̂l) ≥ κ(∆ ∨ εl).

27

Lemma 14 and Lemma 15 with τ = εL(0) imply that on F ,
L(0)+1∑
l=1

κ(∆̂l)

ε2l
log

(
l(l + 1)

δ

)
≤ 513κ(∆ ∨ εL(0)) log

(
(L(0) + 1)(L(0) + 2)

δ

)L(0)+1∑
l=1

1

ε2l
+

L(0)+1∑
l=1

1

εlεL(0)


≤ 513κ(∆ ∨ εL(0)) log

(
6L(0)

δ

)(
16

ε2
L(0)

+
4

ε2
L(0)

)
≤ 10260 log

(
6L(0)

δ

)
κ(∆̂L(0)

)

ε2
L(0)

(17)

where the last line follows from the second claim of Lemma 15. Now, by definition of L(0),

εL(0) ≥
(
κ(∆̂L(0)

) log(T)/T
)1/3

. Then, Equation (17) implies that

L(0)+1∑
l=1

κ(∆̂l)

ε2l
log

(
l(l + 1)

δ

)
≤ 10260 log

(
6L(0)

δ

)
κ(∆̂L(0)

)1/3 log(T)−2/3T 2/3. (18)

Moreover, we observe that during each phase l, but the last one, we sample at least

max
z∈{−1,1}

∑
x∈X (z)

l

τ
(z)
l,x ≥

2(d+ 1)

δ2
l

log(kl(l + 1)/δ)

actions during the G-optimal explorations, so the number of phases L(0) is never larger than
`T = 1 ∨ log4(T).

Using this remark, together with Equations (16) and (18), we find that on F
L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x + 1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗

≤ 219 log

(
6L(0)

δ

)
κ(∆̂L(0)

)T 2/3 log(T)−2/3 + 42`T . (19)

Bound on
∑

z∈{−1,+1}

LT∑
l=1

 ∑
x∈X (z)

l

µ
(z)
l (x)

 max
x∈X (z)

l

(x∗ − x)>γ∗. We bound the remaining term in

Equation (12) using the first claim in Lemma 14 and Lemma 13. On F ,

∑
z∈{−1,+1}

LT∑
l=1

 ∑
x∈X (z)

l

µ
(z)
l (x)

 max
x∈X (z)

l

(x∗ − x)>γ∗ ≤ 2

LT∑
l=1

(
2(d+ 1)

ε2l
log

(
kl(l + 1)

δ

)
+

(d+ 1)(d+ 2)

2

)
42εl

≤ 336(d+ 1)

εLT
log

(
kLT (1 + LT)

δ

)
+ 168(d+ 1)(d+ 2)

≤ 267(d+ 1)κ
−1/3
∗ T 1/3 log(T)−1/3 log

(
kLT (1 + LT)

δ

)
+168(d+ 1)(d+ 2). (20)

Combing Equations (11), (12), (14), (19), and (20), and using δ = T−1, κ(∆̂L(0)

) ≤ κ∗ and
LT ≤ 4T/ log(2), we get for all T ≥ 1

RT ≤ C
(
κ

1/3
∗ T 2/3 log(T)1/3 + (d ∨ κ∗) log(T) + d2 + dκ

−1/3
∗ T 1/3 log(kT) log(T)−1/3

)
for some absolute constant C > 0. Finally, for

T ≥
(
(d ∨ κ∗)3/2 log(T)

)
∨ d3

√
κ∗

∨ (d log(kT))3

(κ∗ log(T))2
,

we get
RT ≤ C ′κ1/3

∗ T 2/3 log(T)1/3.

28

C.3 Proof of Theorem 2

The beginning of the proof of Theorem 2 follows the same lines as the proof of Theorem 1. We begin
by decomposing the regret as

RT ≤
∑
t≤T

E|F
[
(x∗ − xt)>γ∗

]
+ 2TP [F] . (21)

where F is defined in Equation (10). On the one hand, Lemma 12 implies TP [F] ≤ 2δT . Then,
Equation (21) implies

RT ≤ 4δT + E|F

 ∑
z∈{−1,+1}

L(z)+1∑
l≥1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗

+ E|F

 ∑
t∈Recovery

(x∗ − xt)>γ∗
 (22)

+E|F

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x

+ E|F

1{Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗


where F is defined in Equation (10), and where we used the convention that the sum over an empty
set is null.

Bound on 1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X

L(z)+1
(x∗ − x)>γ∗.

Similarly to the proof of Theorem 1, we use Lemma 13 and Lemma 15 to show that on F

1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X

L(z)+1
(x∗ − x)>γ∗ ≤ 21

∑
x∈X

µ
(0)

L(0)+1(x)∆̂L(0)+1
x . (23)

Bound on
∑

z∈{−1,+1}

L(z)+1∑
l≥1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗.

Lemma 13 shows that for l ≤ L(z), the actions in X (z)
l+1 are sub-optimal by at most an additional

factor at most 21εl. Let us set l∆min
= d− log2(∆min/21)e, so that

∆min

42
≤ εl∆min

≤ ∆min

21
.

For l ≥ l∆min
, we have X (−1)

l+1 ∪ X
(+1)
l+1 = {xz∗}. Thus, l(−zx∗) ≤ l∆min

, and for l ≥ l∆min
, the

algorithm selects only x∗ during the phase Exp(z∗)
l . Then, combining Lemmas 14 and 13, and the

fact that L(z) + 1 ≤ `T , we find that, on F ,

∑
z∈{−1,+1}

L(z)+1∑
l=1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗ ≤
∑

z∈{−1,+1}

l∆min
+1∧`T∑
l=1

 ∑
x∈X (z)

l

µ
(z)
l (x)

 max
x∈X (z)

l

(x∗ − x)>γ∗

≤ 2

l∆min
+1∧`T∑
l=1

(
2(d+ 1)

ε2l
log

(
kl(l + 1)

δ

)
+

(d+ 1)(d+ 2)

2

)
42εl

≤ 84(d+ 1)(d+ 2) + ε−1
l∆min

× 672(d+ 1) log

(
k(1 + `T)(2 + `T)

δ

)
≤ 84(d+ 1)(d+ 2) +

28224(d+ 1)

∆min
log

(
k(1 + `T))(2 + `T))

δ

)
.(24)

Bound on
∑

t∈Recovery

(x∗ − xt)>γ∗ +

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x +

∑
x∈X

µ
(0)

L(0)+1
(x)∆̂L(0)+1

x .

29

We use the following lemma to bound the number of phases necessary to eliminate the sub-optimal
group.

Lemma 16. On the event F defined in Equation (10), for l ≥ 1 such that εl ≤ ∆ 6=
8 and Explore(0)

L =

True, ẑ∗l+1 = zx∗ .

Let l∆ 6= = d− log(∆6=/8)/ log(2)e be such that

∆ 6=
16
≤ εl∆ 6= ≤

∆ 6=
8
. (25)

Lemma 16 implies that on F , L(0) ≤ l∆ 6= .

To bound the remaining terms, we consider two cases, corresponding to Recovery= ∅ and Recovery6=
∅.

Case 1: Recovery= ∅. Our case assumption implies that∑
t∈Recovery

(x∗ − xt)>γ∗ = 0. (26)

Lemma 15 implies that

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x +

∑
x∈X

µ
(0)

L(0)+1
(x)∆̂L(0)+1

x ≤
L(0)+1∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x.

Moreover, L(0) ≤ l∆ 6= ∧ `T , so on F

L(0)+1∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x ≤
(l∆ 6=∧`T)+1∑

l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x.

Using Lemma 14, we find that on F

(l∆ 6=∧`T)+1∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x ≤
(l∆ 6=∧`T)+1∑

l=1

2κ(∆̂l)

ε2l
log

(
l(l + 1)

δ

)
+ 2(d+ 1)(`T + 1)

≤ 2 log

(
(`T + 1)(`T + 2)

δ

) l∆ 6=+1∑
l=1

κ(∆̂l)

ε2l
+ 2(d+ 1)(`T + 1).

Using Lemma 15 with τ = ∆6= and (25), we have on F

l∆ 6=+1∑
l=1

κ(∆̂l)

ε2l
≤ 513κ(∆ ∨∆ 6=)

l∆6=+1∑
l=1

(
ε−2
l + ε−1

l /∆ 6=
)

≤ 218κ(∆ ∨∆ 6=)

∆2
6=

.

We obtain on F

L(0)+1∑
l=1

∑
x∈X

µ
(0)
l (x)∆̂l

x ≤ 219 log

(
(`T + 1)(`T + 2)

δ

)
κ(∆ ∨∆ 6=)

∆2
6=

+ 2(d+ 1)(`T + 1).(27)

30

Combining Equations (24), (23), (26), and (27), we find that on F , when Recovery= ∅, there exsists
an absolute constant c > 0 such that for δ = T−1,

∑
z∈{−1,+1}

L(z)+1∑
l≥1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗+
∑

t∈Recovery

(x∗ − xt)>γ∗ +

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x (28)

+1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗

≤ c
(
d2+

(
d

∆min
∨ κ(∆ ∨∆ 6=)

∆2
6=

)
log(T) +

d

∆min
log(k)

)
.

Case 2: Recovery 6= ∅. In this case, the algorithm enters Recovery at phase L(0), so

Explore(0)

L(0)+1
=False and Exp(0)

L(0)+1
= ∅, and

1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗ = 0. (29)

Using Lemma 13, we see that ∑
t∈Recovery

(x∗ − xt)>γ∗ ≤ 21TεL(0)+1.

On the other hand, in the Recovery phase, εL(0)+1 ≤
(
κ(∆̂L(0)+1) log(T)/T)

)1/3

. Thus,

∑
t∈Recovery

(x∗ − xt)>γ∗ ≤
21κ(∆̂L(0)+1) log(T)

ε2
L(0)+1

.

Now, Lemma 14 show that

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x ≤ 4 log(2L(0)δ−1)

L(0)∑
l=1

κ(∆̂l)

ε2l
+ 4dL(0).

Combining these results, and using L(0) ≤ `T , we see that

∑
t∈Recovery

(x∗−xt)>γ∗+
L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x ≤ 4dL(0)+

(
4 log(2`T δ

−1) ∨ 21 log(T)
) L(0)+1∑

l=1

κ(∆̂l)

ε2l
.

(30)
Using Lemma 15 with τ = εL(0) , we see that

L(0)+1∑
l=1

κ(∆̂l)

ε2l
≤ 513

L(0)+1∑
l=1

κ(∆ ∨ εL(0))

ε2l
+ 513

L(0)+1∑
l=1

κ(∆ ∨ εL(0))

εL(0)εl

≤ 10260
κ(∆ ∨ εL(0))

ε2
L(0)

.

Now, the algorithm enters the Recovery phase before finding the best group, so we must have
L(0) ≤ l∆ 6= . This implies that

L(0)+1∑
l=1

κ(∆̂l)

ε2l
≤ 218κ(∆ ∨ εL(0))

∆2
6=

.

31

Finally, note that L(0) ≥ LT , so εL(0) ≤ εLT = εT , and

L(0)+1∑
l=1

κ(∆̂l)

ε2l
≤ 218κ(∆ ∨ εT)

∆2
6=

. (31)

Combining Equations (24), (29), (30), and (31), we find that on F , when Recovery 6= ∅, there exists
an absolute constant c > 0 such that for δ = T−1,

∑
z∈{−1,+1}

L(z)+1∑
l≥1

∑
t∈Exp(z)

l

(x∗ − xt)>γ∗+
∑

t∈Recovery

(x∗ − xt)>γ∗ +

L(0)∑
l=1

∑
x∈X

µ
(0)
l (x)∆x (32)

+1
{

Explore(0)

L(0)+1
= False

} ∑
t∈Exp(0)

L(0)+1

max
x∈X (−1)

L(0)+2
∪X (+1)

L(0)+2

(x∗ − x)>γ∗

≤ c
(
d2+

(
d

∆min
∨ κ(∆ ∨ εT)

∆2
6=

)
log(T) +

d log(k)

∆min

)
.

Conclusion We conclude the proof of Theorem 2 by combining Equations (22), (28) and (32).

C.4 Proof of Theorem 3

Consider the actions A defined in the following lemma.

Lemma 17. Let the action set be given by A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where

(
x1

zx1

)
= e1 + ed+1,(

xi
zxi

)
= ei − ed+1 for i ∈ {2, ..., d}, and

(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. It holds that

min
π∈PA

e>d+1

 ∑
(xz)∈A

πx

(
x

zx

)(
x

zx

)>
+

ed+1

 = κ.

By Lemma 17, A ∈ Aκ∗,d. We will introduce two bandit problems characterized by two parameters
θ

(1)
T and θ(2)

T - assuming that the noise ξt is Gaussian and i.i.d. - and we prove that for any algorithm,
the regret for one of those two problems must be of larger order than κ1/3

∗ T 2/3.

We also consider the following two alternative problems. For a small 1/4 > ρT > 0 where
ρT = T−1/3κ

1/3
∗ (satisfied since T > 43κ∗), the two alternative action parameters are defined as:

γ
(1)
T =

1 + ρT
2

e1 +
1− ρT

2
e2 −

ρT
2

 ∑
3≤j≤d

ej


γ

(2)
T =

1− ρT
2

e1 +
1 + ρT

2
e2 +

ρT
2

 ∑
3≤j≤d

ej

 .

On top of this, two bias parameters are defined as ω(1)
T = −ρT2 and ω(2)

T = ρT
2 . Through this, we

define the two bandit problems of the sketch of proof of Lemma 17 characterized by θ(1)
T =

(
γ

(1)
T

ω
(1)
T

)
and θ(2)

T =

(
γ

(2)
T

ω
(2)
T

)
- and where the distribution of the noise ξt is supposed to be Gaussian and i.i.d.

We refer to these two problems respectively as Problem 1 and Problem 2. We write R(1)
T , P(1) and

32

E(1) (respectively R(2)
T , P(2) and E(2)) for the regret, probability and expectation for the first bandit

problem, when the parameter is θ(1)
T (respectively the second bandit problem with θ(2)

T). We also
write P(i)

j for the distribution of a sample received in Problem i when sampling action xj at any
given time t - note that by definition of the bandit problems, this distribution does not depend on t
and on the past samples given that action xj is sampled.

The three following facts hold on these two bandit problems:

Fact 1 The parameters γ(1)
T and γ(2)

T are chosen so that x1 is the unique best action for Problem 1,
and x2 is the unique best action for Problem 2. Choosing any sub-optimal action induces an
instantaneous regret of at least ρT , and choosing the very sub-optimal action xd+1 induces
an instantaneous regret of at least 1/2.

Fact 2 Because of the chosen bias parameters, the distributions of the evaluations of all actions but
xd+1 are exactly the same under the two bandit problems characterized by θ(1) and θ(2)

T -
i.e. exactly the same data is observed under the two alternative bandit problems defined by
the two alternative parameters for all actions but xd+1. More precisely, for i ∈ {1, 2}, in
Problem i and at any time t, when sampling action xi where i ≤ 2, we observe a sample
distributed according to N (1/2, 1) - i.e. P(i)

j is N (1/2, 1) - and when sampling action xi
where 2 < i ≥ d + 1, we observe a sample distributed according to N (0, 1) - i.e. P(i)

j is
N (0, 1).

Fact 3 The distributions of the outcomes of the evaluation of action xd+1 differs in the two bandit
problems. Set α = 2/(

√
κ∗ + 1). In Problem 1, P(1)

d+1 is N (− 1−α−ρTα
2 , 1). In Problem 2,

P(2)
d+1 is N (− 1−α+ρTα

2 , 1). So that the difference between the means of the evaluations of
action xd+1 in the two bandit problems is ∆̄ = ρTα = 2ρT√

κ∗+1 ≤
2ρT√
κ∗

.

For i ≤ d+ 1, we write Ni(T) for the number of times that action xi has been selected before time
T . In Problem 1, choosing the action xd+1 leads to an instantaneous regret larger than 1

2 (Fact 1), so
that

R
(1)
T ≥

E(1)
[
Nxd+1

(T)
]

2
.

If E(1) [Nd+1(T)] ≥ T 2/3κ1/3
∗

2 , then Theorem 1 follows immediately; we therefore consider from
now on the case when

E(1) [Nd+1(T)] ≤ T 2/3κ
1/3
∗

2
. (33)

Now, let us define the event

F =

{
N1(T) ≥ T

2
κ

1/3
∗

}
.

Note that action x1 is optimal for Problem 1 and that action x2 is optimal for Problem 2 (Fact 1).
Since choosing an action that is sub-optimal leads to an instantaneous regret larger than ρT (Fact 1),
we also have

R
(1)
T ≥

TρT
2

P(1)
(
F
)

and

R
(2)
T ≥

TρT
2

P(2) (F) .

Then, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]) implies that

R
(1)
T +R

(2)
T ≥

TρT
4

exp
(
−KL

(
P(1),P(2)

))
.

For the choice ρT = T−1/3κ
1/3
∗ , this implies that

R
(1)
T +R

(2)
T ≥

T 2/3κ
1/3
∗

4
exp

(
−KL

(
P(1),P(2)

))
. (34)

33

Now, the Kullback-Leibler divergence between P(1) and P(2) can be rewritten as follows (see, e.g.,
Lemma 15.1 in [24]) :

KL(P(1),P(2)) =
1

2

∑
j≤d+1

E(1) [Nj(T)]KL(P(1)
j ,P(2)

j).

By Fact 2, we have that for any j ≤ d, P(1)
j = P(2)

j . So that

KL(P(1),P(2)) =
1

2
E(1) [Nd+1(T)]KL(P(1)

d+1,P
(2)
d+1).

By the characterization of P(1)
d+1,P

(2)
d+1 in Fact 3, and recalling that the Kullback-Leibler divergence

between two normalized Gaussian distributions is given by the squared distance between their means,
we find that

KL(P(1),P(2)) =
1

2
E(1) [Nd+1(T)] ∆̄2.

Thus, by the definition of ∆̄ in Fact 3 and by Equation (33)

KL
(
P(1),P(2)

)
=

1

2
E(1) [Nd+1(T)]

(
2ρT√
κ∗ + 1

)2

≤ T 2/3κ
1/3
∗

4
× 4ρ2

T

κ∗
= 1, (35)

reminding that ρT = T−1/3κ
1/3
∗ .

Combining Equations (34) and (35) implies that

max
{
R

(1)
T , R

(2)
T

}
≥ T 2/3κ1/3

8
exp(−1),

which concludes the proof of Theorem 3.

C.5 Proof of Theorems 4

Theorems 4 follows directly from the next Theorem.

Theorem 6. For all κ∗ ≥ 1 and all d ≥ 4, there exists an action set A ∈ Aκ∗,d, such that for all
bandit algorithms, for all (∆min,∆ 6=) ∈ (0, 1/8)2 with ∆min ≤ ∆ 6=, and for all budget T ≥ 2, there
exists a problem characterized by θ ∈ ΘA∆min,∆ 6=

such that the regret of the algorithm on the problem
satisfies

RθT ≥

 d

10∆min
log (T)

1−
log
(

8d log(T)
∆2

min

)
log (T)

 ∨
κ∗ + 1

4∆2
6=

log (T)

1−
log
(

8κ∗ log(T)
∆3
6=

)
log (T)




∨

[
κ∗

4∆2
6=

[
1 ∧ log

(
T∆3
6=

8κ∗

)]]
. (36)

Moreover, on this problem, κ(∆) ∈ [κ∗/8, 2κ∗].

Remark 1. Note that Theorem 6 allows us to recover a lower bound similar to that of Theorem 3 by
choosing ∆ 6= and ∆min of the order κ1/3

∗ T−1/3, however this bound only holds for d larger than 4.

We prove Theorem 6 for the following set of actions A: A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where(

xi
zxi

)
= ei + ed+1, for i ∈ {2, ..., bd/2c},

(
xi
zxi

)
= ei − ed+1 for i ∈ {bd/2c + 1, ..., d}, and(

xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. Then, by Lemma 10, for this choice of action set, we have

A ∈ Aκ∗,d.

34

We consider the following set of bandit problems: for i ∈ {1, ..., bd/2c+1} Problem i is characterized
by the parameter θ(i), where θ(i) =

(
γ(i)

ω(i)

)
is defined as:

γ(1) =
1 + ∆ 6= −∆min

2

 ∑
1≤j≤bd/2c

ej

+
1−∆ 6= −∆min

2

 ∑
bd/2c+1≤j≤d

ej

+ ∆mine1 + ∆minebd/2c+1

γ(i) = γ(1) + 2∆minei + 2∆minebd/2c+i ∀i ∈ {2, ..., bd/2c}

γ(bd/2c+1) =
1−∆ 6= −∆min

2

 ∑
1≤j≤bd/2c

ej

+
1 + ∆ 6= −∆min

2

 ∑
bd/2c+1≤j≤d

ej

+ ∆mine1 + ∆minebd/2c+1,

and the bias parameters are defined as ω(i) = −∆ 6=
2 ∀i ∈ {1, ..., bd/2c}, and otherwise ω(bd/2c+1) =

∆6=
2 . We write E(i),P(i), R

(i)
T for resp. the probability, expectation, and regret, in Problem i. Note

that this choice of parameters ensures that ∀i ∈ {1, ..., bd/2c+ 1}, θ(i) ∈ ΘA∆min,∆ 6=
.

Set A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where

(
xi
zxi

)
= ei + ed+1, for i ∈ {2, ..., bd/2c},

(
xi
zxi

)
=

ei − ed+1 for i ∈ {bd/2c+ 1, ..., d}, and
(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. Then, Lemma 10

shows that A ∈ Aκ∗,d.

The following facts hold:

Fact 1 For any i ∈ {1, ..., bd/2c+ 1}, action xi is the unique optimal action in Problem i. Since
1/2 ≥ ∆ 6= ≥ ∆min, sampling any other (sub-optimal) action leads to an instantaneous regret
of at least ∆min. Moreover, choosing an action in the group −zi leads to an instantaneous
regret of at least ∆ 6=.

Fact 2 In Problem i for any i ∈ {1, ..., bd/2c+ 1}, action d+ 1 is very sub-optimal and sampling
it leads to an instantaneous regret higher than (1− 2/(

√
κ∗ + 1))(1−∆ 6= + ∆min) + (1 +

∆ 6= + ∆min)/2 ≥ 1/2, since κ∗ ≥ 1 and 1/2 ≥ ∆ 6= ≥ ∆min.
Fact 3 In Problem i, for i ∈ {1, ..., bd/2c+ 1}, when sampling action xj at time, t the distribution

of the observation does not depend on t or on the past (except through the choice of xj) and
is P(i)

j . It is characterized as:

∀i ∈ {1, ..., bd/2c+ 1},P(i)
1 ,P(i)

bd/2c+1 are N ((1 + ∆min)/2, 1)

∀i ∈ {1, ..., bd/2c+ 1},∀j ∈ {2, ..., d} \ {bd/2c+ 1, i, bd/2c+ i},P(i)
j is N ((1−∆min)/2, 1),

∀i ∈ {2, bd/2c},P(i)
i is N ((1 + 3∆min)/2, 1) P(i)

bd/2c+i is N ((1 + 3∆min)/2, 1)

∀i ∈ {1, bd/2c},P(i)
d+1 is N (−(1− α)(1 + ∆ 6= + ∆min)/2 + ∆ 6=/2, 1),

P(bd/2c+1)
d+1 is N (−(1− α)(1−∆ 6= + ∆min)/2−∆ 6=/2, 1) where α = 2/(

√
κ∗ + 1).

So that:
Fact 3.1 For any i ∈ {2, ..., bd/2c}, between Problem 1 and Problem i, the only actions that

provide different evaluations when sampled are action i and action bd/2c+ i, and the
mean gaps in both cases is 2∆min.

Fact 3.2 Between Problem 1 and Problem bd/2c + 1, the only action that provide different
evaluation when sampled is action d+ 1, and the mean gap in this case is α∆ 6=.

For j ≤ d + 1, we write Nj(T) for the total number of times action xj has been selected before
time T . Then, for j ∈ {1, ..., bd/2c}, let E(j) = {Ni(T) ≤ T/2}. Note that for i ∈ {1, ..., bd/2c},
in Problem i the action xi is the optimal action. Therefore, for any efficient algorithm, for all i ∈
{1, ..., bd/2c} the event E(i) should have a low probability under P(i). Indeed, for i ∈ {1, ..., bd/2c},
the regret of the algorithm under Problem i can be lower-bounded as follows - see Facts 1 and 2:

R
(i)
T ≥

∑
j≤bd/2c, j 6=i

E(i) [Nj(T)] ∆min +
∑

bd/2c+1≤j≤d

E(i) [Nj(T)] ∆6= +
E(i) [Nd+1(T)]

2
.(37)

35

Since
∑
j E(i) [Nj(T)] = T and ∆min ≤ ∆ 6= ≤ 1

2 , this implies together with Facts 1:

R
(i)
T ≥

(
T − E(i) [Ni(T)]

)
∆min

Using the definition of E(i), we find that

R
(i)
T ≥ T∆min

2
P(i)

(
E(i)

)
. (38)

In particular for Problem 1, for any i ∈ {1, ..., bd/2c},

R
(1)
T ≥

T∆min

2
P(1)

(
E(i)

)
. (39)

since E(1) ⊃ E(i).

Similarly, let us also define the event F =

{ ∑
i≤bd/2c

Ni(T) ≥ T/2

}
. Then, in Problem 1, the group

1 contains the optimal action, and so for any efficient algorithm, the event F should have a low
probability under P(1). Indeed, Equation (37) also implies

R
(1)
T ≥

T − E(1)

 ∑
i≤bd/2c

Ni(T)

∆ 6= ≥
T∆ 6=

2
P(1)

(
F
)
. (40)

On the other hand, for any efficient algorithm, the event F should have high probability under
P(bd/2c+1). Indeed,under problem Problem bd/2c+ 1, the regret can be lower-bounded as follows -
see Facts 1 and 2:

R
(bd/2c+1)
T ≥

∑
j≤bd/2c

E(bd/2c+1) [Nj(T)] ∆6= +
∑

bd/2c+2≤j≤d

E(bd/2c+1) [Nj(T)] ∆min +
E(bd/2c+1) [Nd+1(T)]

2
.

which implies that

R
(bd/2c+1)
T ≥

∑
j≤bd/2c

E(bd/2c+1) [Nj(T)] ∆6= ≥
T∆ 6=

2
P(bd/2c+1) (F) . (41)

Now, Bretagnolle-Huber inequality (see, e.g., Theorem 14.2 in [24]) implies that for all i ∈
{2, ..., bd/2c},

1

2
exp

(
−KL

(
P(1),P(i)

))
≤ P(i)

(
E(i)

)
+ P(1)

(
E(i)

)
(42)

and that
1

2
exp

(
−KL

(
P(1),P(bd/2c+1)

))
≤ P(bd/2c+1) (F) + P(1)

(
F
)
. (43)

On the one hand, Equation (42) implies that for any i ∈ {2, ..., bd/2c},

KL
(
P(1),P(i)

)
≥ − log

(
2P(i)

(
E(i)

)
+ 2P(1)

(
E(i)

))
≥ log (T)− log

(
2TP(i)

(
E(i)

)
+ 2TP(1)

(
E(i)

))
. (44)

Combining Equations (38), (39), and (44), we find that

KL
(
P(1),P(i)

)
≥ log (T)− log

(
4(R

(i)
T +R

(1)
T)

∆min

)
. (45)

On the other hand, Equation (43) implies that

KL
(
P(1),P(bd/2c+1)

)
≥ − log

(
2P(bd/2c+1) (F) + 2P(1)

(
F
))

≥ log (T)− log
(

2TP(bd/2c+1) (F) + 2TP(1)
(
F
))
. (46)

36

Combining Equations (38), (39), and (46), we find that

KL
(
P(1),P(bd/2c+1)

)
≥ log (T)− log

(
4(R

(bd/2c+1)
T +R

(1)
T)

∆ 6=

)
. (47)

Also, note that for all i ∈ {2, ..., bd/2c+ 1}, the Kullback-Leibler divergence between P(1) and P(i)

can be decomposed as follows (see, e.g., Lemma 15.1 in [24]) :

KL(P(1),P(i)) =
∑
j≤d+1

E(1) [Nj(T)]KL(P(1)
j ,P(i)

j). (48)

Lower bound in d∆−1
min log T . By design, for i ∈ {2, ..., bd/2c}, all actions but xi and xbdc+i

have the same distribution under P(1) and P(i) - see Fact 3.1. Then, Equation (48) becomes from
Fact 3.1 and from the expression of KL divergence between standard Gaussian distributions:

KL(P(1),P(i)) =
4∆2

min

2
E(1) [Ni(T)] +

4∆2
min

2
E(1)

[
Nbdc+i(T)

]
.

So that, summing over i ∈ {2, ..., bd/2c}, and by Fact 1:∑
i∈{2,...,bd/2c}

KL(P(1),P(i)) ≤ 2∆minR
(1)
T .

So that by Equation (45) (summing over i ∈ {2, ..., bd/2c}):

2∆minR
(1)
T ≥

∑
i∈{2,...,bd/2c}

[
log (T)− log

(
4(R

(i)
T +R

(1)
T)

∆min

)]

= (bd/2c − 1) log (T)−
∑

i∈{2,...,bd/2c}

log

(
4(R

(i)
T +R

(1)
T)

∆min

)
.

Let us assume that our algorithm satisfies maxi≤bd/2cR
(i)
T ≤

d log(T)
∆min

- otherwise the bound immedi-
ately follows for this algorithm. Then

R
(1)
T ≥ 1

2∆min
(bd/2c − 1) log (T)− 1

2∆min

∑
i∈{2,...,bd/2c}

log

(
8d log T

∆2
min

)

≥ 1

2∆min
(bd/2c − 1)

[
log (T)− log

(
8d log (T)

∆2
min

)]
. (49)

Sine d ≥ 4, we note that bd/2c − 1 ≥ d/5. This concludes the proof for this part of the bound.

Lower bound in κ∗∆−2
6= log T . By design, all actions but xd+1 have the same evaluation under

Problem 1 and Problem bd/2c+ 1 - see Fact 3.2. Then, by Fact 3.2 and the expression between the
KL divergence of standard Gaussians, Equation (48) becomes

KL(P(1),P(bd/2c+1)) = E(1) [Nd+1(T)]
(α∆ 6=)

2

2
=

1

2
E(1) [Nd+1(T)]

(
2∆ 6=√
κ∗ + 1

)2

.

Combined with equation (47), this implies that

1

2
E(1) [Nd+1(T)]

(
2∆ 6=√
κ∗ + 1

)2

≥ log (T)− log

(
4(R

(bd/2c+1)
T +R

(1)
T)

∆ 6=

)
. (50)

Let us assume that our algorithm satisfies maxi≤bd/2c+1R
(i)
T ≤

κ∗ log(T)
∆2
6=

- otherwise the bound
immediately follows for this algorithm. We then have

1

2
E(1) [Nd+1(T)]

(
2∆ 6=√
κ∗ + 1

)2

≥ log (T)− log

(
8κ∗ log (T)

∆3
6=

)
.

Using Equation (37), we find that

R
(1)
T ≥ κ∗ + 1

4∆2
6=

[
log (T)− log

(
8κ∗ log (T)

∆3
6=

)]
. (51)

37

Lower bound in κ∗∆−2
6= . Let us assume that our algorithm satisfies maxi≤bd/2c+1R

(i)
T ≤

κ∗
∆2
6=

-
otherwise the bound immediately follows for this algorithm. Then, Equation (50) implies

1

2
E(1) [Nd+1(T)]

(
2∆6=√
κ∗

)2

≥ log (T)− log

(
8κ∗
∆3
6=

)
.

Using again Equation (37), we find that

R
(1)
T ≥ κ∗ + 1

4∆2
6=

log

(
T∆3
6=

8κ∗

)
. (52)

We conclude the proof of Theorem 6 by combining Equations (49), (51) and (52).

Bounds on κ(∆) Finally, Lemma 11 allows us to express κ(∆) as a function of κ∗. On the one
hand, since κ∗ ≥ 1, we see that κ∗ ≤ (1 +

√
κ∗)

2 ≤ 4κ∗. On the other hand, 1/2 ≤ ∆d+1 ≤ 2, so
κ(∆) ∈

[
κ∗
8 , 2κ∗

]
.

C.6 Extension of the gap-dependent lower bounds to d = 2, 3

Theorem 4 can be extended to d ∈ {2, 3} by considering separately the cases d
∆min

≥ κ
∆2
6=

and
d

∆min
< κ

∆2
6=

.

Case 1 : d
∆min

≥ κ
∆2
6=

Let us consider the set of actions defined by A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
,

where
(
xi
zxi

)
= e1 + ed+1 for i ∈ {1, ..., d}, and

(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. Using the

same proof as in Lemma 17, we see that

min
π∈PA

e>d+1

 ∑
(xz)∈A

πx

(
x

zx

)(
x

zx

)>
+

ed+1

 = κ.

Then, we consider the following problems : for i ≤ d, Problem i is characterized by the parameter
θ(i), where θ(i) =

(
γ(i)

ω(i)

)
is defined as:

γ(1) =
1−∆min

2

∑
i≤d

ei + ∆mine1

γ(i) =
1−∆min

2

∑
i≤d

ei + ∆mine1 + ∆minei for i >1

and the bias parameters are defined as ω(i) = 0 for i ≤ d. The following facts hold:

Fact 1 For any i ∈ {1, ..., d}, action xi is the unique optimal action in Problem i. Sampling any
other (sub-optimal) action leads to an instantaneous regret of at least ∆min.

Fact 2 In Problem i, for i ∈ {1, ..., d}, when sampling action xj at time, t the distribution of the
observation does not depend on t or on the past (except through the choice of xj) and is P(i)

j .
It is characterized as:

∀i ∈ {1, ..., d},P(i)
1 is N ((1 + ∆min)/2, 1)

∀i ∈ {1, ..., d},P(1)
d+1 is N (−(1− 2

√
κ∗ + 1

)(1 + ∆min)/2, 1)

∀i ∈ {2, ..., d},P(i)
i is N ((1 + 3∆min)/2, 1)

∀i, j ∈ {2, ..., d}, i 6= j : P(i)
j is N ((1−∆min)/2, 1)

So that for any i ∈ {2, ..., d}, between Problem 1 and Problem i, the only action that
provides different evaluations when sampled is action i , and the mean gap is 2∆min.

38

Since ∆ 6= ≤ 1
8 , this choice of parameters ensures that ∀i ∈ {1, ..., d}, θ(i) ∈ ΘA∆min,∆6=,κ∗

. Adapting
the proof of Lemma 17, we note that the minimal variance of bias estimation is at least κ∗. This
proves that A ∈ ΘA∆min,∆ 6=,κ∗

. Now, the lower bound

RT ≥
d− 1

2∆min

[
log (T)− log

(
8d log (T)

∆2
min

)]
follows directly using arguments from the proof of Theorem 6.

Case 2 : d
∆min

> κ
∆2
6=

Let the action set be given by A =
{(

x1

zx1

)
, ...,

(
xd+1

zxd+1

)}
, where

(
x1

zx1

)
=

e1 + ed+1,
(
xi
zxi

)
= ei − ed+1 for i ∈ {2, ..., d}, and

(
xd+1

zxd+1

)
= −

(
1− 2√

κ∗+1

)
e1 − ed+1. By

Lemma 17, A ∈ Aκ∗,d. We consider two bandit problems characterized by two parameters θ(1) and
θ(2), defined as:

γ(1) =
1 + ∆ 6=

2
e1 +

1−∆ 6=
2

e2 −
∆ 6=
2
e3

γ(2) =
1−∆ 6=

2
e1 +

1 + ∆ 6=
2

e2 +
∆ 6=
2
e3.

On top of this, two bias parameters are defined as ω(1) = −∆ 6=
2 and ω(2) =

∆ 6=
2 .

The following facts hold:

Fact 1 For any i ∈ {1, 2}, action xi is the unique optimal action in Problem i. Since 1/2 ≥ ∆ 6=,
sampling any other (sub-optimal) action leads to an instantaneous regret of at least ∆ 6=.

Fact 2 In Problem i, for i ∈ {1, ..., d}, when sampling action xj at time, t the distribution of the
observation does not depend on t or on the past (except through the choice of xj) and is P(i)

j .
It is characterized as:

∀i ∈ {1, 2},∀j ∈ {1, 2},P(i)
j is N (1/2, 1)

∀i ∈ {1, 2},P(1)
3 is N (0, 1)

P(1)
d+1 is N

((
1− 2
√
κ∗ + 1

)(
1 + ∆ 6=

2

)
+

∆ 6=
2
, 1

)
P(2)
d+1 is N

((
1− 2
√
κ∗ + 1

)(
1−∆ 6=

2

)
− ∆ 6=

2
, 1

)
So that, between Problem 1 and Problem 2, the only action that provides different evalua-
tions when sampled is action 1, and the mean gaps in both cases is 2∆6=√

κ∗+1 .

Note that the minimum gap for these parameters is ∆ 6= ≥ ∆min. Thus, this choice of parameters
ensures that ∀i ∈ {1, ..., d}, θ(i) ∈ ΘA∆min,∆ 6=,κ∗

. Adapting the proof of Lemma 17, we note that
the minimal variance of bias estimation is at least κ∗.This proves that A ∈ ΘA∆min,∆ 6=,κ∗

. Then, the
lower bound

RT ≥
κ∗ + 1

4∆2
6=

[
log (T)− log

(
8κ∗ log (T)

∆3
6=

)]
.

follows directly using arguments from the proof of Theorem 6.

C.7 Auxiliary Lemmas

C.7.1 Proof of Lemma 1

Lemma 1 follows from the characterization of κ∗ given in Lemma 5. We begin by proving
the first statement. Assume that κ∗ > 1 (otherwise the first statement is void). Note that
for all u ∈ Rd, lim

λ→+∞
(maxx∈X

(
x>(λu) + zx

)2
)−1 = 0, so the minimum over u ∈ Rd of

(maxx∈X
(
x>(λu) + zx

)2
)−1 is attained for some vector ũ ∈ Rd. Since κ∗ > 1, ũ is not null.

39

Moreover, maxx∈X (1 + zxx
>ũ)2 < 1, so maxx∈X zxx

>ũ < 0. Thus, for all x ∈ X , x>ũ and zx
are of opposite sign, and x>ũ 6= 0. This implies that the hyperplane containing 0 with normal vector
ũ contains no action, and separates the two groups. Moreover,

κ
−1/2
∗ = max

x∈X
|zxx>ũ+ 1|.

We denote x(1) ∈ argmaxx∈X zzx
>ũ, and x(2) ∈ argminx∈X zzx

>ũ. Let us show that

(zx(1)x(1)>ũ + 1) = −
(

1 + zx(2)x(2)>ũ
)

, i.e that zx(1)x(1)>ũ + zx(2)x(2)>ũ = −2. Indeed,
note that

κ
−1/2
∗ = (zx(1)x(1)>ũ+ 1) ∨ −(1 + zx(2)x(2)>ũ).

Then, for u′ = −2

(zx(1)x(1)+z
x(2)x(2))

>
ũ
ũ, we see that

zx(1)x(1)>u′ + 1 = −
(

1 + zx(2)x(2)>u′
)

= max
x∈X
|zxx>u′ + 1|.

By contradiction, let us first assume that zx(1)x(1)>ũ+ zx(2)x(2)>ũ < −2. Then,

max
x∈X
|zxx>u′ + 1| = zx(1)x(1)>u′ + 1 < zx(1)x(1)>ũ+ 1 = κ

−1/2
∗

which contradicts the definition of κ∗.

Similarly, if we assume that zx(1)x(1)>ũ+ zx(2)x(2)>ũ > −2, then

max
x∈X
|zxx>u′ + 1| = −(zx(2)x(2)>u′ + 1) < −(zx(2)x(2)>ũ+ 1) = κ

−1/2
∗

which contradicts again the definition of κ∗. Therefore,

(zx(1)x(1)>ũ+ 1) = −
(

1 + zx(2)x(2)>ũ
)

= κ
−1/2
∗ .

Then, the hyperplane containing 0 with normal vector ũ separates the actions of the two groups.
Moreover, the margin is −zx(1)x(1)>ũ = 1 − κ−1/2

∗ , while the maximum distance of all points is
−zx(2)x(2)>ũ = 1 + κ

−1/2
∗ . Thus, there exists ũ such that the hyperplane containing 0 with normal

vector ũ separates the actions of the two groups, with margin equal to
√
κ∗−1√
κ∗+1 times the maximum

distance of all points to the hyperplane.

Conversely, assume that there exists κ > κ∗ such that there exists u ∈ Rd such that the hyperplane
containing 0 with normal vector u separates the actions of the two groups, with margin equal to√
κ−1√
κ+1

= 1−κ−1/2

1+κ−1/2 times the maximum distance of all points to the hyperplane, denoted hereafter
d. Since the hyperplane separates the points, we can assume without loss of generality that for all
x ∈ X , zxx>u < 0. Similarly, up to a renormalization, we can assume without loss of generality
that d = 1 + κ−1/2. Then,

max
x∈X
|zxx>u+ 1| = (max

x∈X
zxx
>u+ 1) ∨ −(min

x∈X
zxx
>u+ 1)

=

(
−1− κ−1/2

1 + κ−1/2
× (1 + κ−1/2) + 1

)
∨ −(1− κ−1/2 − 1) = κ−1/2 < κ

−1/2
∗

which contradicts the definition of κ∗. This concludes the proof of the first statement.

To prove the second statement, let us assume that no separating hyperplane containing zero ex-
ists. Then, for all u ∈ Rd, there exists x ∈ X such that zxx>u ≥ 0. This implies that
minu∈Rd maxx∈X (zxx

>u + 1) ≥ 1, so κ∗ ≤ 1. Choosing u = 0, we see that κ∗ ≥ 1, which
implies that κ∗ = 1.

40

C.7.2 Proof of Lemma 2

Since for all γ ∈ X and all x ∈ X , |x>γ| ≤ 1, it is easy to see that the gaps are bounded by 2, and
that κ̃ ≤ 2κ∗.

Let us now show that κ̃ ≥ κ∗/2.(
x(1), x(2), γ̃

)
∈ argmax

(x,x′)∈X ,γ∈C(X)

(x− x′)>γ

x =
1

2
(x(1) + x(2))

ñ =
∑
x∈X

µ̃(x)

and x̃ =
1

ñ

∑
x∈X

µ̃(x)x.

Recall that κ∗ can equivalently be defined as the budget necessary to estimate the bias with a variance
smaller than 1. Therefore, we have

ñ ≥ κ∗. (53)
Let us define ∆max as ∆max = (x(1) − x(2))>γ̃ = max

(x,x′)∈X ,γ∈C(X)
(x− x′)>γ. By definition of κ̃

and µ̃,

κ̃ ≥
∑
x∈X

µ̃(x)(x(1) − x)>γ̃

= ñ(x(1) − x̃)>γ̃.

Using Equation (53), we find that

κ̃

κ∗
≥ (x(1) − x)>γ̃ + (x− x̃)>γ̃

=
∆max

2
+ (x− x̃)>γ̃. (54)

Now, since γ̃ ∈ C(X), we also have −γ̃ ∈ C(X), and therefore

κ̃ ≥
∑
x∈X

µ̃(x)(x(2) − x)>(−γ̃)

= ñ(x̃− x(2))>γ̃

Using again Equation (53), we find that

κ̃

κ∗
≥ (x̃− x)>γ̃ + (x− x(2))>γ̃

= (x̃− x)>γ̃ +
∆max

2
. (55)

Combining Equations (54) and (55), we find that

κ̃

κ∗
≥ ∆max

2
+ |(x− x̃)>γ̃|.

This implies in particular that κ̃ ≥ ∆maxκ∗
2 .

To conclude the proof of the Lemma, we show that ∆max ≥ 1. By contradiction, assume that
∆max < 1.

For all non-zero vector u ∈ Rd, let us denote xu = argmaxx∈X |x>u|. Since X spans Rd, we
necessarily have |x>u u| > 0, so we can define the normalized vector ũ = u/|x>u u| such that ũ
belongs to the set C(X). Finally, denote x(1)

u , x
(2)
u ∈ argmaxx,x′∈X (x

(1)
u − x(2)

u)>ũ. Note that by

definition of ∆max, we always have (x
(1)
u − x(2)

u)>ũ ≤ ∆max < 1.

41

Case 1 : x>u ũ > 0 Then, by definition of xu and x(1)
u , we see that x(1)

u

>
ũ = x>u ũ = 1. Then,

(x
(1)
u − x(2)

u)>ũ < 1 implies that 1− x(2)
u

>
ũ < 1, so x(2)

u

>
ũ > 0, and in particular x(2)

u

>
u > 0.

Case 2 : x>u u < 0 Then, by definition of xu and x(2)
u , we see that x(2)

u

>
ũ = x>u u = −1. Then

(x
(1)
u − x(2)

u)>ũ < 1 implies that x(1)
u

>
ũ+ 1 < 1, so x(1)

u

>
ũ < 0, and in particular x(1)

u

>
u < 0.

Putting together Case 1 and Case 2, we see that x(1)
u

>
u and x(2)

u

>
u are of the same sign and are not

null. By definition of x(1)
u and x(2)

u , we conclude that for all x ∈ X , the sign of x>u is the same,
and that x>u is not 0. Since this is true for all non-zero vector u, this implies in particular that no
hyperplane containing the origin can separate the actions, which contradicts the assumption that X
spans Rd.

C.7.3 Proof of Lemmas 3 and 4

We begin by proving Lemma 4. Recall that π is a G-optimal design for the set {ax : x ∈ X}, and
that µ is defined as µ(x) = dmπ(x)e for all x ∈ X .

We first observe that V (π) = A>πAπ, where Aπ is the matrix with lines given by [
√
π(x)a>x]x∈X .

Since the supports of µ and π are the same, we get that Range(A>π) = Range(A>µ). As a consequence

Range(V (π)) = Range(A>π) = Range(A>µ) = Range(V (µ)),

and x ∈ Range(V (µ)) for all x ∈ X . This ensures that a>x θ̂µ is an unbiased estimator of a>x θ
∗.

Furthermore V (µ) < mV (π), so the variance a>x V (µ)+ax of a>x θ̂µ is upper-bounded by
a>x V (µ)+ax ≤ m−1a>x V (π)+ax. Now, the General Equivalence Theorem of Kiefer and Pukelshein
shows that maxx∈X a

>
x V (π)+ax ≤ d+ 1. Thus, a>x V (π)+ax ≤ m−1(d+ 1).

We now prove Lemma 3. Recall that π ∈ MXed+1
is such that ed+1 ∈ RangeV (π), and that

µ is defined as µ(x) = dmπ(x)e for all x ∈ X . Using similar arguments, we can show that
ed+1 ∈ Range(V (µ)), which ensures that e>d+1θ̂µ is an unbiased estimator of e>d+1θ

∗. The second
part of the Lemma follows directly using that V (µ) < mV (π).

C.7.4 Proof of Lemma 5

Elfving’s set S for estimating the bias in the biased linear bandit problem is given by

S = convex hull

{(
x

zx

)
,

(
−x
−zx

)
: x ∈ X

}
,

or equivalently by
S = convex hull

{
±
(zxx

1

)
: x ∈ X

}
.

Now, Theorem 5 indicates that κ−
1/2
∗ ed+1 belongs to a supporting hyperplane of S. We first show

that when A spans Rd+1, any normal vector w ∈ Rd+1 to this hyperplane is such that w>ed+1 6= 0.

By contradiction, let us assume that κ−
1/2
∗ ed+1 belongs to some supporting hyperplane H of S

parametrized asH =
{
a ∈ Rd+1 : a>w = b

}
, where the normal vector w is of the form w =

(
u
0

)
.

Then, κ−
1/2
∗ ed+1 ∈ H, so κ−

1/2
∗ e>d+1w = b, and thus b = 0. Now, H is a supporting hyperplane of

S, so for all a ∈ S we see that a>w ≤ b. In particular, for all x ∈ X , x>u ≤ 0 and −x>u ≤ 0, so
x>u = 0. This implies that X is supported by an hyperplane in Rd with normal vector u, which
contradicts our assumption that A spans Rd+1. Thus, the supporting hyperplane of S containing
κ
−1/2
∗ ed+1 has a normal vector w ∈ Rd+1 such that w>ed+1 6= 0. In particular, we can parameterize

this hyperplane asHu,b =
{
a ∈ Rd+1 : a>

(
u
1

)
= b
}

for some b ∈ R and u ∈ Rd.

Now, if Hu,b is a supporting hyperplane of S, then, by definition, S is contained in the half space{
a ∈ Rd+1 : a>

(
u
1

)
≤ b
}

. In particular, for all x ∈ X , one must have zxx>u + 1 ≤ b and

42

−zxx>u − 1 ≤ b : therefore, for all x ∈ X , |zxx>u + 1| ≤ b. Moreover, Hu,b is a supporting
hyperplane of S , so there exists an extreme point a ∈ S such that a ∈ Hu,b. Note that S is the convex
hull of

{
±
(
zxx
1

)
: x ∈ X

}
, so the extreme points of S are in

{
±
(
zxx
1

)
: x ∈ X

}
. In particular, this

implies that b = max
{
|zxx>u+ 1| : x ∈ X

}
. Thus, the supporting hyperplane of S containing

κ
−1/2
∗ ed+1 is necessarily of the formHu,max{|zxx>u+1|:x∈X}.

On the one hand, κ−
1/2
∗ belongs to the boundary of S and therefore to a supporting hy-

perplane Hu,max{|zxx>u+1|:x∈X} of S. Then, there exists u ∈ Rd such that κ−
1/2
∗ =

max
{
|zxx>u+ 1| : x ∈ X

}
.

On the other hand, it is easy to verify that for all u ∈ Rd, Hu,max{|zxx>u+1|:x∈X} is a supporting

hyperplane of S. Now, κ−
1/2
∗ ed+1 belongs to S, so κ−

1/2
∗ e>d+1

(
u
1

)
≤ max

{
|zxx>u+ 1| : x ∈ X

}
.

These two results imply that
κ
−1/2
∗ = min

u∈Rd
max
x∈X
|zxx>u+ 1|

which proves the Lemma.

C.7.5 Proof of Lemma 6

We prove that 2(
√
κ∗ − 1)2 ∨ 1 ≤ α ≤ 8(κ∗ + 1). Lemma 6 follows directly by noticing that α ≥ 1

and κ∗ ≥ 1.

Let us begin by proving that 2(
√
κ∗ − 1)2 ≤ α for κ∗ > 1 (otherwise this inequality is auto-

matically verified). Note that for all u ∈ Rd, lim
λ→+∞

1
maxx∈X (x>(λu)+zx)2 = 0, so the minimum

over u ∈ Rd of 1
maxx∈X (x>u+zx)2 = 0 is attained for some vector ũ ∈ Rd. Let us also denote

x̃ ∈ argmaxx∈X (zxx
>ũ+ 1)2, such that

κ∗ =
1

(zx̃x̃>ũ+ 1)
2 .

With these notations, we see that for all x ∈ X ,

(zxx
>ũ+ 1)2 ≤ (zx̃x̃

>ũ+ 1)2 = κ−1
∗ < 1.

This implies that for all x ∈ X ,

zxx
>ũ ≤ −1 + κ

−1/2
∗ < 0.

Now, let us denote x(1), x(2) ∈ argmaxx,x′∈X (x− x′)>ũ. By definition of α, we see that

α ≥
(
(x(1) − x(2))>ũ

)2
(zx̃x̃>ũ+ 1)

2 =
(

(x(1) − x(2))>ũ
)2

× κ∗.

Since zxx>ũ < 0 for all x ∈ X , and since no group is empty, we can conclude that there exists
x, x′ ∈ X such that x>ũ > 0 and x′>ũ < 0. In particular, by definition of x(1) and x(2), we see that
(x(1))>ũ > 0 and (x(2))>ũ < 0. Then,(

(x(1) − x(2))>ũ
)2

≥
(

(x(1))>ũ
)2

+
(

(x(2))>ũ
)2

≥ 2(1− κ−1/2
∗)2.

This implies that
α ≥ 2(1− κ−1/2

∗)2 × κ∗ = 2(
√
κ∗ − 1)2.

Let us now prove that α ≥ 1. Note that by assumption, X spans Rd, and in particular there exists
ũ ∈ Rd and x, x′ ∈ X such that maxx∈X x

>ũ > 0 and minx∈X x
>ũ ≤ 0. Thus, maxx,x′∈X ((x−

x′)>ũ)2 ≥ maxx∈X (x>ũ)2. For any λ > 0, choosing u = λũ in the definition of α implies that

α ≥ λ2 maxx∈X (x>u)2

maxx∈X (λzxx>u+ 1)2
.

43

Letting λ go to infinity, we find that α ≥ 1.

Finally, we prove that α ≤ 8(κ∗ + 1). For all u ∈ Rd, we see that

maxx,x′∈X ((x− x′)>u)2

maxx∈X (zxx>u+ 1)2
≤ 4 maxx∈X (zxx

>u)2

maxx∈X (zxx>u+ 1)2
.

Now, we see that

maxx∈X (zxx
>u)2

maxx∈X (zxx>u+ 1)2
≤ 2 maxx∈X (zxx

>u+ 1)2 + 2

maxx∈X (zxx>u+ 1)2
≤ 2 +

2

maxx∈X (zxx>u+ 1)2
.

This in turn implies that for all u ∈ Rd,

maxx,x′∈X ((x− x′)>u)2

maxx∈X (zxx>u+ 1)2
≤ 8(1 + κ∗),

which finally implies that α ≤ 8(1 + κ∗).

C.7.6 Proof of Lemma 8

Proof of Claim i) The proof of the first claim is immediate by definition of κ. Indeed, let M̃ ={
µ ∈MXed+1

: e>d+1V (µ)+ed+1 ≤ 1
}

be the set of measures µ admissible for estimating ω∗ with a
precision level 1. Then,

κ(c∆) = min
µ∈M̃

∑
x

µ(x)c∆x = c min
µ∈M̃

∑
x

µ(x)∆x = cκ(∆).

Proof of Claim ii) The proof of the second claim is also straightforward. If ∆ ≤ ∆′, then for all
µ ∈ M̃,

∑
x µ(x)∆x ≤

∑
x µ(x)∆′x. Recall that µ∆′ = argmin

µ∈M̃
∑
x µ(x)∆′x. Then,

κ(∆′) =
∑
x

µ∆′(x)∆′x ≥
∑
x

µ∆′(x)∆x ≥ min
µ∈M̃

∑
x

µ(x)∆x = κ(∆).

Proof of Claim iii) To prove the third claim, note that

κ(∆ ∨∆′) = min
µ∈M̃

∑
x

µ(x) (∆x ∨∆x)

≥ min
µ∈M̃

(∑
x

µ(x)∆x ∨
∑
x

µ(x)∆′x

)

≥

(
min
µ∈M̃

∑
x

µ(x)∆x

)
∨

(
min
µ∈M̃

∑
x

µ(x)∆′x

)
≥ κ(∆) ∨ κ(∆′).

Proof of Claim iv) Recall that
κ(∆) = min

µ∈M̃

∑
x

µ(x)∆x.

Let us define a sequence (µn)n∈N ∈ M̃N such that
∑
x µn(x)∆x →

n→∞
κ(∆), and let us denote

κn =
∑
x µn(x)∆x. According to Claim ii), we have

κ(∆) ≤ κ(∆ ∨ ε) = min
µ∈M̃

∑
x

µ(x) (∆x ∨ ε) ≤
∑
x

µn(x)∆x + ε
∑
x

µn(x).

It follows that for all n,

κ(∆) ≤ lim inf
ε→0+

κ(∆ ∨ ε) ≤ lim sup
ε→0+

κ(∆ ∨ ε) ≤ κn.

Letting n go to infinity, we get that limε→0+ κ(∆ ∨ ε) = κ(∆).

44

C.7.7 Proof of Lemma 9

Setting µ ·∆ = (µ(x)∆x)x∈X and

V∆(λ) =
∑
x∈X

λx

(
∆
−1/2
x x

∆
−1/2
x zx

)(
∆
−1/2
x x

∆
−1/2
x zx

)>
,

we observe that V∆(µ ·∆) = V (µ). Hence,

κ(∆) = min
µ∈M+

e>d+1V∆(µ·∆)+ed+1≤1

∑
x∈X

(µ ·∆)x.

We observe that ed+1 ∈ Range(V (µ)) is equivalent to ed+1 ∈ Range(V∆(µ ·∆)). Hence, µ∆ ·∆ =
λ∆ where

λ∆ ∈ argmin
λ∈RX+

ed+1∈Range(V∆(λ))

e>d+1V∆(λ)+ed+1≤1

∑
x∈X

λx.

The conclusion then follows by noticing that by homogeneity, λ∆ = κ∆π∆.

C.7.8 Proof of Lemma 12

Lemma 12 follows directly from Lemmas 18 and 19.
Lemma 18.

P

∃l ≥ 1, z ∈ {−1, 1} such that Explore(z)
l = True, and x ∈ X (z)

l such that

∣∣∣∣∣∣
(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>(
x

zx

)∣∣∣∣∣∣ ≥ εl
 ≤ δ.

Lemma 19.

P
(
∃l ≥ 1 such that Explore(0)

l = True and
∣∣∣ω̂(0)
l − ω

∗
∣∣∣ ≥ εl) ≤ δ.

C.7.9 Proof of Lemma 13

To prove Lemma 13, we rely on the following key lemma. This lemma proves that on F , i.e. when
the error bounds hold, the algorithm never eliminates the best action or the best group.

Lemma 20. On the event F , for all x∗ ∈ argmaxx∈X x
>γ∗ and all l such that Explore(zx∗)

l =

True, x∗ ∈ X (zx∗)
l+1 . Moreover, on the event F , for all l such that Explore(0)

l = True, there exists
x∗ ∈ argmaxx∈X x

>γ∗ such that ẑ∗l+1 6= −zx∗ .

Let l ≥ 1 be such that Explore(zx∗)
l = True. Then, on F , x∗ ∈ X (zx∗)

l+1 by Lemma 20. Moreover, for

all x ∈ X (zx∗)
l+1 , by definition of X (zx∗)

l+1 , we have that on F((
x∗

zx∗

)
−
(
x

zx∗

))>(γ̂(z)
l

ω̂
(z)
l

)
≤ 3εl.

which implies that((
x∗

zx∗

)
−
(
x

zx∗

))>(
γ∗

ω∗

)
≤ 3εl +

∣∣∣∣∣
(
x∗

zx∗

)>(γ̂(z)
l − γ∗

ω̂
(z)
l − ω∗

)∣∣∣∣∣+

∣∣∣∣∣
(
x

zx∗

)>(γ̂(z)
l − γ∗

ω̂
(z)
l − ω∗

)∣∣∣∣∣ .
Thus, on the event F , for all x ∈ X (zx∗)

l+1

(x∗ − x)
>
γ∗ < 5εl ,

which proves Equation (13). To prove the second claim of Lemma 13, assume that for all x′ ∈
argmaxx∈X x

>γ∗, zx′ = zx∗ (when this does not hold, the second claim follows from Equation

45

(13)). Now, let l ≥ 1 be such that Explore(−zx∗)
l = True. By Lemma 20, on F , x∗ ∈ X (zx∗)

l and
ẑ∗l = 0. Then, the algorithm is unable to determine the group containing the best set during the phase
Exp(0)

l−1, so there must exist x′ ∈ X (−zx∗)
l such that(

x∗

zx∗

)>(γ̂(zx∗)
l−1

ω̂
(zx∗)
l−1

)
≤
(

x′

−zx∗

)>(γ̂(−zx∗)
l−1

ω̂
(−zx∗)
l−1

)
+ 2zx∗ ω̂

(0)
l−1 + 4εl−1.

It follows that(
x∗ − x′

2zx∗

)>(
γ∗

ω∗

)
≤
(
x∗

zx∗

)>(γ∗ − γ̂(zx∗)
l−1

ω∗ − ω̂(zx∗)
l−1

)
+

(
x′

−zx∗

)>(γ̂(−zx∗)
l−1 − γ∗

ω̂
(−zx∗)
l−1 − ω∗

)
+2zx∗ ω̂

(0)
l−1+4εl−1.

On F , this implies that (
x∗ − x′

2zx∗

)>(
γ∗

ω∗

)
< 2zx∗ ω̂

(0)
l−1 + 6εl−1

so
(x∗ − x′)> γ∗ ≤ 2zx∗

(
ω̂

(0)
l−1 − ω

∗
)

+ 6εl−1 < 8εl−1 = 16εl. (56)

Moreover, for all x ∈ X (−zx∗)
l+1 we have (ax′ − ax)>θ̂

(−zx∗)
l ≤ 3εl, so following the same lines as

for the first claim, we get (x′ − x)>γ∗ < 5εl. Combining this bound with (56), we get

max
x∈X (−zx∗)

l+1

(x∗ − x)>γ∗ < 21εl.

This concludes the proof of Lemma 13.

C.7.10 Proof of Lemma 14

For z ∈ {−1,+1} and l > 0,∑
x

µ
(z)
l (x) ≤

∑
x

2(d+ 1)π
(z)
l (x)

ε2l
log

(
kl(l + 1)

δ

)
+ | supp(π

(z)
l)|.

Now, supp(π
(z)
l) ≤ (d+1)(d+2)

2 and
∑
x π

(z)
l (x) = 1, so∑

x

µ
(z)
l (x) ≤ 2(d+ 1)

ε2l
log

(
kl(l + 1)

δ

)
+

(d+ 1)(d+ 2)

2

which proves the first claim of Lemma 14.

To prove the second claim, we bound the regret for bias estimation at stage l as follows. On F , we
have ∆x ≤ ∆̂l

x for all x ∈ X and l ≥ 1, so∑
x∈X

µ
(0)
l (x)∆x ≤

∑
x∈X

µ
(0)
l (x)∆̂l

x.

Recall that µ̂l is the ∆̂l-optimal design, and that for all x ∈ X , µ(0)
l (x) = d 2µ̂l(x)

ε2l
log
(
l(l+1)
δ

)
e.

Since ∆̂l
x ≤ 2 for all x ∈ X , we have∑

x∈X
µ

(0)
l (x)∆̂l

x ≤
∑
x∈X

2µ̂l(x)

ε2l
log

(
l(l + 1)

δ

)
∆̂l
x + 2| supp(µ

(0)
l)|

and | supp(µ
(0)
l)| ≤ d+ 1, so∑

x

µ
(0)
l (x)∆x ≤

2

ε2l
log

(
l(l + 1)

δ

)∑
x∈X

µ̂l(x)∆̂l
x + 2(d+ 1).

By definition of µ̂l(x), we have that ∑
x∈X

µ̂l(x)∆̂l
x = κ(∆̂l).

It follows that, on F ,∑
x

µ
(0)
l (x)∆x ≤

∑
x

µ
(0)
l (x)∆̂l

x ≤
2

ε2l
log

(
l(l + 1)

δ

)
κ(∆̂l) + 2(d+ 1).

46

C.7.11 Proof of Lemma 15

For the first claim, we rely on the next lemma.

Lemma 21. Let us set `x = max
{
l ≥ 1 : x ∈ X (−1)

l ∪ X (1)
l

}
. On F , we have for any l ≥ 1

1. ∆̂l
x ≤ ∆x + 16εl for all x ∈ X (−1)

l ∪ X (1)
l (i.e. for all x such that l ≤ `x);

2. if ∆x ≥ 21εl then `x ≤ l;

3. ε`x < ∆x for all x ∈ X .

Lemma 15 relies on the following remarks : if ∆,∆′ are such that ∆x ≤ ∆′x for all x ∈ X , then by
Lemma 8 (ii)), κ(∆) ≤ κ(∆′). Let us now prove that for all l ≥ 1 and all x ∈ X , ∆̂l

x ≤ 513(∆∨ εl).

Case εl ≥ ∆x. On F , we have l ≤ `x − 1 according to the third claim of Lemma 21. So, on F ,

∆̂l
x ≤ ∆x + 16εl ≤ 17(∆x ∨ εl).

Case εl < ∆x. Then, on F , we have 32εl+5 < ∆x and so l + 5 ≥ `x according to the second claim
of Lemma 21. Hence, on F , according to Lemma 21, we have

∆̂l
x ≤ max

k=0,...,5
∆̂`x−k
x ≤ ∆x + 16ε`x−5

≤ ∆x + 512ε`x ≤ 513∆x.

Thus, for all l ≥ 1 and all x ∈ X ,
∆̂l
x ≤ 513(∆ ∨ εl).

Now, let M̃ =
{
µ ∈MXed+1

: e>d+1V (µ)+ed+1 ≥ 1
}

the measures µ admissible for estimating ω∗

with a precision level 1. Note that for all a, b, c > 0,
(1 + ab−1)(c ∨ b) = (c+ cab−1) ∨ (a+ b) ≥ c ∨ (a+ b) ≥ c ∨ a. (57)

Using Equation (57) with a = ∆x, b = τ and c = ε, we see that

κ(∆ ∨ ε) = min
µ∈M̃

∑
x

µ(x)(∆x ∨ ε) ≤ (1 + ε/τ) min
µ∈M̃

∑
x

µ(x)(∆x ∨ τ) = (1 + ε/τ)κ(∆ ∨ τ).

Using Lemma 8 together with ∆̂l
x ≤ 513(∆ ∨ εl), we find that

κ(∆̂l
x) ≤ 513κ(∆ ∨ εl) ≤ 513(1 + εl/τ)κ(∆ ∨ τ).

This proves the first claim of Lemma 15.

To prove the second claim, we use Lemma 8 and the fact that for all x, ∆̂l
x ≥ εl. Moreover, on F ,

∆̂l
x ≥ ∆x for all x ∈ X . Then, κ(∆̂) ≥ κ(εl ∨∆) by Lemma 8 (iii)).

C.7.12 Proof of Lemmas 16

To prove Lemma 16, let us consider l such that εl ≤ ∆ 6=
8 . According to Lemma 20, on F we know

that ẑ∗l 6= −zx∗ . When ẑ∗l = zx∗ , then we also have ẑ∗l+1 = zx∗ and the conclusion follows
immediately. Let us consider now the case where ẑ∗l = 0. By definition of ∆ 6=, for all x′ ∈ X (−zx∗)

l+1 ,

(x∗ − x′)> γ∗ ≥ ∆ 6=.

This implies that(
x∗

zx∗

)>(γ̂(zx∗)
l

ω̂
(zx∗)
l

)
− zx∗ ω̂(0)

l ≥ max
x∈X (−zx∗)

l+1

(
x

−zx∗

)>(γ̂(−zx∗)
l

ω̂
(−zx∗)
l

)
+ zx∗ ω̂

(0)
l

+

(
x∗

zx∗

)>(γ̂(zx∗)
l − γ∗

ω̂
(zx∗)
l − ω∗

)
+ min
x∈X (−zx∗)

l+1

(
x

−zx∗

)>(γ∗ − γ̂(−zx∗)
l

ω∗ − ω̂(−zx∗)
l

)

+∆ 6= + 2zx∗
(
ω∗ − ω̂(0)

l

)
.

47

On F , it follows that(
x∗

zx∗

)>(γ̂(zx∗)
l

ω̂
(zx∗)
l

)
− zx∗ ω̂(0)

l − 2εl ≥ max
x∈X (−zx∗)

l+1

(
x

−zx∗

)>(γ̂(−zx∗)
l

ω̂
(−zx∗)
l

)
+ zx∗ ω̂

(0)
l − 6εl + ∆ 6=.

When ∆ 6= ≥ 8εl, this implies that ẑ∗l+1 = zx∗ .

C.7.13 Proof of Lemmas 10 and 17

We prove Lemma 10. The proof of Lemma 17 follows by noticing that the two actions sets are equal
up to a permutation of the direction of some basis vectors. To prove Lemma 17, we rely on Elfving’s
characterization of c-optimal design, given in Theorem 5. Theorem 5 shows that for π ∈ P{1,..,d+1}

to be ed+1-optimal, there must exist t > 0 and ζ ∈ {−1,+1}d+1 such that

∑
1≤i≤d+1

πi = 1

0 = π1ζ1 − (1− 2
√
κ∗ + 1

)πd+1ζd+1

∀i ∈ {2, ..., d}, 0 = πiζi

t =
∑

1≤i≤bd/2c

πiζi −
∑

bd/2c+1≤i≤d+1

πiζi.

Solving this system, we find that t−2 = κ∗. Note that the unicity of the solution for the corresponding
probability measure π guarantees that ted+1 belongs to the boundary of S.

C.7.14 Proof of Lemma 11

For a given parameter γ∗, let us denote by ∆i the gap corresponding to the action i. To compute κ(∆),
we could want to rely on Lemma 9 to find the ∆-optimal design, corresponding to the ed+1-optimal
design on the rescaled features ∆

−1/2
x

(
x
zx

)
. Theorem 5 indeed allows us to compute such a design,

as seen in the proof of Lemma 10. Unfortunately, we cannot rescale the features using the true gaps,
since ∆x∗ = 0. To circumvent this problem, we rely on the following reasoning :

1. We use Lemma 9 and Theorem 5 to compute the design µ∆∨ε for ε ∈ (0,∆min); and the
corresponding regret κ(∆ ∨ ε);

2. We find the value of κ(∆) by noticing that ε 7→ κ(∆ ∨ ε) is continuous at 0.

For ε ∈ (0,∆min), define ∆ = ∆ ∨ ε, and x = ∆
−1/2

x x. Let π denote the ed+1-optimal design for
the rescaled features x, and let κ∗ denote its variance. Then, Lemma 9 ensures that κ(∆) = κ∗.

Now, Theorem 5 shows that there exists ζ ∈ {−1,+1}d+1 such that∑
1≤i≤d+1

πi = 1

0 = π1ζ1∆
−1/2

1 − (1− 2
√
κ∗ + 1

)πd+1ζd+1∆
−1/2

d+1

∀i ∈ {2, ..., d}, 0 = πiζi∆
−1/2

i

κ∗
−1/2 =

∑
1≤i≤bd/2c

πiζi∆
−1/2

i −
∑

bd/2c+1≤i≤d+1

πiζi∆
−1/2

i

and κ∗−1/2ed+1 belongs to the boundary of S. Solving this system, we find that

κ(∆)−1/2 = κ∗
−1/2 =

(
2√
κ∗+1

)
∆
−1/2

d+1

1 +
(

1− 2√
κ∗+1

)
∆
−1/2

d+1 ∆
1/2

1

.

48

As in Lemma 10, the unicity of the solution for the corresponding probability measure π guarantees
that κ∗−1/2ed+1 belongs to the boundary of the Elfving’s set. Now, ε ≤ ∆min, so

κ(∆)−1/2 = κ(∆ ∨ ε)−1/2 =

(
2√
κ∗+1

)
∆
−1/2
d+1

1 +
(

1− 2√
κ∗+1

)
∆
−1/2
d+1 ε

1/2
.

The fourth claim of Lemma 8 ensures that κ(∆ ∨ ε) →
ε→0

κ(∆). Therefore,

κ(∆) = lim
ε→0


(

2√
κ∗+1

)
∆
−1/2
d+1

1 +
(

1− 2√
κ∗+1

)
∆
−1/2
d+1 ε

1/2

−2

=
(
√
κ∗ + 1)2∆d+1

4
.

C.7.15 Proof of Lemma 18

Recall that ξt = yt − x>t γ∗ − zxtω∗. For l ≥ 0 and z ∈ {−1,+1}, when Explore(z)
l = True, the

least square estimator
(
γ̂(z)

l

ω̂(z)

l

)
is given by(

γ̂
(z)
l

ω̂
(z)
l

)
=

(
V

(z)
l

)+ ∑
t∈Exp(z)

l

((
xt
zxt

)>(
γ∗

ω∗

)
+ ξt

)(
xt
zxt

)

=
(
V

(z)
l

)+ (
V

(z)
l

)(γ∗
ω∗

)
+
(
V

(z)
l

)+ ∑
t∈Exp(z)

l

ξt

(
xt
zxt

)
,

where
(
V

(z)
l

)+

is a generalized inverse of V (z)
l . Since V (z)

l

(
V

(z)
l

)+

V
(z)
l = V

(z)
l , multiplying the

left and right hand side of the last equation by V (z)
l , we find that

V
(z)
l

(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)
= V

(z)
l

(
V

(z)
l

)+ ∑
t∈Exp(z)

l

ξt

(
xt
zxt

)
. (58)

By Lemma 4, for all x ∈ X (z)
l ,

(
x
zx

)
∈ Range

(
V

(z)
l

)
, so

V
(z)
l

(
V

(z)
l

)+
(
x

zx

)
=

(
x

zx

)
. (59)

Then, (
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>(
x

zx

)
=

(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>
V

(z)
l

(
V

(z)
l

)+
(
x

zx

)

=
∑

t∈Exp(z)
l

(
xt
zxt

)> (
V

(z)
l

)+

V
(z)
l

(
V

(z)
l

)+
(
x

zx

)
ξt

=
∑

t∈Exp(z)
l

(
xt
zxt

)> (
V

(z)
l

)+
(
x

zx

)
ξt,

where the first and third lines follow from Equation (59), and the second line follows from Equation
(58). By definition of our algorithm, conditionally on X (z)

l and Explore(z)
l = True, the variables

(ξt)t∈Exp(z)
l

are independent centered normal gaussian variables. Then,

P|X (z)
l , Explore(z)

l =True

∣∣∣∣∣
(
γ̂(z)

l −γ
∗

ω̂(z)

l −ω∗

)> (
x
zx

)∣∣∣∣∣ ≥
√

2
∑
t∈Exp(z)

l

((
xt
zxt

)> (
V

(z)
l

)+ (
x
zx

))2

log
(
kl(l+1)

δ

) ≤ δ
kl(l+1) .

49

Expanding
((

xt
zxt

)> (
V

(z)
l

)+ (
x
zx

))2

=
(
x
zx

)> (
V

(z)
l

)+ (
xt
zxt

)(
xt
zxt

)> (
V

(z)
l

)+ (
x
zx

)
, and

using the definition of V (z)
l , we find that

P|X (z)
l , Explore(z)

l =True

(∣∣∣∣∣
(
γ̂(z)

l −γ
∗

ω̂(z)

l −ω∗

)> (
x
zx

)∣∣∣∣∣ ≥
√

2
(
x
zx

)> (
V

(z)
l

)+

V
(z)
l

(
V

(z)
l

)+ (
x
zx

)
log
(
kl(l+1)

δ

))
≤ δ

kl(l+1)

which in turn implies (using Equation (59))

P|X (z)
l , Explore(z)

l =True

(∣∣∣∣∣
(
γ̂(z)

l −γ
∗

ω̂(z)

l −ω∗

)> (
x
zx

)∣∣∣∣∣ ≥
√

2
∥∥∥(x

zx

)∥∥∥2(
V

(z)
l

)+ log
(
kl(l+1)

δ

))
≤ δ

kl(l+1)

Now, using Lemma 4 and the definition of µzl , we see that for all x ∈ X (z)
l ,(

x

zx

)> (
V

(z)
l

)+
(
x

zx

)
≤ ε2l

2 log (kl(l + 1)/δ)
.

Finally, for all x ∈ X (z)
l ,

P|X (z)
l , Explore(z)

l =True

∣∣∣∣∣∣
(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>(
x

zx

)∣∣∣∣∣∣ ≥ εl


≤ P|X (z)
l , Explore(z)

l =True

∣∣∣∣∣∣
(
γ̂

(z)
l − γ∗

ω̂
(z)
l − ω∗

)>(
x

zx

)∣∣∣∣∣∣ ≥
√√√√2

∥∥∥∥(x

zx

)∥∥∥∥2

(
V

(z)
l

)+
log

(
kl(l + 1)

δ

) ≤ δ

kl(l + 1)
.

Integrating out the conditioning on the value of X (z)
l and Explore(z)

l and using a union bound yields
the desire result.

C.7.16 Proof of Lemma 19

The proof is similar to that of Lemma 18. If Explore(0)
l = True, then ω̂l is defined as

ω̂
(0)
l = e>d+1

(
V

(0)
l

)+ ∑
t∈Exp(0)

l

((
xt
zxt

)>(
γ∗

ω∗

)
+ ξt

)(
xt
zxt

)
.

Since
(
x
zx

)
x∈X

spans Rd+1, µ is finite and ed+1 ∈ Range (V (µ̂l)). Then, according to Lemma 3,

for every round l, we have ed+1 ∈ Range
(
V

(0)
l

)
, so V (0)

l

(
V

(0)
l

)+

ed+1 = ed+1. This implies that

ω̂
(0)
l − ω

∗ =
∑

t∈Exp(0)
l

e>d+1

(
V

(0)
l

)+
(
xt
zxt

)
ξt.

By definition of our algorithm, conditionally on Explore(0)
l = True, the variables (ξt)t∈Exp(0)

l

are
independent centered normal gaussian variables. Then,

P|Explore(0)
l =True

∣∣∣ω̂(0)
l − ω

∗
∣∣∣ ≥

√√√√√2
∑

t∈Exp(z)
l

(
e>d+1

(
V

(0)
l

)+
(
xt
zxt

))2

log

(
l(l + 1)

δ

) ≤ δ

l(l + 1)
.

Using again V (0)
l

(
V

(0)
l

)+

ed+1 = ed+1 and the definition of V (0)
l , we find that

P|Explore(0)
l =True

(∣∣∣ω̂(0)
l − ω

∗
∣∣∣ ≥√2e>d+1

(
V

(0)
l

)+

ed+1 log

(
l(l + 1)

δ

))
≤ δ

l(l + 1)
. (60)

50

Now, Lemma 3 and the definition of µ(0)
l imply that

e>d+1

(
V

(0)
l

)+

ed+1 ≤
ε2l

2 log (l(l + 1)/δ)
.

Finally, Equation (60) implies that

P|Explore(0)
l =True

(∣∣∣ω̂(0)
l − ω

∗
∣∣∣ ≥ εl) ≤ δ

l(l + 1)
.

Using a union bound over the phases Exp(0)
l yields the result.

C.7.17 Proof of Lemma 20

To prove Lemma 20, we begin by showing that it is enough to prove that for l ≥ 1,

Fl ⊃
{
∃x∗ ∈ argmax

x∈X
x>γ∗ : Explore(zx∗)

l = True and x∗ /∈ X (zx∗)
l+1

}
(61)

⋃ { ⋂
l′≤l

{
∃x∗ ∈ argmax

x∈X
x>γ∗ : Explore(zx∗)

l′ = True and x∗ /∈ X (zx∗)
l′+1

}
⋂{

Explore(0)
l = True and ∀x∗ ∈ argmax

x∈X
x>γ∗, ẑ∗l+1 = −zx∗

} }
.

Indeed, denoting F (1)
l =

{
∃x∗ ∈ argmaxx∈X x

>γ∗ : Explore(zx∗)
l = True and x∗ /∈ X (zx∗)

l+1

}
and

F (2)
l =

{
Explore(0)

l = True and ∀x∗ ∈ argmaxx∈X x
>γ∗, ẑ∗l+1 = −zx∗

}
, we see that Equation

(61) would then be rewritten as

Fl ⊃ F (1)
l

⋃⋂
l′≤l

F (1)
l′

⋂
F (2)
l


which implies

⋃
l≥1

Fl ⊃
⋃
l≥1

F (1)
l

⋃
⋂
l′≤l

F (1)
l′

⋂
F (2)
l

 ⋃
l′≤l

F (1)
l′


 ⊃

⋃
l≥1

{
F (1)
l ∪ F (2)

l

}
.

Then, Equation (61) would imply that

F =
⋃
l≥1

Fl ⊂
⋃
l≥1

{
F (1)
l

⋃
F (2)
l

}
=
⋂
l≥1

{
F (1)
l

⋂
F (2)
l

}
,

thus proving Lemma 20. To prove Equation (61), we show that both F (1)
l and

⋂
l′≤l F

(1)
l′
⋂
F (2)
l

imply Fl.

If F (1)
l is true: then ∃x∗ ∈ argmaxx∈X : Explore(zx∗)

l = True and x∗ /∈ X (zx∗)
l+1 .

Without loss of generality, assume that l > 1 is the smallest integer such that Explore(zx∗)
l = True

and x∗ /∈ X (zx∗)
l+1 . Then, necessarily x∗ ∈ X (zx∗)

l (because either l = 1, or Explore(zx∗)
l−1 = True).

Now, because x∗ ∈ X (zx∗)
l \ X (zx∗)

l+1 , there exists x ∈ X (zx∗)
l such that

(x− x∗)>γ̂(zx∗)
l ≥ 3εl

and in particular
x>γ̂

(zx∗)
l − εl > (x∗)>γ̂

(zx∗)
l + εl.

Recall that by definition of x∗, (γ∗)>(x∗ − x) ≥ 0. This in turn implies that(
x

zx∗

)>(γ̂(zx∗)
l − γ∗

ω̂
(zx∗)
l − ω∗

)
− εl >

(
x∗

zx∗

)>(γ̂(zx∗)
l − γ∗

ω̂
(zx∗)
l − ω∗

)
+ εl.

51

The last equation implies that either
(
x
zx

)>(γ
(z)
l −γ

∗

ω̂(z)

l −ω∗

)
> εl or

(
x∗

zx∗

)>(γ
(z)
l −γ

∗

ω̂(z)

l −ω∗

)
< −εl, which

in turn implies Fl.

If
⋂
l′≤l F

(1)
l′
⋂
F (2)
l is true: then Explore(0)

l = True and ∀x∗ ∈ argmaxx∈X x
>γ∗, ẑ∗l+1 = −zx∗ .

Moreover, for all l′ ≤ l, Explore(zx∗)
l′ = False or x∗ ∈ X (zx∗)

l′+1 .
Note that this case can only hold if all optimal actions x∗ belong to the same group zx∗ . Without loss
of generality, assume that l > 1 is the smallest integer such that Explore(0)

l = True and ẑ∗l+1 = −zx∗ ,
and for all l′ ≤ l, Explore(zx∗)

l′ = False or x∗ ∈ X (zx∗)
l′+1 . Note that because Explore(0)

l = True,

necessarily Explore(zx∗)
l′ = True for all l′ ≤ l, and in particular x∗ ∈ X (zx∗)

l+1 .

Then, there exists x ∈ X (−zx∗)
l+1 such that(

x

−zx∗

)>(γ̂(−zx∗)
l

ω̂
(−zx∗)
l

)
−
(
x∗

zx∗

)>(γ̂(zx∗)
l

ω̂
(zx∗)
l

)
+ 2zx∗ ω̂

(0)
l ≥ 4εl.

Recall that all optimal actions x∗ are in the same group zx∗ , so (γ∗)>(x∗ − x) > 0. This in turn
implies that(

x

−zx∗

)>(γ̂(−zx∗)
l − γ∗

ω̂
(−zx∗)
l − ω∗

)
−
(
x∗

zx∗

)>(γ̂(zx∗)
l − γ∗

ω̂
(zx∗)
l − ω∗

)
+ 2zx∗(ω̂

(0)
l − ω

∗) ≥ 4εl.

The last equation implies that either
(

x
−zx∗

)>(γ̂(−zx∗)

l −γ∗

ω̂(−zx∗)

l −ω∗

)
≥ εl, or

(
x∗

zx∗

)>(γ̂(zx∗)

l −γ∗

ω̂(zx∗)

l −ω∗

)
≤

−εl, or zx∗(ω̂
(0)
l − ω∗) ≥ εl, which in turn implies Fl.

C.7.18 Proof of Lemma 21

The first claim holds for l = 1. For l ≥ 1, for any x ∈ X (−1)
l+1 ∪ X

(1)
l+1, we have ∆̂l+1

x ≤ ∆x + 8εl on
F according to the definition of ∆̂l+1 and F . The first claim then follows.

For the second claim, Lemma 13 gives that, on F , ∆x < 21εl for any x ∈ X (−1)
l+1 ∪ X

(1)
l+1. So

∆x ≥ 21εl implies x /∈ X (−1)
l+1 ∪ X

(1)
l+1 and hence l ≥ `x on F .

For the third claim, we notice that

max
x′∈X (zx)

`x

(ax′ − ax)>θ̂
(zx)
`x

> 3ε`x ,

since x /∈ X`x+1. Since the left-hand side is smaller than ∆x + 2ε`x on F , we get ∆x > ε`x .

D Extension to M groups

Model We extend the biased linear bandit to Z groups, denoted Z = {1, ..., Z}. The evaluations
are given by

yt = x>t γ + Z>xtω + ξt,

where Zx is the zx-th vector of the canonical basis in RZ , and ω = {ω1, ..., ωZ} ∈ RZ is the vector
of biases. Note that for the model to be identifiable, we must assume it does not contain an intercept.
For x ∈ X , we denote ax =

(
x
Zx

)
. To ensure identifiability of the model, we further assume that the

set A = {ax : x ∈ X} spans Rd+Z .

Estimation of the biased evaluations Adapting the G-EXP-ELIM routine to the multiple group
framework is rather straightforward. Note that this routine can be used as is to eliminate within-group
sub-optimal actions. The actions of each group span a sub-space of dimension d+1, so the G-optimal
measure is still supported by O(d2) points. Moreover, the variance corresponding to this G-optimal
design is still d+ 1.

52

Estimation of the bias By contrast, the bias elimination routine must be modified in order to handle
Z groups. At each phase l, we denote by Zl the set of groups that have not been eliminated yet. If
more than one group remain in Zl, we compute the difference ω1 − ωz for all group z remaining in
Zl with precision εl/2 using a modified ∆-EXP-ELIM routine, which we call ∆-MULT-EXP-ELIM,
described in 5. This routine samples action according to the distribution µz , where for any groups
z 6= 1, we defined µz as the solution of the problem

minimize
µ∈M

ed+1−ed+z
X

∑
x

µ(x)∆x such that (ed+1 − ed+z)
>
V (µ)+ (ed+1 − ed+z) ≤ 1.(62)

We also define κ̃z(∆) as the corresponding regret :

κ̃z(∆) =
∑
x

µz(x)∆x.

Note that the support of the distribution µz is at most of size d+ Z. This two-by-two comparison
allows us to compute, for each z, z′ ∈ Zl, the difference of bias ωz − ωz′ = ω1 − ωz′ − (ω1 − ωz)
with precision level εl. Then, we can use these bias estimates to eliminate groups that are sub-optimal
by a gap larger than 4εl. Again, we rely on estimates of the biases and of the biased evaluations
obtained during the previous round to update the estimate of the gap vector ∆̂l+1.

Algorithm 5 ∆-MULT-EXP-ELIM (X ,Z, (X (z), θ̂(z))z∈Z , ∆̂, n, ε)

1: for z ∈ Z , z 6= 1 do
2: Compute ∆̂-optimal design µ̂z solution of (62) on X , with | supp(µ̂z)| ≤ d+ Z
3: Sample dnµ̂z(x)e times each action ax for x ∈ X
4: Compute ω̂1 − ω̂z = (ed+1 − ed+z)

>θ̂, where θ̂ is the ordinary least square estimator
5: for z ∈ Z and x ∈ X (z) do m̂x ← a>x θ̂

(z) + (ω̂1 − ω̂z)
6: for z ∈ Z and x ∈ X (z) do ∆̂x ← 2 ∧

(
maxz′∈Z,x′∈X (z′) m̂x′ − m̂x + 4ε

)
7: for z ∈ Z do
8: if max

z′∈Z
max
x∈X (z′)

a>x θ̂
(z′) + (ω̂1 − ω̂z′) ≥ max

x∈X (z)
a>x θ̂

(z) + (ω̂1 − ω̂z) + 4ε then Z ← Z \ {z}

9: return Z and ∆̂

Stopping criterion We denote by κ̃Zl(∆̂
l) =

∑
z∈Zl,z 6=1

κ̃z(∆̂
l) the regret for estimating the biases

at phase l. If εl ≤
(
κ̃Zl(∆̂

l) log(T)/T
)1/3

, bias estimation becomes too costly, so we sample the
empirical best action for the remaining time. The FAIR PHASED ELIMINATION FOR MULTIPLE
GROUPS algorithm is presented in 6.

D.1 Worst case regret

Before analyzing the worst case regret of Algorithm 6, we introduce a new quantity, κ̃∗, defined as

κ̃∗ =
∑

z∈Z,z 6=1

min
π∈PXed+1−ed+z

(ed+1 − ed+z)
>

(V (π))
+

(ed+1 − ed+z) .

Note that for all z ∈ Z , z 6= 1, and l ≥ 1, we have κ̃Zl(∆̂
l) ≤ 2κ̃∗.

Claim 1. For the choice δ = T−1, there exists an absolute constantC > 0 and a constant Tκ̃∗,k,Z,d,k
depending on κ̃∗, k, Z, d, and k such that the following bound on the regret of the FAIR PHASED
ELIMINATION FOR MULTIPLE GROUPS algorithm 6 holds

RT ≤ CZ (κ̃∗ log(T))
1/3

T 2/3 for T ≥ Tκ̃∗,k,Z,d,k.

Sketch of Proof. We sketch here a proof of Claim 1, highlighting the main differences with the
two-groups setting. We begin by introducing some notations.

53

Algorithm 6 FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS

1: input: δ, T , X , k = |X |, εl = 22−l for l ≥ 1

2: initialize: ∆̂1 ← (2, ..., 2), l← 0, Z1 = Z
3: for z ∈ Z1 do X (z)

1 ← {x : zx = z}
4: while the budget is not spent do l← l + 1
5: for z ∈ Zl do
6:

(
θ̂(z),X (z)

l+1

)
← G-EXP-ELIM

(
X (z)
l , 2(d+1)

ε2l
log
(
kl(l+1)

δ

)
, εl

)
7: if |Zl| > 1 then
8: Compute κ̃Zl(∆̂

l) =
∑

z∈Zl,z 6=1

κ̃z(∆̂
l).

9: if εl ≤
(
κ̃Zl(∆̂

l) log(T)/T
)1/3

then . Stop bias estimation

10: Sample best action in ∪z∈ZlX
(z)
l+1 for the remaining time

11: else
12:

(
Zl+1, ∆̂

l+1
)
← ∆-MULT-EXP-ELIM

(
X ,Zl,

(
X (z)
l+1, θ̂

(z)
l

)
z∈Zl

, ∆̂l, 8
ε2l

log
(
Zl(l+1)

δ

)
, εl

)

Notations We denote by LT the largest integer l such that εl ≥
(

2κ̃1/3
∗ log(T)/T

)1/3

. For z ∈ Z ,

we denote by L∆ the last phase where ∆̂l-optimal Exploration and Elimination is performed. We
denote by Exp-G(z)

l the time indices where G-exploration is performed on X (z)
l and by Exp-D(z)

l the
time indices where ∆-exploration is performed at phase l for estimating the difference ω1 − ωz . We
also denote by Recovery the time indices subsequent to the stopping criterion, this set being empty
when the stopping criterion is not activated.

We define a "good" event F such that for all z, z′ ∈ Z and all x ∈ X (z)
1 , the errors

∣∣∣a>x (θ∗ − θ̂(z)
l

)∣∣∣
and |(ω∗z − ω∗z′)− ((ω̂l)z − (ω̂l)z′)| are smaller than εl for all l such that these quantities are defined.
In the following, we use c, c′ to denote positive absolute constants, which may vary from line to line.
With these notations, we decompose the regret as follows :

RT ≤ 2TP (F) + E|F

[∑
l≤LT

∑
z∈Zl

∑
t∈Exp-G(z)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RGT

]
+ E|F

[∑
l≤L∆

∑
z∈Zl,z 6=1

∑
t∈Exp-D(z)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
R∆
T

]

+E|F

[∑
l≥LT+1

∑
z∈Zl

∑
t∈Exp-G(z)

l

(x∗ − xt)> γ∗ +
∑

t∈Recovery

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RRecT

]
.

Bound on TP (F). Using arguments based on concentration of Gaussian variables, we can show that
P (F) ≤ 2T−1.

Bound on RGT . The analysis is similar to the two-groups setting. We can show that on F , only
actions with gaps smaller than cεl remain in the sets X (z)

l for z ∈ Zl. The length of each G-optimal
Exploration and Elimination phase for one group is of the order (d+ 1) log(klT)/ε2l , so the regret
corresponding to phase l is of the order Z(d+ 1) log(klT)/εl. Summing over the different phases,
we find that

RGT ≤ c(d+ 1)Z log(kLTT)/εLT . (63)

Using the definition of LT , we find that RGT ≤ c(d+ 1)Z log(kLTT)κ̃−1/3
∗ log(T)−1/3T 1/3.

54

Bound on RRec
T . On the one hand, the actions selected during the Phases Exp-G(z)

l for l ≥ LT + 1

are sub-optimal by a gap at most cεLT on the event F . On the other hand, if the algorithm enters the
Recovery phase at a phase l, then

εl ≤ κ̃ZL∆ (∆̂L∆

)1/3T−1/3 log(T)1/3 ≤ 2κ̃1/3
∗ T−1/3 log(T)1/3,

so we must have l = L∆ + 1 ≥ LT + 1. Therefore, all actions selected during the Recovery phase
are sub-optimal by a gap at most cεLT . Then, RRecT can be bounded as RRecT ≤ cεLT T . This implies
in particular that RRecT ≤ c′κ̃1/3

∗ log(T)1/3T 2/3.

Bound on R∆
T . To bound R∆

T , we introduce further notations. Let us denote by l1, ..., lR the phases
at which at least one group is eliminated, by S1i the sets of groups remaining at the beginning of
phase li, and by SR+1 the set of groups that are never eliminated. We also write lR+1 = L∆. We
abuse notations and denote Exp-D(S)

l = ∪z∈S Exp-D(z)
l . Then, we see that

R∆
T ≤

∑
i≤R+1

∑
l≤li

∑
t∈Exp-D(Si)

l

(x∗ − xt)>γ∗.

The rest of the proof is similar to that in the two-communities setting. We show that on F , ∆̂l ≥ ∆
for all l ≥ 1. Then, our choice of design µ̂zl,z at phase l ensures that for i ≤ R+ 1, on F ,∑

t∈Exp-D(Si)

l

(x∗ − xt)>γ∗ ≤ c
∑
z∈Si

(
log(Zl(l + 1)T)

ε2l
κ̃z(∆̂

l) + d+ 1

)
for some constant c > 0. Using arguments similar to the two-groups setting, we can sum over the
different phases l ≤ li, and find that∑

l≤li

∑
t∈Exp-D(Si)

l

(x∗ − xt)>γ∗ ≤ cκ̃Si(∆̂li) log(ZliT)/ε2li . (64)

By definition of Si we have that κ̃Zli (∆̂
li) = κ̃Si(∆̂

li). Now, the algorithm does not enter the
Recovery phase before phase li + 1, so we must have
ε−2
li
≤ T 2/3 log(T)−2/3κ̃Zli (∆̂

li)−2/3. This implies that∑
l≤li

∑
t∈Exp-D(Si)

l

(x∗ − xt)>γ∗ ≤ cκ̃Zli (∆̂
li)1/3

(
log(T)1/3 + log(Z)

)
T 2/3.

We use that κ̃Zli (∆̂
li) ≤ κ̃∗ and sum over i ≤ R+ 1 < Z, and we find that

R∆
T ≤ CZκ̃

1/3
∗ log(T)1/3T 2/3 for T large enough.

When T ≥ Tκ̃∗,k,Z,d,k for some Tκ̃∗,k,Z,d,k large enough, we find that RT ≤
c′Zκ̃1/3

∗ log(T)1/3T 2/3.

D.2 Gap-dependent regret

Before stating the bound on the gap-dependent regret, we introduce further notations. For z ∈ Z , we
denote ∆ 6=,z = min

x:zx=z
∆x, ∆ 6= = min

x:z 6=z∗
∆ 6=,z , ∆min = minx∈X\x∗ ∆x, and εT = (κ̃∗ log(T)/T)1/3.

Then, we claim that the following gap-dependent regret bound on the regret of Algorithm 5 holds.
Claim 2. Assume that x∗ ∈ argmaxx∈X x

>γ∗ is unique. Then, there exists an absolute constant
C > 0 and a constant Tκ̃∗,k,Z,d,k,∆ 6=,∆min

depending on κ̃∗, k, Z, d, k,∆min, and (∆ 6=,z)z 6=z∗ such
that the following bound on the regret of the FAIR PHASED ELIMINATION FOR MULTIPLE GROUPS
algorithm 6 holds for T ≥ Tκ̃∗,k,Z,d,k,∆ 6=,∆min

RT ≤ C

 d

∆min
∨

∑
z 6=z∗,z 6=1

κz
(
∆ ∨∆ 6=,z ∨ εT

)
(∆ 6=,z)2

+
κz∗
(
∆ ∨∆ 6= ∨ εT

)
(∆ 6=)2

 log(T).

55

Sketch of Proof. We sketch here a proof of Claim 2. We begin by introducing some notations.
Notations We define a "good" event F such that for all z, z′ ∈ Z and all x ∈ X (z)

1 , the errors∣∣∣a>x (θ∗ − θ̂(z)
l

)∣∣∣ and |(ω∗z − ω∗z′) − ((ω̂l)z − (ω̂l)z′)| are smaller than εl for all l such that these

quantities are defined. For each group z ∈ Z , we denote by Exp-G(z)
l the time indices where

G-exploration is performed on X (z)
l . For z ∈ Z , z 6= 1, we denote by Exp-D(z)

l the time indices
where ∆-exploration is performed at phase l to estimate the difference ω1 − ωz , and by L(z) the
last phase l such that z ∈ Zl and bias exploration is performed at this phase. We denote by L∆

the last phase l where bias estimation is performed. Moreover, we denote by S the sets of groups
eliminated before the stopping criterion is activated, and write S = Z \ S. We abuse notations and
denote Exp-D(S)

l = ∪z∈S Exp-D(z)
l . We also denote by Recovery the time indices subsequent to the

stopping criterion, this set being empty when the stopping criterion is not activated. In the following,
we use c, c′ to denote positive absolute constants, which may vary from line to line.

Fact 1 Let l∆min
be the largest integer such that εl∆min

≥ C∆min for some well-chosen absolute
constant C > 0. Similarly to the two-groups setting, we can show that on the good event F , no more
than l∆min

G-optimal Exploration and Elimination phases are needed to find the best action. For all
phases l ≥ l∆min

, the algorithm always chooses x∗, and suffers no regret.

Fact 2 Similarly to the two-groups setting, we can show that on the good event F , for each phase
l, ∆̂l ≤ c (∆ ∨ εl) for some constant c. Moreover, for all l ≤ L∆, all groups z 6= 1, and all τ > 0,
κ̃z(∆̂

l) ≤ cκ̃z(∆ ∨ εl) ≤ c(1 + εlτ
−1)κ̃z(∆ ∨ τ).

Fact 3 For z ∈ Z \ {z∗}, let l∆ 6=,z be the largest integer such that εl∆ 6=,z ≥ C∆ 6=,z for some well-

chosen absolute constant C > 0. On the good event F , if ∆̂l-optimal Exploration and Elimination is
performed at phase l ≥ l∆ 6=,z , and z ∈ Zl, then the algorithm eliminates z at this phase. This implies
that L(z) ≤ l∆ 6=,z , and that L∆ ≤ l∆ 6= .

Fact 4 We denote by LT the largest integer l such that εl ≥ (2κ̃∗ log(T)/T)
1/3. Since 2κ̃∗ ≥ κ̃(∆̂l)

for all l ≥ 1 and all z ∈ Z , we see that if the algorithm enters the Recovery phase, we must have
LT ≤ L∆, and εL∆ ≤ εLT ≈ εT .

Using Fact 1, we find that the regret can be written as

RT ≤ 2TP (F) + E|F

[∑
l≤l∆min

∑
z∈Zl

∑
t∈Exp-G(z)

l

(x∗ − xt)> γ∗

︸ ︷︷ ︸
RGT

]
+ E|F

[∑
z∈S

∑
l≤L(z)

∑
t∈Exp-D(z)

l

(x∗ − xt)>γ∗

︸ ︷︷ ︸
R∆,S
T

]

+E|F

[∑
l≤L∆

∑
t∈Exp-D(S)

l

(x∗ − xt)>γ∗

︸ ︷︷ ︸
R∆,S
T

]
+ E|F

[∑
t∈Recovery

(x∗ − xt)> γ∗︸ ︷︷ ︸
RRecT

]
.

Bound on RG
T . We rely on arguments similar to those used in Equation (63) to show that

RGT ≤ c(d+ 1) log(kl∆min
T)ε−1

l∆min
. Since εl∆min

≥ C∆min, this implies that

RGT ≤
c(d+ 1) log(kl∆minT)

∆min
≤ c′d log(T)

∆min

if T ≥ k.

Bound on R∆,S
T . Using arguments similar to the two-groups settings, we can show that for all z 6= 1∑

l≤L(z)

∑
t∈Exp-D(z)

l

(x∗ − xt)>γ∗ ≤ cκ̃z(∆̂L(z)

) log(lL(z)T)ε−2
L(z) . (65)

56

Using Fact 2 with τ = ∆6=,z together with Fact 3, we find that

R∆,S
T ≤ c

∑
z∈S

κ̃z(∆ ∨∆ 6=,z) log(L(z)T)(∆ 6=,z)
−2.

Bound on R∆,S
T + RRec

T . If the algorithm does not enter the Recovery phase, then RRecT = 0 and
S = {z∗}. Then, the algorithms finds the best group, and the last bias exploration phase is performed
at phase maxz 6=z∗ L

(z) ≤ maxz 6=z∗ l∆ 6=,z = l∆ 6= . Then, Equation (65) implies that

R∆,S
T ≤ cκ̃z∗(∆ ∨∆ 6=) log(L(z)T)(∆ 6=)−2.

If the algorithms enters the Recovery phase, we can use again the same arguments to show that
R∆,S
T ≤ c

∑
z∈S

κ̃z(∆̂
L∆

) log(lL(z)T)ε−2
L(z) . Using Fact 2 and Equation (65), we find that for τ = εL∆ ,

R∆,S
T ≤ c

∑
z∈S

κ̃z(∆ ∨ εL∆) log(lL∆T)ε−2
L∆ = c

κ̃S(∆ ∨ εL∆) log(lL∆T)

ε2
L∆

.

Since all actions selected during the Recovery phase belong to ∪z∈SX
(z)
l , on F these actions are

sub-optimal by a gap at most cεL∆+1, so RRecT ≤ cT εL∆+1. Now, since the algorithm enters the
Recovery phase, we must have εL∆+1 ≤ (κ̃S(∆L∆+1) log(T)/T)1/3, which implies that

RRecT ≤
cκ̃S(∆̂L∆+1) log(T)

ε2
L∆+1

.

Together with Fact 2, this implies that

R∆,S
T +RRecT ≤

cκ̃S(∆ ∨ εL∆) log(T)

ε2
L∆

.

On the one hand, Fact 3 guarantees that, since we entered the Recovery phase before eliminating any
group in S, we must have L∆ ≤ minz∈S\{z∗} l∆ 6=,z , so εL∆ ≥ cmaxz∈S ∆ 6=,z . On the other hand,
Fact 4 ensures that εL∆ ≤ εT . Thus,

R∆
T +RRecT ≤

∑
s∈S\{z∗}

cκ̃z(∆ ∨ εT) log(T)

(∆6=,z)2
+
cκ̃z∗(∆ ∨ εT) log(T)

(∆ 6=)2
.

Conclusion Combining these results, we find that

RT ≤ c

 d

∆min
∨

∑
z 6=z∗,z 6=1

κ̃z(∆ ∨∆ 6=,z) ∨ κ̃z(∆ ∨ εT)

(∆ 6=,z)2
+
κ̃z∗(∆ ∨∆ 6=) ∨ κ̃z∗(∆ ∨ εT)

(∆ 6=)2

 log(T)

when T ≥ k. Using Lemma 8, we get that κ̃z(∆ ∨∆ 6=) ∨ κ̃z(∆ ∨ εT) ≤ κ̃z(∆ ∨∆ 6= ∨ εT), which
concludes the proof of the results.

57

	Introduction
	Related work
	Contribution and outline
	Notations and additional assumptions

	Fair Phased Elimination algorithm
	Optimal design for parameter estimation in the biased linear bandit
	Outline of the Fair Phased Elimination algorithm

	Upper bound on the worst-case regret of Fair Phased Elimination
	Upper bound on the gap-depend regret of Fair Phased Elimination
	Lower bounds on the regret
	Lower bound on the worst-case regret
	Lower bound on the gap-dependent regret

	Conclusion
	On the geometry of bias estimation
	Bias estimation as a ed+1-optimal design problem
	Interpretation of * in terms of separation of the groups
	Comparison to the conditioning number
	Comparison to the worst-case alignment constant
	Optimal bias estimation against the worst parameter
	Additionnal results the -optimal design
	Computation of G- and -optimal design

	Detailed Fair Phased Elimination algorithm
	Proofs
	Outline of the proofs
	Outline of the proof of Theorem 1
	Outline of the Proof of Theorem 2
	Outline of the Proof of Theorem 4

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorems 4
	Extension of the gap-dependent lower bounds to d=2,3
	Auxiliary Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemmas 3 and 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemmas 16
	Proof of Lemmas 10 and 17
	Proof of Lemma 11
	Proof of Lemma 18
	Proof of Lemma 19
	Proof of Lemma 20
	Proof of Lemma 21

	Extension to M groups
	Worst case regret
	Gap-dependent regret

